freebsd-dev/sys/dev/aic7xxx/aic7xxx.seq
Justin T. Gibbs 853925d190 In data_phase_reinit when I converted the code to use bcopy, I should have
used mvi instead of mov.  Luckily this code is most likely never executed
since it is only there for sanity should a target goes into the data phase
twice during a single selection or reselection.
1996-10-28 17:00:24 +00:00

1186 lines
35 KiB
Plaintext

/*+M***********************************************************************
*Adaptec 274x/284x/294x device driver for Linux and FreeBSD.
*
*Copyright (c) 1994 John Aycock
* The University of Calgary Department of Computer Science.
* All rights reserved.
*
*FreeBSD, Twin, Wide, 2 command per target support, tagged queuing,
*SCB paging and other optimizations:
*Copyright (c) 1994, 1995, 1996 Justin Gibbs. All rights reserved.
*
*Redistribution and use in source and binary forms, with or without
*modification, are permitted provided that the following conditions
*are met:
*1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer.
*2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of Calgary
* Department of Computer Science and its contributors.
*4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
*THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
*ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
*IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
*ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
*FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
*DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
*OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
*HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
*LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
*OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
*SUCH DAMAGE.
*
*-M************************************************************************/
VERSION AIC7XXX_SEQ_VER "$Id: aic7xxx.seq,v 1.45 1996/10/28 06:01:07 gibbs Exp $"
#if defined(__NetBSD__)
#include "../../../../dev/ic/aic7xxxreg.h"
#include "../../../../scsi/scsi_message.h"
#elif defined(__FreeBSD__)
#include "../../dev/aic7xxx/aic7xxx_reg.h"
#include "../../scsi/scsi_message.h"
#endif
/*
* We can't just use ACCUM in the sequencer code because it
* must be treated specially by the assembler, and it currently
* looks for the symbol 'A'. This is the only register defined in
* the assembler's symbol space.
*/
A = ACCUM
/*
* A few words on the waiting SCB list:
* After starting the selection hardware, we check for reconnecting targets
* as well as for our selection to complete just in case the reselection wins
* bus arbitration. The problem with this is that we must keep track of the
* SCB that we've already pulled from the QINFIFO and started the selection
* on just in case the reselection wins so that we can retry the selection at
* a later time. This problem cannot be resolved by holding a single entry
* in scratch ram since a reconnecting target can request sense and this will
* create yet another SCB waiting for selection. The solution used here is to
* use byte 27 of the SCB as a psuedo-next pointer and to thread a list
* of SCBs that are awaiting selection. Since 0-0xfe are valid SCB indexes,
* SCB_LIST_NULL is 0xff which is out of range. An entry is also added to
* this list everytime a request sense occurs or after completing a non-tagged
* command for which a second SCB has been queued. The sequencer will
* automatically consume the entries.
*/
/*
* We assume that the kernel driver may reset us at any time, even in the
* middle of a DMA, so clear DFCNTRL too.
*/
reset:
clr DFCNTRL
clr SCSISIGO /* De-assert BSY */
/*
* We jump to start after every bus free.
*/
start:
and FLAGS,0x07 /* clear target specific flags */
mvi SCSISEQ,ENRSELI /* Always allow reselection */
clr SCSIRATE /*
* We don't know the target we will
* connect to, so default to narrow
* transfers to avoid parity problems.
*/
poll_for_work:
/*
* Are we a twin channel device?
* For fairness, we check the other bus first,
* since we just finished a transaction on the
* current channel.
*/
test FLAGS,TWIN_BUS jz start2
xor SBLKCTL,SELBUSB /* Toggle to the other bus */
test SSTAT0,SELDI jnz reselect
xor SBLKCTL,SELBUSB /* Toggle to the original bus */
start2:
test SSTAT0,SELDI jnz reselect
cmp WAITING_SCBH,SCB_LIST_NULL je test_queue
start_waiting:
/*
* Pull the first entry off of the waiting SCB list
* We don't have to "test_busy" because only transactions that
* have passed that test can be in the WAITING_SCB list.
*/
mov SCBPTR,WAITING_SCBH
jmp start_scb2
test_queue:
/* Has the driver posted any work for us? */
mov A, QCNTMASK
test QINCNT,A jz poll_for_work
/*
* We have at least one queued SCB now and we don't have any
* SCBs in the list of SCBs awaiting selection. If we have
* any SCBs availible for use, pull the tag from the QINFIFO
* and get to work on it.
*/
test FLAGS, PAGESCBS jz dequeue_scb
call get_free_or_disc_scb
cmp SINDEX, SCB_LIST_NULL je poll_for_work
dequeue_scb:
mov CUR_SCBID,QINFIFO
test FLAGS, PAGESCBS jnz dma_queued_scb
/* In the non-paging case, the SCBID == hardware SCB index */
mov SCBPTR, CUR_SCBID
dma_queued_scb:
/*
* DMA the SCB from host ram into the current SCB location.
*/
mvi DMAPARAMS, 0xd /* HDMAEN|DIRECTION|FIFORESET */
mov CUR_SCBID call dma_scb
/*
* See if there is not already an active SCB for this target. This code
* locks out on a per target basis instead of target/lun. Although this
* is not ideal for devices that have multiple luns active at the same
* time, it is faster than looping through all SCB's looking for active
* commands. We also don't have enough spare SCB space for to store the
* SCBID of the currently busy transaction for each target/lun making it
* impossible to link up the SCBs.
*/
test_busy:
test SCB_CONTROL, TAG_ENB jnz start_scb
mov SAVED_SCBPTR, SCBPTR
mov SCB_TCL call index_untagged_scb
mov ARG_1, SINDIR /*
* ARG_1 should
* now have the SCB ID of
* any active, non-tagged,
* command for this target.
*/
cmp ARG_1, SCB_LIST_NULL je make_busy
test FLAGS, PAGESCBS jz simple_busy_link
/*
* Put this SCB back onto the free list. It
* may be necessary to satisfy the search for
* the active SCB.
*/
mov SCBPTR, SAVED_SCBPTR
call add_scb_to_free_list
/* Find the active SCB */
mov ALLZEROS call findSCB
/*
* If we couldn't find it, tell the kernel. This should
* only happen if the parent SCB was aborted and this
* one was already here at the time of the abort.
*/
cmp SINDEX, SCB_LIST_NULL jne paged_busy_link
mvi INTSTAT, NO_MATCH_BUSY
paged_busy_link:
/* Link us in */
mov SCB_LINKED_NEXT, CUR_SCBID
/* Put it back on the disconnected list */
call add_scb_to_disc_list
jmp poll_for_work
simple_busy_link:
mov SCBPTR, ARG_1
mov SCB_LINKED_NEXT, CUR_SCBID
jmp poll_for_work
make_busy:
mov DINDIR, CUR_SCBID
mov SCBPTR, SAVED_SCBPTR
start_scb:
/*
* Place us on the waiting list in case our selection
* doesn't win during bus arbitration.
*/
mov SCB_NEXT,WAITING_SCBH
mov WAITING_SCBH, SCBPTR
start_scb2:
and SINDEX,0xf7,SBLKCTL /* Clear the channel select bit */
and A,0x08,SCB_TCL /* Get new channel bit */
or SINDEX,A
mov SBLKCTL,SINDEX /* select channel */
mov SCB_TCL call initialize_scsiid
/*
* Enable selection phase as an initiator, and do automatic ATN
* after the selection. We do this now so that we can overlap the
* rest of our work to set up this target with the arbitration and
* selection bus phases.
*/
start_selection:
mvi SCSISEQ,0x58 /* ENSELO|ENAUTOATNO|ENRSELI */
/*
* As soon as we get a successful selection, the target should go
* into the message out phase since we have ATN asserted. Prepare
* the message to send.
*
* Messages are stored in scratch RAM starting with a length byte
* followed by the message itself.
*/
mk_identify:
and MSG0,0x7,SCB_TCL /* lun */
and A,DISCENB,SCB_CONTROL /* mask off disconnect privledge */
or MSG0,A /* or in disconnect privledge */
or MSG0,MSG_IDENTIFYFLAG
mvi MSG_LEN, 1
/*
* Send a tag message if TAG_ENB is set in the SCB control block.
* Use SCB_TAG (the position in the kernel's SCB array) as the tag value.
*/
mk_tag:
test SCB_CONTROL,TAG_ENB jz mk_message
and MSG1,0x23,SCB_CONTROL
mov MSG2,SCB_TAG
add MSG_LEN,2 /* update message length */
/*
* Interrupt the driver, and allow it to tweak the message buffer
* if it asks.
*/
mk_message:
test SCB_CONTROL,MK_MESSAGE jz wait_for_selection
mvi INTSTAT,AWAITING_MSG
wait_for_selection:
test SSTAT0,SELDO jnz select
test SSTAT0,SELDI jz wait_for_selection
/*
* Reselection has been initiated by a target. Make a note that we've been
* reselected, but haven't seen an IDENTIFY message from the target yet.
*/
reselect:
clr MSG_LEN /* Don't have anything in the mesg buffer */
mov SELID call initialize_scsiid
or FLAGS,RESELECTED
jmp select2
/*
* After the selection, remove this SCB from the "waiting SCB"
* list. This is achieved by simply moving our "next" pointer into
* WAITING_SCBH. Our next pointer will be set to null the next time this
* SCB is used, so don't bother with it now.
*/
select:
mov WAITING_SCBH,SCB_NEXT
select2:
/*
* Initialize SCSIRATE with the appropriate value for this target.
* The SCSIRATE settings for each target are stored in an array
* based at TARG_SCRATCH.
*/
ndx_dtr:
shr A,SCSIID,4
test SBLKCTL,SELBUSB jz ndx_dtr_2
or SAVED_TCL, SELBUSB /* Add the channel bit while we're here */
or A,0x08 /* Channel B entries add 8 */
ndx_dtr_2:
add SINDEX,TARG_SCRATCH,A
mov SCSIRATE,SINDIR
/*
* Initialize Ultra mode setting and clear the SCSI channel.
*/
ultra:
and DINDEX,0xdf,SXFRCTL0 /* default to Ultra disabled */
/*
* Set CLRCHN here before the target has entered a data transfer mode -
* with synchronous SCSI, if you do it later, you blow away some
* data in the SCSI FIFO that the target has already sent to you.
*/
or DINDEX, CLRCHN
mvi SINDEX, ULTRA_ENB_B
test SCSIID, 0x80 jnz ultra_2 /* Target ID > 7 */
test SBLKCTL, SELBUSB jnz ultra_2 /* Second channel device */
dec SINDEX
ultra_2:
mov FUNCTION1,SCSIID
mov A,FUNCTION1
test SINDIR, A jz set_sxfrctl0
or DINDEX, ULTRAEN
set_sxfrctl0:
mov SXFRCTL0,DINDEX
mvi SCSISEQ,ENAUTOATNP /*
* ATN on parity errors
* for "in" phases
*/
mvi CLRSINT1,CLRBUSFREE
mvi CLRSINT0,0x60 /* CLRSELDI|CLRSELDO */
/*
* Main loop for information transfer phases. If BSY is false, then
* we have a bus free condition, expected or not. Otherwise, wait
* for the target to assert REQ before checking MSG, C/D and I/O
* for the bus phase.
*
*/
ITloop:
test SSTAT1,BUSFREE jnz p_busfree
test SSTAT1,REQINIT jz ITloop
and A,PHASE_MASK,SCSISIGI
mov LASTPHASE,A
mov SCSISIGO,A
cmp ALLZEROS,A je p_dataout
cmp A,P_DATAIN je p_datain
cmp A,P_COMMAND je p_command
cmp A,P_MESGOUT je p_mesgout
cmp A,P_STATUS je p_status
cmp A,P_MESGIN je p_mesgin
mvi INTSTAT,BAD_PHASE /* unknown phase - signal driver */
jmp ITloop /* Try reading the bus again. */
p_dataout:
mvi DMAPARAMS,0x7d /*
* WIDEODD|SCSIEN|SDMAEN|HDMAEN|
* DIRECTION|FIFORESET
*/
jmp data_phase_init
/*
* If we re-enter the data phase after going through another phase, the
* STCNT may have been cleared, so restore it from the residual field.
*/
data_phase_reinit:
mvi DINDEX, STCNT0
mvi SCB_RESID_DCNT0 call bcopy_3
jmp data_phase_loop
p_datain:
mvi DMAPARAMS,0x79 /*
* WIDEODD|SCSIEN|SDMAEN|HDMAEN|
* !DIRECTION|FIFORESET
*/
data_phase_init:
call assert /*
* Ensure entering a data
* phase is okay - seen identify, etc.
*/
test FLAGS, DPHASE jnz data_phase_reinit
/*
* Initialize the DMA address and counter from the SCB.
* Also set SG_COUNT and SG_NEXT in memory since we cannot
* modify the values in the SCB itself until we see a
* save data pointers message.
*/
mvi DINDEX, HADDR0
mvi SCB_DATAPTR call bcopy_7
call set_stcnt_from_hcnt
mov SG_COUNT,SCB_SGCOUNT
mvi DINDEX, SG_NEXT
mvi SCB_SGPTR call bcopy_4
/* We have seen a data phase */
or FLAGS, DPHASE
data_phase_loop:
/* Guard against overruns */
test SG_COUNT, 0xff jnz data_phase_inbounds
/*
* Turn on 'Bit Bucket' mode, set the transfer count to
* 16meg and let the target run until it changes phase.
* When the transfer completes, notify the host that we
* had an overrun.
*/
or SXFRCTL1,BITBUCKET
mvi STCNT0,0xff
mvi STCNT1,0xff
mvi STCNT2,0xff
data_phase_inbounds:
/* If we are the last SG block, ensure wideodd is off. */
cmp SG_COUNT,0x01 jne data_phase_wideodd
and DMAPARAMS, 0xbf /* Turn off WIDEODD */
data_phase_wideodd:
mov DMAPARAMS call dma
/* Go tell the host about any overruns */
test SXFRCTL1,BITBUCKET jnz data_phase_overrun
/* Exit if we had an underrun */
test SSTAT0,SDONE jz data_phase_finish /* underrun STCNT != 0 */
/*
* Advance the scatter-gather pointers if needed
*/
sg_advance:
dec SG_COUNT /* one less segment to go */
test SG_COUNT, 0xff jz data_phase_finish /* Are we done? */
clr A /* add sizeof(struct scatter) */
add SG_NEXT0,SG_SIZEOF,SG_NEXT0
adc SG_NEXT1,A,SG_NEXT1
/*
* Load a struct scatter and set up the data address and length.
* If the working value of the SG count is nonzero, then
* we need to load a new set of values.
*
* This, like all DMA's, assumes little-endian host data storage.
*/
sg_load:
clr HCNT2
clr HCNT1
mvi HCNT0,SG_SIZEOF
mvi DINDEX, HADDR0
mvi SG_NEXT0 call bcopy_4
or DFCNTRL,0xd /* HDMAEN|DIRECTION|FIFORESET */
call dma_finish
/*
* Copy data from FIFO into SCB data pointer and data count. This assumes
* that the SG segments are of the form:
*
* struct ahc_dma_seg {
* u_int32_t addr; four bytes, little-endian order
* u_int32_t len; four bytes, little endian order
* };
*/
mvi HADDR0 call dfdat_in_7
/* Load STCNT as well. It is a mirror of HCNT */
call set_stcnt_from_hcnt
test SSTAT1,PHASEMIS jz data_phase_loop
data_phase_finish:
/*
* After a DMA finishes, save the SG and STCNT residuals back into the SCB
* We use STCNT instead of HCNT, since it's a reflection of how many bytes
* were transferred on the SCSI (as opposed to the host) bus.
*/
mov SCB_RESID_DCNT0,STCNT0
mov SCB_RESID_DCNT1,STCNT1
mov SCB_RESID_DCNT2,STCNT2
mov SCB_RESID_SGCNT, SG_COUNT
jmp ITloop
data_phase_overrun:
/*
* Turn off BITBUCKET mode and notify the host
*/
and SXFRCTL1,0x7f /* ~BITBUCKET */
mvi INTSTAT,DATA_OVERRUN
jmp ITloop
/*
* Command phase. Set up the DMA registers and let 'er rip.
*/
p_command:
call assert
/*
* Load HADDR and HCNT.
*/
mvi DINDEX, HADDR0
mvi SCB_CMDPTR call bcopy_5
clr HCNT1
clr HCNT2
call set_stcnt_from_hcnt
mvi 0x3d call dma # SCSIEN|SDMAEN|HDMAEN|
# DIRECTION|FIFORESET
jmp ITloop
/*
* Status phase. Wait for the data byte to appear, then read it
* and store it into the SCB.
*/
p_status:
mvi SCB_TARGET_STATUS call inb_first
jmp mesgin_done
/*
* Message out phase. If there is not an active message, but the target
* took us into this phase anyway, build a no-op message and send it.
*/
p_mesgout:
test MSG_LEN, 0xff jnz p_mesgout_start
mvi MSG_NOOP call mk_mesg /* build NOP message */
p_mesgout_start:
/*
* Set up automatic PIO transfer from MSG0. Bit 3 in
* SXFRCTL0 (SPIOEN) is already on.
*/
mvi SINDEX,MSG0
mov DINDEX,MSG_LEN
/*
* When target asks for a byte, drop ATN if it's the last one in
* the message. Otherwise, keep going until the message is exhausted.
*
* Keep an eye out for a phase change, in case the target issues
* a MESSAGE REJECT.
*/
p_mesgout_loop:
test SSTAT1,PHASEMIS jnz p_mesgout_phasemis
test SSTAT0,SPIORDY jz p_mesgout_loop
test SSTAT1,PHASEMIS jnz p_mesgout_phasemis
cmp DINDEX,1 jne p_mesgout_outb /* last byte? */
mvi CLRSINT1,CLRATNO /* drop ATN */
p_mesgout_outb:
dec DINDEX
or CLRSINT0, CLRSPIORDY
mov SCSIDATL,SINDIR
p_mesgout4:
test DINDEX,0xff jnz p_mesgout_loop
/*
* If the next bus phase after ATN drops is a message out, it means
* that the target is requesting that the last message(s) be resent.
*/
p_mesgout_snoop:
test SSTAT1,BUSFREE jnz p_mesgout_done
test SSTAT1,REQINIT jz p_mesgout_snoop
test SSTAT1,PHASEMIS jnz p_mesgout_done
or SCSISIGO,ATNO /* turn on ATNO */
jmp ITloop
p_mesgout_phasemis:
mvi CLRSINT1,CLRATNO /* Be sure to turn ATNO off */
p_mesgout_done:
clr MSG_LEN /* no active msg */
jmp ITloop
/*
* Message in phase. Bytes are read using Automatic PIO mode.
*/
p_mesgin:
mvi A call inb_first /* read the 1st message byte */
mov REJBYTE,A /* save it for the driver */
test A,MSG_IDENTIFYFLAG jnz mesgin_identify
cmp A,MSG_DISCONNECT je mesgin_disconnect
cmp A,MSG_SAVEDATAPOINTER je mesgin_sdptrs
cmp ALLZEROS,A je mesgin_complete
cmp A,MSG_RESTOREPOINTERS je mesgin_rdptrs
cmp A,MSG_EXTENDED je mesgin_extended
cmp A,MSG_MESSAGE_REJECT je mesgin_reject
rej_mesgin:
/*
* We have no idea what this message in is, so we issue a message reject
* and hope for the best. In any case, rejection should be a rare
* occurrence - signal the driver when it happens.
*/
or SCSISIGO,ATNO /* turn on ATNO */
mvi INTSTAT,SEND_REJECT /* let driver know */
mvi MSG_MESSAGE_REJECT call mk_mesg
mesgin_done:
call inb_last /*ack & turn auto PIO back on*/
jmp ITloop
mesgin_complete:
/*
* We got a "command complete" message, so put the SCB_TAG into the QOUTFIFO,
* and trigger a completion interrupt. Before doing so, check to see if there
* is a residual or the status byte is something other than NO_ERROR (0). In
* either of these conditions, we upload the SCB back to the host so it can
* process this information. In the case of a non zero status byte, we
* additionally interrupt the kernel driver synchronously, allowing it to
* decide if sense should be retrieved. If the kernel driver wishes to request
* sense, it will fill the kernel SCB with a request sense command and set
* RETURN_1 to SEND_SENSE. If RETURN_1 is set to SEND_SENSE we redownload
* the SCB, and process it as the next command by adding it to the waiting list.
* If the kernel driver does not wish to request sense, it need only clear
* RETURN_1, and the command is allowed to complete normally. We don't bother
* to post to the QOUTFIFO in the error cases since it would require extra
* work in the kernel driver to ensure that the entry was removed before the
* command complete code tried processing it.
*/
/*
* First check for residuals
*/
test SCB_RESID_SGCNT,0xff jnz upload_scb
test SCB_TARGET_STATUS,0xff jz status_ok /* Good Status? */
upload_scb:
mvi DMAPARAMS, 0x9 /* HDMAEN | FIFORESET*/
mov SCB_TAG call dma_scb
check_status:
test SCB_TARGET_STATUS,0xff jz status_ok /* Just a residual? */
mvi INTSTAT,BAD_STATUS /* let driver know */
cmp RETURN_1, SEND_SENSE jne status_ok
/* This SCB becomes the next to execute as it will retrieve sense */
mov SCB_LINKED_NEXT, SCB_TAG
jmp dma_next_scb
status_ok:
/* First, mark this target as free. */
test SCB_CONTROL,TAG_ENB jnz test_immediate /*
* Tagged commands
* don't busy the
* target.
*/
mov SAVED_SCBPTR, SCBPTR
mov SAVED_LINKPTR, SCB_LINKED_NEXT
mov SCB_TCL call index_untagged_scb
mov DINDIR, SAVED_LINKPTR
mov SCBPTR, SAVED_SCBPTR
test_immediate:
test SCB_CMDLEN,0xff jnz complete /* Immediate message complete */
/*
* Pause the sequencer until the driver gets around to handling the command
* complete. This is so that any action that might require carefull timing
* with the completion of this command can occur.
*/
mvi INTSTAT,IMMEDDONE
jmp dma_next_scb
complete:
/* Post the SCB and issue an interrupt */
mov QOUTFIFO,SCB_TAG
mvi INTSTAT,CMDCMPLT
dma_next_scb:
cmp SCB_LINKED_NEXT, SCB_LIST_NULL je mesgin_done
test FLAGS, PAGESCBS jnz dma_next_scb2
/* Only DMA on top of ourselves if we are the SCB to download */
mov A, SCB_LINKED_NEXT
cmp SCB_TAG, A je dma_next_scb2
mov SCBPTR, A
jmp add_to_waiting_list
dma_next_scb2:
mvi DMAPARAMS, 0xd /* HDMAEN|DIRECTION|FIFORESET */
mov SCB_LINKED_NEXT call dma_scb
add_to_waiting_list:
mov SCB_NEXT,WAITING_SCBH
mov WAITING_SCBH, SCBPTR
or FLAGS, SCB_LISTED
jmp mesgin_done
/*
* Is it an extended message? Copy the message to our message buffer and
* notify the host. The host will tell us whether to reject this message,
* respond to it with the message that the host placed in our message buffer,
* or simply to do nothing.
*/
mesgin_extended:
mvi MSGIN_EXT_LEN call inb_next
mov A, MSGIN_EXT_LEN
mesgin_extended_loop:
mov DINDEX call inb_next
dec A
cmp DINDEX, MSGIN_EXT_LASTBYTE jne mesgin_extended_loop_test
dec DINDEX /* dump by repeatedly filling the last byte */
mesgin_extended_loop_test:
test A, 0xFF jnz mesgin_extended_loop
mesgin_extended_intr:
mvi INTSTAT,EXTENDED_MSG /* let driver know */
cmp RETURN_1,SEND_REJ je rej_mesgin
cmp RETURN_1,SEND_MSG jne mesgin_done
/* The kernel has setup a message to be sent */
or SCSISIGO,ATNO /* turn on ATNO */
jmp mesgin_done
/*
* Is it a disconnect message? Set a flag in the SCB to remind us
* and await the bus going free.
*/
mesgin_disconnect:
or SCB_CONTROL,DISCONNECTED
test FLAGS, PAGESCBS jz mesgin_done
call add_scb_to_disc_list
or FLAGS, SCB_LISTED
jmp mesgin_done
/*
* Save data pointers message:
* Copying RAM values back to SCB, for Save Data Pointers message, but
* only if we've actually been into a data phase to change them. This
* protects against bogus data in scratch ram and the residual counts
* since they are only initialized when we go into data_in or data_out.
*/
mesgin_sdptrs:
test FLAGS, DPHASE jz mesgin_done
mov SCB_SGCOUNT,SG_COUNT
/* The SCB SGPTR becomes the next one we'll download */
mvi DINDEX, SCB_SGPTR
mvi SG_NEXT0 call bcopy_4
/* The SCB DATAPTR0 becomes the current SHADDR */
mvi DINDEX, SCB_DATAPTR0
mvi SHADDR0 call bcopy_4
/*
* Use the residual number since STCNT is corrupted by any message transfer.
*/
mvi SCB_RESID_DCNT0 call bcopy_3
jmp mesgin_done
/*
* Restore pointers message? Data pointers are recopied from the
* SCB anytime we enter a data phase for the first time, so all
* we need to do is clear the DPHASE flag and let the data phase
* code do the rest.
*/
mesgin_rdptrs:
and FLAGS,0xef /*
* !DPHASE we'll reload them
* the next time through
*/
jmp mesgin_done
/*
* Identify message? For a reconnecting target, this tells us the lun
* that the reconnection is for - find the correct SCB and switch to it,
* clearing the "disconnected" bit so we don't "find" it by accident later.
*/
mesgin_identify:
test A,0x78 jnz rej_mesgin /*!DiscPriv|!LUNTAR|!Reserved*/
and A,0x07 /* lun in lower three bits */
or SAVED_TCL,A /* SAVED_TCL should be complete now */
call inb_last /* ACK */
/*
* Here we "snoop" the bus looking for a SIMPLE QUEUE TAG message.
* If we get one, we use the tag returned to switch to find the proper
* SCB. With SCB paging, this requires using findSCB for both tagged
* and non-tagged transactions since the SCB may exist in any slot.
* If we're not using SCB paging, we can use the tag as the direct
* index to the SCB.
*/
mvi ARG_1,SCB_LIST_NULL /* Default to no-tag */
snoop_tag_loop:
test SSTAT1,BUSFREE jnz use_findSCB
test SSTAT1,REQINIT jz snoop_tag_loop
test SSTAT1,PHASEMIS jnz use_findSCB
mvi A call inb_first
cmp A,MSG_SIMPLE_Q_TAG jne use_findSCB
get_tag:
or FLAGS, TAGGED_SCB
mvi ARG_1 call inb_next /* tag value */
/*
* See if the tag is in range. The tag is < SCBCOUNT if we add
* the complement of SCBCOUNT to the incomming tag and there is
* no carry.
*/
mov A,COMP_SCBCOUNT
add SINDEX,A,ARG_1
jc send_abort_msg
/*
* Ensure that the SCB the tag points to is for an SCB transaction
* to the reconnecting target.
*/
test FLAGS, PAGESCBS jz index_by_tag
use_findSCB:
mov ALLZEROS call findSCB /* Have to search */
cmp SINDEX, SCB_LIST_NULL, je not_found
setup_SCB:
and SCB_CONTROL,0xfb /* clear disconnect bit in SCB */
or FLAGS,IDENTIFY_SEEN /* make note of IDENTIFY */
test SCB_CONTROL,TAG_ENB jnz mesgin_done /* Ack Tag */
jmp ITloop
index_by_tag:
mov SCBPTR,ARG_1
mov A, SAVED_TCL
cmp SCB_TCL,A jne send_abort_msg
test SCB_CONTROL,TAG_ENB jz send_abort_msg
jmp setup_SCB
not_found:
mvi INTSTAT, NO_MATCH
send_abort_msg:
or SCSISIGO,ATNO /* turn on ATNO */
test FLAGS, TAGGED_SCB jnz abort_tag_msg
mvi MSG_ABORT call mk_mesg
jmp mesgin_done
abort_tag_msg:
mvi MSG_ABORT_TAG call mk_mesg /* ABORT TAG message */
jmp mesgin_done
/*
* Message reject? Let the kernel driver handle this. If we have an
* outstanding WDTR or SDTR negotiation, assume that it's a response from
* the target selecting 8bit or asynchronous transfer, otherwise just ignore
* it since we have no clue what it pertains to.
*/
mesgin_reject:
mvi INTSTAT, REJECT_MSG
jmp mesgin_done
/*
* [ ADD MORE MESSAGE HANDLING HERE ]
*/
/*
* Bus free phase. It might be useful to interrupt the device
* driver if we aren't expecting this. For now, make sure that
* ATN isn't being asserted and look for a new command.
*/
p_busfree:
mvi CLRSINT1,CLRATNO
clr LASTPHASE
/*
* if this is an immediate command, perform a psuedo command complete to
* notify the driver.
*/
test SCB_CMDLEN,0xff jz status_ok
test FLAGS, SCB_LISTED jnz start
/*
* This SCB didn't disconnect or have a command complete,
* so put it on the free queue. It was probably the
* result of an abort of some sort. This prevents us
* from "leaking" SCBs.
*/
call add_scb_to_free_list
jmp start
/*
* Locking the driver out, build a one-byte message passed in SINDEX
* if there is no active message already. SINDEX is returned intact.
*/
mk_mesg:
mvi SEQCTL,0x50 /* PAUSEDIS|FASTMODE */
test MSG_LEN,0xff jz mk_mesg1 /* Should always succeed */
/*
* Hmmm. For some reason the mesg buffer is in use.
* Tell the driver. It should look at SINDEX to find
* out what we wanted to use the buffer for and resolve
* the conflict.
*/
mvi SEQCTL,0x10 /* !PAUSEDIS|FASTMODE */
mvi INTSTAT,MSG_BUFFER_BUSY
mk_mesg1:
mvi MSG_LEN,1 /* length = 1 */
mov MSG0,SINDEX /* 1-byte message */
mvi SEQCTL,0x10 ret /* !PAUSEDIS|FASTMODE */
/*
* Functions to read data in Automatic PIO mode.
*
* According to Adaptec's documentation, an ACK is not sent on input from
* the target until SCSIDATL is read from. So we wait until SCSIDATL is
* latched (the usual way), then read the data byte directly off the bus
* using SCSIBUSL. When we have pulled the ATN line, or we just want to
* acknowledge the byte, then we do a dummy read from SCISDATL. The SCSI
* spec guarantees that the target will hold the data byte on the bus until
* we send our ACK.
*
* The assumption here is that these are called in a particular sequence,
* and that REQ is already set when inb_first is called. inb_{first,next}
* use the same calling convention as inb.
*/
inb_next:
or CLRSINT0, CLRSPIORDY
mov NONE,SCSIDATL /*dummy read from latch to ACK*/
inb_next_wait:
test SSTAT1,PHASEMIS jnz mesgin_phasemis
test SSTAT0,SPIORDY jz inb_next_wait /* wait for next byte */
inb_first:
mov DINDEX,SINDEX
test SSTAT1,PHASEMIS jnz mesgin_phasemis
mov DINDIR,SCSIBUSL ret /*read byte directly from bus*/
inb_last:
mov NONE,SCSIDATL ret /*dummy read from latch to ACK*/
mesgin_phasemis:
/*
* We expected to receive another byte, but the target changed phase
*/
mvi INTSTAT, MSGIN_PHASEMIS
jmp ITloop
/*
* DMA data transfer. HADDR and HCNT must be loaded first, and
* SINDEX should contain the value to load DFCNTRL with - 0x3d for
* host->scsi, or 0x39 for scsi->host. The SCSI channel is cleared
* during initialization.
*/
dma:
mov DFCNTRL,SINDEX
dma1:
test SSTAT0,DMADONE jnz dma3
test SSTAT1,PHASEMIS jz dma1 /* ie. underrun */
/*
* We will be "done" DMAing when the transfer count goes to zero, or
* the target changes the phase (in light of this, it makes sense that
* the DMA circuitry doesn't ACK when PHASEMIS is active). If we are
* doing a SCSI->Host transfer, the data FIFO should be flushed auto-
* magically on STCNT=0 or a phase change, so just wait for FIFO empty
* status.
*/
dma3:
test SINDEX,DIRECTION jnz dma5
dma4:
test DFSTATUS,FIFOEMP jz dma4
/*
* Now shut the DMA enables off and make sure that the DMA enables are
* actually off first lest we get an ILLSADDR.
*/
dma5:
/* disable DMA, but maintain WIDEODD */
and DFCNTRL,WIDEODD
dma6:
test DFCNTRL,0x38 jnz dma6 /* SCSIENACK|SDMAENACK|HDMAENACK */
return:
ret
/*
* Common SCSI initialization for selection and reselection. Expects
* the target SCSI ID to be in the upper four bits of SINDEX, and A's
* contents are stomped on return.
*/
initialize_scsiid:
and SINDEX,0xf0 /* Get target ID */
mov SAVED_TCL, SINDEX /* Update the target portion of this */
and A,0x0f,SCSIID
or SINDEX,A
mov SCSIID,SINDEX ret
/*
* Assert that if we've been reselected, then we've seen an IDENTIFY
* message.
*/
assert:
test FLAGS,RESELECTED jz return /* reselected? */
test FLAGS,IDENTIFY_SEEN jnz return /* seen IDENTIFY? */
mvi INTSTAT,NO_IDENT ret /* no - tell the kernel */
/*
* Locate a disconnected SCB either by SAVED_TCL (ARG_1 is SCB_LIST_NULL)
* or by the SCBIDn ARG_1. The search begins at the SCB index passed in
* via SINDEX. If the SCB cannot be found, SINDEX will be SCB_LIST_NULL,
* otherwise, SCBPTR is set to the proper SCB.
*/
findSCB:
mov SCBPTR,SINDEX /* switch to next SCB */
test SCB_CONTROL,DISCONNECTED jz findSCB1 /*should be disconnected*/
cmp ARG_1, SCB_LIST_NULL jne findBySCBID
mov A, SAVED_TCL
cmp SCB_TCL,A je foundSCB /* target ID/channel/lun match? */
findSCB1:
inc SINDEX
mov A,SCBCOUNT
cmp SINDEX,A jne findSCB
/*
* We didn't find it. If we're paging, pull an SCB and DMA down the
* one we want. If we aren't paging or the SCB we dma down has the
* abort flag set, return not found.
*/
test FLAGS, PAGESCBS jz find_error
call get_free_or_disc_scb
cmp ARG_1, SCB_LIST_NULL jne find_dma_scb
mov SAVED_TCL call index_untagged_scb
mov ARG_1, SINDIR /* SCBID of SCB to fetch */
find_dma_scb:
mvi DMAPARAMS, 0xd /* HDMAEN|DIRECTION|FIFORESET */
mov ARG_1 call dma_scb
test SCB_CONTROL, ABORT_SCB jz return
find_error:
mvi SINDEX, SCB_LIST_NULL ret
findBySCBID:
mov A, ARG_1 /* Tag passed in ARG_1 */
cmp SCB_TAG,A jne findSCB1 /* Found it? */
foundSCB:
test SCB_CONTROL, ABORT_SCB jnz find_error
test FLAGS,PAGESCBS jz return
rem_scb_from_disc_list:
/* Remove this SCB from the disconnection list */
cmp SCB_NEXT,SCB_LIST_NULL je unlink_prev
mov SAVED_LINKPTR, SCB_PREV
mov SCBPTR, SCB_NEXT
mov SCB_PREV, SAVED_LINKPTR
mov SCBPTR, SINDEX
unlink_prev:
cmp SCB_PREV,SCB_LIST_NULL je rHead/* At the head of the list */
mov SAVED_LINKPTR, SCB_NEXT
mov SCBPTR, SCB_PREV
mov SCB_NEXT, SAVED_LINKPTR
mov SCBPTR, SINDEX ret
rHead:
mov DISCONNECTED_SCBH,SCB_NEXT ret
set_stcnt_from_hcnt:
mov STCNT0, HCNT0
mov STCNT1, HCNT1
mov STCNT2, HCNT2 ret
bcopy_7:
mov DINDIR, SINDIR
mov DINDIR, SINDIR
bcopy_5:
mov DINDIR, SINDIR
bcopy_4:
mov DINDIR, SINDIR
bcopy_3:
mov DINDIR, SINDIR
mov DINDIR, SINDIR
mov DINDIR, SINDIR ret
dma_scb:
/*
* SCB index is in SINDEX. Determine the physical address in
* the host where this SCB is located and load HADDR with it.
*/
shr DINDEX, SINDEX, 3
shl A, SINDEX, 5
add HADDR0, A, HSCB_ADDR0
mov A, DINDEX
adc HADDR1, A, HSCB_ADDR1
clr A
adc HADDR2, A, HSCB_ADDR2
adc HADDR3, A, HSCB_ADDR3
/* Setup Count */
mvi HCNT0, 28
clr HCNT1
clr HCNT2
mov DFCNTRL, DMAPARAMS
test DMAPARAMS, DIRECTION jnz dma_scb_fromhost
/* Fill it with the SCB data */
call copy_scb_tofifo
mvi DFCNTRL, 0xa /* HDMAEN | FIFOFLUSH */
dma_scb_fromhost:
call dma_finish
/* If we were putting the SCB, we are done */
test DMAPARAMS, DIRECTION jz return
mvi SCBARRAY call dfdat_in_7
call dfdat_in_7_continued
call dfdat_in_7_continued
jmp dfdat_in_7_continued
dfdat_in_7:
mov DINDEX,SINDEX
dfdat_in_7_continued:
mov DINDIR,DFDAT
mov DINDIR,DFDAT
mov DINDIR,DFDAT
mov DINDIR,DFDAT
mov DINDIR,DFDAT
mov DINDIR,DFDAT
mov DINDIR,DFDAT ret
copy_scb_tofifo:
mvi SCBARRAY call dfdat_out_7
call dfdat_out_7
call dfdat_out_7
dfdat_out_7:
mov DFDAT,SINDIR
mov DFDAT,SINDIR
mov DFDAT,SINDIR
mov DFDAT,SINDIR
mov DFDAT,SINDIR
mov DFDAT,SINDIR
mov DFDAT,SINDIR ret
/*
* Wait for DMA from host memory to data FIFO to complete, then disable
* DMA and wait for it to acknowledge that it's off.
*/
dma_finish:
test DFSTATUS,HDONE jz dma_finish
/* Turn off DMA preserving WIDEODD */
and DFCNTRL,WIDEODD
dma_finish2:
test DFCNTRL,HDMAENACK jnz dma_finish2
ret
index_untagged_scb:
mov DINDEX, SINDEX
shr DINDEX, 4
and DINDEX, 0x03 /* Bottom two bits of tid */
add DINDEX, SCB_ACTIVE0
shr A, SINDEX, 6 /* Target ID divided by 4 */
test SCB_TCL, SELBUSB jz index_untagged_scb2
or A, 2 /* Add 2 positions */
index_untagged_scb2:
mov SCBPTR, A /*
* Select the SCB with this
* target's information.
*/
mov SINDEX, DINDEX ret
get_free_or_disc_scb:
mov SINDEX, ALLZEROS
cmp FREE_SCBH, SCB_LIST_NULL jne get_free_scb
cmp DISCONNECTED_SCBH, SCB_LIST_NULL je return_error
mov SCBPTR, DISCONNECTED_SCBH
/*
* If we are starting a new transaction, we have to ensure that
* there is at least one SCB left in case a reselection wins out.
*/
test FLAGS, RESELECTED jnz dequeue_disc_scb
cmp SCB_NEXT, SCB_LIST_NULL je return_error
dequeue_disc_scb:
/*
* If we have a residual, then we are in the middle of some I/O
* and we have to send this SCB back up to the kernel so that the
* saved data pointers and residual information isn't lost.
*/
test SCB_RESID_SGCNT,0xff jz unlink_disc_scb
mvi DMAPARAMS, 0x9 /* HDMAEN | FIFORESET*/
mov SCB_TAG call dma_scb
unlink_disc_scb:
call rem_scb_from_disc_list
ret
get_free_scb:
/*
* If we are starting a new transaction, we have to ensure that
* there is at least one SCB left in case a reselection wins out.
*/
test FLAGS, RESELECTED jnz dequeue_free_scb
cmp SCB_NEXT, SCB_LIST_NULL jne dequeue_free_scb
cmp DISCONNECTED_SCBH, SCB_LIST_NULL je return_error
dequeue_free_scb:
mov SCBPTR, FREE_SCBH
mov FREE_SCBH, SCB_NEXT ret
return_error:
mvi SINDEX, SCB_LIST_NULL ret
add_scb_to_free_list:
mov SCB_NEXT, FREE_SCBH
mov FREE_SCBH, SCBPTR ret
add_scb_to_disc_list:
/*
* Link this SCB into the DISCONNECTED list. This list holds the
* candidates for paging out an SCB if one is needed for a new command.
* Modifying the disconnected list is a critical(pause dissabled) section.
*/
mvi SCB_PREV, SCB_LIST_NULL
mov SCB_NEXT, DISCONNECTED_SCBH
mov DISCONNECTED_SCBH, SCBPTR
cmp SCB_NEXT,SCB_LIST_NULL je return
mov SCBPTR,SCB_NEXT
mov SCB_PREV,DISCONNECTED_SCBH
mov SCBPTR,DISCONNECTED_SCBH ret