freebsd-dev/sys/i386/isa/sound/opl3.c
Steven Wallace 1e25d964d2 Reorganize how sound devices are configured. Use a snd controller
with individual devices for each type of sound card:
  opl, sb, sbxvi, sbmidi, pas, mpu, gus, gusxvi, gusmax, mss, uart

EXCLUDE_* options are no longer required to be included in the config file.
They are automatically determined by local.h depending on the devices
included.

Move #includes in local.h to os.h so files are included in the proper
order to avoid warnings.

soundcard.c now has additional code to reflect the device driver
routines needed.

Define new EXCLUDE_SB16MIDI for use in sb16_midi.c and dev_table.h.

#ifndef EXCLUDE_SEQUENCER or EXCLUDE_AUDIO have been added to
soundcard.c and sound_switch.c where appropriate.

Probe outputs changed to reflect new device names.

Readme.freebsd not needed.  Update sound.doc with new config instructions.

Reviewed by:	wollman
1995-03-12 23:34:12 +00:00

1225 lines
27 KiB
C

/*
* sound/opl3.c
*
* A low level driver for Yamaha YM3812 and OPL-3 -chips
*
* Copyright by Hannu Savolainen 1993
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer. 2.
* Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* opl3.c,v 1.7 1994/10/01 02:16:50 swallace Exp
*/
/*
* Major improvements to the FM handling 30AUG92 by Rob Hooft,
* hooft@chem.ruu.nl
*/
#include "sound_config.h"
#if defined(CONFIGURE_SOUNDCARD) && !defined(EXCLUDE_YM3812)
#include "opl3.h"
#define MAX_VOICE 18
#define OFFS_4OP 11 /*
* * * Definitions for the operators OP3 and
* * OP4 * * begin here */
static int opl3_enabled = 0;
static int left_address = 0x388, right_address = 0x388, both_address = 0;
static int nr_voices = 9;
static int logical_voices[MAX_VOICE] =
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17};
struct voice_info
{
unsigned char keyon_byte;
long bender;
long bender_range;
unsigned long orig_freq;
unsigned long current_freq;
int mode;
};
static struct voice_info voices[MAX_VOICE];
static struct voice_alloc_info *voice_alloc;
static struct channel_info *chn_info;
static struct sbi_instrument *instrmap;
static struct sbi_instrument *active_instrument[MAX_VOICE] =
{NULL};
static struct synth_info fm_info =
{"OPL-2", 0, SYNTH_TYPE_FM, FM_TYPE_ADLIB, 0, 9, 0, SBFM_MAXINSTR, 0};
static int already_initialized = 0;
static int opl3_ok = 0;
static int opl3_busy = 0;
static int fm_model = 0; /*
* * * * 0=no fm, 1=mono, 2=SB Pro 1, 3=SB
* Pro 2 * * */
static int store_instr (int instr_no, struct sbi_instrument *instr);
static void freq_to_fnum (int freq, int *block, int *fnum);
static void opl3_command (int io_addr, unsigned int addr, unsigned int val);
static int opl3_kill_note (int dev, int voice, int note, int velocity);
static unsigned char connection_mask = 0x00;
void
enable_opl3_mode (int left, int right, int both)
{
if (opl3_enabled)
return;
opl3_enabled = 1;
left_address = left;
right_address = right;
both_address = both;
fm_info.capabilities = SYNTH_CAP_OPL3;
fm_info.synth_subtype = FM_TYPE_OPL3;
}
static void
enter_4op_mode (void)
{
int i;
static int voices_4op[MAX_VOICE] =
{0, 1, 2, 9, 10, 11, 6, 7, 8, 15, 16, 17};
connection_mask = 0x3f; /* Connect all possible 4 OP voices */
opl3_command (right_address, CONNECTION_SELECT_REGISTER, 0x3f);
for (i = 0; i < 3; i++)
physical_voices[i].voice_mode = 4;
for (i = 3; i < 6; i++)
physical_voices[i].voice_mode = 0;
for (i = 9; i < 12; i++)
physical_voices[i].voice_mode = 4;
for (i = 12; i < 15; i++)
physical_voices[i].voice_mode = 0;
for (i = 0; i < 12; i++)
logical_voices[i] = voices_4op[i];
voice_alloc->max_voice = nr_voices = 12;
}
static int
opl3_ioctl (int dev,
unsigned int cmd, unsigned int arg)
{
switch (cmd)
{
case SNDCTL_FM_LOAD_INSTR:
{
struct sbi_instrument ins;
IOCTL_FROM_USER ((char *) &ins, (char *) arg, 0, sizeof (ins));
if (ins.channel < 0 || ins.channel >= SBFM_MAXINSTR)
{
printk ("FM Error: Invalid instrument number %d\n", ins.channel);
return RET_ERROR (EINVAL);
}
pmgr_inform (dev, PM_E_PATCH_LOADED, ins.channel, 0, 0, 0);
return store_instr (ins.channel, &ins);
}
break;
case SNDCTL_SYNTH_INFO:
fm_info.nr_voices = (nr_voices == 12) ? 6 : nr_voices;
IOCTL_TO_USER ((char *) arg, 0, &fm_info, sizeof (fm_info));
return 0;
break;
case SNDCTL_SYNTH_MEMAVL:
return 0x7fffffff;
break;
case SNDCTL_FM_4OP_ENABLE:
if (opl3_enabled)
enter_4op_mode ();
return 0;
break;
default:
return RET_ERROR (EINVAL);
}
}
int
opl3_detect (int ioaddr)
{
/*
* This function returns 1 if the FM chicp is present at the given I/O port
* The detection algorithm plays with the timer built in the FM chip and
* looks for a change in the status register.
*
* Note! The timers of the FM chip are not connected to AdLib (and compatible)
* boards.
*
* Note2! The chip is initialized if detected.
*/
unsigned char stat1, stat2;
int i;
if (already_initialized)
{
return 0; /*
* Do avoid duplicate initializations
*/
}
if (opl3_enabled)
ioaddr = left_address;
opl3_command (ioaddr, TIMER_CONTROL_REGISTER, TIMER1_MASK | TIMER2_MASK); /*
* Reset
* timers
* 1
* and
* 2
*/
opl3_command (ioaddr, TIMER_CONTROL_REGISTER, IRQ_RESET); /*
* Reset the
* IRQ of FM
* * chicp
*/
stat1 = INB (ioaddr); /*
* Read status register
*/
if ((stat1 & 0xE0) != 0x00)
{
return 0; /*
* Should be 0x00
*/
}
opl3_command (ioaddr, TIMER1_REGISTER, 0xff); /*
* Set timer 1 to
* 0xff
*/
opl3_command (ioaddr, TIMER_CONTROL_REGISTER,
TIMER2_MASK | TIMER1_START); /*
* Unmask and start timer 1
*/
/*
* Now we have to delay at least 80 msec
*/
for (i = 0; i < 50; i++)
tenmicrosec (); /*
* To be sure
*/
stat2 = INB (ioaddr); /*
* Read status after timers have expired
*/
/*
* Stop the timers
*/
opl3_command (ioaddr, TIMER_CONTROL_REGISTER, TIMER1_MASK | TIMER2_MASK); /*
* Reset
* timers
* 1
* and
* 2
*/
opl3_command (ioaddr, TIMER_CONTROL_REGISTER, IRQ_RESET); /*
* Reset the
* IRQ of FM
* * chicp
*/
if ((stat2 & 0xE0) != 0xc0)
{
return 0; /*
* There is no YM3812
*/
}
/*
* There is a FM chicp in this address. Now set some default values.
*/
for (i = 0; i < 9; i++)
opl3_command (ioaddr, KEYON_BLOCK + i, 0); /*
* Note off
*/
opl3_command (ioaddr, TEST_REGISTER, ENABLE_WAVE_SELECT);
opl3_command (ioaddr, PERCUSSION_REGISTER, 0x00); /*
* Melodic mode.
*/
return 1;
}
static int
opl3_kill_note (int dev, int voice, int note, int velocity)
{
struct physical_voice_info *map;
if (voice < 0 || voice >= nr_voices)
return 0;
voice_alloc->map[voice] = 0;
map = &physical_voices[logical_voices[voice]];
DEB (printk ("Kill note %d\n", voice));
if (map->voice_mode == 0)
return 0;
opl3_command (map->ioaddr, KEYON_BLOCK + map->voice_num, voices[voice].keyon_byte & ~0x20);
voices[voice].keyon_byte = 0;
voices[voice].bender = 0;
voices[voice].bender_range = 200; /*
* 200 cents = 2 semitones
*/
voices[voice].orig_freq = 0;
voices[voice].current_freq = 0;
voices[voice].mode = 0;
return 0;
}
#define HIHAT 0
#define CYMBAL 1
#define TOMTOM 2
#define SNARE 3
#define BDRUM 4
#define UNDEFINED TOMTOM
#define DEFAULT TOMTOM
static int
store_instr (int instr_no, struct sbi_instrument *instr)
{
if (instr->key != FM_PATCH && (instr->key != OPL3_PATCH || !opl3_enabled))
printk ("FM warning: Invalid patch format field (key) 0x%x\n", instr->key);
memcpy ((char *) &(instrmap[instr_no]), (char *) instr, sizeof (*instr));
return 0;
}
static int
opl3_set_instr (int dev, int voice, int instr_no)
{
if (voice < 0 || voice >= nr_voices)
return 0;
if (instr_no < 0 || instr_no >= SBFM_MAXINSTR)
return 0;
active_instrument[voice] = &instrmap[instr_no];
return 0;
}
/*
* The next table looks magical, but it certainly is not. Its values have
* been calculated as table[i]=8*log(i/64)/log(2) with an obvious exception
* for i=0. This log-table converts a linear volume-scaling (0..127) to a
* logarithmic scaling as present in the FM-synthesizer chips. so : Volume
* 64 = 0 db = relative volume 0 and: Volume 32 = -6 db = relative
* volume -8 it was implemented as a table because it is only 128 bytes and
* it saves a lot of log() calculations. (RH)
*/
char fm_volume_table[128] =
{-64, -48, -40, -35, -32, -29, -27, -26, /*
* 0 - 7
*/
-24, -23, -21, -20, -19, -18, -18, -17, /*
* 8 - 15
*/
-16, -15, -15, -14, -13, -13, -12, -12, /*
* 16 - 23
*/
-11, -11, -10, -10, -10, -9, -9, -8, /*
* 24 - 31
*/
-8, -8, -7, -7, -7, -6, -6, -6,/*
* 32 - 39
*/
-5, -5, -5, -5, -4, -4, -4, -4,/*
* 40 - 47
*/
-3, -3, -3, -3, -2, -2, -2, -2,/*
* 48 - 55
*/
-2, -1, -1, -1, -1, 0, 0, 0, /*
* 56 - 63
*/
0, 0, 0, 1, 1, 1, 1, 1, /*
* 64 - 71
*/
1, 2, 2, 2, 2, 2, 2, 2, /*
* 72 - 79
*/
3, 3, 3, 3, 3, 3, 3, 4, /*
* 80 - 87
*/
4, 4, 4, 4, 4, 4, 4, 5, /*
* 88 - 95
*/
5, 5, 5, 5, 5, 5, 5, 5, /*
* 96 - 103
*/
6, 6, 6, 6, 6, 6, 6, 6, /*
* 104 - 111
*/
6, 7, 7, 7, 7, 7, 7, 7, /*
* 112 - 119
*/
7, 7, 7, 8, 8, 8, 8, 8}; /*
* * * * 120 - 127 */
static void
calc_vol (unsigned char *regbyte, int volume)
{
int level = (~*regbyte & 0x3f);
if (level)
level += fm_volume_table[volume];
if (level > 0x3f)
level = 0x3f;
if (level < 0)
level = 0;
*regbyte = (*regbyte & 0xc0) | (~level & 0x3f);
}
static void
set_voice_volume (int voice, int volume)
{
unsigned char vol1, vol2, vol3, vol4;
struct sbi_instrument *instr;
struct physical_voice_info *map;
if (voice < 0 || voice >= nr_voices)
return;
map = &physical_voices[logical_voices[voice]];
instr = active_instrument[voice];
if (!instr)
instr = &instrmap[0];
if (instr->channel < 0)
return;
if (voices[voice].mode == 0)
return;
if (voices[voice].mode == 2)
{ /*
* 2 OP voice
*/
vol1 = instr->operators[2];
vol2 = instr->operators[3];
if ((instr->operators[10] & 0x01))
{ /*
* Additive synthesis
*/
calc_vol (&vol1, volume);
calc_vol (&vol2, volume);
}
else
{ /*
* FM synthesis
*/
calc_vol (&vol2, volume);
}
opl3_command (map->ioaddr, KSL_LEVEL + map->op[0], vol1); /*
* Modulator
* volume
*/
opl3_command (map->ioaddr, KSL_LEVEL + map->op[1], vol2); /*
* Carrier
* volume
*/
}
else
{ /*
* 4 OP voice
*/
int connection;
vol1 = instr->operators[2];
vol2 = instr->operators[3];
vol3 = instr->operators[OFFS_4OP + 2];
vol4 = instr->operators[OFFS_4OP + 3];
/*
* The connection method for 4 OP voices is defined by the rightmost
* bits at the offsets 10 and 10+OFFS_4OP
*/
connection = ((instr->operators[10] & 0x01) << 1) | (instr->operators[10 + OFFS_4OP] & 0x01);
switch (connection)
{
case 0:
calc_vol (&vol4, volume); /*
* Just the OP 4 is carrier
*/
break;
case 1:
calc_vol (&vol2, volume);
calc_vol (&vol4, volume);
break;
case 2:
calc_vol (&vol1, volume);
calc_vol (&vol4, volume);
break;
case 3:
calc_vol (&vol1, volume);
calc_vol (&vol3, volume);
calc_vol (&vol4, volume);
break;
default: /*
* Why ??
*/ ;
}
opl3_command (map->ioaddr, KSL_LEVEL + map->op[0], vol1);
opl3_command (map->ioaddr, KSL_LEVEL + map->op[1], vol2);
opl3_command (map->ioaddr, KSL_LEVEL + map->op[2], vol3);
opl3_command (map->ioaddr, KSL_LEVEL + map->op[3], vol4);
}
}
static int
opl3_start_note (int dev, int voice, int note, int volume)
{
unsigned char data, fpc;
int block, fnum, freq, voice_mode;
struct sbi_instrument *instr;
struct physical_voice_info *map;
if (voice < 0 || voice >= nr_voices)
return 0;
map = &physical_voices[logical_voices[voice]];
if (map->voice_mode == 0)
return 0;
if (note == 255) /*
* Just change the volume
*/
{
set_voice_volume (voice, volume);
return 0;
}
/*
* Kill previous note before playing
*/
opl3_command (map->ioaddr, KSL_LEVEL + map->op[1], 0xff); /*
* Carrier
* volume to
* min
*/
opl3_command (map->ioaddr, KSL_LEVEL + map->op[0], 0xff); /*
* Modulator
* volume to
*/
if (map->voice_mode == 4)
{
opl3_command (map->ioaddr, KSL_LEVEL + map->op[2], 0xff);
opl3_command (map->ioaddr, KSL_LEVEL + map->op[3], 0xff);
}
opl3_command (map->ioaddr, KEYON_BLOCK + map->voice_num, 0x00); /*
* Note
* off
*/
instr = active_instrument[voice];
if (!instr)
instr = &instrmap[0];
if (instr->channel < 0)
{
printk (
"OPL3: Initializing voice %d with undefined instrument\n",
voice);
return 0;
}
if (map->voice_mode == 2 && instr->key == OPL3_PATCH)
return 0; /*
* Cannot play
*/
voice_mode = map->voice_mode;
if (voice_mode == 4)
{
int voice_shift;
voice_shift = (map->ioaddr == left_address) ? 0 : 3;
voice_shift += map->voice_num;
if (instr->key != OPL3_PATCH) /*
* Just 2 OP patch
*/
{
voice_mode = 2;
connection_mask &= ~(1 << voice_shift);
}
else
{
connection_mask |= (1 << voice_shift);
}
opl3_command (right_address, CONNECTION_SELECT_REGISTER, connection_mask);
}
/*
* Set Sound Characteristics
*/
opl3_command (map->ioaddr, AM_VIB + map->op[0], instr->operators[0]);
opl3_command (map->ioaddr, AM_VIB + map->op[1], instr->operators[1]);
/*
* Set Attack/Decay
*/
opl3_command (map->ioaddr, ATTACK_DECAY + map->op[0], instr->operators[4]);
opl3_command (map->ioaddr, ATTACK_DECAY + map->op[1], instr->operators[5]);
/*
* Set Sustain/Release
*/
opl3_command (map->ioaddr, SUSTAIN_RELEASE + map->op[0], instr->operators[6]);
opl3_command (map->ioaddr, SUSTAIN_RELEASE + map->op[1], instr->operators[7]);
/*
* Set Wave Select
*/
opl3_command (map->ioaddr, WAVE_SELECT + map->op[0], instr->operators[8]);
opl3_command (map->ioaddr, WAVE_SELECT + map->op[1], instr->operators[9]);
/*
* Set Feedback/Connection
*/
fpc = instr->operators[10];
if (!(fpc & 0x30))
fpc |= 0x30; /*
* Ensure that at least one chn is enabled
*/
opl3_command (map->ioaddr, FEEDBACK_CONNECTION + map->voice_num,
fpc);
/*
* If the voice is a 4 OP one, initialize the operators 3 and 4 also
*/
if (voice_mode == 4)
{
/*
* Set Sound Characteristics
*/
opl3_command (map->ioaddr, AM_VIB + map->op[2], instr->operators[OFFS_4OP + 0]);
opl3_command (map->ioaddr, AM_VIB + map->op[3], instr->operators[OFFS_4OP + 1]);
/*
* Set Attack/Decay
*/
opl3_command (map->ioaddr, ATTACK_DECAY + map->op[2], instr->operators[OFFS_4OP + 4]);
opl3_command (map->ioaddr, ATTACK_DECAY + map->op[3], instr->operators[OFFS_4OP + 5]);
/*
* Set Sustain/Release
*/
opl3_command (map->ioaddr, SUSTAIN_RELEASE + map->op[2], instr->operators[OFFS_4OP + 6]);
opl3_command (map->ioaddr, SUSTAIN_RELEASE + map->op[3], instr->operators[OFFS_4OP + 7]);
/*
* Set Wave Select
*/
opl3_command (map->ioaddr, WAVE_SELECT + map->op[2], instr->operators[OFFS_4OP + 8]);
opl3_command (map->ioaddr, WAVE_SELECT + map->op[3], instr->operators[OFFS_4OP + 9]);
/*
* Set Feedback/Connection
*/
fpc = instr->operators[OFFS_4OP + 10];
if (!(fpc & 0x30))
fpc |= 0x30; /*
* Ensure that at least one chn is enabled
*/
opl3_command (map->ioaddr, FEEDBACK_CONNECTION + map->voice_num + 3, fpc);
}
voices[voice].mode = voice_mode;
set_voice_volume (voice, volume);
freq = voices[voice].orig_freq = note_to_freq (note) / 1000;
/*
* Since the pitch bender may have been set before playing the note, we
* have to calculate the bending now.
*/
freq = compute_finetune (voices[voice].orig_freq, voices[voice].bender, voices[voice].bender_range);
voices[voice].current_freq = freq;
freq_to_fnum (freq, &block, &fnum);
/*
* Play note
*/
data = fnum & 0xff; /*
* Least significant bits of fnumber
*/
opl3_command (map->ioaddr, FNUM_LOW + map->voice_num, data);
data = 0x20 | ((block & 0x7) << 2) | ((fnum >> 8) & 0x3);
voices[voice].keyon_byte = data;
opl3_command (map->ioaddr, KEYON_BLOCK + map->voice_num, data);
if (voice_mode == 4)
opl3_command (map->ioaddr, KEYON_BLOCK + map->voice_num + 3, data);
return 0;
}
static void
freq_to_fnum (int freq, int *block, int *fnum)
{
int f, octave;
/*
* Converts the note frequency to block and fnum values for the FM chip
*/
/*
* First try to compute the block -value (octave) where the note belongs
*/
f = freq;
octave = 5;
if (f == 0)
octave = 0;
else if (f < 261)
{
while (f < 261)
{
octave--;
f <<= 1;
}
}
else if (f > 493)
{
while (f > 493)
{
octave++;
f >>= 1;
}
}
if (octave > 7)
octave = 7;
*fnum = freq * (1 << (20 - octave)) / 49716;
*block = octave;
}
static void
opl3_command (int io_addr, unsigned int addr, unsigned int val)
{
int i;
/*
* The original 2-OP synth requires a quite long delay after writing to a
* register. The OPL-3 survives with just two INBs
*/
OUTB ((unsigned char) (addr & 0xff), io_addr); /*
* Select register
*
*/
if (!opl3_enabled)
tenmicrosec ();
else
for (i = 0; i < 2; i++)
INB (io_addr);
OUTB ((unsigned char) (val & 0xff), io_addr + 1); /*
* Write to register
*
*/
if (!opl3_enabled)
{
tenmicrosec ();
tenmicrosec ();
tenmicrosec ();
}
else
for (i = 0; i < 2; i++)
INB (io_addr);
}
static void
opl3_reset (int dev)
{
int i;
for (i = 0; i < nr_voices; i++)
{
opl3_command (physical_voices[logical_voices[i]].ioaddr,
KSL_LEVEL + physical_voices[logical_voices[i]].op[0], 0xff);
opl3_command (physical_voices[logical_voices[i]].ioaddr,
KSL_LEVEL + physical_voices[logical_voices[i]].op[1], 0xff);
if (physical_voices[logical_voices[i]].voice_mode == 4)
{
opl3_command (physical_voices[logical_voices[i]].ioaddr,
KSL_LEVEL + physical_voices[logical_voices[i]].op[2], 0xff);
opl3_command (physical_voices[logical_voices[i]].ioaddr,
KSL_LEVEL + physical_voices[logical_voices[i]].op[3], 0xff);
}
opl3_kill_note (dev, i, 0, 64);
}
if (opl3_enabled)
{
voice_alloc->max_voice = nr_voices = 18;
for (i = 0; i < 18; i++)
logical_voices[i] = i;
for (i = 0; i < 18; i++)
physical_voices[i].voice_mode = 2;
}
}
static int
opl3_open (int dev, int mode)
{
if (!opl3_ok)
return RET_ERROR (ENXIO);
if (opl3_busy)
return RET_ERROR (EBUSY);
opl3_busy = 1;
connection_mask = 0x00; /*
* Just 2 OP voices
*/
if (opl3_enabled)
opl3_command (right_address, CONNECTION_SELECT_REGISTER, connection_mask);
return 0;
}
static void
opl3_close (int dev)
{
opl3_busy = 0;
voice_alloc->max_voice = nr_voices = opl3_enabled ? 18 : 9;
fm_info.nr_drums = 0;
fm_info.perc_mode = 0;
opl3_reset (dev);
}
static void
opl3_hw_control (int dev, unsigned char *event)
{
}
static int
opl3_load_patch (int dev, int format, snd_rw_buf * addr,
int offs, int count, int pmgr_flag)
{
struct sbi_instrument ins;
if (count < sizeof (ins))
{
printk ("FM Error: Patch record too short\n");
return RET_ERROR (EINVAL);
}
COPY_FROM_USER (&((char *) &ins)[offs], (char *) addr, offs, sizeof (ins) - offs);
if (ins.channel < 0 || ins.channel >= SBFM_MAXINSTR)
{
printk ("FM Error: Invalid instrument number %d\n", ins.channel);
return RET_ERROR (EINVAL);
}
ins.key = format;
return store_instr (ins.channel, &ins);
}
static void
opl3_panning (int dev, int voice, int pressure)
{
}
static void
opl3_volume_method (int dev, int mode)
{
}
#define SET_VIBRATO(cell) { \
tmp = instr->operators[(cell-1)+(((cell-1)/2)*OFFS_4OP)]; \
if (pressure > 110) \
tmp |= 0x40; /* Vibrato on */ \
opl3_command (map->ioaddr, AM_VIB + map->op[cell-1], tmp);}
static void
opl3_aftertouch (int dev, int voice, int pressure)
{
int tmp;
struct sbi_instrument *instr;
struct physical_voice_info *map;
if (voice < 0 || voice >= nr_voices)
return;
map = &physical_voices[logical_voices[voice]];
DEB (printk ("Aftertouch %d\n", voice));
if (map->voice_mode == 0)
return;
/*
* Adjust the amount of vibrato depending the pressure
*/
instr = active_instrument[voice];
if (!instr)
instr = &instrmap[0];
if (voices[voice].mode == 4)
{
int connection = ((instr->operators[10] & 0x01) << 1) | (instr->operators[10 + OFFS_4OP] & 0x01);
switch (connection)
{
case 0:
SET_VIBRATO (4);
break;
case 1:
SET_VIBRATO (2);
SET_VIBRATO (4);
break;
case 2:
SET_VIBRATO (1);
SET_VIBRATO (4);
break;
case 3:
SET_VIBRATO (1);
SET_VIBRATO (3);
SET_VIBRATO (4);
break;
}
/*
* Not implemented yet
*/
}
else
{
SET_VIBRATO (1);
if ((instr->operators[10] & 0x01)) /*
* Additive synthesis
*/
SET_VIBRATO (2);
}
}
#undef SET_VIBRATO
static void
bend_pitch (int dev, int voice, int value)
{
unsigned char data;
int block, fnum, freq;
struct physical_voice_info *map;
map = &physical_voices[logical_voices[voice]];
if (map->voice_mode == 0)
return;
voices[voice].bender = value;
if (!value)
return;
if (!(voices[voice].keyon_byte & 0x20))
return; /*
* Not keyed on
*/
freq = compute_finetune (voices[voice].orig_freq, voices[voice].bender, voices[voice].bender_range);
voices[voice].current_freq = freq;
freq_to_fnum (freq, &block, &fnum);
data = fnum & 0xff; /*
* Least significant bits of fnumber
*/
opl3_command (map->ioaddr, FNUM_LOW + map->voice_num, data);
data = 0x20 | ((block & 0x7) << 2) | ((fnum >> 8) & 0x3); /*
* *
* KEYON|OCTAVE|MS
*
* * bits * *
* of * f-num
*
*/
voices[voice].keyon_byte = data;
opl3_command (map->ioaddr, KEYON_BLOCK + map->voice_num, data);
}
static void
opl3_controller (int dev, int voice, int ctrl_num, int value)
{
if (voice < 0 || voice >= nr_voices)
return;
switch (ctrl_num)
{
case CTRL_PITCH_BENDER:
bend_pitch (dev, voice, value);
break;
case CTRL_PITCH_BENDER_RANGE:
voices[voice].bender_range = value;
break;
}
}
static int
opl3_patchmgr (int dev, struct patmgr_info *rec)
{
return RET_ERROR (EINVAL);
}
static void
opl3_bender (int dev, int voice, int value)
{
if (voice < 0 || voice >= nr_voices)
return;
bend_pitch (dev, voice, value);
}
static int
opl3_alloc_voice (int dev, int chn, int note, struct voice_alloc_info *alloc)
{
int i, p, avail_voices;
struct sbi_instrument *instr;
int is4op;
int instr_no;
if (chn < 0 || chn > 15)
instr_no = 0;
else
instr_no = chn_info[chn].pgm_num;
instr = &instrmap[instr_no];
if (instr->channel < 0 || /* Instrument not loaded */
nr_voices != 12) /* Not in 4 OP mode */
is4op = 0;
else if (nr_voices == 12) /* 4 OP mode */
is4op = (instr->key == OPL3_PATCH);
else
is4op = 0;
if (is4op)
{
p = 0;
avail_voices = 6;
}
else
{
if (nr_voices == 12) /* 4 OP mode. Use the '2 OP only' voices first */
p = 6;
else
p = 0;
avail_voices = nr_voices;
}
/*
* Now try to find a free voice
*/
for (i = 0; i < avail_voices; i++)
{
if (alloc->map[p] == 0)
{
return p;
}
p = (p + 1) % nr_voices;
}
/*
* Insert some kind of priority mechanism here.
*/
printk ("OPL3: Out of free voices\n");
return 0; /* All voices in use. Select the first one. */
}
static struct synth_operations opl3_operations =
{
&fm_info,
0,
SYNTH_TYPE_FM,
FM_TYPE_ADLIB,
opl3_open,
opl3_close,
opl3_ioctl,
opl3_kill_note,
opl3_start_note,
opl3_set_instr,
opl3_reset,
opl3_hw_control,
opl3_load_patch,
opl3_aftertouch,
opl3_controller,
opl3_panning,
opl3_volume_method,
opl3_patchmgr,
opl3_bender,
opl3_alloc_voice
};
long
opl3_init (long mem_start)
{
int i;
PERMANENT_MALLOC (struct sbi_instrument *, instrmap,
SBFM_MAXINSTR * sizeof (*instrmap), mem_start);
if (num_synths >= MAX_SYNTH_DEV)
printk ("OPL3 Error: Too many synthesizers\n");
else
{
synth_devs[num_synths++] = &opl3_operations;
voice_alloc = &opl3_operations.alloc;
chn_info = &opl3_operations.chn_info[0];
}
fm_model = 0;
opl3_ok = 1;
if (opl3_enabled)
{
#ifdef __FreeBSD__
printk ("opl0: <Yamaha OPL-3 FM>");
#else
printk (" <Yamaha OPL-3 FM>");
#endif
fm_model = 2;
voice_alloc->max_voice = nr_voices = 18;
fm_info.nr_drums = 0;
fm_info.capabilities |= SYNTH_CAP_OPL3;
#ifndef SCO
strcpy (fm_info.name, "Yamaha OPL-3");
#endif
for (i = 0; i < 18; i++)
if (physical_voices[i].ioaddr == USE_LEFT)
physical_voices[i].ioaddr = left_address;
else
physical_voices[i].ioaddr = right_address;
/* Enable OPL-3 mode */
opl3_command (right_address, OPL3_MODE_REGISTER, OPL3_ENABLE);
/* Select all 2-OP voices */
opl3_command (right_address, CONNECTION_SELECT_REGISTER, 0x00);
}
else
{
#ifdef __FreeBSD__
printk ("opl0: <Yamaha 2-OP FM>");
#else
printk (" <Yamaha 2-OP FM>");
#endif
fm_model = 1;
voice_alloc->max_voice = nr_voices = 9;
fm_info.nr_drums = 0;
for (i = 0; i < 18; i++)
physical_voices[i].ioaddr = left_address;
};
already_initialized = 1;
for (i = 0; i < SBFM_MAXINSTR; i++)
instrmap[i].channel = -1;
return mem_start;
}
#endif