freebsd-dev/sys/dev/ath/ath_hal/ar5416/ar9285_reset.c
2010-06-01 15:47:57 +00:00

905 lines
34 KiB
C

/*
* Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
* Copyright (c) 2002-2008 Atheros Communications, Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
* $FreeBSD$
*/
/*
* This is almost the same as ar5416_reset.c but uses the v4k EEPROM and
* supports only 2Ghz operation.
*/
#include "opt_ah.h"
#include "ah.h"
#include "ah_internal.h"
#include "ah_devid.h"
#include "ah_eeprom_v14.h"
#include "ah_eeprom_v4k.h"
#include "ar5416/ar9285.h"
#include "ar5416/ar5416.h"
#include "ar5416/ar5416reg.h"
#include "ar5416/ar5416phy.h"
/* Eeprom versioning macros. Returns true if the version is equal or newer than the ver specified */
#define EEP_MINOR(_ah) \
(AH_PRIVATE(_ah)->ah_eeversion & AR5416_EEP_VER_MINOR_MASK)
#define IS_EEP_MINOR_V2(_ah) (EEP_MINOR(_ah) >= AR5416_EEP_MINOR_VER_2)
#define IS_EEP_MINOR_V3(_ah) (EEP_MINOR(_ah) >= AR5416_EEP_MINOR_VER_3)
/* Additional Time delay to wait after activiting the Base band */
#define BASE_ACTIVATE_DELAY 100 /* 100 usec */
#define PLL_SETTLE_DELAY 300 /* 300 usec */
#define RTC_PLL_SETTLE_DELAY 1000 /* 1 ms */
static HAL_BOOL ar9285SetPowerPerRateTable(struct ath_hal *ah,
struct ar5416eeprom_4k *pEepData,
const struct ieee80211_channel *chan, int16_t *ratesArray,
uint16_t cfgCtl, uint16_t AntennaReduction,
uint16_t twiceMaxRegulatoryPower,
uint16_t powerLimit);
static HAL_BOOL ar9285SetPowerCalTable(struct ath_hal *ah,
struct ar5416eeprom_4k *pEepData,
const struct ieee80211_channel *chan,
int16_t *pTxPowerIndexOffset);
static int16_t interpolate(uint16_t target, uint16_t srcLeft,
uint16_t srcRight, int16_t targetLeft, int16_t targetRight);
static HAL_BOOL ar9285FillVpdTable(uint8_t, uint8_t, uint8_t *, uint8_t *,
uint16_t, uint8_t *);
static void ar9285GetGainBoundariesAndPdadcs(struct ath_hal *ah,
const struct ieee80211_channel *chan, CAL_DATA_PER_FREQ_4K *pRawDataSet,
uint8_t * bChans, uint16_t availPiers,
uint16_t tPdGainOverlap, int16_t *pMinCalPower,
uint16_t * pPdGainBoundaries, uint8_t * pPDADCValues,
uint16_t numXpdGains);
static HAL_BOOL getLowerUpperIndex(uint8_t target, uint8_t *pList,
uint16_t listSize, uint16_t *indexL, uint16_t *indexR);
static uint16_t ar9285GetMaxEdgePower(uint16_t, CAL_CTL_EDGES *);
/* XXX gag, this is sick */
typedef enum Ar5416_Rates {
rate6mb, rate9mb, rate12mb, rate18mb,
rate24mb, rate36mb, rate48mb, rate54mb,
rate1l, rate2l, rate2s, rate5_5l,
rate5_5s, rate11l, rate11s, rateXr,
rateHt20_0, rateHt20_1, rateHt20_2, rateHt20_3,
rateHt20_4, rateHt20_5, rateHt20_6, rateHt20_7,
rateHt40_0, rateHt40_1, rateHt40_2, rateHt40_3,
rateHt40_4, rateHt40_5, rateHt40_6, rateHt40_7,
rateDupCck, rateDupOfdm, rateExtCck, rateExtOfdm,
Ar5416RateSize
} AR5416_RATES;
HAL_BOOL
ar9285SetTransmitPower(struct ath_hal *ah,
const struct ieee80211_channel *chan, uint16_t *rfXpdGain)
{
#define POW_SM(_r, _s) (((_r) & 0x3f) << (_s))
#define N(a) (sizeof (a) / sizeof (a[0]))
MODAL_EEP4K_HEADER *pModal;
struct ath_hal_5212 *ahp = AH5212(ah);
int16_t ratesArray[Ar5416RateSize];
int16_t txPowerIndexOffset = 0;
uint8_t ht40PowerIncForPdadc = 2;
int i;
uint16_t cfgCtl;
uint16_t powerLimit;
uint16_t twiceAntennaReduction;
uint16_t twiceMaxRegulatoryPower;
int16_t maxPower;
HAL_EEPROM_v4k *ee = AH_PRIVATE(ah)->ah_eeprom;
struct ar5416eeprom_4k *pEepData = &ee->ee_base;
HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1);
/* Setup info for the actual eeprom */
OS_MEMZERO(ratesArray, sizeof(ratesArray));
cfgCtl = ath_hal_getctl(ah, chan);
powerLimit = chan->ic_maxregpower * 2;
twiceAntennaReduction = chan->ic_maxantgain;
twiceMaxRegulatoryPower = AH_MIN(MAX_RATE_POWER, AH_PRIVATE(ah)->ah_powerLimit);
pModal = &pEepData->modalHeader;
HALDEBUG(ah, HAL_DEBUG_RESET, "%s Channel=%u CfgCtl=%u\n",
__func__,chan->ic_freq, cfgCtl );
if (IS_EEP_MINOR_V2(ah)) {
ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
}
if (!ar9285SetPowerPerRateTable(ah, pEepData, chan,
&ratesArray[0],cfgCtl,
twiceAntennaReduction,
twiceMaxRegulatoryPower, powerLimit)) {
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: unable to set tx power per rate table\n", __func__);
return AH_FALSE;
}
if (!ar9285SetPowerCalTable(ah, pEepData, chan, &txPowerIndexOffset)) {
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set power table\n",
__func__);
return AH_FALSE;
}
maxPower = AH_MAX(ratesArray[rate6mb], ratesArray[rateHt20_0]);
maxPower = AH_MAX(maxPower, ratesArray[rate1l]);
if (IEEE80211_IS_CHAN_HT40(chan)) {
maxPower = AH_MAX(maxPower, ratesArray[rateHt40_0]);
}
ahp->ah_tx6PowerInHalfDbm = maxPower;
AH_PRIVATE(ah)->ah_maxPowerLevel = maxPower;
ahp->ah_txPowerIndexOffset = txPowerIndexOffset;
/*
* txPowerIndexOffset is set by the SetPowerTable() call -
* adjust the rate table (0 offset if rates EEPROM not loaded)
*/
for (i = 0; i < N(ratesArray); i++) {
ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]);
if (ratesArray[i] > AR5416_MAX_RATE_POWER)
ratesArray[i] = AR5416_MAX_RATE_POWER;
ratesArray[i] -= AR5416_PWR_TABLE_OFFSET_DB * 2;
}
#ifdef AH_EEPROM_DUMP
ar5416PrintPowerPerRate(ah, ratesArray);
#endif
/* Write the OFDM power per rate set */
OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
POW_SM(ratesArray[rate18mb], 24)
| POW_SM(ratesArray[rate12mb], 16)
| POW_SM(ratesArray[rate9mb], 8)
| POW_SM(ratesArray[rate6mb], 0)
);
OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
POW_SM(ratesArray[rate54mb], 24)
| POW_SM(ratesArray[rate48mb], 16)
| POW_SM(ratesArray[rate36mb], 8)
| POW_SM(ratesArray[rate24mb], 0)
);
/* Write the CCK power per rate set */
OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
POW_SM(ratesArray[rate2s], 24)
| POW_SM(ratesArray[rate2l], 16)
| POW_SM(ratesArray[rateXr], 8) /* XR target power */
| POW_SM(ratesArray[rate1l], 0)
);
OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
POW_SM(ratesArray[rate11s], 24)
| POW_SM(ratesArray[rate11l], 16)
| POW_SM(ratesArray[rate5_5s], 8)
| POW_SM(ratesArray[rate5_5l], 0)
);
HALDEBUG(ah, HAL_DEBUG_RESET,
"%s AR_PHY_POWER_TX_RATE3=0x%x AR_PHY_POWER_TX_RATE4=0x%x\n",
__func__, OS_REG_READ(ah,AR_PHY_POWER_TX_RATE3),
OS_REG_READ(ah,AR_PHY_POWER_TX_RATE4));
/* Write the HT20 power per rate set */
OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
POW_SM(ratesArray[rateHt20_3], 24)
| POW_SM(ratesArray[rateHt20_2], 16)
| POW_SM(ratesArray[rateHt20_1], 8)
| POW_SM(ratesArray[rateHt20_0], 0)
);
OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
POW_SM(ratesArray[rateHt20_7], 24)
| POW_SM(ratesArray[rateHt20_6], 16)
| POW_SM(ratesArray[rateHt20_5], 8)
| POW_SM(ratesArray[rateHt20_4], 0)
);
if (IEEE80211_IS_CHAN_HT40(chan)) {
/* Write the HT40 power per rate set */
/* Correct PAR difference between HT40 and HT20/LEGACY */
OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
POW_SM(ratesArray[rateHt40_3] + ht40PowerIncForPdadc, 24)
| POW_SM(ratesArray[rateHt40_2] + ht40PowerIncForPdadc, 16)
| POW_SM(ratesArray[rateHt40_1] + ht40PowerIncForPdadc, 8)
| POW_SM(ratesArray[rateHt40_0] + ht40PowerIncForPdadc, 0)
);
OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
POW_SM(ratesArray[rateHt40_7] + ht40PowerIncForPdadc, 24)
| POW_SM(ratesArray[rateHt40_6] + ht40PowerIncForPdadc, 16)
| POW_SM(ratesArray[rateHt40_5] + ht40PowerIncForPdadc, 8)
| POW_SM(ratesArray[rateHt40_4] + ht40PowerIncForPdadc, 0)
);
/* Write the Dup/Ext 40 power per rate set */
OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
POW_SM(ratesArray[rateExtOfdm], 24)
| POW_SM(ratesArray[rateExtCck], 16)
| POW_SM(ratesArray[rateDupOfdm], 8)
| POW_SM(ratesArray[rateDupCck], 0)
);
}
return AH_TRUE;
#undef POW_SM
#undef N
}
HAL_BOOL
ar9285SetBoardValues(struct ath_hal *ah, const struct ieee80211_channel *chan)
{
const HAL_EEPROM_v4k *ee = AH_PRIVATE(ah)->ah_eeprom;
const struct ar5416eeprom_4k *eep = &ee->ee_base;
const MODAL_EEP4K_HEADER *pModal;
uint8_t txRxAttenLocal = 23;
HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1);
pModal = &eep->modalHeader;
OS_REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon);
OS_REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0, pModal->antCtrlChain[0]);
OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4,
(OS_REG_READ(ah, AR_PHY_TIMING_CTRL4) &
~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF | AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
SM(pModal->iqCalICh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
SM(pModal->iqCalQCh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
if (IS_EEP_MINOR_V3(ah)) {
if (IEEE80211_IS_CHAN_HT40(chan)) {
/* Overwrite switch settling with HT40 value */
OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
pModal->swSettleHt40);
}
txRxAttenLocal = pModal->txRxAttenCh[0];
OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ, AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
pModal->bswMargin[0]);
OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ, AR_PHY_GAIN_2GHZ_XATTEN1_DB,
pModal->bswAtten[0]);
OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ, AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
pModal->xatten2Margin[0]);
OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ, AR_PHY_GAIN_2GHZ_XATTEN2_DB,
pModal->xatten2Db[0]);
/* block 1 has the same values as block 0 */
OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, pModal->bswMargin[0]);
OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN, pModal->xatten2Margin[0]);
OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
AR_PHY_GAIN_2GHZ_XATTEN2_DB, pModal->xatten2Db[0]);
}
OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
if (AR_SREV_KITE_11(ah))
OS_REG_WRITE(ah, AR9285_AN_TOP4, (AR9285_AN_TOP4_DEFAULT | 0x14));
return AH_TRUE;
}
/*
* Helper functions common for AP/CB/XB
*/
static HAL_BOOL
ar9285SetPowerPerRateTable(struct ath_hal *ah, struct ar5416eeprom_4k *pEepData,
const struct ieee80211_channel *chan,
int16_t *ratesArray, uint16_t cfgCtl,
uint16_t AntennaReduction,
uint16_t twiceMaxRegulatoryPower,
uint16_t powerLimit)
{
#define N(a) (sizeof(a)/sizeof(a[0]))
/* Local defines to distinguish between extension and control CTL's */
#define EXT_ADDITIVE (0x8000)
#define CTL_11G_EXT (CTL_11G | EXT_ADDITIVE)
#define CTL_11B_EXT (CTL_11B | EXT_ADDITIVE)
uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
int i;
int16_t twiceLargestAntenna;
CAL_CTL_DATA_4K *rep;
CAL_TARGET_POWER_LEG targetPowerOfdm, targetPowerCck = {0, {0, 0, 0, 0}};
CAL_TARGET_POWER_LEG targetPowerOfdmExt = {0, {0, 0, 0, 0}}, targetPowerCckExt = {0, {0, 0, 0, 0}};
CAL_TARGET_POWER_HT targetPowerHt20, targetPowerHt40 = {0, {0, 0, 0, 0}};
int16_t scaledPower, minCtlPower;
#define SUB_NUM_CTL_MODES_AT_2G_40 3 /* excluding HT40, EXT-OFDM, EXT-CCK */
static const uint16_t ctlModesFor11g[] = {
CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
};
const uint16_t *pCtlMode;
uint16_t numCtlModes, ctlMode, freq;
CHAN_CENTERS centers;
ar5416GetChannelCenters(ah, chan, &centers);
/* Compute TxPower reduction due to Antenna Gain */
twiceLargestAntenna = pEepData->modalHeader.antennaGainCh[0];
twiceLargestAntenna = (int16_t)AH_MIN((AntennaReduction) - twiceLargestAntenna, 0);
/* XXX setup for 5212 use (really used?) */
ath_hal_eepromSet(ah, AR_EEP_ANTGAINMAX_2, twiceLargestAntenna);
/*
* scaledPower is the minimum of the user input power level and
* the regulatory allowed power level
*/
scaledPower = AH_MIN(powerLimit, twiceMaxRegulatoryPower + twiceLargestAntenna);
/* Get target powers from EEPROM - our baseline for TX Power */
/* Setup for CTL modes */
numCtlModes = N(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40; /* CTL_11B, CTL_11G, CTL_2GHT20 */
pCtlMode = ctlModesFor11g;
ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPowerCck,
AR5416_4K_NUM_2G_CCK_TARGET_POWERS, &targetPowerCck, 4, AH_FALSE);
ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPower2G,
AR5416_4K_NUM_2G_20_TARGET_POWERS, &targetPowerOfdm, 4, AH_FALSE);
ar5416GetTargetPowers(ah, chan, pEepData->calTargetPower2GHT20,
AR5416_4K_NUM_2G_20_TARGET_POWERS, &targetPowerHt20, 8, AH_FALSE);
if (IEEE80211_IS_CHAN_HT40(chan)) {
numCtlModes = N(ctlModesFor11g); /* All 2G CTL's */
ar5416GetTargetPowers(ah, chan, pEepData->calTargetPower2GHT40,
AR5416_4K_NUM_2G_40_TARGET_POWERS, &targetPowerHt40, 8, AH_TRUE);
/* Get target powers for extension channels */
ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPowerCck,
AR5416_4K_NUM_2G_CCK_TARGET_POWERS, &targetPowerCckExt, 4, AH_TRUE);
ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPower2G,
AR5416_4K_NUM_2G_20_TARGET_POWERS, &targetPowerOfdmExt, 4, AH_TRUE);
}
/*
* For MIMO, need to apply regulatory caps individually across dynamically
* running modes: CCK, OFDM, HT20, HT40
*
* The outer loop walks through each possible applicable runtime mode.
* The inner loop walks through each ctlIndex entry in EEPROM.
* The ctl value is encoded as [7:4] == test group, [3:0] == test mode.
*
*/
for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
HAL_BOOL isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
(pCtlMode[ctlMode] == CTL_2GHT40);
if (isHt40CtlMode) {
freq = centers.ctl_center;
} else if (pCtlMode[ctlMode] & EXT_ADDITIVE) {
freq = centers.ext_center;
} else {
freq = centers.ctl_center;
}
/* walk through each CTL index stored in EEPROM */
for (i = 0; (i < AR5416_4K_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
uint16_t twiceMinEdgePower;
/* compare test group from regulatory channel list with test mode from pCtlMode list */
if ((((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == pEepData->ctlIndex[i]) ||
(((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) ==
((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) {
rep = &(pEepData->ctlData[i]);
twiceMinEdgePower = ar9285GetMaxEdgePower(freq,
rep->ctlEdges[
owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask) - 1]);
if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
/* Find the minimum of all CTL edge powers that apply to this channel */
twiceMaxEdgePower = AH_MIN(twiceMaxEdgePower, twiceMinEdgePower);
} else {
/* specific */
twiceMaxEdgePower = twiceMinEdgePower;
break;
}
}
}
minCtlPower = (uint8_t)AH_MIN(twiceMaxEdgePower, scaledPower);
/* Apply ctl mode to correct target power set */
switch(pCtlMode[ctlMode]) {
case CTL_11B:
for (i = 0; i < N(targetPowerCck.tPow2x); i++) {
targetPowerCck.tPow2x[i] = (uint8_t)AH_MIN(targetPowerCck.tPow2x[i], minCtlPower);
}
break;
case CTL_11A:
case CTL_11G:
for (i = 0; i < N(targetPowerOfdm.tPow2x); i++) {
targetPowerOfdm.tPow2x[i] = (uint8_t)AH_MIN(targetPowerOfdm.tPow2x[i], minCtlPower);
}
break;
case CTL_5GHT20:
case CTL_2GHT20:
for (i = 0; i < N(targetPowerHt20.tPow2x); i++) {
targetPowerHt20.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt20.tPow2x[i], minCtlPower);
}
break;
case CTL_11B_EXT:
targetPowerCckExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerCckExt.tPow2x[0], minCtlPower);
break;
case CTL_11G_EXT:
targetPowerOfdmExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerOfdmExt.tPow2x[0], minCtlPower);
break;
case CTL_5GHT40:
case CTL_2GHT40:
for (i = 0; i < N(targetPowerHt40.tPow2x); i++) {
targetPowerHt40.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt40.tPow2x[i], minCtlPower);
}
break;
default:
return AH_FALSE;
break;
}
} /* end ctl mode checking */
/* Set rates Array from collected data */
ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] = ratesArray[rate18mb] = ratesArray[rate24mb] = targetPowerOfdm.tPow2x[0];
ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
for (i = 0; i < N(targetPowerHt20.tPow2x); i++) {
ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
}
ratesArray[rate1l] = targetPowerCck.tPow2x[0];
ratesArray[rate2s] = ratesArray[rate2l] = targetPowerCck.tPow2x[1];
ratesArray[rate5_5s] = ratesArray[rate5_5l] = targetPowerCck.tPow2x[2];
ratesArray[rate11s] = ratesArray[rate11l] = targetPowerCck.tPow2x[3];
if (IEEE80211_IS_CHAN_HT40(chan)) {
for (i = 0; i < N(targetPowerHt40.tPow2x); i++) {
ratesArray[rateHt40_0 + i] = targetPowerHt40.tPow2x[i];
}
ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
if (IEEE80211_IS_CHAN_2GHZ(chan)) {
ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0];
}
}
return AH_TRUE;
#undef EXT_ADDITIVE
#undef CTL_11G_EXT
#undef CTL_11B_EXT
#undef SUB_NUM_CTL_MODES_AT_2G_40
#undef N
}
/**************************************************************************
* fbin2freq
*
* Get channel value from binary representation held in eeprom
* RETURNS: the frequency in MHz
*/
static uint16_t
fbin2freq(uint8_t fbin)
{
/*
* Reserved value 0xFF provides an empty definition both as
* an fbin and as a frequency - do not convert
*/
if (fbin == AR5416_BCHAN_UNUSED) {
return fbin;
}
return (uint16_t)(2300 + fbin);
}
/*
* XXX almost the same as ar5416GetMaxEdgePower.
*/
static uint16_t
ar9285GetMaxEdgePower(uint16_t freq, CAL_CTL_EDGES *pRdEdgesPower)
{
uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
int i;
/* Get the edge power */
for (i = 0; (i < AR5416_NUM_BAND_EDGES) && (pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED) ; i++) {
/*
* If there's an exact channel match or an inband flag set
* on the lower channel use the given rdEdgePower
*/
if (freq == fbin2freq(pRdEdgesPower[i].bChannel)) {
twiceMaxEdgePower = MS(pRdEdgesPower[i].tPowerFlag, CAL_CTL_EDGES_POWER);
break;
} else if ((i > 0) && (freq < fbin2freq(pRdEdgesPower[i].bChannel))) {
if (fbin2freq(pRdEdgesPower[i - 1].bChannel) < freq && (pRdEdgesPower[i - 1].tPowerFlag & CAL_CTL_EDGES_FLAG) != 0) {
twiceMaxEdgePower = MS(pRdEdgesPower[i - 1].tPowerFlag, CAL_CTL_EDGES_POWER);
}
/* Leave loop - no more affecting edges possible in this monotonic increasing list */
break;
}
}
HALASSERT(twiceMaxEdgePower > 0);
return twiceMaxEdgePower;
}
static HAL_BOOL
ar9285SetPowerCalTable(struct ath_hal *ah, struct ar5416eeprom_4k *pEepData,
const struct ieee80211_channel *chan, int16_t *pTxPowerIndexOffset)
{
CAL_DATA_PER_FREQ_4K *pRawDataset;
uint8_t *pCalBChans = AH_NULL;
uint16_t pdGainOverlap_t2;
static uint8_t pdadcValues[AR5416_NUM_PDADC_VALUES];
uint16_t gainBoundaries[AR5416_PD_GAINS_IN_MASK];
uint16_t numPiers, i, j;
int16_t tMinCalPower;
uint16_t numXpdGain, xpdMask;
uint16_t xpdGainValues[AR5416_4K_NUM_PD_GAINS];
uint32_t reg32, regOffset, regChainOffset;
OS_MEMZERO(xpdGainValues, sizeof(xpdGainValues));
xpdMask = pEepData->modalHeader.xpdGain;
if (IS_EEP_MINOR_V2(ah)) {
pdGainOverlap_t2 = pEepData->modalHeader.pdGainOverlap;
} else {
pdGainOverlap_t2 = (uint16_t)(MS(OS_REG_READ(ah, AR_PHY_TPCRG5), AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
}
pCalBChans = pEepData->calFreqPier2G;
numPiers = AR5416_4K_NUM_2G_CAL_PIERS;
numXpdGain = 0;
/* Calculate the value of xpdgains from the xpdGain Mask */
for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
if (numXpdGain >= AR5416_4K_NUM_PD_GAINS) {
HALASSERT(0);
break;
}
xpdGainValues[numXpdGain] = (uint16_t)(AR5416_PD_GAINS_IN_MASK - i);
numXpdGain++;
}
}
/* Write the detector gain biases and their number */
OS_REG_WRITE(ah, AR_PHY_TPCRG1, (OS_REG_READ(ah, AR_PHY_TPCRG1) &
~(AR_PHY_TPCRG1_NUM_PD_GAIN | AR_PHY_TPCRG1_PD_GAIN_1 | AR_PHY_TPCRG1_PD_GAIN_2 | AR_PHY_TPCRG1_PD_GAIN_3)) |
SM(numXpdGain - 1, AR_PHY_TPCRG1_NUM_PD_GAIN) | SM(xpdGainValues[0], AR_PHY_TPCRG1_PD_GAIN_1 ) |
SM(xpdGainValues[1], AR_PHY_TPCRG1_PD_GAIN_2) | SM(0, AR_PHY_TPCRG1_PD_GAIN_3));
for (i = 0; i < AR5416_MAX_CHAINS; i++) {
if (AR_SREV_OWL_20_OR_LATER(ah) &&
( AH5416(ah)->ah_rx_chainmask == 0x5 || AH5416(ah)->ah_tx_chainmask == 0x5) && (i != 0)) {
/* Regs are swapped from chain 2 to 1 for 5416 2_0 with
* only chains 0 and 2 populated
*/
regChainOffset = (i == 1) ? 0x2000 : 0x1000;
} else {
regChainOffset = i * 0x1000;
}
if (pEepData->baseEepHeader.txMask & (1 << i)) {
pRawDataset = pEepData->calPierData2G[i];
ar9285GetGainBoundariesAndPdadcs(ah, chan, pRawDataset,
pCalBChans, numPiers,
pdGainOverlap_t2,
&tMinCalPower, gainBoundaries,
pdadcValues, numXpdGain);
if ((i == 0) || AR_SREV_OWL_20_OR_LATER(ah)) {
/*
* Note the pdadc table may not start at 0 dBm power, could be
* negative or greater than 0. Need to offset the power
* values by the amount of minPower for griffin
*/
OS_REG_WRITE(ah, AR_PHY_TPCRG5 + regChainOffset,
SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) |
SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) |
SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) |
SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
}
/* Write the power values into the baseband power table */
regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
for (j = 0; j < 32; j++) {
reg32 = ((pdadcValues[4*j + 0] & 0xFF) << 0) |
((pdadcValues[4*j + 1] & 0xFF) << 8) |
((pdadcValues[4*j + 2] & 0xFF) << 16) |
((pdadcValues[4*j + 3] & 0xFF) << 24) ;
OS_REG_WRITE(ah, regOffset, reg32);
#ifdef PDADC_DUMP
ath_hal_printf(ah, "PDADC: Chain %d | PDADC %3d Value %3d | PDADC %3d Value %3d | PDADC %3d Value %3d | PDADC %3d Value %3d |\n",
i,
4*j, pdadcValues[4*j],
4*j+1, pdadcValues[4*j + 1],
4*j+2, pdadcValues[4*j + 2],
4*j+3, pdadcValues[4*j + 3]);
#endif
regOffset += 4;
}
}
}
*pTxPowerIndexOffset = 0;
return AH_TRUE;
}
static void
ar9285GetGainBoundariesAndPdadcs(struct ath_hal *ah,
const struct ieee80211_channel *chan,
CAL_DATA_PER_FREQ_4K *pRawDataSet,
uint8_t * bChans, uint16_t availPiers,
uint16_t tPdGainOverlap, int16_t *pMinCalPower, uint16_t * pPdGainBoundaries,
uint8_t * pPDADCValues, uint16_t numXpdGains)
{
int i, j, k;
int16_t ss; /* potentially -ve index for taking care of pdGainOverlap */
uint16_t idxL, idxR, numPiers; /* Pier indexes */
/* filled out Vpd table for all pdGains (chanL) */
static uint8_t vpdTableL[AR5416_4K_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
/* filled out Vpd table for all pdGains (chanR) */
static uint8_t vpdTableR[AR5416_4K_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
/* filled out Vpd table for all pdGains (interpolated) */
static uint8_t vpdTableI[AR5416_4K_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
uint8_t *pVpdL, *pVpdR, *pPwrL, *pPwrR;
uint8_t minPwrT4[AR5416_4K_NUM_PD_GAINS];
uint8_t maxPwrT4[AR5416_4K_NUM_PD_GAINS];
int16_t vpdStep;
int16_t tmpVal;
uint16_t sizeCurrVpdTable, maxIndex, tgtIndex;
HAL_BOOL match;
int16_t minDelta = 0;
CHAN_CENTERS centers;
ar5416GetChannelCenters(ah, chan, &centers);
/* Trim numPiers for the number of populated channel Piers */
for (numPiers = 0; numPiers < availPiers; numPiers++) {
if (bChans[numPiers] == AR5416_BCHAN_UNUSED) {
break;
}
}
/* Find pier indexes around the current channel */
match = getLowerUpperIndex((uint8_t)FREQ2FBIN(centers.synth_center, IEEE80211_IS_CHAN_2GHZ(chan)),
bChans, numPiers, &idxL, &idxR);
if (match) {
/* Directly fill both vpd tables from the matching index */
for (i = 0; i < numXpdGains; i++) {
minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0];
maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4];
ar9285FillVpdTable(minPwrT4[i], maxPwrT4[i],
pRawDataSet[idxL].pwrPdg[i],
pRawDataSet[idxL].vpdPdg[i],
AR5416_PD_GAIN_ICEPTS, vpdTableI[i]);
}
} else {
for (i = 0; i < numXpdGains; i++) {
pVpdL = pRawDataSet[idxL].vpdPdg[i];
pPwrL = pRawDataSet[idxL].pwrPdg[i];
pVpdR = pRawDataSet[idxR].vpdPdg[i];
pPwrR = pRawDataSet[idxR].pwrPdg[i];
/* Start Vpd interpolation from the max of the minimum powers */
minPwrT4[i] = AH_MAX(pPwrL[0], pPwrR[0]);
/* End Vpd interpolation from the min of the max powers */
maxPwrT4[i] = AH_MIN(pPwrL[AR5416_PD_GAIN_ICEPTS - 1], pPwrR[AR5416_PD_GAIN_ICEPTS - 1]);
HALASSERT(maxPwrT4[i] > minPwrT4[i]);
/* Fill pier Vpds */
ar9285FillVpdTable(minPwrT4[i], maxPwrT4[i], pPwrL, pVpdL,
AR5416_PD_GAIN_ICEPTS, vpdTableL[i]);
ar9285FillVpdTable(minPwrT4[i], maxPwrT4[i], pPwrR, pVpdR,
AR5416_PD_GAIN_ICEPTS, vpdTableR[i]);
/* Interpolate the final vpd */
for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
vpdTableI[i][j] = (uint8_t)(interpolate((uint16_t)FREQ2FBIN(centers.synth_center, IEEE80211_IS_CHAN_2GHZ(chan)),
bChans[idxL], bChans[idxR], vpdTableL[i][j], vpdTableR[i][j]));
}
}
}
*pMinCalPower = (int16_t)(minPwrT4[0] / 2);
k = 0; /* index for the final table */
for (i = 0; i < numXpdGains; i++) {
if (i == (numXpdGains - 1)) {
pPdGainBoundaries[i] = (uint16_t)(maxPwrT4[i] / 2);
} else {
pPdGainBoundaries[i] = (uint16_t)((maxPwrT4[i] + minPwrT4[i+1]) / 4);
}
pPdGainBoundaries[i] = (uint16_t)AH_MIN(AR5416_MAX_RATE_POWER, pPdGainBoundaries[i]);
/* NB: only applies to owl 1.0 */
if ((i == 0) && !AR_SREV_OWL_20_OR_LATER(ah) ) {
/*
* fix the gain delta, but get a delta that can be applied to min to
* keep the upper power values accurate, don't think max needs to
* be adjusted because should not be at that area of the table?
*/
minDelta = pPdGainBoundaries[0] - 23;
pPdGainBoundaries[0] = 23;
}
else {
minDelta = 0;
}
/* Find starting index for this pdGain */
if (i == 0) {
ss = 0; /* for the first pdGain, start from index 0 */
} else {
/* need overlap entries extrapolated below. */
ss = (int16_t)((pPdGainBoundaries[i-1] - (minPwrT4[i] / 2)) - tPdGainOverlap + 1 + minDelta);
}
vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
/*
*-ve ss indicates need to extrapolate data below for this pdGain
*/
while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
pPDADCValues[k++] = (uint8_t)((tmpVal < 0) ? 0 : tmpVal);
ss++;
}
sizeCurrVpdTable = (uint8_t)((maxPwrT4[i] - minPwrT4[i]) / 2 +1);
tgtIndex = (uint8_t)(pPdGainBoundaries[i] + tPdGainOverlap - (minPwrT4[i] / 2));
maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
pPDADCValues[k++] = vpdTableI[i][ss++];
}
vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] - vpdTableI[i][sizeCurrVpdTable - 2]);
vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
/*
* for last gain, pdGainBoundary == Pmax_t2, so will
* have to extrapolate
*/
if (tgtIndex > maxIndex) { /* need to extrapolate above */
while ((ss <= tgtIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] +
(ss - maxIndex +1) * vpdStep));
pPDADCValues[k++] = (uint8_t)((tmpVal > 255) ? 255 : tmpVal);
ss++;
}
} /* extrapolated above */
} /* for all pdGainUsed */
/* Fill out pdGainBoundaries - only up to 2 allowed here, but hardware allows up to 4 */
while (i < AR5416_PD_GAINS_IN_MASK) {
pPdGainBoundaries[i] = pPdGainBoundaries[i-1];
i++;
}
while (k < AR5416_NUM_PDADC_VALUES) {
pPDADCValues[k] = pPDADCValues[k-1];
k++;
}
return;
}
/*
* XXX same as ar5416FillVpdTable
*/
static HAL_BOOL
ar9285FillVpdTable(uint8_t pwrMin, uint8_t pwrMax, uint8_t *pPwrList,
uint8_t *pVpdList, uint16_t numIntercepts, uint8_t *pRetVpdList)
{
uint16_t i, k;
uint8_t currPwr = pwrMin;
uint16_t idxL, idxR;
HALASSERT(pwrMax > pwrMin);
for (i = 0; i <= (pwrMax - pwrMin) / 2; i++) {
getLowerUpperIndex(currPwr, pPwrList, numIntercepts,
&(idxL), &(idxR));
if (idxR < 1)
idxR = 1; /* extrapolate below */
if (idxL == numIntercepts - 1)
idxL = (uint16_t)(numIntercepts - 2); /* extrapolate above */
if (pPwrList[idxL] == pPwrList[idxR])
k = pVpdList[idxL];
else
k = (uint16_t)( ((currPwr - pPwrList[idxL]) * pVpdList[idxR] + (pPwrList[idxR] - currPwr) * pVpdList[idxL]) /
(pPwrList[idxR] - pPwrList[idxL]) );
HALASSERT(k < 256);
pRetVpdList[i] = (uint8_t)k;
currPwr += 2; /* half dB steps */
}
return AH_TRUE;
}
static int16_t
interpolate(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
int16_t targetLeft, int16_t targetRight)
{
int16_t rv;
if (srcRight == srcLeft) {
rv = targetLeft;
} else {
rv = (int16_t)( ((target - srcLeft) * targetRight +
(srcRight - target) * targetLeft) / (srcRight - srcLeft) );
}
return rv;
}
HAL_BOOL
getLowerUpperIndex(uint8_t target, uint8_t *pList, uint16_t listSize,
uint16_t *indexL, uint16_t *indexR)
{
uint16_t i;
/*
* Check first and last elements for beyond ordered array cases.
*/
if (target <= pList[0]) {
*indexL = *indexR = 0;
return AH_TRUE;
}
if (target >= pList[listSize-1]) {
*indexL = *indexR = (uint16_t)(listSize - 1);
return AH_TRUE;
}
/* look for value being near or between 2 values in list */
for (i = 0; i < listSize - 1; i++) {
/*
* If value is close to the current value of the list
* then target is not between values, it is one of the values
*/
if (pList[i] == target) {
*indexL = *indexR = i;
return AH_TRUE;
}
/*
* Look for value being between current value and next value
* if so return these 2 values
*/
if (target < pList[i + 1]) {
*indexL = i;
*indexR = (uint16_t)(i + 1);
return AH_FALSE;
}
}
HALASSERT(0);
*indexL = *indexR = 0;
return AH_FALSE;
}