freebsd-dev/sys/dev/ath/ath_hal/ar5416/ar5416_xmit.c
Adrian Chadd fffbec8618 Migrate the 802.11n ath_hal_chaintxdesc() API to use a buffer/segment
array, similar to what filltxdesc() uses.

This removes the last reference to ds_data in the TX path outside of
debugging statements.  These need to be adjusted/fixed.

Tested:

* AR9280 STA/AP with iperf TCP traffic
2012-08-05 11:24:21 +00:00

1204 lines
36 KiB
C

/*
* Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
* Copyright (c) 2002-2008 Atheros Communications, Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
* $FreeBSD$
*/
#include "opt_ah.h"
#include "ah.h"
#include "ah_desc.h"
#include "ah_internal.h"
#include "ar5416/ar5416.h"
#include "ar5416/ar5416reg.h"
#include "ar5416/ar5416phy.h"
#include "ar5416/ar5416desc.h"
/*
* Stop transmit on the specified queue
*/
HAL_BOOL
ar5416StopTxDma(struct ath_hal *ah, u_int q)
{
#define STOP_DMA_TIMEOUT 4000 /* us */
#define STOP_DMA_ITER 100 /* us */
u_int i;
HALASSERT(q < AH_PRIVATE(ah)->ah_caps.halTotalQueues);
HALASSERT(AH5212(ah)->ah_txq[q].tqi_type != HAL_TX_QUEUE_INACTIVE);
OS_REG_WRITE(ah, AR_Q_TXD, 1 << q);
for (i = STOP_DMA_TIMEOUT/STOP_DMA_ITER; i != 0; i--) {
if (ar5212NumTxPending(ah, q) == 0)
break;
OS_DELAY(STOP_DMA_ITER);
}
#ifdef AH_DEBUG
if (i == 0) {
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: queue %u DMA did not stop in 400 msec\n", __func__, q);
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: QSTS 0x%x Q_TXE 0x%x Q_TXD 0x%x Q_CBR 0x%x\n", __func__,
OS_REG_READ(ah, AR_QSTS(q)), OS_REG_READ(ah, AR_Q_TXE),
OS_REG_READ(ah, AR_Q_TXD), OS_REG_READ(ah, AR_QCBRCFG(q)));
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: Q_MISC 0x%x Q_RDYTIMECFG 0x%x Q_RDYTIMESHDN 0x%x\n",
__func__, OS_REG_READ(ah, AR_QMISC(q)),
OS_REG_READ(ah, AR_QRDYTIMECFG(q)),
OS_REG_READ(ah, AR_Q_RDYTIMESHDN));
}
#endif /* AH_DEBUG */
/* ar5416 and up can kill packets at the PCU level */
if (ar5212NumTxPending(ah, q)) {
uint32_t j;
HALDEBUG(ah, HAL_DEBUG_TXQUEUE,
"%s: Num of pending TX Frames %d on Q %d\n",
__func__, ar5212NumTxPending(ah, q), q);
/* Kill last PCU Tx Frame */
/* TODO - save off and restore current values of Q1/Q2? */
for (j = 0; j < 2; j++) {
uint32_t tsfLow = OS_REG_READ(ah, AR_TSF_L32);
OS_REG_WRITE(ah, AR_QUIET2,
SM(10, AR_QUIET2_QUIET_DUR));
OS_REG_WRITE(ah, AR_QUIET_PERIOD, 100);
OS_REG_WRITE(ah, AR_NEXT_QUIET, tsfLow >> 10);
OS_REG_SET_BIT(ah, AR_TIMER_MODE, AR_TIMER_MODE_QUIET);
if ((OS_REG_READ(ah, AR_TSF_L32)>>10) == (tsfLow>>10))
break;
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: TSF moved while trying to set quiet time "
"TSF: 0x%08x\n", __func__, tsfLow);
HALASSERT(j < 1); /* TSF shouldn't count twice or reg access is taking forever */
}
OS_REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_CHAN_IDLE);
/* Allow the quiet mechanism to do its work */
OS_DELAY(200);
OS_REG_CLR_BIT(ah, AR_TIMER_MODE, AR_TIMER_MODE_QUIET);
/* Verify the transmit q is empty */
for (i = STOP_DMA_TIMEOUT/STOP_DMA_ITER; i != 0; i--) {
if (ar5212NumTxPending(ah, q) == 0)
break;
OS_DELAY(STOP_DMA_ITER);
}
if (i == 0) {
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: Failed to stop Tx DMA in %d msec after killing"
" last frame\n", __func__, STOP_DMA_TIMEOUT / 1000);
}
OS_REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_CHAN_IDLE);
}
OS_REG_WRITE(ah, AR_Q_TXD, 0);
return (i != 0);
#undef STOP_DMA_ITER
#undef STOP_DMA_TIMEOUT
}
#define VALID_KEY_TYPES \
((1 << HAL_KEY_TYPE_CLEAR) | (1 << HAL_KEY_TYPE_WEP)|\
(1 << HAL_KEY_TYPE_AES) | (1 << HAL_KEY_TYPE_TKIP))
#define isValidKeyType(_t) ((1 << (_t)) & VALID_KEY_TYPES)
#define set11nTries(_series, _index) \
(SM((_series)[_index].Tries, AR_XmitDataTries##_index))
#define set11nRate(_series, _index) \
(SM((_series)[_index].Rate, AR_XmitRate##_index))
#define set11nPktDurRTSCTS(_series, _index) \
(SM((_series)[_index].PktDuration, AR_PacketDur##_index) |\
((_series)[_index].RateFlags & HAL_RATESERIES_RTS_CTS ?\
AR_RTSCTSQual##_index : 0))
#define set11nRateFlags(_series, _index) \
((_series)[_index].RateFlags & HAL_RATESERIES_2040 ? AR_2040_##_index : 0) \
|((_series)[_index].RateFlags & HAL_RATESERIES_HALFGI ? AR_GI##_index : 0) \
|((_series)[_index].RateFlags & HAL_RATESERIES_STBC ? AR_STBC##_index : 0) \
|SM((_series)[_index].ChSel, AR_ChainSel##_index)
/*
* Descriptor Access Functions
*/
#define VALID_PKT_TYPES \
((1<<HAL_PKT_TYPE_NORMAL)|(1<<HAL_PKT_TYPE_ATIM)|\
(1<<HAL_PKT_TYPE_PSPOLL)|(1<<HAL_PKT_TYPE_PROBE_RESP)|\
(1<<HAL_PKT_TYPE_BEACON)|(1<<HAL_PKT_TYPE_AMPDU))
#define isValidPktType(_t) ((1<<(_t)) & VALID_PKT_TYPES)
#define VALID_TX_RATES \
((1<<0x0b)|(1<<0x0f)|(1<<0x0a)|(1<<0x0e)|(1<<0x09)|(1<<0x0d)|\
(1<<0x08)|(1<<0x0c)|(1<<0x1b)|(1<<0x1a)|(1<<0x1e)|(1<<0x19)|\
(1<<0x1d)|(1<<0x18)|(1<<0x1c)|(1<<0x01)|(1<<0x02)|(1<<0x03)|\
(1<<0x04)|(1<<0x05)|(1<<0x06)|(1<<0x07)|(1<<0x00))
/* NB: accept HT rates */
#define isValidTxRate(_r) ((1<<((_r) & 0x7f)) & VALID_TX_RATES)
HAL_BOOL
ar5416SetupTxDesc(struct ath_hal *ah, struct ath_desc *ds,
u_int pktLen,
u_int hdrLen,
HAL_PKT_TYPE type,
u_int txPower,
u_int txRate0, u_int txTries0,
u_int keyIx,
u_int antMode,
u_int flags,
u_int rtsctsRate,
u_int rtsctsDuration,
u_int compicvLen,
u_int compivLen,
u_int comp)
{
#define RTSCTS (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)
struct ar5416_desc *ads = AR5416DESC(ds);
struct ath_hal_5416 *ahp = AH5416(ah);
(void) hdrLen;
HALASSERT(txTries0 != 0);
HALASSERT(isValidPktType(type));
HALASSERT(isValidTxRate(txRate0));
HALASSERT((flags & RTSCTS) != RTSCTS);
/* XXX validate antMode */
txPower = (txPower + AH5212(ah)->ah_txPowerIndexOffset);
if (txPower > 63)
txPower = 63;
ads->ds_ctl0 = (pktLen & AR_FrameLen)
| (txPower << AR_XmitPower_S)
| (flags & HAL_TXDESC_VEOL ? AR_VEOL : 0)
| (flags & HAL_TXDESC_CLRDMASK ? AR_ClrDestMask : 0)
| (flags & HAL_TXDESC_INTREQ ? AR_TxIntrReq : 0)
;
ads->ds_ctl1 = (type << AR_FrameType_S)
| (flags & HAL_TXDESC_NOACK ? AR_NoAck : 0)
;
ads->ds_ctl2 = SM(txTries0, AR_XmitDataTries0)
| (flags & HAL_TXDESC_DURENA ? AR_DurUpdateEn : 0)
;
ads->ds_ctl3 = (txRate0 << AR_XmitRate0_S)
;
ads->ds_ctl4 = 0;
ads->ds_ctl5 = 0;
ads->ds_ctl6 = 0;
ads->ds_ctl7 = SM(ahp->ah_tx_chainmask, AR_ChainSel0)
| SM(ahp->ah_tx_chainmask, AR_ChainSel1)
| SM(ahp->ah_tx_chainmask, AR_ChainSel2)
| SM(ahp->ah_tx_chainmask, AR_ChainSel3)
;
ads->ds_ctl8 = SM(0, AR_AntCtl0);
ads->ds_ctl9 = SM(0, AR_AntCtl1) | SM(txPower, AR_XmitPower1);
ads->ds_ctl10 = SM(0, AR_AntCtl2) | SM(txPower, AR_XmitPower2);
ads->ds_ctl11 = SM(0, AR_AntCtl3) | SM(txPower, AR_XmitPower3);
if (keyIx != HAL_TXKEYIX_INVALID) {
/* XXX validate key index */
ads->ds_ctl1 |= SM(keyIx, AR_DestIdx);
ads->ds_ctl0 |= AR_DestIdxValid;
ads->ds_ctl6 |= SM(ahp->ah_keytype[keyIx], AR_EncrType);
}
if (flags & RTSCTS) {
if (!isValidTxRate(rtsctsRate)) {
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: invalid rts/cts rate 0x%x\n",
__func__, rtsctsRate);
return AH_FALSE;
}
/* XXX validate rtsctsDuration */
ads->ds_ctl0 |= (flags & HAL_TXDESC_CTSENA ? AR_CTSEnable : 0)
| (flags & HAL_TXDESC_RTSENA ? AR_RTSEnable : 0)
;
ads->ds_ctl7 |= (rtsctsRate << AR_RTSCTSRate_S);
}
/*
* Set the TX antenna to 0 for Kite
* To preserve existing behaviour, also set the TPC bits to 0;
* when TPC is enabled these should be filled in appropriately.
*/
if (AR_SREV_KITE(ah)) {
ads->ds_ctl8 = SM(0, AR_AntCtl0);
ads->ds_ctl9 = SM(0, AR_AntCtl1) | SM(0, AR_XmitPower1);
ads->ds_ctl10 = SM(0, AR_AntCtl2) | SM(0, AR_XmitPower2);
ads->ds_ctl11 = SM(0, AR_AntCtl3) | SM(0, AR_XmitPower3);
}
return AH_TRUE;
#undef RTSCTS
}
HAL_BOOL
ar5416SetupXTxDesc(struct ath_hal *ah, struct ath_desc *ds,
u_int txRate1, u_int txTries1,
u_int txRate2, u_int txTries2,
u_int txRate3, u_int txTries3)
{
struct ar5416_desc *ads = AR5416DESC(ds);
if (txTries1) {
HALASSERT(isValidTxRate(txRate1));
ads->ds_ctl2 |= SM(txTries1, AR_XmitDataTries1);
ads->ds_ctl3 |= (txRate1 << AR_XmitRate1_S);
}
if (txTries2) {
HALASSERT(isValidTxRate(txRate2));
ads->ds_ctl2 |= SM(txTries2, AR_XmitDataTries2);
ads->ds_ctl3 |= (txRate2 << AR_XmitRate2_S);
}
if (txTries3) {
HALASSERT(isValidTxRate(txRate3));
ads->ds_ctl2 |= SM(txTries3, AR_XmitDataTries3);
ads->ds_ctl3 |= (txRate3 << AR_XmitRate3_S);
}
return AH_TRUE;
}
HAL_BOOL
ar5416FillTxDesc(struct ath_hal *ah, struct ath_desc *ds,
HAL_DMA_ADDR *bufAddrList, uint32_t *segLenList, u_int descId,
u_int qcuId, HAL_BOOL firstSeg, HAL_BOOL lastSeg,
const struct ath_desc *ds0)
{
struct ar5416_desc *ads = AR5416DESC(ds);
uint32_t segLen = segLenList[0];
HALASSERT((segLen &~ AR_BufLen) == 0);
ds->ds_data = bufAddrList[0];
if (firstSeg) {
/*
* First descriptor, don't clobber xmit control data
* setup by ar5212SetupTxDesc.
*/
ads->ds_ctl1 |= segLen | (lastSeg ? 0 : AR_TxMore);
} else if (lastSeg) { /* !firstSeg && lastSeg */
/*
* Last descriptor in a multi-descriptor frame,
* copy the multi-rate transmit parameters from
* the first frame for processing on completion.
*/
ads->ds_ctl1 = segLen;
#ifdef AH_NEED_DESC_SWAP
ads->ds_ctl0 = __bswap32(AR5416DESC_CONST(ds0)->ds_ctl0)
& AR_TxIntrReq;
ads->ds_ctl2 = __bswap32(AR5416DESC_CONST(ds0)->ds_ctl2);
ads->ds_ctl3 = __bswap32(AR5416DESC_CONST(ds0)->ds_ctl3);
#else
ads->ds_ctl0 = AR5416DESC_CONST(ds0)->ds_ctl0 & AR_TxIntrReq;
ads->ds_ctl2 = AR5416DESC_CONST(ds0)->ds_ctl2;
ads->ds_ctl3 = AR5416DESC_CONST(ds0)->ds_ctl3;
#endif
} else { /* !firstSeg && !lastSeg */
/*
* Intermediate descriptor in a multi-descriptor frame.
*/
#ifdef AH_NEED_DESC_SWAP
ads->ds_ctl0 = __bswap32(AR5416DESC_CONST(ds0)->ds_ctl0)
& AR_TxIntrReq;
#else
ads->ds_ctl0 = AR5416DESC_CONST(ds0)->ds_ctl0 & AR_TxIntrReq;
#endif
ads->ds_ctl1 = segLen | AR_TxMore;
ads->ds_ctl2 = 0;
ads->ds_ctl3 = 0;
}
/* XXX only on last descriptor? */
OS_MEMZERO(ads->u.tx.status, sizeof(ads->u.tx.status));
return AH_TRUE;
}
/*
* NB: cipher is no longer used, it's calculated.
*/
HAL_BOOL
ar5416ChainTxDesc(struct ath_hal *ah, struct ath_desc *ds,
HAL_DMA_ADDR *bufAddrList,
uint32_t *segLenList,
u_int pktLen,
u_int hdrLen,
HAL_PKT_TYPE type,
u_int keyIx,
HAL_CIPHER cipher,
uint8_t delims,
HAL_BOOL firstSeg,
HAL_BOOL lastSeg,
HAL_BOOL lastAggr)
{
struct ar5416_desc *ads = AR5416DESC(ds);
uint32_t *ds_txstatus = AR5416_DS_TXSTATUS(ah,ads);
struct ath_hal_5416 *ahp = AH5416(ah);
u_int segLen = segLenList[0];
int isaggr = 0;
uint32_t last_aggr = 0;
(void) hdrLen;
(void) ah;
HALASSERT((segLen &~ AR_BufLen) == 0);
ds->ds_data = bufAddrList[0];
HALASSERT(isValidPktType(type));
if (type == HAL_PKT_TYPE_AMPDU) {
type = HAL_PKT_TYPE_NORMAL;
isaggr = 1;
if (lastAggr == AH_FALSE)
last_aggr = AR_MoreAggr;
}
/*
* Since this function is called before any of the other
* descriptor setup functions (at least in this particular
* 802.11n aggregation implementation), always bzero() the
* descriptor. Previously this would be done for all but
* the first segment.
* XXX TODO: figure out why; perhaps I'm using this slightly
* XXX incorrectly.
*/
OS_MEMZERO(ds->ds_hw, AR5416_DESC_TX_CTL_SZ);
/*
* Note: VEOL should only be for the last descriptor in the chain.
*/
ads->ds_ctl0 = (pktLen & AR_FrameLen);
/*
* For aggregates:
* + IsAggr must be set for all descriptors of all subframes of
* the aggregate
* + MoreAggr must be set for all descriptors of all subframes
* of the aggregate EXCEPT the last subframe;
* + MoreAggr must be _CLEAR_ for all descrpitors of the last
* subframe of the aggregate.
*/
ads->ds_ctl1 = (type << AR_FrameType_S)
| (isaggr ? (AR_IsAggr | last_aggr) : 0);
ads->ds_ctl2 = 0;
ads->ds_ctl3 = 0;
if (keyIx != HAL_TXKEYIX_INVALID) {
/* XXX validate key index */
ads->ds_ctl1 |= SM(keyIx, AR_DestIdx);
ads->ds_ctl0 |= AR_DestIdxValid;
}
ads->ds_ctl6 |= SM(ahp->ah_keytype[keyIx], AR_EncrType);
if (isaggr) {
ads->ds_ctl6 |= SM(delims, AR_PadDelim);
}
if (firstSeg) {
ads->ds_ctl1 |= segLen | (lastSeg ? 0 : AR_TxMore);
} else if (lastSeg) { /* !firstSeg && lastSeg */
ads->ds_ctl0 = 0;
ads->ds_ctl1 |= segLen;
} else { /* !firstSeg && !lastSeg */
/*
* Intermediate descriptor in a multi-descriptor frame.
*/
ads->ds_ctl0 = 0;
ads->ds_ctl1 |= segLen | AR_TxMore;
}
ds_txstatus[0] = ds_txstatus[1] = 0;
ds_txstatus[9] &= ~AR_TxDone;
return AH_TRUE;
}
HAL_BOOL
ar5416SetupFirstTxDesc(struct ath_hal *ah, struct ath_desc *ds,
u_int aggrLen, u_int flags, u_int txPower,
u_int txRate0, u_int txTries0, u_int antMode,
u_int rtsctsRate, u_int rtsctsDuration)
{
#define RTSCTS (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)
struct ar5416_desc *ads = AR5416DESC(ds);
struct ath_hal_5212 *ahp = AH5212(ah);
HALASSERT(txTries0 != 0);
HALASSERT(isValidTxRate(txRate0));
HALASSERT((flags & RTSCTS) != RTSCTS);
/* XXX validate antMode */
txPower = (txPower + ahp->ah_txPowerIndexOffset );
if(txPower > 63) txPower=63;
ads->ds_ctl0 |= (txPower << AR_XmitPower_S)
| (flags & HAL_TXDESC_VEOL ? AR_VEOL : 0)
| (flags & HAL_TXDESC_CLRDMASK ? AR_ClrDestMask : 0)
| (flags & HAL_TXDESC_INTREQ ? AR_TxIntrReq : 0);
ads->ds_ctl1 |= (flags & HAL_TXDESC_NOACK ? AR_NoAck : 0);
ads->ds_ctl2 |= SM(txTries0, AR_XmitDataTries0);
ads->ds_ctl3 |= (txRate0 << AR_XmitRate0_S);
ads->ds_ctl7 = SM(AH5416(ah)->ah_tx_chainmask, AR_ChainSel0)
| SM(AH5416(ah)->ah_tx_chainmask, AR_ChainSel1)
| SM(AH5416(ah)->ah_tx_chainmask, AR_ChainSel2)
| SM(AH5416(ah)->ah_tx_chainmask, AR_ChainSel3);
/* NB: no V1 WAR */
ads->ds_ctl8 = SM(0, AR_AntCtl0);
ads->ds_ctl9 = SM(0, AR_AntCtl1) | SM(txPower, AR_XmitPower1);
ads->ds_ctl10 = SM(0, AR_AntCtl2) | SM(txPower, AR_XmitPower2);
ads->ds_ctl11 = SM(0, AR_AntCtl3) | SM(txPower, AR_XmitPower3);
ads->ds_ctl6 &= ~(0xffff);
ads->ds_ctl6 |= SM(aggrLen, AR_AggrLen);
if (flags & RTSCTS) {
/* XXX validate rtsctsDuration */
ads->ds_ctl0 |= (flags & HAL_TXDESC_CTSENA ? AR_CTSEnable : 0)
| (flags & HAL_TXDESC_RTSENA ? AR_RTSEnable : 0);
}
/*
* Set the TX antenna to 0 for Kite
* To preserve existing behaviour, also set the TPC bits to 0;
* when TPC is enabled these should be filled in appropriately.
*/
if (AR_SREV_KITE(ah)) {
ads->ds_ctl8 = SM(0, AR_AntCtl0);
ads->ds_ctl9 = SM(0, AR_AntCtl1) | SM(0, AR_XmitPower1);
ads->ds_ctl10 = SM(0, AR_AntCtl2) | SM(0, AR_XmitPower2);
ads->ds_ctl11 = SM(0, AR_AntCtl3) | SM(0, AR_XmitPower3);
}
return AH_TRUE;
#undef RTSCTS
}
HAL_BOOL
ar5416SetupLastTxDesc(struct ath_hal *ah, struct ath_desc *ds,
const struct ath_desc *ds0)
{
struct ar5416_desc *ads = AR5416DESC(ds);
ads->ds_ctl1 &= ~AR_MoreAggr;
ads->ds_ctl6 &= ~AR_PadDelim;
/* hack to copy rate info to last desc for later processing */
#ifdef AH_NEED_DESC_SWAP
ads->ds_ctl2 = __bswap32(AR5416DESC_CONST(ds0)->ds_ctl2);
ads->ds_ctl3 = __bswap32(AR5416DESC_CONST(ds0)->ds_ctl3);
#else
ads->ds_ctl2 = AR5416DESC_CONST(ds0)->ds_ctl2;
ads->ds_ctl3 = AR5416DESC_CONST(ds0)->ds_ctl3;
#endif
return AH_TRUE;
}
#ifdef AH_NEED_DESC_SWAP
/* Swap transmit descriptor */
static __inline void
ar5416SwapTxDesc(struct ath_desc *ds)
{
ds->ds_data = __bswap32(ds->ds_data);
ds->ds_ctl0 = __bswap32(ds->ds_ctl0);
ds->ds_ctl1 = __bswap32(ds->ds_ctl1);
ds->ds_hw[0] = __bswap32(ds->ds_hw[0]);
ds->ds_hw[1] = __bswap32(ds->ds_hw[1]);
ds->ds_hw[2] = __bswap32(ds->ds_hw[2]);
ds->ds_hw[3] = __bswap32(ds->ds_hw[3]);
}
#endif
/*
* Processing of HW TX descriptor.
*/
HAL_STATUS
ar5416ProcTxDesc(struct ath_hal *ah,
struct ath_desc *ds, struct ath_tx_status *ts)
{
struct ar5416_desc *ads = AR5416DESC(ds);
uint32_t *ds_txstatus = AR5416_DS_TXSTATUS(ah,ads);
#ifdef AH_NEED_DESC_SWAP
if ((ds_txstatus[9] & __bswap32(AR_TxDone)) == 0)
return HAL_EINPROGRESS;
ar5416SwapTxDesc(ds);
#else
if ((ds_txstatus[9] & AR_TxDone) == 0)
return HAL_EINPROGRESS;
#endif
/* Update software copies of the HW status */
ts->ts_seqnum = MS(ds_txstatus[9], AR_SeqNum);
ts->ts_tstamp = AR_SendTimestamp(ds_txstatus);
ts->ts_tid = MS(ds_txstatus[9], AR_TxTid);
ts->ts_status = 0;
if (ds_txstatus[1] & AR_ExcessiveRetries)
ts->ts_status |= HAL_TXERR_XRETRY;
if (ds_txstatus[1] & AR_Filtered)
ts->ts_status |= HAL_TXERR_FILT;
if (ds_txstatus[1] & AR_FIFOUnderrun)
ts->ts_status |= HAL_TXERR_FIFO;
if (ds_txstatus[9] & AR_TxOpExceeded)
ts->ts_status |= HAL_TXERR_XTXOP;
if (ds_txstatus[1] & AR_TxTimerExpired)
ts->ts_status |= HAL_TXERR_TIMER_EXPIRED;
ts->ts_flags = 0;
if (ds_txstatus[0] & AR_TxBaStatus) {
ts->ts_flags |= HAL_TX_BA;
ts->ts_ba_low = AR_BaBitmapLow(ds_txstatus);
ts->ts_ba_high = AR_BaBitmapHigh(ds_txstatus);
}
if (ds->ds_ctl1 & AR_IsAggr)
ts->ts_flags |= HAL_TX_AGGR;
if (ds_txstatus[1] & AR_DescCfgErr)
ts->ts_flags |= HAL_TX_DESC_CFG_ERR;
if (ds_txstatus[1] & AR_TxDataUnderrun)
ts->ts_flags |= HAL_TX_DATA_UNDERRUN;
if (ds_txstatus[1] & AR_TxDelimUnderrun)
ts->ts_flags |= HAL_TX_DELIM_UNDERRUN;
/*
* Extract the transmit rate used and mark the rate as
* ``alternate'' if it wasn't the series 0 rate.
*/
ts->ts_finaltsi = MS(ds_txstatus[9], AR_FinalTxIdx);
switch (ts->ts_finaltsi) {
case 0:
ts->ts_rate = MS(ads->ds_ctl3, AR_XmitRate0);
break;
case 1:
ts->ts_rate = MS(ads->ds_ctl3, AR_XmitRate1);
break;
case 2:
ts->ts_rate = MS(ads->ds_ctl3, AR_XmitRate2);
break;
case 3:
ts->ts_rate = MS(ads->ds_ctl3, AR_XmitRate3);
break;
}
ts->ts_rssi = MS(ds_txstatus[5], AR_TxRSSICombined);
ts->ts_rssi_ctl[0] = MS(ds_txstatus[0], AR_TxRSSIAnt00);
ts->ts_rssi_ctl[1] = MS(ds_txstatus[0], AR_TxRSSIAnt01);
ts->ts_rssi_ctl[2] = MS(ds_txstatus[0], AR_TxRSSIAnt02);
ts->ts_rssi_ext[0] = MS(ds_txstatus[5], AR_TxRSSIAnt10);
ts->ts_rssi_ext[1] = MS(ds_txstatus[5], AR_TxRSSIAnt11);
ts->ts_rssi_ext[2] = MS(ds_txstatus[5], AR_TxRSSIAnt12);
ts->ts_evm0 = AR_TxEVM0(ds_txstatus);
ts->ts_evm1 = AR_TxEVM1(ds_txstatus);
ts->ts_evm2 = AR_TxEVM2(ds_txstatus);
ts->ts_shortretry = MS(ds_txstatus[1], AR_RTSFailCnt);
ts->ts_longretry = MS(ds_txstatus[1], AR_DataFailCnt);
/*
* The retry count has the number of un-acked tries for the
* final series used. When doing multi-rate retry we must
* fixup the retry count by adding in the try counts for
* each series that was fully-processed. Beware that this
* takes values from the try counts in the final descriptor.
* These are not required by the hardware. We assume they
* are placed there by the driver as otherwise we have no
* access and the driver can't do the calculation because it
* doesn't know the descriptor format.
*/
switch (ts->ts_finaltsi) {
case 3: ts->ts_longretry += MS(ads->ds_ctl2, AR_XmitDataTries2);
case 2: ts->ts_longretry += MS(ads->ds_ctl2, AR_XmitDataTries1);
case 1: ts->ts_longretry += MS(ads->ds_ctl2, AR_XmitDataTries0);
}
/*
* These fields are not used. Zero these to preserve compatability
* with existing drivers.
*/
ts->ts_virtcol = MS(ads->ds_ctl1, AR_VirtRetryCnt);
ts->ts_antenna = 0; /* We don't switch antennas on Owl*/
/* handle tx trigger level changes internally */
if ((ts->ts_status & HAL_TXERR_FIFO) ||
(ts->ts_flags & (HAL_TX_DATA_UNDERRUN | HAL_TX_DELIM_UNDERRUN)))
ar5212UpdateTxTrigLevel(ah, AH_TRUE);
return HAL_OK;
}
HAL_BOOL
ar5416SetGlobalTxTimeout(struct ath_hal *ah, u_int tu)
{
struct ath_hal_5416 *ahp = AH5416(ah);
if (tu > 0xFFFF) {
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad global tx timeout %u\n",
__func__, tu);
/* restore default handling */
ahp->ah_globaltxtimeout = (u_int) -1;
return AH_FALSE;
}
OS_REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
ahp->ah_globaltxtimeout = tu;
return AH_TRUE;
}
u_int
ar5416GetGlobalTxTimeout(struct ath_hal *ah)
{
return MS(OS_REG_READ(ah, AR_GTXTO), AR_GTXTO_TIMEOUT_LIMIT);
}
void
ar5416Set11nRateScenario(struct ath_hal *ah, struct ath_desc *ds,
u_int durUpdateEn, u_int rtsctsRate,
HAL_11N_RATE_SERIES series[], u_int nseries, u_int flags)
{
struct ar5416_desc *ads = AR5416DESC(ds);
uint32_t ds_ctl0;
HALASSERT(nseries == 4);
(void)nseries;
/*
* XXX since the upper layers doesn't know the current chainmask
* XXX setup, just override its decisions here.
* XXX The upper layers need to be taught this!
*/
if (series[0].Tries != 0)
series[0].ChSel = AH5416(ah)->ah_tx_chainmask;
if (series[1].Tries != 0)
series[1].ChSel = AH5416(ah)->ah_tx_chainmask;
if (series[2].Tries != 0)
series[2].ChSel = AH5416(ah)->ah_tx_chainmask;
if (series[3].Tries != 0)
series[3].ChSel = AH5416(ah)->ah_tx_chainmask;
/*
* Only one of RTS and CTS enable must be set.
* If a frame has both set, just do RTS protection -
* that's enough to satisfy legacy protection.
*/
if (flags & (HAL_TXDESC_RTSENA | HAL_TXDESC_CTSENA)) {
ds_ctl0 = ads->ds_ctl0;
if (flags & HAL_TXDESC_RTSENA) {
ds_ctl0 &= ~AR_CTSEnable;
ds_ctl0 |= AR_RTSEnable;
} else {
ds_ctl0 &= ~AR_RTSEnable;
ds_ctl0 |= AR_CTSEnable;
}
ads->ds_ctl0 = ds_ctl0;
} else {
ads->ds_ctl0 =
(ads->ds_ctl0 & ~(AR_RTSEnable | AR_CTSEnable));
}
ads->ds_ctl2 = set11nTries(series, 0)
| set11nTries(series, 1)
| set11nTries(series, 2)
| set11nTries(series, 3)
| (durUpdateEn ? AR_DurUpdateEn : 0);
ads->ds_ctl3 = set11nRate(series, 0)
| set11nRate(series, 1)
| set11nRate(series, 2)
| set11nRate(series, 3);
ads->ds_ctl4 = set11nPktDurRTSCTS(series, 0)
| set11nPktDurRTSCTS(series, 1);
ads->ds_ctl5 = set11nPktDurRTSCTS(series, 2)
| set11nPktDurRTSCTS(series, 3);
ads->ds_ctl7 = set11nRateFlags(series, 0)
| set11nRateFlags(series, 1)
| set11nRateFlags(series, 2)
| set11nRateFlags(series, 3)
| SM(rtsctsRate, AR_RTSCTSRate);
}
void
ar5416Set11nAggrFirst(struct ath_hal *ah, struct ath_desc *ds, u_int aggrLen)
{
struct ar5416_desc *ads = AR5416DESC(ds);
ads->ds_ctl1 |= (AR_IsAggr | AR_MoreAggr);
ads->ds_ctl6 &= ~(AR_AggrLen | AR_PadDelim);
ads->ds_ctl6 |= SM(aggrLen, AR_AggrLen);
}
void
ar5416Set11nAggrMiddle(struct ath_hal *ah, struct ath_desc *ds, u_int numDelims)
{
struct ar5416_desc *ads = AR5416DESC(ds);
uint32_t *ds_txstatus = AR5416_DS_TXSTATUS(ah,ads);
ads->ds_ctl1 |= (AR_IsAggr | AR_MoreAggr);
ads->ds_ctl6 &= ~AR_PadDelim;
ads->ds_ctl6 |= SM(numDelims, AR_PadDelim);
ads->ds_ctl6 &= ~AR_AggrLen;
/*
* Clear the TxDone status here, may need to change
* func name to reflect this
*/
ds_txstatus[9] &= ~AR_TxDone;
}
void
ar5416Set11nAggrLast(struct ath_hal *ah, struct ath_desc *ds)
{
struct ar5416_desc *ads = AR5416DESC(ds);
ads->ds_ctl1 |= AR_IsAggr;
ads->ds_ctl1 &= ~AR_MoreAggr;
ads->ds_ctl6 &= ~AR_PadDelim;
}
void
ar5416Clr11nAggr(struct ath_hal *ah, struct ath_desc *ds)
{
struct ar5416_desc *ads = AR5416DESC(ds);
ads->ds_ctl1 &= (~AR_IsAggr & ~AR_MoreAggr);
ads->ds_ctl6 &= ~AR_PadDelim;
ads->ds_ctl6 &= ~AR_AggrLen;
}
void
ar5416Set11nBurstDuration(struct ath_hal *ah, struct ath_desc *ds,
u_int burstDuration)
{
struct ar5416_desc *ads = AR5416DESC(ds);
ads->ds_ctl2 &= ~AR_BurstDur;
ads->ds_ctl2 |= SM(burstDuration, AR_BurstDur);
}
/*
* Retrieve the rate table from the given TX completion descriptor
*/
HAL_BOOL
ar5416GetTxCompletionRates(struct ath_hal *ah, const struct ath_desc *ds0, int *rates, int *tries)
{
const struct ar5416_desc *ads = AR5416DESC_CONST(ds0);
rates[0] = MS(ads->ds_ctl3, AR_XmitRate0);
rates[1] = MS(ads->ds_ctl3, AR_XmitRate1);
rates[2] = MS(ads->ds_ctl3, AR_XmitRate2);
rates[3] = MS(ads->ds_ctl3, AR_XmitRate3);
tries[0] = MS(ads->ds_ctl2, AR_XmitDataTries0);
tries[1] = MS(ads->ds_ctl2, AR_XmitDataTries1);
tries[2] = MS(ads->ds_ctl2, AR_XmitDataTries2);
tries[3] = MS(ads->ds_ctl2, AR_XmitDataTries3);
return AH_TRUE;
}
/*
* TX queue management routines - AR5416 and later chipsets
*/
/*
* Allocate and initialize a tx DCU/QCU combination.
*/
int
ar5416SetupTxQueue(struct ath_hal *ah, HAL_TX_QUEUE type,
const HAL_TXQ_INFO *qInfo)
{
struct ath_hal_5212 *ahp = AH5212(ah);
HAL_TX_QUEUE_INFO *qi;
HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps;
int q, defqflags;
/* by default enable OK+ERR+DESC+URN interrupts */
defqflags = HAL_TXQ_TXOKINT_ENABLE
| HAL_TXQ_TXERRINT_ENABLE
| HAL_TXQ_TXDESCINT_ENABLE
| HAL_TXQ_TXURNINT_ENABLE;
/* XXX move queue assignment to driver */
switch (type) {
case HAL_TX_QUEUE_BEACON:
q = pCap->halTotalQueues-1; /* highest priority */
defqflags |= HAL_TXQ_DBA_GATED
| HAL_TXQ_CBR_DIS_QEMPTY
| HAL_TXQ_ARB_LOCKOUT_GLOBAL
| HAL_TXQ_BACKOFF_DISABLE;
break;
case HAL_TX_QUEUE_CAB:
q = pCap->halTotalQueues-2; /* next highest priority */
defqflags |= HAL_TXQ_DBA_GATED
| HAL_TXQ_CBR_DIS_QEMPTY
| HAL_TXQ_CBR_DIS_BEMPTY
| HAL_TXQ_ARB_LOCKOUT_GLOBAL
| HAL_TXQ_BACKOFF_DISABLE;
break;
case HAL_TX_QUEUE_PSPOLL:
q = 1; /* lowest priority */
defqflags |= HAL_TXQ_DBA_GATED
| HAL_TXQ_CBR_DIS_QEMPTY
| HAL_TXQ_CBR_DIS_BEMPTY
| HAL_TXQ_ARB_LOCKOUT_GLOBAL
| HAL_TXQ_BACKOFF_DISABLE;
break;
case HAL_TX_QUEUE_UAPSD:
q = pCap->halTotalQueues-3; /* nextest highest priority */
if (ahp->ah_txq[q].tqi_type != HAL_TX_QUEUE_INACTIVE) {
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: no available UAPSD tx queue\n", __func__);
return -1;
}
break;
case HAL_TX_QUEUE_DATA:
for (q = 0; q < pCap->halTotalQueues; q++)
if (ahp->ah_txq[q].tqi_type == HAL_TX_QUEUE_INACTIVE)
break;
if (q == pCap->halTotalQueues) {
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: no available tx queue\n", __func__);
return -1;
}
break;
default:
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: bad tx queue type %u\n", __func__, type);
return -1;
}
HALDEBUG(ah, HAL_DEBUG_TXQUEUE, "%s: queue %u\n", __func__, q);
qi = &ahp->ah_txq[q];
if (qi->tqi_type != HAL_TX_QUEUE_INACTIVE) {
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: tx queue %u already active\n",
__func__, q);
return -1;
}
OS_MEMZERO(qi, sizeof(HAL_TX_QUEUE_INFO));
qi->tqi_type = type;
if (qInfo == AH_NULL) {
qi->tqi_qflags = defqflags;
qi->tqi_aifs = INIT_AIFS;
qi->tqi_cwmin = HAL_TXQ_USEDEFAULT; /* NB: do at reset */
qi->tqi_cwmax = INIT_CWMAX;
qi->tqi_shretry = INIT_SH_RETRY;
qi->tqi_lgretry = INIT_LG_RETRY;
qi->tqi_physCompBuf = 0;
} else {
qi->tqi_physCompBuf = qInfo->tqi_compBuf;
(void) ar5212SetTxQueueProps(ah, q, qInfo);
}
/* NB: must be followed by ar5212ResetTxQueue */
return q;
}
/*
* Update the h/w interrupt registers to reflect a tx q's configuration.
*/
static void
setTxQInterrupts(struct ath_hal *ah, HAL_TX_QUEUE_INFO *qi)
{
struct ath_hal_5212 *ahp = AH5212(ah);
HALDEBUG(ah, HAL_DEBUG_TXQUEUE,
"%s: tx ok 0x%x err 0x%x desc 0x%x eol 0x%x urn 0x%x\n", __func__,
ahp->ah_txOkInterruptMask, ahp->ah_txErrInterruptMask,
ahp->ah_txDescInterruptMask, ahp->ah_txEolInterruptMask,
ahp->ah_txUrnInterruptMask);
OS_REG_WRITE(ah, AR_IMR_S0,
SM(ahp->ah_txOkInterruptMask, AR_IMR_S0_QCU_TXOK)
| SM(ahp->ah_txDescInterruptMask, AR_IMR_S0_QCU_TXDESC)
);
OS_REG_WRITE(ah, AR_IMR_S1,
SM(ahp->ah_txErrInterruptMask, AR_IMR_S1_QCU_TXERR)
| SM(ahp->ah_txEolInterruptMask, AR_IMR_S1_QCU_TXEOL)
);
OS_REG_RMW_FIELD(ah, AR_IMR_S2,
AR_IMR_S2_QCU_TXURN, ahp->ah_txUrnInterruptMask);
}
/*
* Set the retry, aifs, cwmin/max, readyTime regs for specified queue
* Assumes:
* phwChannel has been set to point to the current channel
*/
#define TU_TO_USEC(_tu) ((_tu) << 10)
HAL_BOOL
ar5416ResetTxQueue(struct ath_hal *ah, u_int q)
{
struct ath_hal_5212 *ahp = AH5212(ah);
HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps;
const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
HAL_TX_QUEUE_INFO *qi;
uint32_t cwMin, chanCwMin, qmisc, dmisc;
if (q >= pCap->halTotalQueues) {
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid queue num %u\n",
__func__, q);
return AH_FALSE;
}
qi = &ahp->ah_txq[q];
if (qi->tqi_type == HAL_TX_QUEUE_INACTIVE) {
HALDEBUG(ah, HAL_DEBUG_TXQUEUE, "%s: inactive queue %u\n",
__func__, q);
return AH_TRUE; /* XXX??? */
}
HALDEBUG(ah, HAL_DEBUG_TXQUEUE, "%s: reset queue %u\n", __func__, q);
if (qi->tqi_cwmin == HAL_TXQ_USEDEFAULT) {
/*
* Select cwmin according to channel type.
* NB: chan can be NULL during attach
*/
if (chan && IEEE80211_IS_CHAN_B(chan))
chanCwMin = INIT_CWMIN_11B;
else
chanCwMin = INIT_CWMIN;
/* make sure that the CWmin is of the form (2^n - 1) */
for (cwMin = 1; cwMin < chanCwMin; cwMin = (cwMin << 1) | 1)
;
} else
cwMin = qi->tqi_cwmin;
/* set cwMin/Max and AIFS values */
OS_REG_WRITE(ah, AR_DLCL_IFS(q),
SM(cwMin, AR_D_LCL_IFS_CWMIN)
| SM(qi->tqi_cwmax, AR_D_LCL_IFS_CWMAX)
| SM(qi->tqi_aifs, AR_D_LCL_IFS_AIFS));
/* Set retry limit values */
OS_REG_WRITE(ah, AR_DRETRY_LIMIT(q),
SM(INIT_SSH_RETRY, AR_D_RETRY_LIMIT_STA_SH)
| SM(INIT_SLG_RETRY, AR_D_RETRY_LIMIT_STA_LG)
| SM(qi->tqi_lgretry, AR_D_RETRY_LIMIT_FR_LG)
| SM(qi->tqi_shretry, AR_D_RETRY_LIMIT_FR_SH)
);
/* NB: always enable early termination on the QCU */
qmisc = AR_Q_MISC_DCU_EARLY_TERM_REQ
| SM(AR_Q_MISC_FSP_ASAP, AR_Q_MISC_FSP);
/* NB: always enable DCU to wait for next fragment from QCU */
dmisc = AR_D_MISC_FRAG_WAIT_EN;
/* Enable exponential backoff window */
dmisc |= AR_D_MISC_BKOFF_PERSISTENCE;
/*
* The chip reset default is to use a DCU backoff threshold of 0x2.
* Restore this when programming the DCU MISC register.
*/
dmisc |= 0x2;
/* multiqueue support */
if (qi->tqi_cbrPeriod) {
OS_REG_WRITE(ah, AR_QCBRCFG(q),
SM(qi->tqi_cbrPeriod,AR_Q_CBRCFG_CBR_INTERVAL)
| SM(qi->tqi_cbrOverflowLimit, AR_Q_CBRCFG_CBR_OVF_THRESH));
qmisc = (qmisc &~ AR_Q_MISC_FSP) | AR_Q_MISC_FSP_CBR;
if (qi->tqi_cbrOverflowLimit)
qmisc |= AR_Q_MISC_CBR_EXP_CNTR_LIMIT;
}
if (qi->tqi_readyTime && (qi->tqi_type != HAL_TX_QUEUE_CAB)) {
OS_REG_WRITE(ah, AR_QRDYTIMECFG(q),
SM(qi->tqi_readyTime, AR_Q_RDYTIMECFG_INT)
| AR_Q_RDYTIMECFG_ENA);
}
OS_REG_WRITE(ah, AR_DCHNTIME(q),
SM(qi->tqi_burstTime, AR_D_CHNTIME_DUR)
| (qi->tqi_burstTime ? AR_D_CHNTIME_EN : 0));
if (qi->tqi_readyTime &&
(qi->tqi_qflags & HAL_TXQ_RDYTIME_EXP_POLICY_ENABLE))
qmisc |= AR_Q_MISC_RDYTIME_EXP_POLICY;
if (qi->tqi_qflags & HAL_TXQ_DBA_GATED)
qmisc = (qmisc &~ AR_Q_MISC_FSP) | AR_Q_MISC_FSP_DBA_GATED;
if (MS(qmisc, AR_Q_MISC_FSP) != AR_Q_MISC_FSP_ASAP) {
/*
* These are meangingful only when not scheduled asap.
*/
if (qi->tqi_qflags & HAL_TXQ_CBR_DIS_BEMPTY)
qmisc |= AR_Q_MISC_CBR_INCR_DIS0;
else
qmisc &= ~AR_Q_MISC_CBR_INCR_DIS0;
if (qi->tqi_qflags & HAL_TXQ_CBR_DIS_QEMPTY)
qmisc |= AR_Q_MISC_CBR_INCR_DIS1;
else
qmisc &= ~AR_Q_MISC_CBR_INCR_DIS1;
}
if (qi->tqi_qflags & HAL_TXQ_BACKOFF_DISABLE)
dmisc |= AR_D_MISC_POST_FR_BKOFF_DIS;
if (qi->tqi_qflags & HAL_TXQ_FRAG_BURST_BACKOFF_ENABLE)
dmisc |= AR_D_MISC_FRAG_BKOFF_EN;
if (qi->tqi_qflags & HAL_TXQ_ARB_LOCKOUT_GLOBAL)
dmisc |= SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL,
AR_D_MISC_ARB_LOCKOUT_CNTRL);
else if (qi->tqi_qflags & HAL_TXQ_ARB_LOCKOUT_INTRA)
dmisc |= SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_INTRA_FR,
AR_D_MISC_ARB_LOCKOUT_CNTRL);
if (qi->tqi_qflags & HAL_TXQ_IGNORE_VIRTCOL)
dmisc |= SM(AR_D_MISC_VIR_COL_HANDLING_IGNORE,
AR_D_MISC_VIR_COL_HANDLING);
if (qi->tqi_qflags & HAL_TXQ_SEQNUM_INC_DIS)
dmisc |= AR_D_MISC_SEQ_NUM_INCR_DIS;
/*
* Fillin type-dependent bits. Most of this can be
* removed by specifying the queue parameters in the
* driver; it's here for backwards compatibility.
*/
switch (qi->tqi_type) {
case HAL_TX_QUEUE_BEACON: /* beacon frames */
qmisc |= AR_Q_MISC_FSP_DBA_GATED
| AR_Q_MISC_BEACON_USE
| AR_Q_MISC_CBR_INCR_DIS1;
dmisc |= SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL,
AR_D_MISC_ARB_LOCKOUT_CNTRL)
| AR_D_MISC_BEACON_USE
| AR_D_MISC_POST_FR_BKOFF_DIS;
break;
case HAL_TX_QUEUE_CAB: /* CAB frames */
/*
* No longer Enable AR_Q_MISC_RDYTIME_EXP_POLICY,
* There is an issue with the CAB Queue
* not properly refreshing the Tx descriptor if
* the TXE clear setting is used.
*/
qmisc |= AR_Q_MISC_FSP_DBA_GATED
| AR_Q_MISC_CBR_INCR_DIS1
| AR_Q_MISC_CBR_INCR_DIS0;
HALDEBUG(ah, HAL_DEBUG_TXQUEUE, "%s: CAB: tqi_readyTime = %d\n",
__func__, qi->tqi_readyTime);
if (qi->tqi_readyTime) {
HALDEBUG(ah, HAL_DEBUG_TXQUEUE,
"%s: using tqi_readyTime\n", __func__);
OS_REG_WRITE(ah, AR_QRDYTIMECFG(q),
SM(qi->tqi_readyTime, AR_Q_RDYTIMECFG_INT) |
AR_Q_RDYTIMECFG_ENA);
} else {
int value;
/*
* NB: don't set default ready time if driver
* has explicitly specified something. This is
* here solely for backwards compatibility.
*/
/*
* XXX for now, hard-code a CAB interval of 70%
* XXX of the total beacon interval.
*
* XXX This keeps Merlin and later based MACs
* XXX quite a bit happier (stops stuck beacons,
* XXX which I gather is because of such a long
* XXX cabq time.)
*/
value = (ahp->ah_beaconInterval * 70 / 100)
- (ah->ah_config.ah_sw_beacon_response_time
+ ah->ah_config.ah_dma_beacon_response_time)
- ah->ah_config.ah_additional_swba_backoff;
/*
* XXX Ensure it isn't too low - nothing lower
* XXX than 10 TU
*/
if (value < 10)
value = 10;
HALDEBUG(ah, HAL_DEBUG_TXQUEUE,
"%s: defaulting to rdytime = %d uS\n",
__func__, value);
OS_REG_WRITE(ah, AR_QRDYTIMECFG(q),
SM(TU_TO_USEC(value), AR_Q_RDYTIMECFG_INT) |
AR_Q_RDYTIMECFG_ENA);
}
dmisc |= SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL,
AR_D_MISC_ARB_LOCKOUT_CNTRL);
break;
case HAL_TX_QUEUE_PSPOLL:
qmisc |= AR_Q_MISC_CBR_INCR_DIS1;
break;
case HAL_TX_QUEUE_UAPSD:
dmisc |= AR_D_MISC_POST_FR_BKOFF_DIS;
break;
default: /* NB: silence compiler */
break;
}
OS_REG_WRITE(ah, AR_QMISC(q), qmisc);
OS_REG_WRITE(ah, AR_DMISC(q), dmisc);
/* Setup compression scratchpad buffer */
/*
* XXX: calling this asynchronously to queue operation can
* cause unexpected behavior!!!
*/
if (qi->tqi_physCompBuf) {
HALASSERT(qi->tqi_type == HAL_TX_QUEUE_DATA ||
qi->tqi_type == HAL_TX_QUEUE_UAPSD);
OS_REG_WRITE(ah, AR_Q_CBBS, (80 + 2*q));
OS_REG_WRITE(ah, AR_Q_CBBA, qi->tqi_physCompBuf);
OS_REG_WRITE(ah, AR_Q_CBC, HAL_COMP_BUF_MAX_SIZE/1024);
OS_REG_WRITE(ah, AR_Q0_MISC + 4*q,
OS_REG_READ(ah, AR_Q0_MISC + 4*q)
| AR_Q_MISC_QCU_COMP_EN);
}
/*
* Always update the secondary interrupt mask registers - this
* could be a new queue getting enabled in a running system or
* hw getting re-initialized during a reset!
*
* Since we don't differentiate between tx interrupts corresponding
* to individual queues - secondary tx mask regs are always unmasked;
* tx interrupts are enabled/disabled for all queues collectively
* using the primary mask reg
*/
if (qi->tqi_qflags & HAL_TXQ_TXOKINT_ENABLE)
ahp->ah_txOkInterruptMask |= 1 << q;
else
ahp->ah_txOkInterruptMask &= ~(1 << q);
if (qi->tqi_qflags & HAL_TXQ_TXERRINT_ENABLE)
ahp->ah_txErrInterruptMask |= 1 << q;
else
ahp->ah_txErrInterruptMask &= ~(1 << q);
if (qi->tqi_qflags & HAL_TXQ_TXDESCINT_ENABLE)
ahp->ah_txDescInterruptMask |= 1 << q;
else
ahp->ah_txDescInterruptMask &= ~(1 << q);
if (qi->tqi_qflags & HAL_TXQ_TXEOLINT_ENABLE)
ahp->ah_txEolInterruptMask |= 1 << q;
else
ahp->ah_txEolInterruptMask &= ~(1 << q);
if (qi->tqi_qflags & HAL_TXQ_TXURNINT_ENABLE)
ahp->ah_txUrnInterruptMask |= 1 << q;
else
ahp->ah_txUrnInterruptMask &= ~(1 << q);
setTxQInterrupts(ah, qi);
return AH_TRUE;
}
#undef TU_TO_USEC