freebsd-dev/sys/dev/ath/ath_hal/ar5416/ar5416_reset.c
Adrian Chadd d8d0c29db8 Enable the 11n PHY by default whether or not 11n is configured.
The linux ath9k driver and (from what I've been told) the atheros reference
driver does this; it then leaves discarding 11n frames to the 802.11 layer.

Whilst I'm here, merge in a fix from ath9k which maintains a turbo register
setting when enabling the 11n register; and remove an un-needed (duplicate)
flag setting.
2011-01-23 14:49:50 +00:00

2213 lines
74 KiB
C

/*
* Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
* Copyright (c) 2002-2008 Atheros Communications, Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
* $FreeBSD$
*/
#include "opt_ah.h"
#include "ah.h"
#include "ah_internal.h"
#include "ah_devid.h"
#include "ah_eeprom_v14.h"
#include "ar5416/ar5416.h"
#include "ar5416/ar5416reg.h"
#include "ar5416/ar5416phy.h"
/* Eeprom versioning macros. Returns true if the version is equal or newer than the ver specified */
#define EEP_MINOR(_ah) \
(AH_PRIVATE(_ah)->ah_eeversion & AR5416_EEP_VER_MINOR_MASK)
#define IS_EEP_MINOR_V2(_ah) (EEP_MINOR(_ah) >= AR5416_EEP_MINOR_VER_2)
#define IS_EEP_MINOR_V3(_ah) (EEP_MINOR(_ah) >= AR5416_EEP_MINOR_VER_3)
/* Additional Time delay to wait after activiting the Base band */
#define BASE_ACTIVATE_DELAY 100 /* 100 usec */
#define PLL_SETTLE_DELAY 300 /* 300 usec */
#define RTC_PLL_SETTLE_DELAY 1000 /* 1 ms */
static void ar5416InitDMA(struct ath_hal *ah);
static void ar5416InitBB(struct ath_hal *ah, const struct ieee80211_channel *);
static void ar5416InitIMR(struct ath_hal *ah, HAL_OPMODE opmode);
static void ar5416InitQoS(struct ath_hal *ah);
static void ar5416InitUserSettings(struct ath_hal *ah);
#if 0
static HAL_BOOL ar5416ChannelChange(struct ath_hal *, const struct ieee80211_channel *);
#endif
static void ar5416SetDeltaSlope(struct ath_hal *, const struct ieee80211_channel *);
static HAL_BOOL ar5416SetResetPowerOn(struct ath_hal *ah);
static HAL_BOOL ar5416SetReset(struct ath_hal *ah, int type);
static void ar5416InitPLL(struct ath_hal *ah, const struct ieee80211_channel *chan);
static HAL_BOOL ar5416SetPowerPerRateTable(struct ath_hal *ah,
struct ar5416eeprom *pEepData,
const struct ieee80211_channel *chan, int16_t *ratesArray,
uint16_t cfgCtl, uint16_t AntennaReduction,
uint16_t twiceMaxRegulatoryPower,
uint16_t powerLimit);
static HAL_BOOL ar5416SetPowerCalTable(struct ath_hal *ah,
struct ar5416eeprom *pEepData,
const struct ieee80211_channel *chan,
int16_t *pTxPowerIndexOffset);
static uint16_t ar5416GetMaxEdgePower(uint16_t freq,
CAL_CTL_EDGES *pRdEdgesPower, HAL_BOOL is2GHz);
static int16_t interpolate(uint16_t target, uint16_t srcLeft,
uint16_t srcRight, int16_t targetLeft, int16_t targetRight);
static void ar5416Set11nRegs(struct ath_hal *ah, const struct ieee80211_channel *chan);
static void ar5416GetGainBoundariesAndPdadcs(struct ath_hal *ah,
const struct ieee80211_channel *chan, CAL_DATA_PER_FREQ *pRawDataSet,
uint8_t * bChans, uint16_t availPiers,
uint16_t tPdGainOverlap, int16_t *pMinCalPower,
uint16_t * pPdGainBoundaries, uint8_t * pPDADCValues,
uint16_t numXpdGains);
static HAL_BOOL getLowerUpperIndex(uint8_t target, uint8_t *pList,
uint16_t listSize, uint16_t *indexL, uint16_t *indexR);
static HAL_BOOL ar5416FillVpdTable(uint8_t pwrMin, uint8_t pwrMax,
uint8_t *pPwrList, uint8_t *pVpdList,
uint16_t numIntercepts, uint8_t *pRetVpdList);
/*
* Places the device in and out of reset and then places sane
* values in the registers based on EEPROM config, initialization
* vectors (as determined by the mode), and station configuration
*
* bChannelChange is used to preserve DMA/PCU registers across
* a HW Reset during channel change.
*/
HAL_BOOL
ar5416Reset(struct ath_hal *ah, HAL_OPMODE opmode,
struct ieee80211_channel *chan,
HAL_BOOL bChannelChange, HAL_STATUS *status)
{
#define N(a) (sizeof (a) / sizeof (a[0]))
#define FAIL(_code) do { ecode = _code; goto bad; } while (0)
struct ath_hal_5212 *ahp = AH5212(ah);
HAL_CHANNEL_INTERNAL *ichan;
uint32_t saveDefAntenna, saveLedState;
uint32_t macStaId1;
uint16_t rfXpdGain[2];
HAL_STATUS ecode;
uint32_t powerVal, rssiThrReg;
uint32_t ackTpcPow, ctsTpcPow, chirpTpcPow;
int i;
OS_MARK(ah, AH_MARK_RESET, bChannelChange);
/* Bring out of sleep mode */
if (!ar5416SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE)) {
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip did not wakeup\n",
__func__);
FAIL(HAL_EIO);
}
/*
* Map public channel to private.
*/
ichan = ath_hal_checkchannel(ah, chan);
if (ichan == AH_NULL)
FAIL(HAL_EINVAL);
switch (opmode) {
case HAL_M_STA:
case HAL_M_IBSS:
case HAL_M_HOSTAP:
case HAL_M_MONITOR:
break;
default:
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid operating mode %u\n",
__func__, opmode);
FAIL(HAL_EINVAL);
break;
}
HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1);
/* XXX Turn on fast channel change for 5416 */
/*
* Preserve the bmiss rssi threshold and count threshold
* across resets
*/
rssiThrReg = OS_REG_READ(ah, AR_RSSI_THR);
/* If reg is zero, first time thru set to default val */
if (rssiThrReg == 0)
rssiThrReg = INIT_RSSI_THR;
/*
* Preserve the antenna on a channel change
*/
saveDefAntenna = OS_REG_READ(ah, AR_DEF_ANTENNA);
if (saveDefAntenna == 0) /* XXX magic constants */
saveDefAntenna = 1;
/* Save hardware flag before chip reset clears the register */
macStaId1 = OS_REG_READ(ah, AR_STA_ID1) &
(AR_STA_ID1_BASE_RATE_11B | AR_STA_ID1_USE_DEFANT);
/* Save led state from pci config register */
saveLedState = OS_REG_READ(ah, AR_MAC_LED) &
(AR_MAC_LED_ASSOC | AR_MAC_LED_MODE |
AR_MAC_LED_BLINK_THRESH_SEL | AR_MAC_LED_BLINK_SLOW);
if (!ar5416ChipReset(ah, chan)) {
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip reset failed\n", __func__);
FAIL(HAL_EIO);
}
/* Restore bmiss rssi & count thresholds */
OS_REG_WRITE(ah, AR_RSSI_THR, rssiThrReg);
OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
if (AR_SREV_MERLIN_10_OR_LATER(ah))
OS_REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
if (AR_SREV_KITE(ah)) {
uint32_t val;
val = OS_REG_READ(ah, AR_PHY_HEAVY_CLIP_FACTOR_RIFS);
val &= ~AR_PHY_RIFS_INIT_DELAY;
OS_REG_WRITE(ah, AR_PHY_HEAVY_CLIP_FACTOR_RIFS, val);
}
AH5416(ah)->ah_writeIni(ah, chan);
/* Setup 11n MAC/Phy mode registers */
ar5416Set11nRegs(ah, chan);
OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
HALDEBUG(ah, HAL_DEBUG_RESET, ">>>2 %s: AR_PHY_DAG_CTRLCCK=0x%x\n",
__func__, OS_REG_READ(ah,AR_PHY_DAG_CTRLCCK));
HALDEBUG(ah, HAL_DEBUG_RESET, ">>>2 %s: AR_PHY_ADC_CTL=0x%x\n",
__func__, OS_REG_READ(ah,AR_PHY_ADC_CTL));
/* Set the mute mask to the correct default */
if (AH_PRIVATE(ah)->ah_phyRev >= AR_PHY_CHIP_ID_REV_2)
OS_REG_WRITE(ah, AR_SEQ_MASK, 0x0000000F);
if (AH_PRIVATE(ah)->ah_phyRev >= AR_PHY_CHIP_ID_REV_3) {
/* Clear reg to alllow RX_CLEAR line debug */
OS_REG_WRITE(ah, AR_PHY_BLUETOOTH, 0);
}
if (AH_PRIVATE(ah)->ah_phyRev >= AR_PHY_CHIP_ID_REV_4) {
#ifdef notyet
/* Enable burst prefetch for the data queues */
OS_REG_RMW_FIELD(ah, AR_D_FPCTL, ... );
/* Enable double-buffering */
OS_REG_CLR_BIT(ah, AR_TXCFG, AR_TXCFG_DBL_BUF_DIS);
#endif
}
/* Set ADC/DAC select values */
OS_REG_WRITE(ah, AR_PHY_SLEEP_SCAL, 0x0e);
if (AH5416(ah)->ah_rx_chainmask == 0x5 ||
AH5416(ah)->ah_tx_chainmask == 0x5)
OS_REG_WRITE(ah, AR_PHY_ANALOG_SWAP, AR_PHY_SWAP_ALT_CHAIN);
/* Setup Chain Masks */
OS_REG_WRITE(ah, AR_PHY_RX_CHAINMASK, AH5416(ah)->ah_rx_chainmask);
OS_REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, AH5416(ah)->ah_rx_chainmask);
OS_REG_WRITE(ah, AR_SELFGEN_MASK, AH5416(ah)->ah_tx_chainmask);
/* Setup the transmit power values. */
if (!ah->ah_setTxPower(ah, chan, rfXpdGain)) {
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: error init'ing transmit power\n", __func__);
FAIL(HAL_EIO);
}
/* Write the analog registers */
if (!ahp->ah_rfHal->setRfRegs(ah, chan,
IEEE80211_IS_CHAN_2GHZ(chan) ? 2: 1, rfXpdGain)) {
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: ar5212SetRfRegs failed\n", __func__);
FAIL(HAL_EIO);
}
/* Write delta slope for OFDM enabled modes (A, G, Turbo) */
if (IEEE80211_IS_CHAN_OFDM(chan)|| IEEE80211_IS_CHAN_HT(chan))
ar5416SetDeltaSlope(ah, chan);
AH5416(ah)->ah_spurMitigate(ah, chan);
/* Setup board specific options for EEPROM version 3 */
if (!ah->ah_setBoardValues(ah, chan)) {
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: error setting board options\n", __func__);
FAIL(HAL_EIO);
}
OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
OS_REG_WRITE(ah, AR_STA_ID0, LE_READ_4(ahp->ah_macaddr));
OS_REG_WRITE(ah, AR_STA_ID1, LE_READ_2(ahp->ah_macaddr + 4)
| macStaId1
| AR_STA_ID1_RTS_USE_DEF
| ahp->ah_staId1Defaults
);
ar5212SetOperatingMode(ah, opmode);
/* Set Venice BSSID mask according to current state */
OS_REG_WRITE(ah, AR_BSSMSKL, LE_READ_4(ahp->ah_bssidmask));
OS_REG_WRITE(ah, AR_BSSMSKU, LE_READ_2(ahp->ah_bssidmask + 4));
/* Restore previous led state */
OS_REG_WRITE(ah, AR_MAC_LED, OS_REG_READ(ah, AR_MAC_LED) | saveLedState);
/* Restore previous antenna */
OS_REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
/* then our BSSID */
OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid + 4));
/* Restore bmiss rssi & count thresholds */
OS_REG_WRITE(ah, AR_RSSI_THR, ahp->ah_rssiThr);
OS_REG_WRITE(ah, AR_ISR, ~0); /* cleared on write */
if (!ar5212SetChannel(ah, chan))
FAIL(HAL_EIO);
OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
/* Set 1:1 QCU to DCU mapping for all queues */
for (i = 0; i < AR_NUM_DCU; i++)
OS_REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
ahp->ah_intrTxqs = 0;
for (i = 0; i < AH_PRIVATE(ah)->ah_caps.halTotalQueues; i++)
ar5212ResetTxQueue(ah, i);
ar5416InitIMR(ah, opmode);
ar5212SetCoverageClass(ah, AH_PRIVATE(ah)->ah_coverageClass, 1);
ar5416InitQoS(ah);
ar5416InitUserSettings(ah);
/*
* disable seq number generation in hw
*/
OS_REG_WRITE(ah, AR_STA_ID1,
OS_REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
ar5416InitDMA(ah);
/*
* program OBS bus to see MAC interrupts
*/
OS_REG_WRITE(ah, AR_OBS, 8);
#ifdef AR5416_INT_MITIGATION
OS_REG_WRITE(ah, AR_MIRT, 0);
OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
#endif
ar5416InitBB(ah, chan);
/* Setup compression registers */
ar5212SetCompRegs(ah); /* XXX not needed? */
/*
* 5416 baseband will check the per rate power table
* and select the lower of the two
*/
ackTpcPow = 63;
ctsTpcPow = 63;
chirpTpcPow = 63;
powerVal = SM(ackTpcPow, AR_TPC_ACK) |
SM(ctsTpcPow, AR_TPC_CTS) |
SM(chirpTpcPow, AR_TPC_CHIRP);
OS_REG_WRITE(ah, AR_TPC, powerVal);
if (!ar5416InitCal(ah, chan))
FAIL(HAL_ESELFTEST);
AH_PRIVATE(ah)->ah_opmode = opmode; /* record operating mode */
if (bChannelChange && !IEEE80211_IS_CHAN_DFS(chan))
chan->ic_state &= ~IEEE80211_CHANSTATE_CWINT;
HALDEBUG(ah, HAL_DEBUG_RESET, "%s: done\n", __func__);
OS_MARK(ah, AH_MARK_RESET_DONE, 0);
return AH_TRUE;
bad:
OS_MARK(ah, AH_MARK_RESET_DONE, ecode);
if (status != AH_NULL)
*status = ecode;
return AH_FALSE;
#undef FAIL
#undef N
}
#if 0
/*
* This channel change evaluates whether the selected hardware can
* perform a synthesizer-only channel change (no reset). If the
* TX is not stopped, or the RFBus cannot be granted in the given
* time, the function returns false as a reset is necessary
*/
HAL_BOOL
ar5416ChannelChange(struct ath_hal *ah, const structu ieee80211_channel *chan)
{
uint32_t ulCount;
uint32_t data, synthDelay, qnum;
uint16_t rfXpdGain[4];
struct ath_hal_5212 *ahp = AH5212(ah);
HAL_CHANNEL_INTERNAL *ichan;
/*
* Map public channel to private.
*/
ichan = ath_hal_checkchannel(ah, chan);
/* TX must be stopped or RF Bus grant will not work */
for (qnum = 0; qnum < AH_PRIVATE(ah)->ah_caps.halTotalQueues; qnum++) {
if (ar5212NumTxPending(ah, qnum)) {
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: frames pending on queue %d\n", __func__, qnum);
return AH_FALSE;
}
}
/*
* Kill last Baseband Rx Frame - Request analog bus grant
*/
OS_REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_REQUEST);
if (!ath_hal_wait(ah, AR_PHY_RFBUS_GNT, AR_PHY_RFBUS_GRANT_EN, AR_PHY_RFBUS_GRANT_EN)) {
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: could not kill baseband rx\n",
__func__);
return AH_FALSE;
}
ar5416Set11nRegs(ah, chan); /* NB: setup 5416-specific regs */
/* Change the synth */
if (!ar5212SetChannel(ah, chan))
return AH_FALSE;
/* Setup the transmit power values. */
if (!ar5416SetTransmitPower(ah, chan, rfXpdGain)) {
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: error init'ing transmit power\n", __func__);
return AH_FALSE;
}
/*
* Wait for the frequency synth to settle (synth goes on
* via PHY_ACTIVE_EN). Read the phy active delay register.
* Value is in 100ns increments.
*/
data = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
if (IS_CHAN_CCK(ichan)) {
synthDelay = (4 * data) / 22;
} else {
synthDelay = data / 10;
}
OS_DELAY(synthDelay + BASE_ACTIVATE_DELAY);
/* Release the RFBus Grant */
OS_REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
/* Write delta slope for OFDM enabled modes (A, G, Turbo) */
if (IEEE80211_IS_CHAN_OFDM(ichan)|| IEEE80211_IS_CHAN_HT(chan)) {
HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER5_3);
ar5212SetSpurMitigation(ah, chan);
ar5416SetDeltaSlope(ah, chan);
}
/* XXX spur mitigation for Melin */
if (!IEEE80211_IS_CHAN_DFS(chan))
chan->ic_state &= ~IEEE80211_CHANSTATE_CWINT;
ichan->channel_time = 0;
ichan->tsf_last = ar5212GetTsf64(ah);
ar5212TxEnable(ah, AH_TRUE);
return AH_TRUE;
}
#endif
static void
ar5416InitDMA(struct ath_hal *ah)
{
struct ath_hal_5212 *ahp = AH5212(ah);
/*
* set AHB_MODE not to do cacheline prefetches
*/
OS_REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
/*
* let mac dma reads be in 128 byte chunks
*/
OS_REG_WRITE(ah, AR_TXCFG,
(OS_REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK) | AR_TXCFG_DMASZ_128B);
/*
* let mac dma writes be in 128 byte chunks
*/
OS_REG_WRITE(ah, AR_RXCFG,
(OS_REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK) | AR_RXCFG_DMASZ_128B);
/* restore TX trigger level */
OS_REG_WRITE(ah, AR_TXCFG,
(OS_REG_READ(ah, AR_TXCFG) &~ AR_FTRIG) |
SM(ahp->ah_txTrigLev, AR_FTRIG));
/*
* Setup receive FIFO threshold to hold off TX activities
*/
OS_REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
/*
* reduce the number of usable entries in PCU TXBUF to avoid
* wrap around.
*/
OS_REG_WRITE(ah, AR_PCU_TXBUF_CTRL, AR_PCU_TXBUF_CTRL_USABLE_SIZE);
}
static void
ar5416InitBB(struct ath_hal *ah, const struct ieee80211_channel *chan)
{
uint32_t synthDelay;
/*
* Wait for the frequency synth to settle (synth goes on
* via AR_PHY_ACTIVE_EN). Read the phy active delay register.
* Value is in 100ns increments.
*/
synthDelay = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
if (IEEE80211_IS_CHAN_CCK(chan)) {
synthDelay = (4 * synthDelay) / 22;
} else {
synthDelay /= 10;
}
/* Turn on PLL on 5416 */
HALDEBUG(ah, HAL_DEBUG_RESET, "%s %s channel\n",
__func__, IEEE80211_IS_CHAN_5GHZ(chan) ? "5GHz" : "2GHz");
ar5416InitPLL(ah, chan);
/* Activate the PHY (includes baseband activate and synthesizer on) */
OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
/*
* If the AP starts the calibration before the base band timeout
* completes we could get rx_clear false triggering. Add an
* extra BASE_ACTIVATE_DELAY usecs to ensure this condition
* does not happen.
*/
if (IEEE80211_IS_CHAN_HALF(chan)) {
OS_DELAY((synthDelay << 1) + BASE_ACTIVATE_DELAY);
} else if (IEEE80211_IS_CHAN_QUARTER(chan)) {
OS_DELAY((synthDelay << 2) + BASE_ACTIVATE_DELAY);
} else {
OS_DELAY(synthDelay + BASE_ACTIVATE_DELAY);
}
}
static void
ar5416InitIMR(struct ath_hal *ah, HAL_OPMODE opmode)
{
struct ath_hal_5212 *ahp = AH5212(ah);
/*
* Setup interrupt handling. Note that ar5212ResetTxQueue
* manipulates the secondary IMR's as queues are enabled
* and disabled. This is done with RMW ops to insure the
* settings we make here are preserved.
*/
ahp->ah_maskReg = AR_IMR_TXERR | AR_IMR_TXURN
| AR_IMR_RXERR | AR_IMR_RXORN
| AR_IMR_BCNMISC;
#ifdef AR5416_INT_MITIGATION
ahp->ah_maskReg |= AR_IMR_TXINTM | AR_IMR_RXINTM
| AR_IMR_TXMINTR | AR_IMR_RXMINTR;
#else
ahp->ah_maskReg |= AR_IMR_TXOK | AR_IMR_RXOK;
#endif
if (opmode == HAL_M_HOSTAP)
ahp->ah_maskReg |= AR_IMR_MIB;
OS_REG_WRITE(ah, AR_IMR, ahp->ah_maskReg);
/* Enable bus errors that are OR'd to set the HIUERR bit */
#if 0
OS_REG_WRITE(ah, AR_IMR_S2,
OS_REG_READ(ah, AR_IMR_S2) | AR_IMR_S2_GTT | AR_IMR_S2_CST);
#endif
}
static void
ar5416InitQoS(struct ath_hal *ah)
{
/* QoS support */
OS_REG_WRITE(ah, AR_QOS_CONTROL, 0x100aa); /* XXX magic */
OS_REG_WRITE(ah, AR_QOS_SELECT, 0x3210); /* XXX magic */
/* Turn on NOACK Support for QoS packets */
OS_REG_WRITE(ah, AR_NOACK,
SM(2, AR_NOACK_2BIT_VALUE) |
SM(5, AR_NOACK_BIT_OFFSET) |
SM(0, AR_NOACK_BYTE_OFFSET));
/*
* initialize TXOP for all TIDs
*/
OS_REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
OS_REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
OS_REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
OS_REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
OS_REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
}
static void
ar5416InitUserSettings(struct ath_hal *ah)
{
struct ath_hal_5212 *ahp = AH5212(ah);
/* Restore user-specified settings */
if (ahp->ah_miscMode != 0)
OS_REG_WRITE(ah, AR_MISC_MODE, ahp->ah_miscMode);
if (ahp->ah_sifstime != (u_int) -1)
ar5212SetSifsTime(ah, ahp->ah_sifstime);
if (ahp->ah_slottime != (u_int) -1)
ar5212SetSlotTime(ah, ahp->ah_slottime);
if (ahp->ah_acktimeout != (u_int) -1)
ar5212SetAckTimeout(ah, ahp->ah_acktimeout);
if (ahp->ah_ctstimeout != (u_int) -1)
ar5212SetCTSTimeout(ah, ahp->ah_ctstimeout);
if (AH_PRIVATE(ah)->ah_diagreg != 0)
OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);
#if 0 /* XXX Todo */
if (ahp->ah_globaltxtimeout != (u_int) -1)
ar5416SetGlobalTxTimeout(ah, ahp->ah_globaltxtimeout);
#endif
}
/*
* Places the hardware into reset and then pulls it out of reset
*/
HAL_BOOL
ar5416ChipReset(struct ath_hal *ah, const struct ieee80211_channel *chan)
{
OS_MARK(ah, AH_MARK_CHIPRESET, chan ? chan->ic_freq : 0);
/*
* Warm reset is optimistic.
*/
if (AR_SREV_MERLIN_20_OR_LATER(ah) &&
ath_hal_eepromGetFlag(ah, AR_EEP_OL_PWRCTRL)) {
if (!ar5416SetResetReg(ah, HAL_RESET_POWER_ON))
return AH_FALSE;
} else {
if (!ar5416SetResetReg(ah, HAL_RESET_WARM))
return AH_FALSE;
}
/* Bring out of sleep mode (AGAIN) */
if (!ar5416SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
return AH_FALSE;
ar5416InitPLL(ah, chan);
/*
* Perform warm reset before the mode/PLL/turbo registers
* are changed in order to deactivate the radio. Mode changes
* with an active radio can result in corrupted shifts to the
* radio device.
*/
if (chan != AH_NULL) {
uint32_t rfMode;
/* treat channel B as channel G , no B mode suport in owl */
rfMode = IEEE80211_IS_CHAN_CCK(chan) ?
AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
if (AR_SREV_MERLIN_20(ah) && IS_5GHZ_FAST_CLOCK_EN(ah, chan)) {
/* phy mode bits for 5GHz channels require Fast Clock */
rfMode |= AR_PHY_MODE_DYNAMIC
| AR_PHY_MODE_DYN_CCK_DISABLE;
} else if (!AR_SREV_MERLIN_10_OR_LATER(ah)) {
rfMode |= IEEE80211_IS_CHAN_5GHZ(chan) ?
AR_PHY_MODE_RF5GHZ : AR_PHY_MODE_RF2GHZ;
}
OS_REG_WRITE(ah, AR_PHY_MODE, rfMode);
}
return AH_TRUE;
}
/*
* Delta slope coefficient computation.
* Required for OFDM operation.
*/
static void
ar5416GetDeltaSlopeValues(struct ath_hal *ah, uint32_t coef_scaled,
uint32_t *coef_mantissa, uint32_t *coef_exponent)
{
#define COEF_SCALE_S 24
uint32_t coef_exp, coef_man;
/*
* ALGO -> coef_exp = 14-floor(log2(coef));
* floor(log2(x)) is the highest set bit position
*/
for (coef_exp = 31; coef_exp > 0; coef_exp--)
if ((coef_scaled >> coef_exp) & 0x1)
break;
/* A coef_exp of 0 is a legal bit position but an unexpected coef_exp */
HALASSERT(coef_exp);
coef_exp = 14 - (coef_exp - COEF_SCALE_S);
/*
* ALGO -> coef_man = floor(coef* 2^coef_exp+0.5);
* The coefficient is already shifted up for scaling
*/
coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
*coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
*coef_exponent = coef_exp - 16;
#undef COEF_SCALE_S
}
void
ar5416SetDeltaSlope(struct ath_hal *ah, const struct ieee80211_channel *chan)
{
#define INIT_CLOCKMHZSCALED 0x64000000
uint32_t coef_scaled, ds_coef_exp, ds_coef_man;
uint32_t clockMhzScaled;
CHAN_CENTERS centers;
/* half and quarter rate can divide the scaled clock by 2 or 4 respectively */
/* scale for selected channel bandwidth */
clockMhzScaled = INIT_CLOCKMHZSCALED;
if (IEEE80211_IS_CHAN_TURBO(chan))
clockMhzScaled <<= 1;
else if (IEEE80211_IS_CHAN_HALF(chan))
clockMhzScaled >>= 1;
else if (IEEE80211_IS_CHAN_QUARTER(chan))
clockMhzScaled >>= 2;
/*
* ALGO -> coef = 1e8/fcarrier*fclock/40;
* scaled coef to provide precision for this floating calculation
*/
ar5416GetChannelCenters(ah, chan, &centers);
coef_scaled = clockMhzScaled / centers.synth_center;
ar5416GetDeltaSlopeValues(ah, coef_scaled, &ds_coef_man, &ds_coef_exp);
OS_REG_RMW_FIELD(ah, AR_PHY_TIMING3,
AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
OS_REG_RMW_FIELD(ah, AR_PHY_TIMING3,
AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
/*
* For Short GI,
* scaled coeff is 9/10 that of normal coeff
*/
coef_scaled = (9 * coef_scaled)/10;
ar5416GetDeltaSlopeValues(ah, coef_scaled, &ds_coef_man, &ds_coef_exp);
/* for short gi */
OS_REG_RMW_FIELD(ah, AR_PHY_HALFGI,
AR_PHY_HALFGI_DSC_MAN, ds_coef_man);
OS_REG_RMW_FIELD(ah, AR_PHY_HALFGI,
AR_PHY_HALFGI_DSC_EXP, ds_coef_exp);
#undef INIT_CLOCKMHZSCALED
}
/*
* Set a limit on the overall output power. Used for dynamic
* transmit power control and the like.
*
* NB: limit is in units of 0.5 dbM.
*/
HAL_BOOL
ar5416SetTxPowerLimit(struct ath_hal *ah, uint32_t limit)
{
uint16_t dummyXpdGains[2];
AH_PRIVATE(ah)->ah_powerLimit = AH_MIN(limit, MAX_RATE_POWER);
return ar5416SetTransmitPower(ah, AH_PRIVATE(ah)->ah_curchan,
dummyXpdGains);
}
HAL_BOOL
ar5416GetChipPowerLimits(struct ath_hal *ah,
struct ieee80211_channel *chan)
{
struct ath_hal_5212 *ahp = AH5212(ah);
int16_t minPower, maxPower;
/*
* Get Pier table max and min powers.
*/
if (ahp->ah_rfHal->getChannelMaxMinPower(ah, chan, &maxPower, &minPower)) {
/* NB: rf code returns 1/4 dBm units, convert */
chan->ic_maxpower = maxPower / 2;
chan->ic_minpower = minPower / 2;
} else {
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: no min/max power for %u/0x%x\n",
__func__, chan->ic_freq, chan->ic_flags);
chan->ic_maxpower = AR5416_MAX_RATE_POWER;
chan->ic_minpower = 0;
}
HALDEBUG(ah, HAL_DEBUG_RESET,
"Chan %d: MaxPow = %d MinPow = %d\n",
chan->ic_freq, chan->ic_maxpower, chan->ic_minpower);
return AH_TRUE;
}
/* XXX gag, this is sick */
typedef enum Ar5416_Rates {
rate6mb, rate9mb, rate12mb, rate18mb,
rate24mb, rate36mb, rate48mb, rate54mb,
rate1l, rate2l, rate2s, rate5_5l,
rate5_5s, rate11l, rate11s, rateXr,
rateHt20_0, rateHt20_1, rateHt20_2, rateHt20_3,
rateHt20_4, rateHt20_5, rateHt20_6, rateHt20_7,
rateHt40_0, rateHt40_1, rateHt40_2, rateHt40_3,
rateHt40_4, rateHt40_5, rateHt40_6, rateHt40_7,
rateDupCck, rateDupOfdm, rateExtCck, rateExtOfdm,
Ar5416RateSize
} AR5416_RATES;
/**************************************************************
* ar5416SetTransmitPower
*
* Set the transmit power in the baseband for the given
* operating channel and mode.
*/
HAL_BOOL
ar5416SetTransmitPower(struct ath_hal *ah,
const struct ieee80211_channel *chan, uint16_t *rfXpdGain)
{
#define POW_SM(_r, _s) (((_r) & 0x3f) << (_s))
#define N(a) (sizeof (a) / sizeof (a[0]))
MODAL_EEP_HEADER *pModal;
struct ath_hal_5212 *ahp = AH5212(ah);
int16_t ratesArray[Ar5416RateSize];
int16_t txPowerIndexOffset = 0;
uint8_t ht40PowerIncForPdadc = 2;
int i;
uint16_t cfgCtl;
uint16_t powerLimit;
uint16_t twiceAntennaReduction;
uint16_t twiceMaxRegulatoryPower;
int16_t maxPower;
HAL_EEPROM_v14 *ee = AH_PRIVATE(ah)->ah_eeprom;
struct ar5416eeprom *pEepData = &ee->ee_base;
HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1);
/* Setup info for the actual eeprom */
OS_MEMZERO(ratesArray, sizeof(ratesArray));
cfgCtl = ath_hal_getctl(ah, chan);
powerLimit = chan->ic_maxregpower * 2;
twiceAntennaReduction = chan->ic_maxantgain;
twiceMaxRegulatoryPower = AH_MIN(MAX_RATE_POWER, AH_PRIVATE(ah)->ah_powerLimit);
pModal = &pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)];
HALDEBUG(ah, HAL_DEBUG_RESET, "%s Channel=%u CfgCtl=%u\n",
__func__,chan->ic_freq, cfgCtl );
if (IS_EEP_MINOR_V2(ah)) {
ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
}
if (!ar5416SetPowerPerRateTable(ah, pEepData, chan,
&ratesArray[0],cfgCtl,
twiceAntennaReduction,
twiceMaxRegulatoryPower, powerLimit)) {
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: unable to set tx power per rate table\n", __func__);
return AH_FALSE;
}
if (!ar5416SetPowerCalTable(ah, pEepData, chan, &txPowerIndexOffset)) {
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set power table\n",
__func__);
return AH_FALSE;
}
maxPower = AH_MAX(ratesArray[rate6mb], ratesArray[rateHt20_0]);
if (IEEE80211_IS_CHAN_2GHZ(chan)) {
maxPower = AH_MAX(maxPower, ratesArray[rate1l]);
}
if (IEEE80211_IS_CHAN_HT40(chan)) {
maxPower = AH_MAX(maxPower, ratesArray[rateHt40_0]);
}
ahp->ah_tx6PowerInHalfDbm = maxPower;
AH_PRIVATE(ah)->ah_maxPowerLevel = maxPower;
ahp->ah_txPowerIndexOffset = txPowerIndexOffset;
/*
* txPowerIndexOffset is set by the SetPowerTable() call -
* adjust the rate table (0 offset if rates EEPROM not loaded)
*/
for (i = 0; i < N(ratesArray); i++) {
ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]);
if (ratesArray[i] > AR5416_MAX_RATE_POWER)
ratesArray[i] = AR5416_MAX_RATE_POWER;
}
#ifdef AH_EEPROM_DUMP
ar5416PrintPowerPerRate(ah, ratesArray);
#endif
/* Write the OFDM power per rate set */
OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
POW_SM(ratesArray[rate18mb], 24)
| POW_SM(ratesArray[rate12mb], 16)
| POW_SM(ratesArray[rate9mb], 8)
| POW_SM(ratesArray[rate6mb], 0)
);
OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
POW_SM(ratesArray[rate54mb], 24)
| POW_SM(ratesArray[rate48mb], 16)
| POW_SM(ratesArray[rate36mb], 8)
| POW_SM(ratesArray[rate24mb], 0)
);
if (IEEE80211_IS_CHAN_2GHZ(chan)) {
/* Write the CCK power per rate set */
OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
POW_SM(ratesArray[rate2s], 24)
| POW_SM(ratesArray[rate2l], 16)
| POW_SM(ratesArray[rateXr], 8) /* XR target power */
| POW_SM(ratesArray[rate1l], 0)
);
OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
POW_SM(ratesArray[rate11s], 24)
| POW_SM(ratesArray[rate11l], 16)
| POW_SM(ratesArray[rate5_5s], 8)
| POW_SM(ratesArray[rate5_5l], 0)
);
HALDEBUG(ah, HAL_DEBUG_RESET,
"%s AR_PHY_POWER_TX_RATE3=0x%x AR_PHY_POWER_TX_RATE4=0x%x\n",
__func__, OS_REG_READ(ah,AR_PHY_POWER_TX_RATE3),
OS_REG_READ(ah,AR_PHY_POWER_TX_RATE4));
}
/* Write the HT20 power per rate set */
OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
POW_SM(ratesArray[rateHt20_3], 24)
| POW_SM(ratesArray[rateHt20_2], 16)
| POW_SM(ratesArray[rateHt20_1], 8)
| POW_SM(ratesArray[rateHt20_0], 0)
);
OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
POW_SM(ratesArray[rateHt20_7], 24)
| POW_SM(ratesArray[rateHt20_6], 16)
| POW_SM(ratesArray[rateHt20_5], 8)
| POW_SM(ratesArray[rateHt20_4], 0)
);
if (IEEE80211_IS_CHAN_HT40(chan)) {
/* Write the HT40 power per rate set */
/* Correct PAR difference between HT40 and HT20/LEGACY */
OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
POW_SM(ratesArray[rateHt40_3] + ht40PowerIncForPdadc, 24)
| POW_SM(ratesArray[rateHt40_2] + ht40PowerIncForPdadc, 16)
| POW_SM(ratesArray[rateHt40_1] + ht40PowerIncForPdadc, 8)
| POW_SM(ratesArray[rateHt40_0] + ht40PowerIncForPdadc, 0)
);
OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
POW_SM(ratesArray[rateHt40_7] + ht40PowerIncForPdadc, 24)
| POW_SM(ratesArray[rateHt40_6] + ht40PowerIncForPdadc, 16)
| POW_SM(ratesArray[rateHt40_5] + ht40PowerIncForPdadc, 8)
| POW_SM(ratesArray[rateHt40_4] + ht40PowerIncForPdadc, 0)
);
/* Write the Dup/Ext 40 power per rate set */
OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
POW_SM(ratesArray[rateExtOfdm], 24)
| POW_SM(ratesArray[rateExtCck], 16)
| POW_SM(ratesArray[rateDupOfdm], 8)
| POW_SM(ratesArray[rateDupCck], 0)
);
}
/* Write the Power subtraction for dynamic chain changing, for per-packet powertx */
OS_REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
POW_SM(pModal->pwrDecreaseFor3Chain, 6)
| POW_SM(pModal->pwrDecreaseFor2Chain, 0)
);
return AH_TRUE;
#undef POW_SM
#undef N
}
/*
* Exported call to check for a recent gain reading and return
* the current state of the thermal calibration gain engine.
*/
HAL_RFGAIN
ar5416GetRfgain(struct ath_hal *ah)
{
return HAL_RFGAIN_INACTIVE;
}
/*
* Places all of hardware into reset
*/
HAL_BOOL
ar5416Disable(struct ath_hal *ah)
{
if (!ar5212SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
return AH_FALSE;
return ar5416SetResetReg(ah, HAL_RESET_COLD);
}
/*
* Places the PHY and Radio chips into reset. A full reset
* must be called to leave this state. The PCI/MAC/PCU are
* not placed into reset as we must receive interrupt to
* re-enable the hardware.
*/
HAL_BOOL
ar5416PhyDisable(struct ath_hal *ah)
{
return ar5416SetResetReg(ah, HAL_RESET_WARM);
}
/*
* Write the given reset bit mask into the reset register
*/
HAL_BOOL
ar5416SetResetReg(struct ath_hal *ah, uint32_t type)
{
switch (type) {
case HAL_RESET_POWER_ON:
return ar5416SetResetPowerOn(ah);
case HAL_RESET_WARM:
case HAL_RESET_COLD:
return ar5416SetReset(ah, type);
default:
HALASSERT(AH_FALSE);
return AH_FALSE;
}
}
static HAL_BOOL
ar5416SetResetPowerOn(struct ath_hal *ah)
{
/* Power On Reset (Hard Reset) */
/*
* Set force wake
*
* If the MAC was running, previously calling
* reset will wake up the MAC but it may go back to sleep
* before we can start polling.
* Set force wake stops that
* This must be called before initiating a hard reset.
*/
OS_REG_WRITE(ah, AR_RTC_FORCE_WAKE,
AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
/*
* RTC reset and clear
*/
OS_REG_WRITE(ah, AR_RC, AR_RC_AHB);
OS_REG_WRITE(ah, AR_RTC_RESET, 0);
OS_DELAY(20);
OS_REG_WRITE(ah, AR_RC, 0);
OS_REG_WRITE(ah, AR_RTC_RESET, 1);
/*
* Poll till RTC is ON
*/
if (!ath_hal_wait(ah, AR_RTC_STATUS, AR_RTC_PM_STATUS_M, AR_RTC_STATUS_ON)) {
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: RTC not waking up\n", __func__);
return AH_FALSE;
}
return ar5416SetReset(ah, HAL_RESET_COLD);
}
static HAL_BOOL
ar5416SetReset(struct ath_hal *ah, int type)
{
uint32_t tmpReg, mask;
/*
* Force wake
*/
OS_REG_WRITE(ah, AR_RTC_FORCE_WAKE,
AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
/*
* Reset AHB
*/
tmpReg = OS_REG_READ(ah, AR_INTR_SYNC_CAUSE);
if (tmpReg & (AR_INTR_SYNC_LOCAL_TIMEOUT|AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
OS_REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
OS_REG_WRITE(ah, AR_RC, AR_RC_AHB|AR_RC_HOSTIF);
} else {
OS_REG_WRITE(ah, AR_RC, AR_RC_AHB);
}
/*
* Set Mac(BB,Phy) Warm Reset
*/
switch (type) {
case HAL_RESET_WARM:
OS_REG_WRITE(ah, AR_RTC_RC, AR_RTC_RC_MAC_WARM);
break;
case HAL_RESET_COLD:
OS_REG_WRITE(ah, AR_RTC_RC, AR_RTC_RC_MAC_WARM|AR_RTC_RC_MAC_COLD);
break;
default:
HALASSERT(AH_FALSE);
break;
}
/*
* Clear resets and force wakeup
*/
OS_REG_WRITE(ah, AR_RTC_RC, 0);
if (!ath_hal_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0)) {
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: RTC stuck in MAC reset\n", __func__);
return AH_FALSE;
}
/* Clear AHB reset */
OS_REG_WRITE(ah, AR_RC, 0);
if (type == HAL_RESET_COLD) {
if (isBigEndian()) {
/*
* Set CFG, little-endian for register
* and descriptor accesses.
*/
mask = INIT_CONFIG_STATUS | AR_CFG_SWRD | AR_CFG_SWRG;
#ifndef AH_NEED_DESC_SWAP
mask |= AR_CFG_SWTD;
#endif
HALDEBUG(ah, HAL_DEBUG_RESET,
"%s Applying descriptor swap\n", __func__);
OS_REG_WRITE(ah, AR_CFG, LE_READ_4(&mask));
} else
OS_REG_WRITE(ah, AR_CFG, INIT_CONFIG_STATUS);
}
ar5416InitPLL(ah, AH_NULL);
return AH_TRUE;
}
#ifndef IS_5GHZ_FAST_CLOCK_EN
#define IS_5GHZ_FAST_CLOCK_EN(ah, chan) AH_FALSE
#endif
static void
ar5416InitPLL(struct ath_hal *ah, const struct ieee80211_channel *chan)
{
uint32_t pll;
if (AR_SREV_MERLIN_20(ah) &&
chan != AH_NULL && IEEE80211_IS_CHAN_5GHZ(chan)) {
/*
* PLL WAR for Merlin 2.0/2.1
* When doing fast clock, set PLL to 0x142c
* Else, set PLL to 0x2850 to prevent reset-to-reset variation
*/
pll = IS_5GHZ_FAST_CLOCK_EN(ah, chan) ? 0x142c : 0x2850;
} else if (AR_SREV_MERLIN_10_OR_LATER(ah)) {
pll = SM(0x5, AR_RTC_SOWL_PLL_REFDIV);
if (chan != AH_NULL) {
if (IEEE80211_IS_CHAN_HALF(chan))
pll |= SM(0x1, AR_RTC_SOWL_PLL_CLKSEL);
else if (IEEE80211_IS_CHAN_QUARTER(chan))
pll |= SM(0x2, AR_RTC_SOWL_PLL_CLKSEL);
else if (IEEE80211_IS_CHAN_5GHZ(chan))
pll |= SM(0x28, AR_RTC_SOWL_PLL_DIV);
else
pll |= SM(0x2c, AR_RTC_SOWL_PLL_DIV);
} else
pll |= SM(0x2c, AR_RTC_SOWL_PLL_DIV);
} else if (AR_SREV_SOWL_10_OR_LATER(ah)) {
pll = SM(0x5, AR_RTC_SOWL_PLL_REFDIV);
if (chan != AH_NULL) {
if (IEEE80211_IS_CHAN_HALF(chan))
pll |= SM(0x1, AR_RTC_SOWL_PLL_CLKSEL);
else if (IEEE80211_IS_CHAN_QUARTER(chan))
pll |= SM(0x2, AR_RTC_SOWL_PLL_CLKSEL);
else if (IEEE80211_IS_CHAN_5GHZ(chan))
pll |= SM(0x50, AR_RTC_SOWL_PLL_DIV);
else
pll |= SM(0x58, AR_RTC_SOWL_PLL_DIV);
} else
pll |= SM(0x58, AR_RTC_SOWL_PLL_DIV);
} else {
pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
if (chan != AH_NULL) {
if (IEEE80211_IS_CHAN_HALF(chan))
pll |= SM(0x1, AR_RTC_PLL_CLKSEL);
else if (IEEE80211_IS_CHAN_QUARTER(chan))
pll |= SM(0x2, AR_RTC_PLL_CLKSEL);
else if (IEEE80211_IS_CHAN_5GHZ(chan))
pll |= SM(0xa, AR_RTC_PLL_DIV);
else
pll |= SM(0xb, AR_RTC_PLL_DIV);
} else
pll |= SM(0xb, AR_RTC_PLL_DIV);
}
OS_REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
/* TODO:
* For multi-band owl, switch between bands by reiniting the PLL.
*/
OS_DELAY(RTC_PLL_SETTLE_DELAY);
OS_REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_SLEEP_DERIVED_CLK);
}
/*
* Read EEPROM header info and program the device for correct operation
* given the channel value.
*/
HAL_BOOL
ar5416SetBoardValues(struct ath_hal *ah, const struct ieee80211_channel *chan)
{
const HAL_EEPROM_v14 *ee = AH_PRIVATE(ah)->ah_eeprom;
const struct ar5416eeprom *eep = &ee->ee_base;
const MODAL_EEP_HEADER *pModal;
int i, regChainOffset;
uint8_t txRxAttenLocal; /* workaround for eeprom versions <= 14.2 */
HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1);
pModal = &eep->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)];
/* NB: workaround for eeprom versions <= 14.2 */
txRxAttenLocal = IEEE80211_IS_CHAN_2GHZ(chan) ? 23 : 44;
OS_REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon);
for (i = 0; i < AR5416_MAX_CHAINS; i++) {
if (AR_SREV_MERLIN(ah)) {
if (i >= 2) break;
}
if (AR_SREV_OWL_20_OR_LATER(ah) &&
(AH5416(ah)->ah_rx_chainmask == 0x5 ||
AH5416(ah)->ah_tx_chainmask == 0x5) && i != 0) {
/* Regs are swapped from chain 2 to 1 for 5416 2_0 with
* only chains 0 and 2 populated
*/
regChainOffset = (i == 1) ? 0x2000 : 0x1000;
} else {
regChainOffset = i * 0x1000;
}
OS_REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset, pModal->antCtrlChain[i]);
OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4 + regChainOffset,
(OS_REG_READ(ah, AR_PHY_TIMING_CTRL4 + regChainOffset) &
~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF | AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
SM(pModal->iqCalICh[i], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
SM(pModal->iqCalQCh[i], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
/*
* Large signal upgrade.
* XXX update
*/
if ((i == 0) || AR_SREV_OWL_20_OR_LATER(ah)) {
OS_REG_WRITE(ah, AR_PHY_RXGAIN + regChainOffset,
(OS_REG_READ(ah, AR_PHY_RXGAIN + regChainOffset) & ~AR_PHY_RXGAIN_TXRX_ATTEN) |
SM(IS_EEP_MINOR_V3(ah) ? pModal->txRxAttenCh[i] : txRxAttenLocal,
AR_PHY_RXGAIN_TXRX_ATTEN));
OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
(OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) & ~AR_PHY_GAIN_2GHZ_RXTX_MARGIN) |
SM(pModal->rxTxMarginCh[i], AR_PHY_GAIN_2GHZ_RXTX_MARGIN));
}
}
OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH, pModal->switchSettling);
OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC, pModal->adcDesiredSize);
OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_PGA, pModal->pgaDesiredSize);
OS_REG_WRITE(ah, AR_PHY_RF_CTL4,
SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
| SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
| SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON)
| SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON, pModal->txEndToRxOn);
if (AR_SREV_MERLIN_10_OR_LATER(ah)) {
OS_REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
pModal->thresh62);
OS_REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA0_THRESH62,
pModal->thresh62);
} else {
OS_REG_RMW_FIELD(ah, AR_PHY_CCA, AR_PHY_CCA_THRESH62,
pModal->thresh62);
OS_REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA_THRESH62,
pModal->thresh62);
}
/* Minor Version Specific application */
if (IS_EEP_MINOR_V2(ah)) {
OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_FRAME_TO_DATA_START, pModal->txFrameToDataStart);
OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_FRAME_TO_PA_ON, pModal->txFrameToPaOn);
}
if (IS_EEP_MINOR_V3(ah)) {
if (IEEE80211_IS_CHAN_HT40(chan)) {
/* Overwrite switch settling with HT40 value */
OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH, pModal->swSettleHt40);
}
if ((AR_SREV_OWL_20_OR_LATER(ah)) &&
( AH5416(ah)->ah_rx_chainmask == 0x5 || AH5416(ah)->ah_tx_chainmask == 0x5)){
/* Reg Offsets are swapped for logical mapping */
OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + 0x1000, (OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + 0x1000) & ~AR_PHY_GAIN_2GHZ_BSW_MARGIN) |
SM(pModal->bswMargin[2], AR_PHY_GAIN_2GHZ_BSW_MARGIN));
OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + 0x1000, (OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + 0x1000) & ~AR_PHY_GAIN_2GHZ_BSW_ATTEN) |
SM(pModal->bswAtten[2], AR_PHY_GAIN_2GHZ_BSW_ATTEN));
OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + 0x2000, (OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + 0x2000) & ~AR_PHY_GAIN_2GHZ_BSW_MARGIN) |
SM(pModal->bswMargin[1], AR_PHY_GAIN_2GHZ_BSW_MARGIN));
OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + 0x2000, (OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + 0x2000) & ~AR_PHY_GAIN_2GHZ_BSW_ATTEN) |
SM(pModal->bswAtten[1], AR_PHY_GAIN_2GHZ_BSW_ATTEN));
} else {
OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + 0x1000, (OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + 0x1000) & ~AR_PHY_GAIN_2GHZ_BSW_MARGIN) |
SM(pModal->bswMargin[1], AR_PHY_GAIN_2GHZ_BSW_MARGIN));
OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + 0x1000, (OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + 0x1000) & ~AR_PHY_GAIN_2GHZ_BSW_ATTEN) |
SM(pModal->bswAtten[1], AR_PHY_GAIN_2GHZ_BSW_ATTEN));
OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + 0x2000, (OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + 0x2000) & ~AR_PHY_GAIN_2GHZ_BSW_MARGIN) |
SM(pModal->bswMargin[2],AR_PHY_GAIN_2GHZ_BSW_MARGIN));
OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + 0x2000, (OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + 0x2000) & ~AR_PHY_GAIN_2GHZ_BSW_ATTEN) |
SM(pModal->bswAtten[2], AR_PHY_GAIN_2GHZ_BSW_ATTEN));
}
OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ, AR_PHY_GAIN_2GHZ_BSW_MARGIN, pModal->bswMargin[0]);
OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ, AR_PHY_GAIN_2GHZ_BSW_ATTEN, pModal->bswAtten[0]);
}
return AH_TRUE;
}
/*
* Helper functions common for AP/CB/XB
*/
/*
* ar5416SetPowerPerRateTable
*
* Sets the transmit power in the baseband for the given
* operating channel and mode.
*/
static HAL_BOOL
ar5416SetPowerPerRateTable(struct ath_hal *ah, struct ar5416eeprom *pEepData,
const struct ieee80211_channel *chan,
int16_t *ratesArray, uint16_t cfgCtl,
uint16_t AntennaReduction,
uint16_t twiceMaxRegulatoryPower,
uint16_t powerLimit)
{
#define N(a) (sizeof(a)/sizeof(a[0]))
/* Local defines to distinguish between extension and control CTL's */
#define EXT_ADDITIVE (0x8000)
#define CTL_11A_EXT (CTL_11A | EXT_ADDITIVE)
#define CTL_11G_EXT (CTL_11G | EXT_ADDITIVE)
#define CTL_11B_EXT (CTL_11B | EXT_ADDITIVE)
uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
int i;
int16_t twiceLargestAntenna;
CAL_CTL_DATA *rep;
CAL_TARGET_POWER_LEG targetPowerOfdm, targetPowerCck = {0, {0, 0, 0, 0}};
CAL_TARGET_POWER_LEG targetPowerOfdmExt = {0, {0, 0, 0, 0}}, targetPowerCckExt = {0, {0, 0, 0, 0}};
CAL_TARGET_POWER_HT targetPowerHt20, targetPowerHt40 = {0, {0, 0, 0, 0}};
int16_t scaledPower, minCtlPower;
#define SUB_NUM_CTL_MODES_AT_5G_40 2 /* excluding HT40, EXT-OFDM */
#define SUB_NUM_CTL_MODES_AT_2G_40 3 /* excluding HT40, EXT-OFDM, EXT-CCK */
static const uint16_t ctlModesFor11a[] = {
CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40
};
static const uint16_t ctlModesFor11g[] = {
CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
};
const uint16_t *pCtlMode;
uint16_t numCtlModes, ctlMode, freq;
CHAN_CENTERS centers;
ar5416GetChannelCenters(ah, chan, &centers);
/* Compute TxPower reduction due to Antenna Gain */
twiceLargestAntenna = AH_MAX(AH_MAX(
pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[0],
pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[1]),
pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[2]);
#if 0
/* Turn it back on if we need to calculate per chain antenna gain reduction */
/* Use only if the expected gain > 6dbi */
/* Chain 0 is always used */
twiceLargestAntenna = pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[0];
/* Look at antenna gains of Chains 1 and 2 if the TX mask is set */
if (ahp->ah_tx_chainmask & 0x2)
twiceLargestAntenna = AH_MAX(twiceLargestAntenna,
pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[1]);
if (ahp->ah_tx_chainmask & 0x4)
twiceLargestAntenna = AH_MAX(twiceLargestAntenna,
pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[2]);
#endif
twiceLargestAntenna = (int16_t)AH_MIN((AntennaReduction) - twiceLargestAntenna, 0);
/* XXX setup for 5212 use (really used?) */
ath_hal_eepromSet(ah,
IEEE80211_IS_CHAN_2GHZ(chan) ? AR_EEP_ANTGAINMAX_2 : AR_EEP_ANTGAINMAX_5,
twiceLargestAntenna);
/*
* scaledPower is the minimum of the user input power level and
* the regulatory allowed power level
*/
scaledPower = AH_MIN(powerLimit, twiceMaxRegulatoryPower + twiceLargestAntenna);
/* Reduce scaled Power by number of chains active to get to per chain tx power level */
/* TODO: better value than these? */
switch (owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask)) {
case 1:
break;
case 2:
scaledPower -= pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].pwrDecreaseFor2Chain;
break;
case 3:
scaledPower -= pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].pwrDecreaseFor3Chain;
break;
default:
return AH_FALSE; /* Unsupported number of chains */
}
scaledPower = AH_MAX(0, scaledPower);
/* Get target powers from EEPROM - our baseline for TX Power */
if (IEEE80211_IS_CHAN_2GHZ(chan)) {
/* Setup for CTL modes */
numCtlModes = N(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40; /* CTL_11B, CTL_11G, CTL_2GHT20 */
pCtlMode = ctlModesFor11g;
ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPowerCck,
AR5416_NUM_2G_CCK_TARGET_POWERS, &targetPowerCck, 4, AH_FALSE);
ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPower2G,
AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerOfdm, 4, AH_FALSE);
ar5416GetTargetPowers(ah, chan, pEepData->calTargetPower2GHT20,
AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerHt20, 8, AH_FALSE);
if (IEEE80211_IS_CHAN_HT40(chan)) {
numCtlModes = N(ctlModesFor11g); /* All 2G CTL's */
ar5416GetTargetPowers(ah, chan, pEepData->calTargetPower2GHT40,
AR5416_NUM_2G_40_TARGET_POWERS, &targetPowerHt40, 8, AH_TRUE);
/* Get target powers for extension channels */
ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPowerCck,
AR5416_NUM_2G_CCK_TARGET_POWERS, &targetPowerCckExt, 4, AH_TRUE);
ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPower2G,
AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerOfdmExt, 4, AH_TRUE);
}
} else {
/* Setup for CTL modes */
numCtlModes = N(ctlModesFor11a) - SUB_NUM_CTL_MODES_AT_5G_40; /* CTL_11A, CTL_5GHT20 */
pCtlMode = ctlModesFor11a;
ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPower5G,
AR5416_NUM_5G_20_TARGET_POWERS, &targetPowerOfdm, 4, AH_FALSE);
ar5416GetTargetPowers(ah, chan, pEepData->calTargetPower5GHT20,
AR5416_NUM_5G_20_TARGET_POWERS, &targetPowerHt20, 8, AH_FALSE);
if (IEEE80211_IS_CHAN_HT40(chan)) {
numCtlModes = N(ctlModesFor11a); /* All 5G CTL's */
ar5416GetTargetPowers(ah, chan, pEepData->calTargetPower5GHT40,
AR5416_NUM_5G_40_TARGET_POWERS, &targetPowerHt40, 8, AH_TRUE);
ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPower5G,
AR5416_NUM_5G_20_TARGET_POWERS, &targetPowerOfdmExt, 4, AH_TRUE);
}
}
/*
* For MIMO, need to apply regulatory caps individually across dynamically
* running modes: CCK, OFDM, HT20, HT40
*
* The outer loop walks through each possible applicable runtime mode.
* The inner loop walks through each ctlIndex entry in EEPROM.
* The ctl value is encoded as [7:4] == test group, [3:0] == test mode.
*
*/
for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
HAL_BOOL isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
(pCtlMode[ctlMode] == CTL_2GHT40);
if (isHt40CtlMode) {
freq = centers.ctl_center;
} else if (pCtlMode[ctlMode] & EXT_ADDITIVE) {
freq = centers.ext_center;
} else {
freq = centers.ctl_center;
}
/* walk through each CTL index stored in EEPROM */
for (i = 0; (i < AR5416_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
uint16_t twiceMinEdgePower;
/* compare test group from regulatory channel list with test mode from pCtlMode list */
if ((((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == pEepData->ctlIndex[i]) ||
(((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) ==
((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) {
rep = &(pEepData->ctlData[i]);
twiceMinEdgePower = ar5416GetMaxEdgePower(freq,
rep->ctlEdges[owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask) - 1],
IEEE80211_IS_CHAN_2GHZ(chan));
if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
/* Find the minimum of all CTL edge powers that apply to this channel */
twiceMaxEdgePower = AH_MIN(twiceMaxEdgePower, twiceMinEdgePower);
} else {
/* specific */
twiceMaxEdgePower = twiceMinEdgePower;
break;
}
}
}
minCtlPower = (uint8_t)AH_MIN(twiceMaxEdgePower, scaledPower);
/* Apply ctl mode to correct target power set */
switch(pCtlMode[ctlMode]) {
case CTL_11B:
for (i = 0; i < N(targetPowerCck.tPow2x); i++) {
targetPowerCck.tPow2x[i] = (uint8_t)AH_MIN(targetPowerCck.tPow2x[i], minCtlPower);
}
break;
case CTL_11A:
case CTL_11G:
for (i = 0; i < N(targetPowerOfdm.tPow2x); i++) {
targetPowerOfdm.tPow2x[i] = (uint8_t)AH_MIN(targetPowerOfdm.tPow2x[i], minCtlPower);
}
break;
case CTL_5GHT20:
case CTL_2GHT20:
for (i = 0; i < N(targetPowerHt20.tPow2x); i++) {
targetPowerHt20.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt20.tPow2x[i], minCtlPower);
}
break;
case CTL_11B_EXT:
targetPowerCckExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerCckExt.tPow2x[0], minCtlPower);
break;
case CTL_11A_EXT:
case CTL_11G_EXT:
targetPowerOfdmExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerOfdmExt.tPow2x[0], minCtlPower);
break;
case CTL_5GHT40:
case CTL_2GHT40:
for (i = 0; i < N(targetPowerHt40.tPow2x); i++) {
targetPowerHt40.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt40.tPow2x[i], minCtlPower);
}
break;
default:
return AH_FALSE;
break;
}
} /* end ctl mode checking */
/* Set rates Array from collected data */
ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] = ratesArray[rate18mb] = ratesArray[rate24mb] = targetPowerOfdm.tPow2x[0];
ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
for (i = 0; i < N(targetPowerHt20.tPow2x); i++) {
ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
}
if (IEEE80211_IS_CHAN_2GHZ(chan)) {
ratesArray[rate1l] = targetPowerCck.tPow2x[0];
ratesArray[rate2s] = ratesArray[rate2l] = targetPowerCck.tPow2x[1];
ratesArray[rate5_5s] = ratesArray[rate5_5l] = targetPowerCck.tPow2x[2];
ratesArray[rate11s] = ratesArray[rate11l] = targetPowerCck.tPow2x[3];
}
if (IEEE80211_IS_CHAN_HT40(chan)) {
for (i = 0; i < N(targetPowerHt40.tPow2x); i++) {
ratesArray[rateHt40_0 + i] = targetPowerHt40.tPow2x[i];
}
ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
if (IEEE80211_IS_CHAN_2GHZ(chan)) {
ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0];
}
}
return AH_TRUE;
#undef EXT_ADDITIVE
#undef CTL_11A_EXT
#undef CTL_11G_EXT
#undef CTL_11B_EXT
#undef SUB_NUM_CTL_MODES_AT_5G_40
#undef SUB_NUM_CTL_MODES_AT_2G_40
#undef N
}
/**************************************************************************
* fbin2freq
*
* Get channel value from binary representation held in eeprom
* RETURNS: the frequency in MHz
*/
static uint16_t
fbin2freq(uint8_t fbin, HAL_BOOL is2GHz)
{
/*
* Reserved value 0xFF provides an empty definition both as
* an fbin and as a frequency - do not convert
*/
if (fbin == AR5416_BCHAN_UNUSED) {
return fbin;
}
return (uint16_t)((is2GHz) ? (2300 + fbin) : (4800 + 5 * fbin));
}
/*
* ar5416GetMaxEdgePower
*
* Find the maximum conformance test limit for the given channel and CTL info
*/
static uint16_t
ar5416GetMaxEdgePower(uint16_t freq, CAL_CTL_EDGES *pRdEdgesPower, HAL_BOOL is2GHz)
{
uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
int i;
/* Get the edge power */
for (i = 0; (i < AR5416_NUM_BAND_EDGES) && (pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED) ; i++) {
/*
* If there's an exact channel match or an inband flag set
* on the lower channel use the given rdEdgePower
*/
if (freq == fbin2freq(pRdEdgesPower[i].bChannel, is2GHz)) {
twiceMaxEdgePower = MS(pRdEdgesPower[i].tPowerFlag, CAL_CTL_EDGES_POWER);
break;
} else if ((i > 0) && (freq < fbin2freq(pRdEdgesPower[i].bChannel, is2GHz))) {
if (fbin2freq(pRdEdgesPower[i - 1].bChannel, is2GHz) < freq && (pRdEdgesPower[i - 1].tPowerFlag & CAL_CTL_EDGES_FLAG) != 0) {
twiceMaxEdgePower = MS(pRdEdgesPower[i - 1].tPowerFlag, CAL_CTL_EDGES_POWER);
}
/* Leave loop - no more affecting edges possible in this monotonic increasing list */
break;
}
}
HALASSERT(twiceMaxEdgePower > 0);
return twiceMaxEdgePower;
}
/**************************************************************
* ar5416GetTargetPowers
*
* Return the rates of target power for the given target power table
* channel, and number of channels
*/
void
ar5416GetTargetPowers(struct ath_hal *ah, const struct ieee80211_channel *chan,
CAL_TARGET_POWER_HT *powInfo, uint16_t numChannels,
CAL_TARGET_POWER_HT *pNewPower, uint16_t numRates,
HAL_BOOL isHt40Target)
{
uint16_t clo, chi;
int i;
int matchIndex = -1, lowIndex = -1;
uint16_t freq;
CHAN_CENTERS centers;
ar5416GetChannelCenters(ah, chan, &centers);
freq = isHt40Target ? centers.synth_center : centers.ctl_center;
/* Copy the target powers into the temp channel list */
if (freq <= fbin2freq(powInfo[0].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) {
matchIndex = 0;
} else {
for (i = 0; (i < numChannels) && (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
if (freq == fbin2freq(powInfo[i].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) {
matchIndex = i;
break;
} else if ((freq < fbin2freq(powInfo[i].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) &&
(freq > fbin2freq(powInfo[i - 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))))
{
lowIndex = i - 1;
break;
}
}
if ((matchIndex == -1) && (lowIndex == -1)) {
HALASSERT(freq > fbin2freq(powInfo[i - 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan)));
matchIndex = i - 1;
}
}
if (matchIndex != -1) {
OS_MEMCPY(pNewPower, &powInfo[matchIndex], sizeof(*pNewPower));
} else {
HALASSERT(lowIndex != -1);
/*
* Get the lower and upper channels, target powers,
* and interpolate between them.
*/
clo = fbin2freq(powInfo[lowIndex].bChannel, IEEE80211_IS_CHAN_2GHZ(chan));
chi = fbin2freq(powInfo[lowIndex + 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan));
for (i = 0; i < numRates; i++) {
pNewPower->tPow2x[i] = (uint8_t)interpolate(freq, clo, chi,
powInfo[lowIndex].tPow2x[i], powInfo[lowIndex + 1].tPow2x[i]);
}
}
}
/**************************************************************
* ar5416GetTargetPowersLeg
*
* Return the four rates of target power for the given target power table
* channel, and number of channels
*/
void
ar5416GetTargetPowersLeg(struct ath_hal *ah,
const struct ieee80211_channel *chan,
CAL_TARGET_POWER_LEG *powInfo, uint16_t numChannels,
CAL_TARGET_POWER_LEG *pNewPower, uint16_t numRates,
HAL_BOOL isExtTarget)
{
uint16_t clo, chi;
int i;
int matchIndex = -1, lowIndex = -1;
uint16_t freq;
CHAN_CENTERS centers;
ar5416GetChannelCenters(ah, chan, &centers);
freq = (isExtTarget) ? centers.ext_center :centers.ctl_center;
/* Copy the target powers into the temp channel list */
if (freq <= fbin2freq(powInfo[0].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) {
matchIndex = 0;
} else {
for (i = 0; (i < numChannels) && (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
if (freq == fbin2freq(powInfo[i].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) {
matchIndex = i;
break;
} else if ((freq < fbin2freq(powInfo[i].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) &&
(freq > fbin2freq(powInfo[i - 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))))
{
lowIndex = i - 1;
break;
}
}
if ((matchIndex == -1) && (lowIndex == -1)) {
HALASSERT(freq > fbin2freq(powInfo[i - 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan)));
matchIndex = i - 1;
}
}
if (matchIndex != -1) {
OS_MEMCPY(pNewPower, &powInfo[matchIndex], sizeof(*pNewPower));
} else {
HALASSERT(lowIndex != -1);
/*
* Get the lower and upper channels, target powers,
* and interpolate between them.
*/
clo = fbin2freq(powInfo[lowIndex].bChannel, IEEE80211_IS_CHAN_2GHZ(chan));
chi = fbin2freq(powInfo[lowIndex + 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan));
for (i = 0; i < numRates; i++) {
pNewPower->tPow2x[i] = (uint8_t)interpolate(freq, clo, chi,
powInfo[lowIndex].tPow2x[i], powInfo[lowIndex + 1].tPow2x[i]);
}
}
}
/**************************************************************
* ar5416SetPowerCalTable
*
* Pull the PDADC piers from cal data and interpolate them across the given
* points as well as from the nearest pier(s) to get a power detector
* linear voltage to power level table.
*/
static HAL_BOOL
ar5416SetPowerCalTable(struct ath_hal *ah, struct ar5416eeprom *pEepData,
const struct ieee80211_channel *chan, int16_t *pTxPowerIndexOffset)
{
CAL_DATA_PER_FREQ *pRawDataset;
uint8_t *pCalBChans = AH_NULL;
uint16_t pdGainOverlap_t2;
static uint8_t pdadcValues[AR5416_NUM_PDADC_VALUES];
uint16_t gainBoundaries[AR5416_PD_GAINS_IN_MASK];
uint16_t numPiers, i, j;
int16_t tMinCalPower;
uint16_t numXpdGain, xpdMask;
uint16_t xpdGainValues[AR5416_NUM_PD_GAINS];
uint32_t reg32, regOffset, regChainOffset;
OS_MEMZERO(xpdGainValues, sizeof(xpdGainValues));
xpdMask = pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].xpdGain;
if (IS_EEP_MINOR_V2(ah)) {
pdGainOverlap_t2 = pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].pdGainOverlap;
} else {
pdGainOverlap_t2 = (uint16_t)(MS(OS_REG_READ(ah, AR_PHY_TPCRG5), AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
}
if (IEEE80211_IS_CHAN_2GHZ(chan)) {
pCalBChans = pEepData->calFreqPier2G;
numPiers = AR5416_NUM_2G_CAL_PIERS;
} else {
pCalBChans = pEepData->calFreqPier5G;
numPiers = AR5416_NUM_5G_CAL_PIERS;
}
numXpdGain = 0;
/* Calculate the value of xpdgains from the xpdGain Mask */
for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
if (numXpdGain >= AR5416_NUM_PD_GAINS) {
HALASSERT(0);
break;
}
xpdGainValues[numXpdGain] = (uint16_t)(AR5416_PD_GAINS_IN_MASK - i);
numXpdGain++;
}
}
/* Write the detector gain biases and their number */
OS_REG_WRITE(ah, AR_PHY_TPCRG1, (OS_REG_READ(ah, AR_PHY_TPCRG1) &
~(AR_PHY_TPCRG1_NUM_PD_GAIN | AR_PHY_TPCRG1_PD_GAIN_1 | AR_PHY_TPCRG1_PD_GAIN_2 | AR_PHY_TPCRG1_PD_GAIN_3)) |
SM(numXpdGain - 1, AR_PHY_TPCRG1_NUM_PD_GAIN) | SM(xpdGainValues[0], AR_PHY_TPCRG1_PD_GAIN_1 ) |
SM(xpdGainValues[1], AR_PHY_TPCRG1_PD_GAIN_2) | SM(xpdGainValues[2], AR_PHY_TPCRG1_PD_GAIN_3));
for (i = 0; i < AR5416_MAX_CHAINS; i++) {
if (AR_SREV_OWL_20_OR_LATER(ah) &&
( AH5416(ah)->ah_rx_chainmask == 0x5 || AH5416(ah)->ah_tx_chainmask == 0x5) && (i != 0)) {
/* Regs are swapped from chain 2 to 1 for 5416 2_0 with
* only chains 0 and 2 populated
*/
regChainOffset = (i == 1) ? 0x2000 : 0x1000;
} else {
regChainOffset = i * 0x1000;
}
if (pEepData->baseEepHeader.txMask & (1 << i)) {
if (IEEE80211_IS_CHAN_2GHZ(chan)) {
pRawDataset = pEepData->calPierData2G[i];
} else {
pRawDataset = pEepData->calPierData5G[i];
}
ar5416GetGainBoundariesAndPdadcs(ah, chan, pRawDataset,
pCalBChans, numPiers,
pdGainOverlap_t2,
&tMinCalPower, gainBoundaries,
pdadcValues, numXpdGain);
if ((i == 0) || AR_SREV_OWL_20_OR_LATER(ah)) {
/*
* Note the pdadc table may not start at 0 dBm power, could be
* negative or greater than 0. Need to offset the power
* values by the amount of minPower for griffin
*/
OS_REG_WRITE(ah, AR_PHY_TPCRG5 + regChainOffset,
SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) |
SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) |
SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) |
SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
}
/* Write the power values into the baseband power table */
regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
for (j = 0; j < 32; j++) {
reg32 = ((pdadcValues[4*j + 0] & 0xFF) << 0) |
((pdadcValues[4*j + 1] & 0xFF) << 8) |
((pdadcValues[4*j + 2] & 0xFF) << 16) |
((pdadcValues[4*j + 3] & 0xFF) << 24) ;
OS_REG_WRITE(ah, regOffset, reg32);
#ifdef PDADC_DUMP
ath_hal_printf(ah, "PDADC: Chain %d | PDADC %3d Value %3d | PDADC %3d Value %3d | PDADC %3d Value %3d | PDADC %3d Value %3d |\n",
i,
4*j, pdadcValues[4*j],
4*j+1, pdadcValues[4*j + 1],
4*j+2, pdadcValues[4*j + 2],
4*j+3, pdadcValues[4*j + 3]);
#endif
regOffset += 4;
}
}
}
*pTxPowerIndexOffset = 0;
return AH_TRUE;
}
/**************************************************************
* ar5416GetGainBoundariesAndPdadcs
*
* Uses the data points read from EEPROM to reconstruct the pdadc power table
* Called by ar5416SetPowerCalTable only.
*/
static void
ar5416GetGainBoundariesAndPdadcs(struct ath_hal *ah,
const struct ieee80211_channel *chan,
CAL_DATA_PER_FREQ *pRawDataSet,
uint8_t * bChans, uint16_t availPiers,
uint16_t tPdGainOverlap, int16_t *pMinCalPower, uint16_t * pPdGainBoundaries,
uint8_t * pPDADCValues, uint16_t numXpdGains)
{
int i, j, k;
int16_t ss; /* potentially -ve index for taking care of pdGainOverlap */
uint16_t idxL, idxR, numPiers; /* Pier indexes */
/* filled out Vpd table for all pdGains (chanL) */
static uint8_t vpdTableL[AR5416_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
/* filled out Vpd table for all pdGains (chanR) */
static uint8_t vpdTableR[AR5416_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
/* filled out Vpd table for all pdGains (interpolated) */
static uint8_t vpdTableI[AR5416_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
uint8_t *pVpdL, *pVpdR, *pPwrL, *pPwrR;
uint8_t minPwrT4[AR5416_NUM_PD_GAINS];
uint8_t maxPwrT4[AR5416_NUM_PD_GAINS];
int16_t vpdStep;
int16_t tmpVal;
uint16_t sizeCurrVpdTable, maxIndex, tgtIndex;
HAL_BOOL match;
int16_t minDelta = 0;
CHAN_CENTERS centers;
ar5416GetChannelCenters(ah, chan, &centers);
/* Trim numPiers for the number of populated channel Piers */
for (numPiers = 0; numPiers < availPiers; numPiers++) {
if (bChans[numPiers] == AR5416_BCHAN_UNUSED) {
break;
}
}
/* Find pier indexes around the current channel */
match = getLowerUpperIndex((uint8_t)FREQ2FBIN(centers.synth_center, IEEE80211_IS_CHAN_2GHZ(chan)),
bChans, numPiers, &idxL, &idxR);
if (match) {
/* Directly fill both vpd tables from the matching index */
for (i = 0; i < numXpdGains; i++) {
minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0];
maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4];
ar5416FillVpdTable(minPwrT4[i], maxPwrT4[i], pRawDataSet[idxL].pwrPdg[i],
pRawDataSet[idxL].vpdPdg[i], AR5416_PD_GAIN_ICEPTS, vpdTableI[i]);
}
} else {
for (i = 0; i < numXpdGains; i++) {
pVpdL = pRawDataSet[idxL].vpdPdg[i];
pPwrL = pRawDataSet[idxL].pwrPdg[i];
pVpdR = pRawDataSet[idxR].vpdPdg[i];
pPwrR = pRawDataSet[idxR].pwrPdg[i];
/* Start Vpd interpolation from the max of the minimum powers */
minPwrT4[i] = AH_MAX(pPwrL[0], pPwrR[0]);
/* End Vpd interpolation from the min of the max powers */
maxPwrT4[i] = AH_MIN(pPwrL[AR5416_PD_GAIN_ICEPTS - 1], pPwrR[AR5416_PD_GAIN_ICEPTS - 1]);
HALASSERT(maxPwrT4[i] > minPwrT4[i]);
/* Fill pier Vpds */
ar5416FillVpdTable(minPwrT4[i], maxPwrT4[i], pPwrL, pVpdL, AR5416_PD_GAIN_ICEPTS, vpdTableL[i]);
ar5416FillVpdTable(minPwrT4[i], maxPwrT4[i], pPwrR, pVpdR, AR5416_PD_GAIN_ICEPTS, vpdTableR[i]);
/* Interpolate the final vpd */
for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
vpdTableI[i][j] = (uint8_t)(interpolate((uint16_t)FREQ2FBIN(centers.synth_center, IEEE80211_IS_CHAN_2GHZ(chan)),
bChans[idxL], bChans[idxR], vpdTableL[i][j], vpdTableR[i][j]));
}
}
}
*pMinCalPower = (int16_t)(minPwrT4[0] / 2);
k = 0; /* index for the final table */
for (i = 0; i < numXpdGains; i++) {
if (i == (numXpdGains - 1)) {
pPdGainBoundaries[i] = (uint16_t)(maxPwrT4[i] / 2);
} else {
pPdGainBoundaries[i] = (uint16_t)((maxPwrT4[i] + minPwrT4[i+1]) / 4);
}
pPdGainBoundaries[i] = (uint16_t)AH_MIN(AR5416_MAX_RATE_POWER, pPdGainBoundaries[i]);
/* NB: only applies to owl 1.0 */
if ((i == 0) && !AR_SREV_OWL_20_OR_LATER(ah) ) {
/*
* fix the gain delta, but get a delta that can be applied to min to
* keep the upper power values accurate, don't think max needs to
* be adjusted because should not be at that area of the table?
*/
minDelta = pPdGainBoundaries[0] - 23;
pPdGainBoundaries[0] = 23;
}
else {
minDelta = 0;
}
/* Find starting index for this pdGain */
if (i == 0) {
ss = 0; /* for the first pdGain, start from index 0 */
} else {
/* need overlap entries extrapolated below. */
ss = (int16_t)((pPdGainBoundaries[i-1] - (minPwrT4[i] / 2)) - tPdGainOverlap + 1 + minDelta);
}
vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
/*
*-ve ss indicates need to extrapolate data below for this pdGain
*/
while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
pPDADCValues[k++] = (uint8_t)((tmpVal < 0) ? 0 : tmpVal);
ss++;
}
sizeCurrVpdTable = (uint8_t)((maxPwrT4[i] - minPwrT4[i]) / 2 +1);
tgtIndex = (uint8_t)(pPdGainBoundaries[i] + tPdGainOverlap - (minPwrT4[i] / 2));
maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
pPDADCValues[k++] = vpdTableI[i][ss++];
}
vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] - vpdTableI[i][sizeCurrVpdTable - 2]);
vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
/*
* for last gain, pdGainBoundary == Pmax_t2, so will
* have to extrapolate
*/
if (tgtIndex >= maxIndex) { /* need to extrapolate above */
while ((ss <= tgtIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] +
(ss - maxIndex +1) * vpdStep));
pPDADCValues[k++] = (uint8_t)((tmpVal > 255) ? 255 : tmpVal);
ss++;
}
} /* extrapolated above */
} /* for all pdGainUsed */
/* Fill out pdGainBoundaries - only up to 2 allowed here, but hardware allows up to 4 */
while (i < AR5416_PD_GAINS_IN_MASK) {
pPdGainBoundaries[i] = pPdGainBoundaries[i-1];
i++;
}
while (k < AR5416_NUM_PDADC_VALUES) {
pPDADCValues[k] = pPDADCValues[k-1];
k++;
}
return;
}
/**************************************************************
* getLowerUppderIndex
*
* Return indices surrounding the value in sorted integer lists.
* Requirement: the input list must be monotonically increasing
* and populated up to the list size
* Returns: match is set if an index in the array matches exactly
* or a the target is before or after the range of the array.
*/
HAL_BOOL
getLowerUpperIndex(uint8_t target, uint8_t *pList, uint16_t listSize,
uint16_t *indexL, uint16_t *indexR)
{
uint16_t i;
/*
* Check first and last elements for beyond ordered array cases.
*/
if (target <= pList[0]) {
*indexL = *indexR = 0;
return AH_TRUE;
}
if (target >= pList[listSize-1]) {
*indexL = *indexR = (uint16_t)(listSize - 1);
return AH_TRUE;
}
/* look for value being near or between 2 values in list */
for (i = 0; i < listSize - 1; i++) {
/*
* If value is close to the current value of the list
* then target is not between values, it is one of the values
*/
if (pList[i] == target) {
*indexL = *indexR = i;
return AH_TRUE;
}
/*
* Look for value being between current value and next value
* if so return these 2 values
*/
if (target < pList[i + 1]) {
*indexL = i;
*indexR = (uint16_t)(i + 1);
return AH_FALSE;
}
}
HALASSERT(0);
*indexL = *indexR = 0;
return AH_FALSE;
}
/**************************************************************
* ar5416FillVpdTable
*
* Fill the Vpdlist for indices Pmax-Pmin
* Note: pwrMin, pwrMax and Vpdlist are all in dBm * 4
*/
static HAL_BOOL
ar5416FillVpdTable(uint8_t pwrMin, uint8_t pwrMax, uint8_t *pPwrList,
uint8_t *pVpdList, uint16_t numIntercepts, uint8_t *pRetVpdList)
{
uint16_t i, k;
uint8_t currPwr = pwrMin;
uint16_t idxL, idxR;
HALASSERT(pwrMax > pwrMin);
for (i = 0; i <= (pwrMax - pwrMin) / 2; i++) {
getLowerUpperIndex(currPwr, pPwrList, numIntercepts,
&(idxL), &(idxR));
if (idxR < 1)
idxR = 1; /* extrapolate below */
if (idxL == numIntercepts - 1)
idxL = (uint16_t)(numIntercepts - 2); /* extrapolate above */
if (pPwrList[idxL] == pPwrList[idxR])
k = pVpdList[idxL];
else
k = (uint16_t)( ((currPwr - pPwrList[idxL]) * pVpdList[idxR] + (pPwrList[idxR] - currPwr) * pVpdList[idxL]) /
(pPwrList[idxR] - pPwrList[idxL]) );
HALASSERT(k < 256);
pRetVpdList[i] = (uint8_t)k;
currPwr += 2; /* half dB steps */
}
return AH_TRUE;
}
/**************************************************************************
* interpolate
*
* Returns signed interpolated or the scaled up interpolated value
*/
static int16_t
interpolate(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
int16_t targetLeft, int16_t targetRight)
{
int16_t rv;
if (srcRight == srcLeft) {
rv = targetLeft;
} else {
rv = (int16_t)( ((target - srcLeft) * targetRight +
(srcRight - target) * targetLeft) / (srcRight - srcLeft) );
}
return rv;
}
/*
* The linux ath9k driver and (from what I've been told) the reference
* Atheros driver enables the 11n PHY by default whether or not it's
* configured.
*/
static void
ar5416Set11nRegs(struct ath_hal *ah, const struct ieee80211_channel *chan)
{
uint32_t phymode;
uint32_t enableDacFifo = 0;
HAL_HT_MACMODE macmode; /* MAC - 20/40 mode */
if (AR_SREV_KITE_10_OR_LATER(ah))
enableDacFifo = (OS_REG_READ(ah, AR_PHY_TURBO) & AR_PHY_FC_ENABLE_DAC_FIFO);
/* Enable 11n HT, 20 MHz */
phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40
| AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH | enableDacFifo;
/* Configure baseband for dynamic 20/40 operation */
if (IEEE80211_IS_CHAN_HT40(chan)) {
phymode |= AR_PHY_FC_DYN2040_EN;
/* Configure control (primary) channel at +-10MHz */
if (IEEE80211_IS_CHAN_HT40U(chan))
phymode |= AR_PHY_FC_DYN2040_PRI_CH;
#if 0
/* Configure 20/25 spacing */
if (ht->ht_extprotspacing == HAL_HT_EXTPROTSPACING_25)
phymode |= AR_PHY_FC_DYN2040_EXT_CH;
#endif
macmode = HAL_HT_MACMODE_2040;
} else
macmode = HAL_HT_MACMODE_20;
OS_REG_WRITE(ah, AR_PHY_TURBO, phymode);
/* Configure MAC for 20/40 operation */
ar5416Set11nMac2040(ah, macmode);
/* global transmit timeout (25 TUs default)*/
/* XXX - put this elsewhere??? */
OS_REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S) ;
/* carrier sense timeout */
OS_REG_SET_BIT(ah, AR_GTTM, AR_GTTM_CST_USEC);
OS_REG_WRITE(ah, AR_CST, 1 << AR_CST_TIMEOUT_LIMIT_S);
}
void
ar5416GetChannelCenters(struct ath_hal *ah,
const struct ieee80211_channel *chan, CHAN_CENTERS *centers)
{
uint16_t freq = ath_hal_gethwchannel(ah, chan);
centers->ctl_center = freq;
centers->synth_center = freq;
/*
* In 20/40 phy mode, the center frequency is
* "between" the control and extension channels.
*/
if (IEEE80211_IS_CHAN_HT40U(chan)) {
centers->synth_center += HT40_CHANNEL_CENTER_SHIFT;
centers->ext_center =
centers->synth_center + HT40_CHANNEL_CENTER_SHIFT;
} else if (IEEE80211_IS_CHAN_HT40D(chan)) {
centers->synth_center -= HT40_CHANNEL_CENTER_SHIFT;
centers->ext_center =
centers->synth_center - HT40_CHANNEL_CENTER_SHIFT;
} else {
centers->ext_center = freq;
}
}