freebsd-dev/sys/kern/bus_if.m
John Baldwin 37b8ef16cd Add a facility for associating optional descriptions with active interrupt
handlers.  This is primarily intended as a way to allow devices that use
multiple interrupts (e.g. MSI) to meaningfully distinguish the various
interrupt handlers.
- Add a new BUS_DESCRIBE_INTR() method to the bus interface to associate
  a description with an active interrupt handler setup by BUS_SETUP_INTR.
  It has a default method (bus_generic_describe_intr()) which simply passes
  the request up to the parent device.
- Add a bus_describe_intr() wrapper around BUS_DESCRIBE_INTR() that supports
  printf(9) style formatting using var args.
- Reserve MAXCOMLEN bytes in the intr_handler structure to hold the name of
  an interrupt handler and copy the name passed to intr_event_add_handler()
  into that buffer instead of just saving the pointer to the name.
- Add a new intr_event_describe_handler() which appends a description string
  to an interrupt handler's name.
- Implement support for interrupt descriptions on amd64 and i386 by having
  the nexus(4) driver supply a custom bus_describe_intr method that invokes
  a new intr_describe() MD routine which in turn looks up the associated
  interrupt event and invokes intr_event_describe_handler().

Requested by:	many
Reviewed by:	scottl
MFC after:	2 weeks
2009-10-15 14:54:35 +00:00

603 lines
18 KiB
Objective-C

#-
# Copyright (c) 1998-2004 Doug Rabson
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
# OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
# HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
# OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
# SUCH DAMAGE.
#
# $FreeBSD$
#
#include <sys/bus.h>
/**
* @defgroup BUS bus - KObj methods for drivers of devices with children
* @brief A set of methods required device drivers that support
* child devices.
* @{
*/
INTERFACE bus;
#
# Default implementations of some methods.
#
CODE {
static struct resource *
null_alloc_resource(device_t dev, device_t child,
int type, int *rid, u_long start, u_long end,
u_long count, u_int flags)
{
return (0);
}
};
/**
* @brief Print a description of a child device
*
* This is called from system code which prints out a description of a
* device. It should describe the attachment that the child has with
* the parent. For instance the TurboLaser bus prints which node the
* device is attached to. See bus_generic_print_child() for more
* information.
*
* @param _dev the device whose child is being printed
* @param _child the child device to describe
*
* @returns the number of characters output.
*/
METHOD int print_child {
device_t _dev;
device_t _child;
} DEFAULT bus_generic_print_child;
/**
* @brief Print a notification about an unprobed child device.
*
* Called for each child device that did not succeed in probing for a
* driver.
*
* @param _dev the device whose child was being probed
* @param _child the child device which failed to probe
*/
METHOD void probe_nomatch {
device_t _dev;
device_t _child;
};
/**
* @brief Read the value of a bus-specific attribute of a device
*
* This method, along with BUS_WRITE_IVAR() manages a bus-specific set
* of instance variables of a child device. The intention is that
* each different type of bus defines a set of appropriate instance
* variables (such as ports and irqs for ISA bus etc.)
*
* This information could be given to the child device as a struct but
* that makes it hard for a bus to add or remove variables without
* forcing an edit and recompile for all drivers which may not be
* possible for vendor supplied binary drivers.
*
* This method copies the value of an instance variable to the
* location specified by @p *_result.
*
* @param _dev the device whose child was being examined
* @param _child the child device whose instance variable is
* being read
* @param _index the instance variable to read
* @param _result a loction to recieve the instance variable
* value
*
* @retval 0 success
* @retval ENOENT no such instance variable is supported by @p
* _dev
*/
METHOD int read_ivar {
device_t _dev;
device_t _child;
int _index;
uintptr_t *_result;
};
/**
* @brief Write the value of a bus-specific attribute of a device
*
* This method sets the value of an instance variable to @p _value.
*
* @param _dev the device whose child was being updated
* @param _child the child device whose instance variable is
* being written
* @param _index the instance variable to write
* @param _value the value to write to that instance variable
*
* @retval 0 success
* @retval ENOENT no such instance variable is supported by @p
* _dev
* @retval EINVAL the instance variable was recognised but
* contains a read-only value
*/
METHOD int write_ivar {
device_t _dev;
device_t _child;
int _indx;
uintptr_t _value;
};
/**
* @brief Notify a bus that a child was detached
*
* Called after the child's DEVICE_DETACH() method to allow the parent
* to reclaim any resources allocated on behalf of the child.
*
* @param _dev the device whose child changed state
* @param _child the child device which changed state
*/
METHOD void child_detached {
device_t _dev;
device_t _child;
};
/**
* @brief Notify a bus that a new driver was added
*
* Called when a new driver is added to the devclass which owns this
* bus. The generic implementation of this method attempts to probe and
* attach any un-matched children of the bus.
*
* @param _dev the device whose devclass had a new driver
* added to it
* @param _driver the new driver which was added
*/
METHOD void driver_added {
device_t _dev;
driver_t *_driver;
} DEFAULT bus_generic_driver_added;
/**
* @brief Create a new child device
*
* For busses which use use drivers supporting DEVICE_IDENTIFY() to
* enumerate their devices, this method is used to create new
* device instances. The new device will be added after the last
* existing child with the same order.
*
* @param _dev the bus device which will be the parent of the
* new child device
* @param _order a value which is used to partially sort the
* children of @p _dev - devices created using
* lower values of @p _order appear first in @p
* _dev's list of children
* @param _name devclass name for new device or @c NULL if not
* specified
* @param _unit unit number for new device or @c -1 if not
* specified
*/
METHOD device_t add_child {
device_t _dev;
int _order;
const char *_name;
int _unit;
};
/**
* @brief Allocate a system resource
*
* This method is called by child devices of a bus to allocate resources.
* The types are defined in <machine/resource.h>; the meaning of the
* resource-ID field varies from bus to bus (but @p *rid == 0 is always
* valid if the resource type is). If a resource was allocated and the
* caller did not use the RF_ACTIVE to specify that it should be
* activated immediately, the caller is responsible for calling
* BUS_ACTIVATE_RESOURCE() when it actually uses the resource.
*
* @param _dev the parent device of @p _child
* @param _child the device which is requesting an allocation
* @param _type the type of resource to allocate
* @param _rid a pointer to the resource identifier
* @param _start hint at the start of the resource range - pass
* @c 0UL for any start address
* @param _end hint at the end of the resource range - pass
* @c ~0UL for any end address
* @param _count hint at the size of range required - pass @c 1
* for any size
* @param _flags any extra flags to control the resource
* allocation - see @c RF_XXX flags in
* <sys/rman.h> for details
*
* @returns the resource which was allocated or @c NULL if no
* resource could be allocated
*/
METHOD struct resource * alloc_resource {
device_t _dev;
device_t _child;
int _type;
int *_rid;
u_long _start;
u_long _end;
u_long _count;
u_int _flags;
} DEFAULT null_alloc_resource;
/**
* @brief Activate a resource
*
* Activate a resource previously allocated with
* BUS_ALLOC_RESOURCE(). This may for instance map a memory region
* into the kernel's virtual address space.
*
* @param _dev the parent device of @p _child
* @param _child the device which allocated the resource
* @param _type the type of resource
* @param _rid the resource identifier
* @param _r the resource to activate
*/
METHOD int activate_resource {
device_t _dev;
device_t _child;
int _type;
int _rid;
struct resource *_r;
};
/**
* @brief Deactivate a resource
*
* Deactivate a resource previously allocated with
* BUS_ALLOC_RESOURCE(). This may for instance unmap a memory region
* from the kernel's virtual address space.
*
* @param _dev the parent device of @p _child
* @param _child the device which allocated the resource
* @param _type the type of resource
* @param _rid the resource identifier
* @param _r the resource to deactivate
*/
METHOD int deactivate_resource {
device_t _dev;
device_t _child;
int _type;
int _rid;
struct resource *_r;
};
/**
* @brief Release a resource
*
* Free a resource allocated by the BUS_ALLOC_RESOURCE. The @p _rid
* value must be the same as the one returned by BUS_ALLOC_RESOURCE()
* (which is not necessarily the same as the one the client passed).
*
* @param _dev the parent device of @p _child
* @param _child the device which allocated the resource
* @param _type the type of resource
* @param _rid the resource identifier
* @param _r the resource to release
*/
METHOD int release_resource {
device_t _dev;
device_t _child;
int _type;
int _rid;
struct resource *_res;
};
/**
* @brief Install an interrupt handler
*
* This method is used to associate an interrupt handler function with
* an irq resource. When the interrupt triggers, the function @p _intr
* will be called with the value of @p _arg as its single
* argument. The value returned in @p *_cookiep is used to cancel the
* interrupt handler - the caller should save this value to use in a
* future call to BUS_TEARDOWN_INTR().
*
* @param _dev the parent device of @p _child
* @param _child the device which allocated the resource
* @param _irq the resource representing the interrupt
* @param _flags a set of bits from enum intr_type specifying
* the class of interrupt
* @param _intr the function to call when the interrupt
* triggers
* @param _arg a value to use as the single argument in calls
* to @p _intr
* @param _cookiep a pointer to a location to recieve a cookie
* value that may be used to remove the interrupt
* handler
*/
METHOD int setup_intr {
device_t _dev;
device_t _child;
struct resource *_irq;
int _flags;
driver_filter_t *_filter;
driver_intr_t *_intr;
void *_arg;
void **_cookiep;
};
/**
* @brief Uninstall an interrupt handler
*
* This method is used to disassociate an interrupt handler function
* with an irq resource. The value of @p _cookie must be the value
* returned from a previous call to BUS_SETUP_INTR().
*
* @param _dev the parent device of @p _child
* @param _child the device which allocated the resource
* @param _irq the resource representing the interrupt
* @param _cookie the cookie value returned when the interrupt
* was originally registered
*/
METHOD int teardown_intr {
device_t _dev;
device_t _child;
struct resource *_irq;
void *_cookie;
};
/**
* @brief Define a resource which can be allocated with
* BUS_ALLOC_RESOURCE().
*
* This method is used by some busses (typically ISA) to allow a
* driver to describe a resource range that it would like to
* allocate. The resource defined by @p _type and @p _rid is defined
* to start at @p _start and to include @p _count indices in its
* range.
*
* @param _dev the parent device of @p _child
* @param _child the device which owns the resource
* @param _type the type of resource
* @param _rid the resource identifier
* @param _start the start of the resource range
* @param _count the size of the resource range
*/
METHOD int set_resource {
device_t _dev;
device_t _child;
int _type;
int _rid;
u_long _start;
u_long _count;
};
/**
* @brief Describe a resource
*
* This method allows a driver to examine the range used for a given
* resource without actually allocating it.
*
* @param _dev the parent device of @p _child
* @param _child the device which owns the resource
* @param _type the type of resource
* @param _rid the resource identifier
* @param _start the address of a location to recieve the start
* index of the resource range
* @param _count the address of a location to recieve the size
* of the resource range
*/
METHOD int get_resource {
device_t _dev;
device_t _child;
int _type;
int _rid;
u_long *_startp;
u_long *_countp;
};
/**
* @brief Delete a resource.
*
* Use this to delete a resource (possibly one previously added with
* BUS_SET_RESOURCE()).
*
* @param _dev the parent device of @p _child
* @param _child the device which owns the resource
* @param _type the type of resource
* @param _rid the resource identifier
*/
METHOD void delete_resource {
device_t _dev;
device_t _child;
int _type;
int _rid;
};
/**
* @brief Return a struct resource_list.
*
* Used by drivers which use bus_generic_rl_alloc_resource() etc. to
* implement their resource handling. It should return the resource
* list of the given child device.
*
* @param _dev the parent device of @p _child
* @param _child the device which owns the resource list
*/
METHOD struct resource_list * get_resource_list {
device_t _dev;
device_t _child;
} DEFAULT bus_generic_get_resource_list;
/**
* @brief Is the hardware described by @p _child still attached to the
* system?
*
* This method should return 0 if the device is not present. It
* should return -1 if it is present. Any errors in determining
* should be returned as a normal errno value. Client drivers are to
* assume that the device is present, even if there is an error
* determining if it is there. Busses are to try to avoid returning
* errors, but newcard will return an error if the device fails to
* implement this method.
*
* @param _dev the parent device of @p _child
* @param _child the device which is being examined
*/
METHOD int child_present {
device_t _dev;
device_t _child;
} DEFAULT bus_generic_child_present;
/**
* @brief Returns the pnp info for this device.
*
* Return it as a string. If the string is insufficient for the
* storage, then return EOVERFLOW.
*
* @param _dev the parent device of @p _child
* @param _child the device which is being examined
* @param _buf the address of a buffer to receive the pnp
* string
* @param _buflen the size of the buffer pointed to by @p _buf
*/
METHOD int child_pnpinfo_str {
device_t _dev;
device_t _child;
char *_buf;
size_t _buflen;
};
/**
* @brief Returns the location for this device.
*
* Return it as a string. If the string is insufficient for the
* storage, then return EOVERFLOW.
*
* @param _dev the parent device of @p _child
* @param _child the device which is being examined
* @param _buf the address of a buffer to receive the location
* string
* @param _buflen the size of the buffer pointed to by @p _buf
*/
METHOD int child_location_str {
device_t _dev;
device_t _child;
char *_buf;
size_t _buflen;
};
/**
* @brief Allow drivers to request that an interrupt be bound to a specific
* CPU.
*
* @param _dev the parent device of @p _child
* @param _child the device which allocated the resource
* @param _irq the resource representing the interrupt
* @param _cpu the CPU to bind the interrupt to
*/
METHOD int bind_intr {
device_t _dev;
device_t _child;
struct resource *_irq;
int _cpu;
} DEFAULT bus_generic_bind_intr;
/**
* @brief Allow (bus) drivers to specify the trigger mode and polarity
* of the specified interrupt.
*
* @param _dev the bus device
* @param _irq the interrupt number to modify
* @param _trig the trigger mode required
* @param _pol the interrupt polarity required
*/
METHOD int config_intr {
device_t _dev;
int _irq;
enum intr_trigger _trig;
enum intr_polarity _pol;
} DEFAULT bus_generic_config_intr;
/**
* @brief Allow drivers to associate a description with an active
* interrupt handler.
*
* @param _dev the parent device of @p _child
* @param _child the device which allocated the resource
* @param _irq the resource representing the interrupt
* @param _cookie the cookie value returned when the interrupt
* was originally registered
* @param _descr the description to associate with the interrupt
*/
METHOD int describe_intr {
device_t _dev;
device_t _child;
struct resource *_irq;
void *_cookie;
const char *_descr;
} DEFAULT bus_generic_describe_intr;
/**
* @brief Notify a (bus) driver about a child that the hints mechanism
* believes it has discovered.
*
* The bus is responsible for then adding the child in the right order
* and discovering other things about the child. The bus driver is
* free to ignore this hint, to do special things, etc. It is all up
* to the bus driver to interpret.
*
* This method is only called in response to the parent bus asking for
* hinted devices to be enumerated.
*
* @param _dev the bus device
* @param _dname the name of the device w/o unit numbers
* @param _dunit the unit number of the device
*/
METHOD void hinted_child {
device_t _dev;
const char *_dname;
int _dunit;
};
/**
* @brief Returns bus_dma_tag_t for use w/ devices on the bus.
*
* @param _dev the parent device of @p _child
* @param _child the device to which the tag will belong
*/
METHOD bus_dma_tag_t get_dma_tag {
device_t _dev;
device_t _child;
} DEFAULT bus_generic_get_dma_tag;
/**
* @brief Allow the bus to determine the unit number of a device.
*
* @param _dev the parent device of @p _child
* @param _child the device whose unit is to be wired
* @param _name the name of the device's new devclass
* @param _unitp a pointer to the device's new unit value
*/
METHOD void hint_device_unit {
device_t _dev;
device_t _child;
const char *_name;
int *_unitp;
};
/**
* @brief Notify a bus that the bus pass level has been changed
*
* @param _dev the bus device
*/
METHOD void new_pass {
device_t _dev;
} DEFAULT bus_generic_new_pass;