freebsd-dev/module/zfs/zpl_super.c
Brian Behlendorf 8780c53961 Update SAs when an inode is dirtied
Revert the portion of commit d3aa3ea which always resulted in the
SAs being update when an mmap()'ed file was closed.  That change
accidentally resulted in unexpected ctime updates which upset tools
like git.  That was always a horrible hack and I'm happy it will
never make it in to a tagged release.

The right fix is something I initially resisted doing because I
was worried about the additional overhead.  However, in hindsight
the overhead isn't as bad as I feared.

This patch implemented the sops->dirty_inode() callback which is
unsurprisingly called when an inode is dirtied.  We leverage this
callback to keep the znode SAs strictly in sync with the inode.

However, for now we're going to go slowly to avoid introducing
any new unexpected issues by only updating the atime, mtime, and
ctime.  This will cover the callpath of most concern to us.

  ->filemap_page_mkwrite->file_update_time->update_time->
      mark_inode_dirty_sync->__mark_inode_dirty->dirty_inode

Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #764
Closes #1140
2012-12-14 12:18:54 -08:00

362 lines
8.9 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2011, Lawrence Livermore National Security, LLC.
*/
#include <sys/zfs_vfsops.h>
#include <sys/zfs_vnops.h>
#include <sys/zfs_znode.h>
#include <sys/zfs_ctldir.h>
#include <sys/zpl.h>
static struct inode *
zpl_inode_alloc(struct super_block *sb)
{
struct inode *ip;
VERIFY3S(zfs_inode_alloc(sb, &ip), ==, 0);
ip->i_version = 1;
return (ip);
}
static void
zpl_inode_destroy(struct inode *ip)
{
ASSERT(atomic_read(&ip->i_count) == 0);
zfs_inode_destroy(ip);
}
/*
* Called from __mark_inode_dirty() to reflect that something in the
* inode has changed. We use it to ensure the znode system attributes
* are always strictly update to date with respect to the inode.
*/
#ifdef HAVE_DIRTY_INODE_WITH_FLAGS
static void
zpl_dirty_inode(struct inode *ip, int flags)
{
zfs_dirty_inode(ip, flags);
}
#else
static void
zpl_dirty_inode(struct inode *ip)
{
zfs_dirty_inode(ip, 0);
}
#endif /* HAVE_DIRTY_INODE_WITH_FLAGS */
/*
* When ->drop_inode() is called its return value indicates if the
* inode should be evicted from the inode cache. If the inode is
* unhashed and has no links the default policy is to evict it
* immediately.
*
* Prior to 2.6.36 this eviction was accomplished by the vfs calling
* ->delete_inode(). It was ->delete_inode()'s responsibility to
* truncate the inode pages and call clear_inode(). The call to
* clear_inode() synchronously invalidates all the buffers and
* calls ->clear_inode(). It was ->clear_inode()'s responsibility
* to cleanup and filesystem specific data before freeing the inode.
*
* This elaborate mechanism was replaced by ->evict_inode() which
* does the job of both ->delete_inode() and ->clear_inode(). It
* will be called exactly once, and when it returns the inode must
* be in a state where it can simply be freed.i
*
* The ->evict_inode() callback must minimally truncate the inode pages,
* and call clear_inode(). For 2.6.35 and later kernels this will
* simply update the inode state, with the sync occurring before the
* truncate in evict(). For earlier kernels clear_inode() maps to
* end_writeback() which is responsible for completing all outstanding
* write back. In either case, once this is done it is safe to cleanup
* any remaining inode specific data via zfs_inactive().
* remaining filesystem specific data.
*/
#ifdef HAVE_EVICT_INODE
static void
zpl_evict_inode(struct inode *ip)
{
truncate_setsize(ip, 0);
clear_inode(ip);
zfs_inactive(ip);
}
#else
static void
zpl_clear_inode(struct inode *ip)
{
zfs_inactive(ip);
}
static void
zpl_inode_delete(struct inode *ip)
{
truncate_setsize(ip, 0);
clear_inode(ip);
}
#endif /* HAVE_EVICT_INODE */
static void
zpl_put_super(struct super_block *sb)
{
int error;
error = -zfs_umount(sb);
ASSERT3S(error, <=, 0);
}
static int
zpl_sync_fs(struct super_block *sb, int wait)
{
cred_t *cr = CRED();
int error;
crhold(cr);
error = -zfs_sync(sb, wait, cr);
crfree(cr);
ASSERT3S(error, <=, 0);
return (error);
}
static int
zpl_statfs(struct dentry *dentry, struct kstatfs *statp)
{
int error;
error = -zfs_statvfs(dentry, statp);
ASSERT3S(error, <=, 0);
return (error);
}
static int
zpl_remount_fs(struct super_block *sb, int *flags, char *data)
{
int error;
error = -zfs_remount(sb, flags, data);
ASSERT3S(error, <=, 0);
return (error);
}
static void
zpl_umount_begin(struct super_block *sb)
{
zfs_sb_t *zsb = sb->s_fs_info;
int count;
/*
* Best effort to unmount snapshots in .zfs/snapshot/. Normally this
* isn't required because snapshots have the MNT_SHRINKABLE flag set.
*/
if (zsb->z_ctldir)
(void) zfsctl_unmount_snapshots(zsb, MNT_FORCE, &count);
}
/*
* The Linux VFS automatically handles the following flags:
* MNT_NOSUID, MNT_NODEV, MNT_NOEXEC, MNT_NOATIME, MNT_READONLY
*/
#ifdef HAVE_SHOW_OPTIONS_WITH_DENTRY
static int
zpl_show_options(struct seq_file *seq, struct dentry *root)
{
zfs_sb_t *zsb = root->d_sb->s_fs_info;
seq_printf(seq, ",%s", zsb->z_flags & ZSB_XATTR ? "xattr" : "noxattr");
return (0);
}
#else
static int
zpl_show_options(struct seq_file *seq, struct vfsmount *vfsp)
{
zfs_sb_t *zsb = vfsp->mnt_sb->s_fs_info;
seq_printf(seq, ",%s", zsb->z_flags & ZSB_XATTR ? "xattr" : "noxattr");
return (0);
}
#endif /* HAVE_SHOW_OPTIONS_WITH_DENTRY */
static int
zpl_fill_super(struct super_block *sb, void *data, int silent)
{
int error;
error = -zfs_domount(sb, data, silent);
ASSERT3S(error, <=, 0);
return (error);
}
#ifdef HAVE_MOUNT_NODEV
static struct dentry *
zpl_mount(struct file_system_type *fs_type, int flags,
const char *osname, void *data)
{
zpl_mount_data_t zmd = { osname, data };
return mount_nodev(fs_type, flags, &zmd, zpl_fill_super);
}
#else
static int
zpl_get_sb(struct file_system_type *fs_type, int flags,
const char *osname, void *data, struct vfsmount *mnt)
{
zpl_mount_data_t zmd = { osname, data };
return get_sb_nodev(fs_type, flags, &zmd, zpl_fill_super, mnt);
}
#endif /* HAVE_MOUNT_NODEV */
static void
zpl_kill_sb(struct super_block *sb)
{
zfs_preumount(sb);
kill_anon_super(sb);
}
#ifdef HAVE_SHRINK
/*
* Linux 3.1 - 3.x API
*
* The Linux 3.1 API introduced per-sb cache shrinkers to replace the
* global ones. This allows us a mechanism to cleanly target a specific
* zfs file system when the dnode and inode caches grow too large.
*
* In addition, the 3.0 kernel added the iterate_supers_type() helper
* function which is used to safely walk all of the zfs file systems.
*/
static void
zpl_prune_sb(struct super_block *sb, void *arg)
{
int objects = 0;
int error;
error = -zfs_sb_prune(sb, *(unsigned long *)arg, &objects);
ASSERT3S(error, <=, 0);
return;
}
void
zpl_prune_sbs(int64_t bytes_to_scan, void *private)
{
unsigned long nr_to_scan = (bytes_to_scan / sizeof(znode_t));
iterate_supers_type(&zpl_fs_type, zpl_prune_sb, &nr_to_scan);
kmem_reap();
}
#else
/*
* Linux 2.6.x - 3.0 API
*
* These are best effort interfaces are provided by the SPL to induce
* the Linux VM subsystem to reclaim a fraction of the both dnode and
* inode caches. Ideally, we want to just target the zfs file systems
* however our only option is to reclaim from them all.
*/
void
zpl_prune_sbs(int64_t bytes_to_scan, void *private)
{
unsigned long nr_to_scan = (bytes_to_scan / sizeof(znode_t));
shrink_dcache_memory(nr_to_scan, GFP_KERNEL);
shrink_icache_memory(nr_to_scan, GFP_KERNEL);
kmem_reap();
}
#endif /* HAVE_SHRINK */
#ifdef HAVE_NR_CACHED_OBJECTS
static int
zpl_nr_cached_objects(struct super_block *sb)
{
zfs_sb_t *zsb = sb->s_fs_info;
int nr;
mutex_enter(&zsb->z_znodes_lock);
nr = zsb->z_nr_znodes;
mutex_exit(&zsb->z_znodes_lock);
return (nr);
}
#endif /* HAVE_NR_CACHED_OBJECTS */
#ifdef HAVE_FREE_CACHED_OBJECTS
/*
* Attempt to evict some meta data from the cache. The ARC operates in
* terms of bytes while the Linux VFS uses objects. Now because this is
* just a best effort eviction and the exact values aren't critical so we
* extrapolate from an object count to a byte size using the znode_t size.
*/
static void
zpl_free_cached_objects(struct super_block *sb, int nr_to_scan)
{
arc_adjust_meta(nr_to_scan * sizeof(znode_t), B_FALSE);
}
#endif /* HAVE_FREE_CACHED_OBJECTS */
const struct super_operations zpl_super_operations = {
.alloc_inode = zpl_inode_alloc,
.destroy_inode = zpl_inode_destroy,
.dirty_inode = zpl_dirty_inode,
.write_inode = NULL,
.drop_inode = NULL,
#ifdef HAVE_EVICT_INODE
.evict_inode = zpl_evict_inode,
#else
.clear_inode = zpl_clear_inode,
.delete_inode = zpl_inode_delete,
#endif /* HAVE_EVICT_INODE */
.put_super = zpl_put_super,
.sync_fs = zpl_sync_fs,
.statfs = zpl_statfs,
.remount_fs = zpl_remount_fs,
.umount_begin = zpl_umount_begin,
.show_options = zpl_show_options,
.show_stats = NULL,
#ifdef HAVE_NR_CACHED_OBJECTS
.nr_cached_objects = zpl_nr_cached_objects,
#endif /* HAVE_NR_CACHED_OBJECTS */
#ifdef HAVE_FREE_CACHED_OBJECTS
.free_cached_objects = zpl_free_cached_objects,
#endif /* HAVE_FREE_CACHED_OBJECTS */
};
struct file_system_type zpl_fs_type = {
.owner = THIS_MODULE,
.name = ZFS_DRIVER,
#ifdef HAVE_MOUNT_NODEV
.mount = zpl_mount,
#else
.get_sb = zpl_get_sb,
#endif /* HAVE_MOUNT_NODEV */
.kill_sb = zpl_kill_sb,
};