freebsd-dev/usr.sbin/diskinfo/diskinfo.c
2020-12-10 10:23:18 +00:00

757 lines
17 KiB
C

/*-
* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright (c) 2003 Poul-Henning Kamp
* Copyright (c) 2015 Spectra Logic Corporation
* Copyright (c) 2017 Alexander Motin <mav@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The names of the authors may not be used to endorse or promote
* products derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#include <stdbool.h>
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <strings.h>
#include <unistd.h>
#include <errno.h>
#include <fcntl.h>
#include <libutil.h>
#include <paths.h>
#include <err.h>
#include <geom/geom_disk.h>
#include <sysexits.h>
#include <sys/aio.h>
#include <sys/disk.h>
#include <sys/param.h>
#include <sys/stat.h>
#include <sys/time.h>
#define NAIO 128
#define MAXTX (8*1024*1024)
#define MEGATX (1024*1024)
static void
usage(void)
{
fprintf(stderr, "usage: diskinfo [-cipsStvw] disk ...\n");
exit (1);
}
static int opt_c, opt_i, opt_p, opt_s, opt_S, opt_t, opt_v, opt_w;
static bool candelete(int fd);
static void speeddisk(int fd, off_t mediasize, u_int sectorsize);
static void commandtime(int fd, off_t mediasize, u_int sectorsize);
static void iopsbench(int fd, off_t mediasize, u_int sectorsize);
static void rotationrate(int fd, char *buf, size_t buflen);
static void slogbench(int fd, int isreg, off_t mediasize, u_int sectorsize);
static int zonecheck(int fd, uint32_t *zone_mode, char *zone_str,
size_t zone_str_len);
static uint8_t *buf;
int
main(int argc, char **argv)
{
struct stat sb;
int i, ch, fd, error, exitval = 0;
char tstr[BUFSIZ], ident[DISK_IDENT_SIZE], physpath[MAXPATHLEN];
char zone_desc[64];
char rrate[64];
struct diocgattr_arg arg;
off_t mediasize, stripesize, stripeoffset;
u_int sectorsize, fwsectors, fwheads, zoned = 0, isreg;
uint32_t zone_mode;
while ((ch = getopt(argc, argv, "cipsStvw")) != -1) {
switch (ch) {
case 'c':
opt_c = 1;
opt_v = 1;
break;
case 'i':
opt_i = 1;
opt_v = 1;
break;
case 'p':
opt_p = 1;
break;
case 's':
opt_s = 1;
break;
case 'S':
opt_S = 1;
opt_v = 1;
break;
case 't':
opt_t = 1;
opt_v = 1;
break;
case 'v':
opt_v = 1;
break;
case 'w':
opt_w = 1;
break;
default:
usage();
}
}
argc -= optind;
argv += optind;
if (argc < 1)
usage();
if ((opt_p && opt_s) || ((opt_p || opt_s) && (opt_c || opt_i || opt_t || opt_v))) {
warnx("-p or -s cannot be used with other options");
usage();
}
if (opt_S && !opt_w) {
warnx("-S require also -w");
usage();
}
if (posix_memalign((void **)&buf, PAGE_SIZE, MAXTX))
errx(1, "Can't allocate memory buffer");
for (i = 0; i < argc; i++) {
fd = open(argv[i], (opt_w ? O_RDWR : O_RDONLY) | O_DIRECT);
if (fd < 0 && errno == ENOENT && *argv[i] != '/') {
snprintf(tstr, sizeof(tstr), "%s%s", _PATH_DEV, argv[i]);
fd = open(tstr, O_RDONLY);
}
if (fd < 0) {
warn("%s", argv[i]);
exit(1);
}
error = fstat(fd, &sb);
if (error != 0) {
warn("cannot stat %s", argv[i]);
exitval = 1;
goto out;
}
isreg = S_ISREG(sb.st_mode);
if (isreg) {
mediasize = sb.st_size;
sectorsize = S_BLKSIZE;
fwsectors = 0;
fwheads = 0;
stripesize = sb.st_blksize;
stripeoffset = 0;
if (opt_p || opt_s) {
warnx("-p and -s only operate on physical devices: %s", argv[i]);
goto out;
}
} else {
if (opt_p) {
if (ioctl(fd, DIOCGPHYSPATH, physpath) == 0) {
printf("%s\n", physpath);
} else {
warnx("Failed to determine physpath for: %s", argv[i]);
}
goto out;
}
if (opt_s) {
if (ioctl(fd, DIOCGIDENT, ident) == 0) {
printf("%s\n", ident);
} else {
warnx("Failed to determine serial number for: %s", argv[i]);
}
goto out;
}
error = ioctl(fd, DIOCGMEDIASIZE, &mediasize);
if (error) {
warnx("%s: ioctl(DIOCGMEDIASIZE) failed, probably not a disk.", argv[i]);
exitval = 1;
goto out;
}
error = ioctl(fd, DIOCGSECTORSIZE, &sectorsize);
if (error) {
warnx("%s: ioctl(DIOCGSECTORSIZE) failed, probably not a disk.", argv[i]);
exitval = 1;
goto out;
}
error = ioctl(fd, DIOCGFWSECTORS, &fwsectors);
if (error)
fwsectors = 0;
error = ioctl(fd, DIOCGFWHEADS, &fwheads);
if (error)
fwheads = 0;
error = ioctl(fd, DIOCGSTRIPESIZE, &stripesize);
if (error)
stripesize = 0;
error = ioctl(fd, DIOCGSTRIPEOFFSET, &stripeoffset);
if (error)
stripeoffset = 0;
error = zonecheck(fd, &zone_mode, zone_desc, sizeof(zone_desc));
if (error == 0)
zoned = 1;
}
if (!opt_v) {
printf("%s", argv[i]);
printf("\t%u", sectorsize);
printf("\t%jd", (intmax_t)mediasize);
printf("\t%jd", (intmax_t)mediasize/sectorsize);
printf("\t%jd", (intmax_t)stripesize);
printf("\t%jd", (intmax_t)stripeoffset);
if (fwsectors != 0 && fwheads != 0) {
printf("\t%jd", (intmax_t)mediasize /
(fwsectors * fwheads * sectorsize));
printf("\t%u", fwheads);
printf("\t%u", fwsectors);
}
} else {
humanize_number(tstr, 5, (int64_t)mediasize, "",
HN_AUTOSCALE, HN_B | HN_NOSPACE | HN_DECIMAL);
printf("%s\n", argv[i]);
printf("\t%-12u\t# sectorsize\n", sectorsize);
printf("\t%-12jd\t# mediasize in bytes (%s)\n",
(intmax_t)mediasize, tstr);
printf("\t%-12jd\t# mediasize in sectors\n",
(intmax_t)mediasize/sectorsize);
printf("\t%-12jd\t# stripesize\n", stripesize);
printf("\t%-12jd\t# stripeoffset\n", stripeoffset);
if (fwsectors != 0 && fwheads != 0) {
printf("\t%-12jd\t# Cylinders according to firmware.\n", (intmax_t)mediasize /
(fwsectors * fwheads * sectorsize));
printf("\t%-12u\t# Heads according to firmware.\n", fwheads);
printf("\t%-12u\t# Sectors according to firmware.\n", fwsectors);
}
strlcpy(arg.name, "GEOM::descr", sizeof(arg.name));
arg.len = sizeof(arg.value.str);
if (ioctl(fd, DIOCGATTR, &arg) == 0)
printf("\t%-12s\t# Disk descr.\n", arg.value.str);
if (ioctl(fd, DIOCGIDENT, ident) == 0)
printf("\t%-12s\t# Disk ident.\n", ident);
strlcpy(arg.name, "GEOM::attachment", sizeof(arg.name));
arg.len = sizeof(arg.value.str);
if (ioctl(fd, DIOCGATTR, &arg) == 0)
printf("\t%-12s\t# Attachment\n", arg.value.str);
if (ioctl(fd, DIOCGPHYSPATH, physpath) == 0)
printf("\t%-12s\t# Physical path\n", physpath);
printf("\t%-12s\t# TRIM/UNMAP support\n",
candelete(fd) ? "Yes" : "No");
rotationrate(fd, rrate, sizeof(rrate));
printf("\t%-12s\t# Rotation rate in RPM\n", rrate);
if (zoned != 0)
printf("\t%-12s\t# Zone Mode\n", zone_desc);
}
printf("\n");
if (opt_c)
commandtime(fd, mediasize, sectorsize);
if (opt_t)
speeddisk(fd, mediasize, sectorsize);
if (opt_i)
iopsbench(fd, mediasize, sectorsize);
if (opt_S)
slogbench(fd, isreg, mediasize, sectorsize);
out:
close(fd);
}
free(buf);
exit (exitval);
}
static bool
candelete(int fd)
{
struct diocgattr_arg arg;
strlcpy(arg.name, "GEOM::candelete", sizeof(arg.name));
arg.len = sizeof(arg.value.i);
if (ioctl(fd, DIOCGATTR, &arg) == 0)
return (arg.value.i != 0);
else
return (false);
}
static void
rotationrate(int fd, char *rate, size_t buflen)
{
struct diocgattr_arg arg;
int ret;
strlcpy(arg.name, "GEOM::rotation_rate", sizeof(arg.name));
arg.len = sizeof(arg.value.u16);
ret = ioctl(fd, DIOCGATTR, &arg);
if (ret < 0 || arg.value.u16 == DISK_RR_UNKNOWN)
snprintf(rate, buflen, "Unknown");
else if (arg.value.u16 == DISK_RR_NON_ROTATING)
snprintf(rate, buflen, "%d", 0);
else if (arg.value.u16 >= DISK_RR_MIN && arg.value.u16 <= DISK_RR_MAX)
snprintf(rate, buflen, "%d", arg.value.u16);
else
snprintf(rate, buflen, "Invalid");
}
static void
rdsect(int fd, off_t blockno, u_int sectorsize)
{
int error;
if (lseek(fd, (off_t)blockno * sectorsize, SEEK_SET) == -1)
err(1, "lseek");
error = read(fd, buf, sectorsize);
if (error == -1)
err(1, "read");
if (error != (int)sectorsize)
errx(1, "disk too small for test.");
}
static void
rdmega(int fd)
{
int error;
error = read(fd, buf, MEGATX);
if (error == -1)
err(1, "read");
if (error != MEGATX)
errx(1, "disk too small for test.");
}
static struct timeval tv1, tv2;
static void
T0(void)
{
fflush(stdout);
sync();
sleep(1);
sync();
sync();
gettimeofday(&tv1, NULL);
}
static double
delta_t(void)
{
double dt;
gettimeofday(&tv2, NULL);
dt = (tv2.tv_usec - tv1.tv_usec) / 1e6;
dt += (tv2.tv_sec - tv1.tv_sec);
return (dt);
}
static void
TN(int count)
{
double dt;
dt = delta_t();
printf("%5d iter in %10.6f sec = %8.3f msec\n",
count, dt, dt * 1000.0 / count);
}
static void
TR(double count)
{
double dt;
dt = delta_t();
printf("%8.0f kbytes in %10.6f sec = %8.0f kbytes/sec\n",
count, dt, count / dt);
}
static void
TI(double count)
{
double dt;
dt = delta_t();
printf("%8.0f ops in %10.6f sec = %8.0f IOPS\n",
count, dt, count / dt);
}
static void
TS(u_int size, int count)
{
double dt;
dt = delta_t();
printf("%8.1f usec/IO = %8.1f Mbytes/s\n",
dt * 1000000.0 / count, (double)size * count / dt / (1024 * 1024));
}
static void
speeddisk(int fd, off_t mediasize, u_int sectorsize)
{
int bulk, i;
off_t b0, b1, sectorcount, step;
/*
* Drives smaller than 1MB produce negative sector numbers,
* as do 2048 or fewer sectors.
*/
sectorcount = mediasize / sectorsize;
if (mediasize < 1024 * 1024 || sectorcount < 2048)
return;
step = 1ULL << (flsll(sectorcount / (4 * 200)) - 1);
if (step > 16384)
step = 16384;
bulk = mediasize / (1024 * 1024);
if (bulk > 100)
bulk = 100;
printf("Seek times:\n");
printf("\tFull stroke:\t");
b0 = 0;
b1 = sectorcount - step;
T0();
for (i = 0; i < 125; i++) {
rdsect(fd, b0, sectorsize);
b0 += step;
rdsect(fd, b1, sectorsize);
b1 -= step;
}
TN(250);
printf("\tHalf stroke:\t");
b0 = sectorcount / 4;
b1 = b0 + sectorcount / 2;
T0();
for (i = 0; i < 125; i++) {
rdsect(fd, b0, sectorsize);
b0 += step;
rdsect(fd, b1, sectorsize);
b1 += step;
}
TN(250);
printf("\tQuarter stroke:\t");
b0 = sectorcount / 4;
b1 = b0 + sectorcount / 4;
T0();
for (i = 0; i < 250; i++) {
rdsect(fd, b0, sectorsize);
b0 += step;
rdsect(fd, b1, sectorsize);
b1 += step;
}
TN(500);
printf("\tShort forward:\t");
b0 = sectorcount / 2;
T0();
for (i = 0; i < 400; i++) {
rdsect(fd, b0, sectorsize);
b0 += step;
}
TN(400);
printf("\tShort backward:\t");
b0 = sectorcount / 2;
T0();
for (i = 0; i < 400; i++) {
rdsect(fd, b0, sectorsize);
b0 -= step;
}
TN(400);
printf("\tSeq outer:\t");
b0 = 0;
T0();
for (i = 0; i < 2048; i++) {
rdsect(fd, b0, sectorsize);
b0++;
}
TN(2048);
printf("\tSeq inner:\t");
b0 = sectorcount - 2048;
T0();
for (i = 0; i < 2048; i++) {
rdsect(fd, b0, sectorsize);
b0++;
}
TN(2048);
printf("\nTransfer rates:\n");
printf("\toutside: ");
rdsect(fd, 0, sectorsize);
T0();
for (i = 0; i < bulk; i++) {
rdmega(fd);
}
TR(bulk * 1024);
printf("\tmiddle: ");
b0 = sectorcount / 2 - bulk * (1024*1024 / sectorsize) / 2 - 1;
rdsect(fd, b0, sectorsize);
T0();
for (i = 0; i < bulk; i++) {
rdmega(fd);
}
TR(bulk * 1024);
printf("\tinside: ");
b0 = sectorcount - bulk * (1024*1024 / sectorsize) - 1;
rdsect(fd, b0, sectorsize);
T0();
for (i = 0; i < bulk; i++) {
rdmega(fd);
}
TR(bulk * 1024);
printf("\n");
return;
}
static void
commandtime(int fd, off_t mediasize, u_int sectorsize)
{
double dtmega, dtsector;
int i;
printf("I/O command overhead:\n");
i = mediasize;
rdsect(fd, 0, sectorsize);
T0();
for (i = 0; i < 10; i++)
rdmega(fd);
dtmega = delta_t();
printf("\ttime to read 10MB block %10.6f sec\t= %8.3f msec/sector\n",
dtmega, dtmega*100/2048);
rdsect(fd, 0, sectorsize);
T0();
for (i = 0; i < 20480; i++)
rdsect(fd, 0, sectorsize);
dtsector = delta_t();
printf("\ttime to read 20480 sectors %10.6f sec\t= %8.3f msec/sector\n",
dtsector, dtsector*100/2048);
printf("\tcalculated command overhead\t\t\t= %8.3f msec/sector\n",
(dtsector - dtmega)*100/2048);
printf("\n");
return;
}
static void
iops(int fd, off_t mediasize, u_int sectorsize)
{
struct aiocb aios[NAIO], *aiop;
ssize_t ret;
off_t sectorcount;
int error, i, queued, completed;
sectorcount = mediasize / sectorsize;
for (i = 0; i < NAIO; i++) {
aiop = &(aios[i]);
bzero(aiop, sizeof(*aiop));
aiop->aio_buf = malloc(sectorsize);
if (aiop->aio_buf == NULL)
err(1, "malloc");
}
T0();
for (i = 0; i < NAIO; i++) {
aiop = &(aios[i]);
aiop->aio_fildes = fd;
aiop->aio_offset = (random() % (sectorcount)) * sectorsize;
aiop->aio_nbytes = sectorsize;
error = aio_read(aiop);
if (error != 0)
err(1, "aio_read");
}
queued = i;
completed = 0;
for (;;) {
ret = aio_waitcomplete(&aiop, NULL);
if (ret < 0)
err(1, "aio_waitcomplete");
if (ret != (ssize_t)sectorsize)
errx(1, "short read");
completed++;
if (delta_t() < 3.0) {
aiop->aio_fildes = fd;
aiop->aio_offset = (random() % (sectorcount)) * sectorsize;
aiop->aio_nbytes = sectorsize;
error = aio_read(aiop);
if (error != 0)
err(1, "aio_read");
queued++;
} else if (completed == queued) {
break;
}
}
TI(completed);
return;
}
static void
iopsbench(int fd, off_t mediasize, u_int sectorsize)
{
printf("Asynchronous random reads:\n");
printf("\tsectorsize: ");
iops(fd, mediasize, sectorsize);
if (sectorsize != 4096) {
printf("\t4 kbytes: ");
iops(fd, mediasize, 4096);
}
printf("\t32 kbytes: ");
iops(fd, mediasize, 32 * 1024);
printf("\t128 kbytes: ");
iops(fd, mediasize, 128 * 1024);
printf("\t1024 kbytes: ");
iops(fd, mediasize, 1024 * 1024);
printf("\n");
}
#define MAXIO (128*1024)
#define MAXIOS (MAXTX / MAXIO)
static void
parwrite(int fd, size_t size, off_t off)
{
struct aiocb aios[MAXIOS];
off_t o;
int n, error;
struct aiocb *aiop;
// if size > MAXIO, use AIO to write n - 1 pieces in parallel
for (n = 0, o = 0; size > MAXIO; n++, size -= MAXIO, o += MAXIO) {
aiop = &aios[n];
bzero(aiop, sizeof(*aiop));
aiop->aio_buf = &buf[o];
aiop->aio_fildes = fd;
aiop->aio_offset = off + o;
aiop->aio_nbytes = MAXIO;
error = aio_write(aiop);
if (error != 0)
err(EX_IOERR, "AIO write submit error");
}
// Use synchronous writes for the runt of size <= MAXIO
error = pwrite(fd, &buf[o], size, off + o);
if (error < 0)
err(EX_IOERR, "Sync write error");
for (; n > 0; n--) {
error = aio_waitcomplete(&aiop, NULL);
if (error < 0)
err(EX_IOERR, "AIO write wait error");
}
}
static void
slogbench(int fd, int isreg, off_t mediasize, u_int sectorsize)
{
off_t off;
u_int size;
int error, n, N, nowritecache = 0;
printf("Synchronous random writes:\n");
for (size = sectorsize; size <= MAXTX; size *= 2) {
printf("\t%4.4g kbytes: ", (double)size / 1024);
N = 0;
T0();
do {
for (n = 0; n < 250; n++) {
off = random() % (mediasize / size);
parwrite(fd, size, off * size);
if (nowritecache)
continue;
if (isreg)
error = fsync(fd);
else
error = ioctl(fd, DIOCGFLUSH);
if (error < 0) {
if (errno == ENOTSUP)
nowritecache = 1;
else
err(EX_IOERR, "Flush error");
}
}
N += 250;
} while (delta_t() < 1.0);
TS(size, N);
}
}
static int
zonecheck(int fd, uint32_t *zone_mode, char *zone_str, size_t zone_str_len)
{
struct disk_zone_args zone_args;
int error;
bzero(&zone_args, sizeof(zone_args));
zone_args.zone_cmd = DISK_ZONE_GET_PARAMS;
error = ioctl(fd, DIOCZONECMD, &zone_args);
if (error == 0) {
*zone_mode = zone_args.zone_params.disk_params.zone_mode;
switch (*zone_mode) {
case DISK_ZONE_MODE_NONE:
snprintf(zone_str, zone_str_len, "Not_Zoned");
break;
case DISK_ZONE_MODE_HOST_AWARE:
snprintf(zone_str, zone_str_len, "Host_Aware");
break;
case DISK_ZONE_MODE_DRIVE_MANAGED:
snprintf(zone_str, zone_str_len, "Drive_Managed");
break;
case DISK_ZONE_MODE_HOST_MANAGED:
snprintf(zone_str, zone_str_len, "Host_Managed");
break;
default:
snprintf(zone_str, zone_str_len, "Unknown_zone_mode_%u",
*zone_mode);
break;
}
}
return (error);
}