freebsd-dev/sys/dev/ath/if_ath_tx.c

4511 lines
122 KiB
C

/*-
* Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer,
* without modification.
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
* similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
* redistribution must be conditioned upon including a substantially
* similar Disclaimer requirement for further binary redistribution.
*
* NO WARRANTY
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
* AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
* THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
* OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
* IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGES.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* Driver for the Atheros Wireless LAN controller.
*
* This software is derived from work of Atsushi Onoe; his contribution
* is greatly appreciated.
*/
#include "opt_inet.h"
#include "opt_ath.h"
#include "opt_wlan.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sysctl.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/errno.h>
#include <sys/callout.h>
#include <sys/bus.h>
#include <sys/endian.h>
#include <sys/kthread.h>
#include <sys/taskqueue.h>
#include <sys/priv.h>
#include <machine/bus.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_llc.h>
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_regdomain.h>
#ifdef IEEE80211_SUPPORT_SUPERG
#include <net80211/ieee80211_superg.h>
#endif
#ifdef IEEE80211_SUPPORT_TDMA
#include <net80211/ieee80211_tdma.h>
#endif
#include <net80211/ieee80211_ht.h>
#include <net/bpf.h>
#ifdef INET
#include <netinet/in.h>
#include <netinet/if_ether.h>
#endif
#include <dev/ath/if_athvar.h>
#include <dev/ath/ath_hal/ah_devid.h> /* XXX for softled */
#include <dev/ath/ath_hal/ah_diagcodes.h>
#include <dev/ath/if_ath_debug.h>
#ifdef ATH_TX99_DIAG
#include <dev/ath/ath_tx99/ath_tx99.h>
#endif
#include <dev/ath/if_ath_misc.h>
#include <dev/ath/if_ath_tx.h>
#include <dev/ath/if_ath_tx_ht.h>
/*
* How many retries to perform in software
*/
#define SWMAX_RETRIES 10
static int ath_tx_ampdu_pending(struct ath_softc *sc, struct ath_node *an,
int tid);
static int ath_tx_ampdu_running(struct ath_softc *sc, struct ath_node *an,
int tid);
static int ath_tx_action_frame_override_queue(struct ath_softc *sc,
struct ieee80211_node *ni, struct mbuf *m0, int *tid);
static int ath_tx_seqno_required(struct ath_softc *sc,
struct ieee80211_node *ni, struct ath_buf *bf, struct mbuf *m0);
/*
* Whether to use the 11n rate scenario functions or not
*/
static inline int
ath_tx_is_11n(struct ath_softc *sc)
{
return (sc->sc_ah->ah_magic == 0x20065416);
}
/*
* Obtain the current TID from the given frame.
*
* Non-QoS frames need to go into TID 16 (IEEE80211_NONQOS_TID.)
* This has implications for which AC/priority the packet is placed
* in.
*/
static int
ath_tx_gettid(struct ath_softc *sc, const struct mbuf *m0)
{
const struct ieee80211_frame *wh;
int pri = M_WME_GETAC(m0);
wh = mtod(m0, const struct ieee80211_frame *);
if (! IEEE80211_QOS_HAS_SEQ(wh))
return IEEE80211_NONQOS_TID;
else
return WME_AC_TO_TID(pri);
}
/*
* Determine what the correct AC queue for the given frame
* should be.
*
* This code assumes that the TIDs map consistently to
* the underlying hardware (or software) ath_txq.
* Since the sender may try to set an AC which is
* arbitrary, non-QoS TIDs may end up being put on
* completely different ACs. There's no way to put a
* TID into multiple ath_txq's for scheduling, so
* for now we override the AC/TXQ selection and set
* non-QOS TID frames into the BE queue.
*
* This may be completely incorrect - specifically,
* some management frames may end up out of order
* compared to the QoS traffic they're controlling.
* I'll look into this later.
*/
static int
ath_tx_getac(struct ath_softc *sc, const struct mbuf *m0)
{
const struct ieee80211_frame *wh;
int pri = M_WME_GETAC(m0);
wh = mtod(m0, const struct ieee80211_frame *);
if (IEEE80211_QOS_HAS_SEQ(wh))
return pri;
return WME_AC_BE;
}
void
ath_txfrag_cleanup(struct ath_softc *sc,
ath_bufhead *frags, struct ieee80211_node *ni)
{
struct ath_buf *bf, *next;
ATH_TXBUF_LOCK_ASSERT(sc);
TAILQ_FOREACH_SAFE(bf, frags, bf_list, next) {
/* NB: bf assumed clean */
TAILQ_REMOVE(frags, bf, bf_list);
TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
ieee80211_node_decref(ni);
}
}
/*
* Setup xmit of a fragmented frame. Allocate a buffer
* for each frag and bump the node reference count to
* reflect the held reference to be setup by ath_tx_start.
*/
int
ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags,
struct mbuf *m0, struct ieee80211_node *ni)
{
struct mbuf *m;
struct ath_buf *bf;
ATH_TXBUF_LOCK(sc);
for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) {
bf = _ath_getbuf_locked(sc);
if (bf == NULL) { /* out of buffers, cleanup */
device_printf(sc->sc_dev, "%s: no buffer?\n",
__func__);
ath_txfrag_cleanup(sc, frags, ni);
break;
}
ieee80211_node_incref(ni);
TAILQ_INSERT_TAIL(frags, bf, bf_list);
}
ATH_TXBUF_UNLOCK(sc);
return !TAILQ_EMPTY(frags);
}
/*
* Reclaim mbuf resources. For fragmented frames we
* need to claim each frag chained with m_nextpkt.
*/
void
ath_freetx(struct mbuf *m)
{
struct mbuf *next;
do {
next = m->m_nextpkt;
m->m_nextpkt = NULL;
m_freem(m);
} while ((m = next) != NULL);
}
static int
ath_tx_dmasetup(struct ath_softc *sc, struct ath_buf *bf, struct mbuf *m0)
{
struct mbuf *m;
int error;
/*
* Load the DMA map so any coalescing is done. This
* also calculates the number of descriptors we need.
*/
error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
bf->bf_segs, &bf->bf_nseg,
BUS_DMA_NOWAIT);
if (error == EFBIG) {
/* XXX packet requires too many descriptors */
bf->bf_nseg = ATH_TXDESC+1;
} else if (error != 0) {
sc->sc_stats.ast_tx_busdma++;
ath_freetx(m0);
return error;
}
/*
* Discard null packets and check for packets that
* require too many TX descriptors. We try to convert
* the latter to a cluster.
*/
if (bf->bf_nseg > ATH_TXDESC) { /* too many desc's, linearize */
sc->sc_stats.ast_tx_linear++;
m = m_collapse(m0, M_DONTWAIT, ATH_TXDESC);
if (m == NULL) {
ath_freetx(m0);
sc->sc_stats.ast_tx_nombuf++;
return ENOMEM;
}
m0 = m;
error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
bf->bf_segs, &bf->bf_nseg,
BUS_DMA_NOWAIT);
if (error != 0) {
sc->sc_stats.ast_tx_busdma++;
ath_freetx(m0);
return error;
}
KASSERT(bf->bf_nseg <= ATH_TXDESC,
("too many segments after defrag; nseg %u", bf->bf_nseg));
} else if (bf->bf_nseg == 0) { /* null packet, discard */
sc->sc_stats.ast_tx_nodata++;
ath_freetx(m0);
return EIO;
}
DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n",
__func__, m0, m0->m_pkthdr.len);
bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
bf->bf_m = m0;
return 0;
}
/*
* Chain together segments+descriptors for a non-11n frame.
*/
static void
ath_tx_chaindesclist(struct ath_softc *sc, struct ath_buf *bf)
{
struct ath_hal *ah = sc->sc_ah;
struct ath_desc *ds, *ds0;
int i;
/*
* Fillin the remainder of the descriptor info.
*/
ds0 = ds = bf->bf_desc;
for (i = 0; i < bf->bf_nseg; i++, ds++) {
ds->ds_data = bf->bf_segs[i].ds_addr;
if (i == bf->bf_nseg - 1)
ds->ds_link = 0;
else
ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
ath_hal_filltxdesc(ah, ds
, bf->bf_segs[i].ds_len /* segment length */
, i == 0 /* first segment */
, i == bf->bf_nseg - 1 /* last segment */
, ds0 /* first descriptor */
);
DPRINTF(sc, ATH_DEBUG_XMIT,
"%s: %d: %08x %08x %08x %08x %08x %08x\n",
__func__, i, ds->ds_link, ds->ds_data,
ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
bf->bf_lastds = ds;
}
bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
}
/*
* Fill in the descriptor list for a aggregate subframe.
*
* The subframe is returned with the ds_link field in the last subframe
* pointing to 0.
*/
static void
ath_tx_chaindesclist_subframe(struct ath_softc *sc, struct ath_buf *bf)
{
struct ath_hal *ah = sc->sc_ah;
struct ath_desc *ds, *ds0;
int i;
ds0 = ds = bf->bf_desc;
/*
* There's no need to call ath_hal_setupfirsttxdesc here;
* That's only going to occur for the first frame in an aggregate.
*/
for (i = 0; i < bf->bf_nseg; i++, ds++) {
ds->ds_data = bf->bf_segs[i].ds_addr;
if (i == bf->bf_nseg - 1)
ds->ds_link = 0;
else
ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
/*
* This performs the setup for an aggregate frame.
* This includes enabling the aggregate flags if needed.
*/
ath_hal_chaintxdesc(ah, ds,
bf->bf_state.bfs_pktlen,
bf->bf_state.bfs_hdrlen,
HAL_PKT_TYPE_AMPDU, /* forces aggregate bits to be set */
bf->bf_state.bfs_keyix,
0, /* cipher, calculated from keyix */
bf->bf_state.bfs_ndelim,
bf->bf_segs[i].ds_len, /* segment length */
i == 0, /* first segment */
i == bf->bf_nseg - 1, /* last segment */
bf->bf_next == NULL /* last sub-frame in aggr */
);
DPRINTF(sc, ATH_DEBUG_XMIT,
"%s: %d: %08x %08x %08x %08x %08x %08x\n",
__func__, i, ds->ds_link, ds->ds_data,
ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
bf->bf_lastds = ds;
bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
BUS_DMASYNC_PREWRITE);
}
}
/*
* Setup segments+descriptors for an 11n aggregate.
* bf_first is the first buffer in the aggregate.
* The descriptor list must already been linked together using
* bf->bf_next.
*/
static void
ath_tx_setds_11n(struct ath_softc *sc, struct ath_buf *bf_first)
{
struct ath_buf *bf, *bf_prev = NULL;
DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: nframes=%d, al=%d\n",
__func__, bf_first->bf_state.bfs_nframes,
bf_first->bf_state.bfs_al);
/*
* Setup all descriptors of all subframes.
*/
bf = bf_first;
while (bf != NULL) {
DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
"%s: bf=%p, nseg=%d, pktlen=%d, seqno=%d\n",
__func__, bf, bf->bf_nseg, bf->bf_state.bfs_pktlen,
SEQNO(bf->bf_state.bfs_seqno));
/* Sub-frame setup */
ath_tx_chaindesclist_subframe(sc, bf);
/*
* Link the last descriptor of the previous frame
* to the beginning descriptor of this frame.
*/
if (bf_prev != NULL)
bf_prev->bf_lastds->ds_link = bf->bf_daddr;
/* Save a copy so we can link the next descriptor in */
bf_prev = bf;
bf = bf->bf_next;
}
/*
* Setup first descriptor of first frame.
* chaintxdesc() overwrites the descriptor entries;
* setupfirsttxdesc() merges in things.
* Otherwise various fields aren't set correctly (eg flags).
*/
ath_hal_setupfirsttxdesc(sc->sc_ah,
bf_first->bf_desc,
bf_first->bf_state.bfs_al,
bf_first->bf_state.bfs_txflags | HAL_TXDESC_INTREQ,
bf_first->bf_state.bfs_txpower,
bf_first->bf_state.bfs_txrate0,
bf_first->bf_state.bfs_try0,
bf_first->bf_state.bfs_txantenna,
bf_first->bf_state.bfs_ctsrate,
bf_first->bf_state.bfs_ctsduration);
/*
* Setup the last descriptor in the list.
* bf_prev points to the last; bf is NULL here.
*/
ath_hal_setuplasttxdesc(sc->sc_ah, bf_prev->bf_desc,
bf_first->bf_desc);
/*
* Set the first descriptor bf_lastds field to point to
* the last descriptor in the last subframe, that's where
* the status update will occur.
*/
bf_first->bf_lastds = bf_prev->bf_lastds;
/*
* And bf_last in the first descriptor points to the end of
* the aggregate list.
*/
bf_first->bf_last = bf_prev;
DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: end\n", __func__);
}
static void
ath_tx_handoff_mcast(struct ath_softc *sc, struct ath_txq *txq,
struct ath_buf *bf)
{
ATH_TXQ_LOCK_ASSERT(txq);
KASSERT((bf->bf_flags & ATH_BUF_BUSY) == 0,
("%s: busy status 0x%x", __func__, bf->bf_flags));
if (txq->axq_link != NULL) {
struct ath_buf *last = ATH_TXQ_LAST(txq, axq_q_s);
struct ieee80211_frame *wh;
/* mark previous frame */
wh = mtod(last->bf_m, struct ieee80211_frame *);
wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
bus_dmamap_sync(sc->sc_dmat, last->bf_dmamap,
BUS_DMASYNC_PREWRITE);
/* link descriptor */
*txq->axq_link = bf->bf_daddr;
}
ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
txq->axq_link = &bf->bf_lastds->ds_link;
}
/*
* Hand-off packet to a hardware queue.
*/
static void
ath_tx_handoff_hw(struct ath_softc *sc, struct ath_txq *txq,
struct ath_buf *bf)
{
struct ath_hal *ah = sc->sc_ah;
/*
* Insert the frame on the outbound list and pass it on
* to the hardware. Multicast frames buffered for power
* save stations and transmit from the CAB queue are stored
* on a s/w only queue and loaded on to the CAB queue in
* the SWBA handler since frames only go out on DTIM and
* to avoid possible races.
*/
ATH_TXQ_LOCK_ASSERT(txq);
KASSERT((bf->bf_flags & ATH_BUF_BUSY) == 0,
("%s: busy status 0x%x", __func__, bf->bf_flags));
KASSERT(txq->axq_qnum != ATH_TXQ_SWQ,
("ath_tx_handoff_hw called for mcast queue"));
#if 0
/*
* This causes a LOR. Find out where the PCU lock is being
* held whilst the TXQ lock is grabbed - that shouldn't
* be occuring.
*/
ATH_PCU_LOCK(sc);
if (sc->sc_inreset_cnt) {
ATH_PCU_UNLOCK(sc);
DPRINTF(sc, ATH_DEBUG_RESET,
"%s: called with sc_in_reset != 0\n",
__func__);
DPRINTF(sc, ATH_DEBUG_XMIT,
"%s: queued: TXDP[%u] = %p (%p) depth %d\n",
__func__, txq->axq_qnum,
(caddr_t)bf->bf_daddr, bf->bf_desc,
txq->axq_depth);
ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
if (bf->bf_state.bfs_aggr)
txq->axq_aggr_depth++;
/*
* There's no need to update axq_link; the hardware
* is in reset and once the reset is complete, any
* non-empty queues will simply have DMA restarted.
*/
return;
}
ATH_PCU_UNLOCK(sc);
#endif
/* For now, so not to generate whitespace diffs */
if (1) {
#ifdef IEEE80211_SUPPORT_TDMA
int qbusy;
ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
qbusy = ath_hal_txqenabled(ah, txq->axq_qnum);
if (txq->axq_link == NULL) {
/*
* Be careful writing the address to TXDP. If
* the tx q is enabled then this write will be
* ignored. Normally this is not an issue but
* when tdma is in use and the q is beacon gated
* this race can occur. If the q is busy then
* defer the work to later--either when another
* packet comes along or when we prepare a beacon
* frame at SWBA.
*/
if (!qbusy) {
ath_hal_puttxbuf(ah, txq->axq_qnum,
bf->bf_daddr);
txq->axq_flags &= ~ATH_TXQ_PUTPENDING;
DPRINTF(sc, ATH_DEBUG_XMIT,
"%s: TXDP[%u] = %p (%p) depth %d\n",
__func__, txq->axq_qnum,
(caddr_t)bf->bf_daddr, bf->bf_desc,
txq->axq_depth);
} else {
txq->axq_flags |= ATH_TXQ_PUTPENDING;
DPRINTF(sc, ATH_DEBUG_TDMA | ATH_DEBUG_XMIT,
"%s: Q%u busy, defer enable\n", __func__,
txq->axq_qnum);
}
} else {
*txq->axq_link = bf->bf_daddr;
DPRINTF(sc, ATH_DEBUG_XMIT,
"%s: link[%u](%p)=%p (%p) depth %d\n", __func__,
txq->axq_qnum, txq->axq_link,
(caddr_t)bf->bf_daddr, bf->bf_desc,
txq->axq_depth);
if ((txq->axq_flags & ATH_TXQ_PUTPENDING) && !qbusy) {
/*
* The q was busy when we previously tried
* to write the address of the first buffer
* in the chain. Since it's not busy now
* handle this chore. We are certain the
* buffer at the front is the right one since
* axq_link is NULL only when the buffer list
* is/was empty.
*/
ath_hal_puttxbuf(ah, txq->axq_qnum,
TAILQ_FIRST(&txq->axq_q)->bf_daddr);
txq->axq_flags &= ~ATH_TXQ_PUTPENDING;
DPRINTF(sc, ATH_DEBUG_TDMA | ATH_DEBUG_XMIT,
"%s: Q%u restarted\n", __func__,
txq->axq_qnum);
}
}
#else
ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
if (txq->axq_link == NULL) {
ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
DPRINTF(sc, ATH_DEBUG_XMIT,
"%s: TXDP[%u] = %p (%p) depth %d\n",
__func__, txq->axq_qnum,
(caddr_t)bf->bf_daddr, bf->bf_desc,
txq->axq_depth);
} else {
*txq->axq_link = bf->bf_daddr;
DPRINTF(sc, ATH_DEBUG_XMIT,
"%s: link[%u](%p)=%p (%p) depth %d\n", __func__,
txq->axq_qnum, txq->axq_link,
(caddr_t)bf->bf_daddr, bf->bf_desc,
txq->axq_depth);
}
#endif /* IEEE80211_SUPPORT_TDMA */
if (bf->bf_state.bfs_aggr)
txq->axq_aggr_depth++;
txq->axq_link = &bf->bf_lastds->ds_link;
ath_hal_txstart(ah, txq->axq_qnum);
}
}
/*
* Restart TX DMA for the given TXQ.
*
* This must be called whether the queue is empty or not.
*/
void
ath_txq_restart_dma(struct ath_softc *sc, struct ath_txq *txq)
{
struct ath_hal *ah = sc->sc_ah;
struct ath_buf *bf, *bf_last;
ATH_TXQ_LOCK_ASSERT(txq);
/* This is always going to be cleared, empty or not */
txq->axq_flags &= ~ATH_TXQ_PUTPENDING;
/* XXX make this ATH_TXQ_FIRST */
bf = TAILQ_FIRST(&txq->axq_q);
bf_last = ATH_TXQ_LAST(txq, axq_q_s);
if (bf == NULL)
return;
ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
txq->axq_link = &bf_last->bf_lastds->ds_link;
ath_hal_txstart(ah, txq->axq_qnum);
}
/*
* Hand off a packet to the hardware (or mcast queue.)
*
* The relevant hardware txq should be locked.
*/
static void
ath_tx_handoff(struct ath_softc *sc, struct ath_txq *txq, struct ath_buf *bf)
{
ATH_TXQ_LOCK_ASSERT(txq);
if (txq->axq_qnum == ATH_TXQ_SWQ)
ath_tx_handoff_mcast(sc, txq, bf);
else
ath_tx_handoff_hw(sc, txq, bf);
}
static int
ath_tx_tag_crypto(struct ath_softc *sc, struct ieee80211_node *ni,
struct mbuf *m0, int iswep, int isfrag, int *hdrlen, int *pktlen,
int *keyix)
{
DPRINTF(sc, ATH_DEBUG_XMIT,
"%s: hdrlen=%d, pktlen=%d, isfrag=%d, iswep=%d, m0=%p\n",
__func__,
*hdrlen,
*pktlen,
isfrag,
iswep,
m0);
if (iswep) {
const struct ieee80211_cipher *cip;
struct ieee80211_key *k;
/*
* Construct the 802.11 header+trailer for an encrypted
* frame. The only reason this can fail is because of an
* unknown or unsupported cipher/key type.
*/
k = ieee80211_crypto_encap(ni, m0);
if (k == NULL) {
/*
* This can happen when the key is yanked after the
* frame was queued. Just discard the frame; the
* 802.11 layer counts failures and provides
* debugging/diagnostics.
*/
return (0);
}
/*
* Adjust the packet + header lengths for the crypto
* additions and calculate the h/w key index. When
* a s/w mic is done the frame will have had any mic
* added to it prior to entry so m0->m_pkthdr.len will
* account for it. Otherwise we need to add it to the
* packet length.
*/
cip = k->wk_cipher;
(*hdrlen) += cip->ic_header;
(*pktlen) += cip->ic_header + cip->ic_trailer;
/* NB: frags always have any TKIP MIC done in s/w */
if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag)
(*pktlen) += cip->ic_miclen;
(*keyix) = k->wk_keyix;
} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
/*
* Use station key cache slot, if assigned.
*/
(*keyix) = ni->ni_ucastkey.wk_keyix;
if ((*keyix) == IEEE80211_KEYIX_NONE)
(*keyix) = HAL_TXKEYIX_INVALID;
} else
(*keyix) = HAL_TXKEYIX_INVALID;
return (1);
}
/*
* Calculate whether interoperability protection is required for
* this frame.
*
* This requires the rate control information be filled in,
* as the protection requirement depends upon the current
* operating mode / PHY.
*/
static void
ath_tx_calc_protection(struct ath_softc *sc, struct ath_buf *bf)
{
struct ieee80211_frame *wh;
uint8_t rix;
uint16_t flags;
int shortPreamble;
const HAL_RATE_TABLE *rt = sc->sc_currates;
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
flags = bf->bf_state.bfs_txflags;
rix = bf->bf_state.bfs_rc[0].rix;
shortPreamble = bf->bf_state.bfs_shpream;
wh = mtod(bf->bf_m, struct ieee80211_frame *);
/*
* If 802.11g protection is enabled, determine whether
* to use RTS/CTS or just CTS. Note that this is only
* done for OFDM unicast frames.
*/
if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
rt->info[rix].phy == IEEE80211_T_OFDM &&
(flags & HAL_TXDESC_NOACK) == 0) {
bf->bf_state.bfs_doprot = 1;
/* XXX fragments must use CCK rates w/ protection */
if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) {
flags |= HAL_TXDESC_RTSENA;
} else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) {
flags |= HAL_TXDESC_CTSENA;
}
/*
* For frags it would be desirable to use the
* highest CCK rate for RTS/CTS. But stations
* farther away may detect it at a lower CCK rate
* so use the configured protection rate instead
* (for now).
*/
sc->sc_stats.ast_tx_protect++;
}
/*
* If 11n protection is enabled and it's a HT frame,
* enable RTS.
*
* XXX ic_htprotmode or ic_curhtprotmode?
* XXX should it_htprotmode only matter if ic_curhtprotmode
* XXX indicates it's not a HT pure environment?
*/
if ((ic->ic_htprotmode == IEEE80211_PROT_RTSCTS) &&
rt->info[rix].phy == IEEE80211_T_HT &&
(flags & HAL_TXDESC_NOACK) == 0) {
flags |= HAL_TXDESC_RTSENA;
sc->sc_stats.ast_tx_htprotect++;
}
bf->bf_state.bfs_txflags = flags;
}
/*
* Update the frame duration given the currently selected rate.
*
* This also updates the frame duration value, so it will require
* a DMA flush.
*/
static void
ath_tx_calc_duration(struct ath_softc *sc, struct ath_buf *bf)
{
struct ieee80211_frame *wh;
uint8_t rix;
uint16_t flags;
int shortPreamble;
struct ath_hal *ah = sc->sc_ah;
const HAL_RATE_TABLE *rt = sc->sc_currates;
int isfrag = bf->bf_m->m_flags & M_FRAG;
flags = bf->bf_state.bfs_txflags;
rix = bf->bf_state.bfs_rc[0].rix;
shortPreamble = bf->bf_state.bfs_shpream;
wh = mtod(bf->bf_m, struct ieee80211_frame *);
/*
* Calculate duration. This logically belongs in the 802.11
* layer but it lacks sufficient information to calculate it.
*/
if ((flags & HAL_TXDESC_NOACK) == 0 &&
(wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
u_int16_t dur;
if (shortPreamble)
dur = rt->info[rix].spAckDuration;
else
dur = rt->info[rix].lpAckDuration;
if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) {
dur += dur; /* additional SIFS+ACK */
KASSERT(bf->bf_m->m_nextpkt != NULL, ("no fragment"));
/*
* Include the size of next fragment so NAV is
* updated properly. The last fragment uses only
* the ACK duration
*/
dur += ath_hal_computetxtime(ah, rt,
bf->bf_m->m_nextpkt->m_pkthdr.len,
rix, shortPreamble);
}
if (isfrag) {
/*
* Force hardware to use computed duration for next
* fragment by disabling multi-rate retry which updates
* duration based on the multi-rate duration table.
*/
bf->bf_state.bfs_ismrr = 0;
bf->bf_state.bfs_try0 = ATH_TXMGTTRY;
/* XXX update bfs_rc[0].try? */
}
/* Update the duration field itself */
*(u_int16_t *)wh->i_dur = htole16(dur);
}
}
static uint8_t
ath_tx_get_rtscts_rate(struct ath_hal *ah, const HAL_RATE_TABLE *rt,
int cix, int shortPreamble)
{
uint8_t ctsrate;
/*
* CTS transmit rate is derived from the transmit rate
* by looking in the h/w rate table. We must also factor
* in whether or not a short preamble is to be used.
*/
/* NB: cix is set above where RTS/CTS is enabled */
KASSERT(cix != 0xff, ("cix not setup"));
ctsrate = rt->info[cix].rateCode;
/* XXX this should only matter for legacy rates */
if (shortPreamble)
ctsrate |= rt->info[cix].shortPreamble;
return (ctsrate);
}
/*
* Calculate the RTS/CTS duration for legacy frames.
*/
static int
ath_tx_calc_ctsduration(struct ath_hal *ah, int rix, int cix,
int shortPreamble, int pktlen, const HAL_RATE_TABLE *rt,
int flags)
{
int ctsduration = 0;
/* This mustn't be called for HT modes */
if (rt->info[cix].phy == IEEE80211_T_HT) {
printf("%s: HT rate where it shouldn't be (0x%x)\n",
__func__, rt->info[cix].rateCode);
return (-1);
}
/*
* Compute the transmit duration based on the frame
* size and the size of an ACK frame. We call into the
* HAL to do the computation since it depends on the
* characteristics of the actual PHY being used.
*
* NB: CTS is assumed the same size as an ACK so we can
* use the precalculated ACK durations.
*/
if (shortPreamble) {
if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */
ctsduration += rt->info[cix].spAckDuration;
ctsduration += ath_hal_computetxtime(ah,
rt, pktlen, rix, AH_TRUE);
if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */
ctsduration += rt->info[rix].spAckDuration;
} else {
if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */
ctsduration += rt->info[cix].lpAckDuration;
ctsduration += ath_hal_computetxtime(ah,
rt, pktlen, rix, AH_FALSE);
if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */
ctsduration += rt->info[rix].lpAckDuration;
}
return (ctsduration);
}
/*
* Update the given ath_buf with updated rts/cts setup and duration
* values.
*
* To support rate lookups for each software retry, the rts/cts rate
* and cts duration must be re-calculated.
*
* This function assumes the RTS/CTS flags have been set as needed;
* mrr has been disabled; and the rate control lookup has been done.
*
* XXX TODO: MRR need only be disabled for the pre-11n NICs.
* XXX The 11n NICs support per-rate RTS/CTS configuration.
*/
static void
ath_tx_set_rtscts(struct ath_softc *sc, struct ath_buf *bf)
{
uint16_t ctsduration = 0;
uint8_t ctsrate = 0;
uint8_t rix = bf->bf_state.bfs_rc[0].rix;
uint8_t cix = 0;
const HAL_RATE_TABLE *rt = sc->sc_currates;
/*
* No RTS/CTS enabled? Don't bother.
*/
if ((bf->bf_state.bfs_txflags &
(HAL_TXDESC_RTSENA | HAL_TXDESC_CTSENA)) == 0) {
/* XXX is this really needed? */
bf->bf_state.bfs_ctsrate = 0;
bf->bf_state.bfs_ctsduration = 0;
return;
}
/*
* If protection is enabled, use the protection rix control
* rate. Otherwise use the rate0 control rate.
*/
if (bf->bf_state.bfs_doprot)
rix = sc->sc_protrix;
else
rix = bf->bf_state.bfs_rc[0].rix;
/*
* If the raw path has hard-coded ctsrate0 to something,
* use it.
*/
if (bf->bf_state.bfs_ctsrate0 != 0)
cix = ath_tx_findrix(sc, bf->bf_state.bfs_ctsrate0);
else
/* Control rate from above */
cix = rt->info[rix].controlRate;
/* Calculate the rtscts rate for the given cix */
ctsrate = ath_tx_get_rtscts_rate(sc->sc_ah, rt, cix,
bf->bf_state.bfs_shpream);
/* The 11n chipsets do ctsduration calculations for you */
if (! ath_tx_is_11n(sc))
ctsduration = ath_tx_calc_ctsduration(sc->sc_ah, rix, cix,
bf->bf_state.bfs_shpream, bf->bf_state.bfs_pktlen,
rt, bf->bf_state.bfs_txflags);
/* Squirrel away in ath_buf */
bf->bf_state.bfs_ctsrate = ctsrate;
bf->bf_state.bfs_ctsduration = ctsduration;
/*
* Must disable multi-rate retry when using RTS/CTS.
* XXX TODO: only for pre-11n NICs.
*/
bf->bf_state.bfs_ismrr = 0;
bf->bf_state.bfs_try0 =
bf->bf_state.bfs_rc[0].tries = ATH_TXMGTTRY; /* XXX ew */
}
/*
* Setup the descriptor chain for a normal or fast-frame
* frame.
*/
static void
ath_tx_setds(struct ath_softc *sc, struct ath_buf *bf)
{
struct ath_desc *ds = bf->bf_desc;
struct ath_hal *ah = sc->sc_ah;
ath_hal_setuptxdesc(ah, ds
, bf->bf_state.bfs_pktlen /* packet length */
, bf->bf_state.bfs_hdrlen /* header length */
, bf->bf_state.bfs_atype /* Atheros packet type */
, bf->bf_state.bfs_txpower /* txpower */
, bf->bf_state.bfs_txrate0
, bf->bf_state.bfs_try0 /* series 0 rate/tries */
, bf->bf_state.bfs_keyix /* key cache index */
, bf->bf_state.bfs_txantenna /* antenna mode */
, bf->bf_state.bfs_txflags /* flags */
, bf->bf_state.bfs_ctsrate /* rts/cts rate */
, bf->bf_state.bfs_ctsduration /* rts/cts duration */
);
/*
* This will be overriden when the descriptor chain is written.
*/
bf->bf_lastds = ds;
bf->bf_last = bf;
/* XXX TODO: Setup descriptor chain */
}
/*
* Do a rate lookup.
*
* This performs a rate lookup for the given ath_buf only if it's required.
* Non-data frames and raw frames don't require it.
*
* This populates the primary and MRR entries; MRR values are
* then disabled later on if something requires it (eg RTS/CTS on
* pre-11n chipsets.
*
* This needs to be done before the RTS/CTS fields are calculated
* as they may depend upon the rate chosen.
*/
static void
ath_tx_do_ratelookup(struct ath_softc *sc, struct ath_buf *bf)
{
uint8_t rate, rix;
int try0;
if (! bf->bf_state.bfs_doratelookup)
return;
/* Get rid of any previous state */
bzero(bf->bf_state.bfs_rc, sizeof(bf->bf_state.bfs_rc));
ATH_NODE_LOCK(ATH_NODE(bf->bf_node));
ath_rate_findrate(sc, ATH_NODE(bf->bf_node), bf->bf_state.bfs_shpream,
bf->bf_state.bfs_pktlen, &rix, &try0, &rate);
/* In case MRR is disabled, make sure rc[0] is setup correctly */
bf->bf_state.bfs_rc[0].rix = rix;
bf->bf_state.bfs_rc[0].ratecode = rate;
bf->bf_state.bfs_rc[0].tries = try0;
if (bf->bf_state.bfs_ismrr && try0 != ATH_TXMAXTRY)
ath_rate_getxtxrates(sc, ATH_NODE(bf->bf_node), rix,
bf->bf_state.bfs_rc);
ATH_NODE_UNLOCK(ATH_NODE(bf->bf_node));
sc->sc_txrix = rix; /* for LED blinking */
sc->sc_lastdatarix = rix; /* for fast frames */
bf->bf_state.bfs_try0 = try0;
bf->bf_state.bfs_txrate0 = rate;
}
/*
* Set the rate control fields in the given descriptor based on
* the bf_state fields and node state.
*
* The bfs fields should already be set with the relevant rate
* control information, including whether MRR is to be enabled.
*
* Since the FreeBSD HAL currently sets up the first TX rate
* in ath_hal_setuptxdesc(), this will setup the MRR
* conditionally for the pre-11n chips, and call ath_buf_set_rate
* unconditionally for 11n chips. These require the 11n rate
* scenario to be set if MCS rates are enabled, so it's easier
* to just always call it. The caller can then only set rates 2, 3
* and 4 if multi-rate retry is needed.
*/
static void
ath_tx_set_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni,
struct ath_buf *bf)
{
struct ath_rc_series *rc = bf->bf_state.bfs_rc;
/* If mrr is disabled, blank tries 1, 2, 3 */
if (! bf->bf_state.bfs_ismrr)
rc[1].tries = rc[2].tries = rc[3].tries = 0;
/*
* Always call - that way a retried descriptor will
* have the MRR fields overwritten.
*
* XXX TODO: see if this is really needed - setting up
* the first descriptor should set the MRR fields to 0
* for us anyway.
*/
if (ath_tx_is_11n(sc)) {
ath_buf_set_rate(sc, ni, bf);
} else {
ath_hal_setupxtxdesc(sc->sc_ah, bf->bf_desc
, rc[1].ratecode, rc[1].tries
, rc[2].ratecode, rc[2].tries
, rc[3].ratecode, rc[3].tries
);
}
}
/*
* Transmit the given frame to the hardware.
*
* The frame must already be setup; rate control must already have
* been done.
*
* XXX since the TXQ lock is being held here (and I dislike holding
* it for this long when not doing software aggregation), later on
* break this function into "setup_normal" and "xmit_normal". The
* lock only needs to be held for the ath_tx_handoff call.
*/
static void
ath_tx_xmit_normal(struct ath_softc *sc, struct ath_txq *txq,
struct ath_buf *bf)
{
ATH_TXQ_LOCK_ASSERT(txq);
/* Setup the descriptor before handoff */
ath_tx_do_ratelookup(sc, bf);
ath_tx_calc_duration(sc, bf);
ath_tx_calc_protection(sc, bf);
ath_tx_set_rtscts(sc, bf);
ath_tx_rate_fill_rcflags(sc, bf);
ath_tx_setds(sc, bf);
ath_tx_set_ratectrl(sc, bf->bf_node, bf);
ath_tx_chaindesclist(sc, bf);
/* Hand off to hardware */
ath_tx_handoff(sc, txq, bf);
}
static int
ath_tx_normal_setup(struct ath_softc *sc, struct ieee80211_node *ni,
struct ath_buf *bf, struct mbuf *m0, struct ath_txq *txq)
{
struct ieee80211vap *vap = ni->ni_vap;
struct ath_hal *ah = sc->sc_ah;
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
int error, iswep, ismcast, isfrag, ismrr;
int keyix, hdrlen, pktlen, try0 = 0;
u_int8_t rix = 0, txrate = 0;
struct ath_desc *ds;
struct ieee80211_frame *wh;
u_int subtype, flags;
HAL_PKT_TYPE atype;
const HAL_RATE_TABLE *rt;
HAL_BOOL shortPreamble;
struct ath_node *an;
u_int pri;
wh = mtod(m0, struct ieee80211_frame *);
iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
isfrag = m0->m_flags & M_FRAG;
hdrlen = ieee80211_anyhdrsize(wh);
/*
* Packet length must not include any
* pad bytes; deduct them here.
*/
pktlen = m0->m_pkthdr.len - (hdrlen & 3);
/* Handle encryption twiddling if needed */
if (! ath_tx_tag_crypto(sc, ni, m0, iswep, isfrag, &hdrlen,
&pktlen, &keyix)) {
ath_freetx(m0);
return EIO;
}
/* packet header may have moved, reset our local pointer */
wh = mtod(m0, struct ieee80211_frame *);
pktlen += IEEE80211_CRC_LEN;
/*
* Load the DMA map so any coalescing is done. This
* also calculates the number of descriptors we need.
*/
error = ath_tx_dmasetup(sc, bf, m0);
if (error != 0)
return error;
bf->bf_node = ni; /* NB: held reference */
m0 = bf->bf_m; /* NB: may have changed */
wh = mtod(m0, struct ieee80211_frame *);
/* setup descriptors */
ds = bf->bf_desc;
rt = sc->sc_currates;
KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
/*
* NB: the 802.11 layer marks whether or not we should
* use short preamble based on the current mode and
* negotiated parameters.
*/
if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
(ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) {
shortPreamble = AH_TRUE;
sc->sc_stats.ast_tx_shortpre++;
} else {
shortPreamble = AH_FALSE;
}
an = ATH_NODE(ni);
flags = HAL_TXDESC_CLRDMASK; /* XXX needed for crypto errs */
ismrr = 0; /* default no multi-rate retry*/
pri = M_WME_GETAC(m0); /* honor classification */
/* XXX use txparams instead of fixed values */
/*
* Calculate Atheros packet type from IEEE80211 packet header,
* setup for rate calculations, and select h/w transmit queue.
*/
switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
case IEEE80211_FC0_TYPE_MGT:
subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
atype = HAL_PKT_TYPE_BEACON;
else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
atype = HAL_PKT_TYPE_PROBE_RESP;
else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
atype = HAL_PKT_TYPE_ATIM;
else
atype = HAL_PKT_TYPE_NORMAL; /* XXX */
rix = an->an_mgmtrix;
txrate = rt->info[rix].rateCode;
if (shortPreamble)
txrate |= rt->info[rix].shortPreamble;
try0 = ATH_TXMGTTRY;
flags |= HAL_TXDESC_INTREQ; /* force interrupt */
break;
case IEEE80211_FC0_TYPE_CTL:
atype = HAL_PKT_TYPE_PSPOLL; /* stop setting of duration */
rix = an->an_mgmtrix;
txrate = rt->info[rix].rateCode;
if (shortPreamble)
txrate |= rt->info[rix].shortPreamble;
try0 = ATH_TXMGTTRY;
flags |= HAL_TXDESC_INTREQ; /* force interrupt */
break;
case IEEE80211_FC0_TYPE_DATA:
atype = HAL_PKT_TYPE_NORMAL; /* default */
/*
* Data frames: multicast frames go out at a fixed rate,
* EAPOL frames use the mgmt frame rate; otherwise consult
* the rate control module for the rate to use.
*/
if (ismcast) {
rix = an->an_mcastrix;
txrate = rt->info[rix].rateCode;
if (shortPreamble)
txrate |= rt->info[rix].shortPreamble;
try0 = 1;
} else if (m0->m_flags & M_EAPOL) {
/* XXX? maybe always use long preamble? */
rix = an->an_mgmtrix;
txrate = rt->info[rix].rateCode;
if (shortPreamble)
txrate |= rt->info[rix].shortPreamble;
try0 = ATH_TXMAXTRY; /* XXX?too many? */
} else {
/*
* Do rate lookup on each TX, rather than using
* the hard-coded TX information decided here.
*/
ismrr = 1;
bf->bf_state.bfs_doratelookup = 1;
}
if (cap->cap_wmeParams[pri].wmep_noackPolicy)
flags |= HAL_TXDESC_NOACK;
break;
default:
if_printf(ifp, "bogus frame type 0x%x (%s)\n",
wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
/* XXX statistic */
ath_freetx(m0);
return EIO;
}
/* Check if the TXQ wouldn't match what the hardware TXQ is! */
if (txq != sc->sc_ac2q[pri]) {
device_printf(sc->sc_dev,
"%s: txq=%p (%d), pri=%d, pri txq=%p (%d)\n",
__func__,
txq,
txq->axq_qnum,
pri,
sc->sc_ac2q[pri],
sc->sc_ac2q[pri]->axq_qnum);
}
/*
* Calculate miscellaneous flags.
*/
if (ismcast) {
flags |= HAL_TXDESC_NOACK; /* no ack on broad/multicast */
} else if (pktlen > vap->iv_rtsthreshold &&
(ni->ni_ath_flags & IEEE80211_NODE_FF) == 0) {
flags |= HAL_TXDESC_RTSENA; /* RTS based on frame length */
sc->sc_stats.ast_tx_rts++;
}
if (flags & HAL_TXDESC_NOACK) /* NB: avoid double counting */
sc->sc_stats.ast_tx_noack++;
#ifdef IEEE80211_SUPPORT_TDMA
if (sc->sc_tdma && (flags & HAL_TXDESC_NOACK) == 0) {
DPRINTF(sc, ATH_DEBUG_TDMA,
"%s: discard frame, ACK required w/ TDMA\n", __func__);
sc->sc_stats.ast_tdma_ack++;
ath_freetx(m0);
return EIO;
}
#endif
/*
* Determine if a tx interrupt should be generated for
* this descriptor. We take a tx interrupt to reap
* descriptors when the h/w hits an EOL condition or
* when the descriptor is specifically marked to generate
* an interrupt. We periodically mark descriptors in this
* way to insure timely replenishing of the supply needed
* for sending frames. Defering interrupts reduces system
* load and potentially allows more concurrent work to be
* done but if done to aggressively can cause senders to
* backup.
*
* NB: use >= to deal with sc_txintrperiod changing
* dynamically through sysctl.
*/
if (flags & HAL_TXDESC_INTREQ) {
txq->axq_intrcnt = 0;
} else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
flags |= HAL_TXDESC_INTREQ;
txq->axq_intrcnt = 0;
}
/* This point forward is actual TX bits */
/*
* At this point we are committed to sending the frame
* and we don't need to look at m_nextpkt; clear it in
* case this frame is part of frag chain.
*/
m0->m_nextpkt = NULL;
if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
ieee80211_dump_pkt(ic, mtod(m0, const uint8_t *), m0->m_len,
sc->sc_hwmap[rix].ieeerate, -1);
if (ieee80211_radiotap_active_vap(vap)) {
u_int64_t tsf = ath_hal_gettsf64(ah);
sc->sc_tx_th.wt_tsf = htole64(tsf);
sc->sc_tx_th.wt_flags = sc->sc_hwmap[rix].txflags;
if (iswep)
sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
if (isfrag)
sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
sc->sc_tx_th.wt_rate = sc->sc_hwmap[rix].ieeerate;
sc->sc_tx_th.wt_txpower = ni->ni_txpower;
sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
ieee80211_radiotap_tx(vap, m0);
}
/* Blank the legacy rate array */
bzero(&bf->bf_state.bfs_rc, sizeof(bf->bf_state.bfs_rc));
/*
* ath_buf_set_rate needs at least one rate/try to setup
* the rate scenario.
*/
bf->bf_state.bfs_rc[0].rix = rix;
bf->bf_state.bfs_rc[0].tries = try0;
bf->bf_state.bfs_rc[0].ratecode = txrate;
/* Store the decided rate index values away */
bf->bf_state.bfs_pktlen = pktlen;
bf->bf_state.bfs_hdrlen = hdrlen;
bf->bf_state.bfs_atype = atype;
bf->bf_state.bfs_txpower = ni->ni_txpower;
bf->bf_state.bfs_txrate0 = txrate;
bf->bf_state.bfs_try0 = try0;
bf->bf_state.bfs_keyix = keyix;
bf->bf_state.bfs_txantenna = sc->sc_txantenna;
bf->bf_state.bfs_txflags = flags;
bf->bf_state.bfs_shpream = shortPreamble;
/* XXX this should be done in ath_tx_setrate() */
bf->bf_state.bfs_ctsrate0 = 0; /* ie, no hard-coded ctsrate */
bf->bf_state.bfs_ctsrate = 0; /* calculated later */
bf->bf_state.bfs_ctsduration = 0;
bf->bf_state.bfs_ismrr = ismrr;
return 0;
}
/*
* Direct-dispatch the current frame to the hardware.
*
* This can be called by the net80211 code.
*
* XXX what about locking? Or, push the seqno assign into the
* XXX aggregate scheduler so its serialised?
*/
int
ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni,
struct ath_buf *bf, struct mbuf *m0)
{
struct ieee80211vap *vap = ni->ni_vap;
struct ath_vap *avp = ATH_VAP(vap);
int r = 0;
u_int pri;
int tid;
struct ath_txq *txq;
int ismcast;
const struct ieee80211_frame *wh;
int is_ampdu, is_ampdu_tx, is_ampdu_pending;
//ieee80211_seq seqno;
uint8_t type, subtype;
/*
* Determine the target hardware queue.
*
* For multicast frames, the txq gets overridden appropriately
* depending upon the state of PS.
*
* For any other frame, we do a TID/QoS lookup inside the frame
* to see what the TID should be. If it's a non-QoS frame, the
* AC and TID are overridden. The TID/TXQ code assumes the
* TID is on a predictable hardware TXQ, so we don't support
* having a node TID queued to multiple hardware TXQs.
* This may change in the future but would require some locking
* fudgery.
*/
pri = ath_tx_getac(sc, m0);
tid = ath_tx_gettid(sc, m0);
txq = sc->sc_ac2q[pri];
wh = mtod(m0, struct ieee80211_frame *);
ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
/*
* Enforce how deep the multicast queue can grow.
*
* XXX duplicated in ath_raw_xmit().
*/
if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
ATH_TXQ_LOCK(sc->sc_cabq);
if (sc->sc_cabq->axq_depth > sc->sc_txq_mcastq_maxdepth) {
sc->sc_stats.ast_tx_mcastq_overflow++;
r = ENOBUFS;
}
ATH_TXQ_UNLOCK(sc->sc_cabq);
if (r != 0) {
m_freem(m0);
return r;
}
}
/* A-MPDU TX */
is_ampdu_tx = ath_tx_ampdu_running(sc, ATH_NODE(ni), tid);
is_ampdu_pending = ath_tx_ampdu_pending(sc, ATH_NODE(ni), tid);
is_ampdu = is_ampdu_tx | is_ampdu_pending;
DPRINTF(sc, ATH_DEBUG_SW_TX,
"%s: bf=%p, tid=%d, ac=%d, is_ampdu=%d\n",
__func__, bf, tid, pri, is_ampdu);
/*
* When servicing one or more stations in power-save mode
* (or) if there is some mcast data waiting on the mcast
* queue (to prevent out of order delivery) multicast frames
* must be bufferd until after the beacon.
*
* TODO: we should lock the mcastq before we check the length.
*/
if (ismcast && (vap->iv_ps_sta || avp->av_mcastq.axq_depth))
txq = &avp->av_mcastq;
/* Do the generic frame setup */
/* XXX should just bzero the bf_state? */
bf->bf_state.bfs_dobaw = 0;
bf->bf_state.bfs_seqno_assigned = 0;
bf->bf_state.bfs_need_seqno = 0;
bf->bf_state.bfs_seqno = -1; /* XXX debugging */
/* A-MPDU TX? Manually set sequence number */
/* Don't do it whilst pending; the net80211 layer still assigns them */
/* XXX do we need locking here? */
if (is_ampdu_tx) {
ATH_TXQ_LOCK(txq);
/*
* Always call; this function will
* handle making sure that null data frames
* don't get a sequence number from the current
* TID and thus mess with the BAW.
*/
//seqno = ath_tx_tid_seqno_assign(sc, ni, bf, m0);
if (ath_tx_seqno_required(sc, ni, bf, m0)) {
bf->bf_state.bfs_dobaw = 1;
bf->bf_state.bfs_need_seqno = 1;
}
ATH_TXQ_UNLOCK(txq);
} else {
/* No AMPDU TX, we've been assigned a sequence number. */
if (IEEE80211_QOS_HAS_SEQ(wh)) {
bf->bf_state.bfs_seqno_assigned = 1;
/* XXX we should store the frag+seqno in bfs_seqno */
bf->bf_state.bfs_seqno =
M_SEQNO_GET(m0) << IEEE80211_SEQ_SEQ_SHIFT;
}
}
/*
* If needed, the sequence number has been assigned.
* Squirrel it away somewhere easy to get to.
*/
//bf->bf_state.bfs_seqno = M_SEQNO_GET(m0) << IEEE80211_SEQ_SEQ_SHIFT;
/* Is ampdu pending? fetch the seqno and print it out */
if (is_ampdu_pending)
DPRINTF(sc, ATH_DEBUG_SW_TX,
"%s: tid %d: ampdu pending, seqno %d\n",
__func__, tid, M_SEQNO_GET(m0));
/* This also sets up the DMA map */
r = ath_tx_normal_setup(sc, ni, bf, m0, txq);
if (r != 0)
return r;
/* At this point m0 could have changed! */
m0 = bf->bf_m;
DPRINTF(sc, ATH_DEBUG_SW_TX,
"%s: DONE: bf=%p, tid=%d, ac=%d, is_ampdu=%d, dobaw=%d, seqno=%d\n",
__func__, bf, tid, pri, is_ampdu, bf->bf_state.bfs_dobaw, M_SEQNO_GET(m0));
#if 1
/*
* If it's a multicast frame, do a direct-dispatch to the
* destination hardware queue. Don't bother software
* queuing it.
*/
/*
* If it's a BAR frame, do a direct dispatch to the
* destination hardware queue. Don't bother software
* queuing it, as the TID will now be paused.
* Sending a BAR frame can occur from the net80211 txa timer
* (ie, retries) or from the ath txtask (completion call.)
* It queues directly to hardware because the TID is paused
* at this point (and won't be unpaused until the BAR has
* either been TXed successfully or max retries has been
* reached.)
*/
if (txq == &avp->av_mcastq) {
DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
"%s: bf=%p: mcastq: TX'ing\n", __func__, bf);
ATH_TXQ_LOCK(txq);
ath_tx_xmit_normal(sc, txq, bf);
ATH_TXQ_UNLOCK(txq);
} else if (type == IEEE80211_FC0_TYPE_CTL &&
subtype == IEEE80211_FC0_SUBTYPE_BAR) {
DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
"%s: BAR: TX'ing direct\n", __func__);
ATH_TXQ_LOCK(txq);
ath_tx_xmit_normal(sc, txq, bf);
ATH_TXQ_UNLOCK(txq);
} else {
/* add to software queue */
DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
"%s: bf=%p: swq: TX'ing\n", __func__, bf);
ath_tx_swq(sc, ni, txq, bf);
}
#else
/*
* For now, since there's no software queue,
* direct-dispatch to the hardware.
*/
ATH_TXQ_LOCK(txq);
ath_tx_xmit_normal(sc, txq, bf);
ATH_TXQ_UNLOCK(txq);
#endif
return 0;
}
static int
ath_tx_raw_start(struct ath_softc *sc, struct ieee80211_node *ni,
struct ath_buf *bf, struct mbuf *m0,
const struct ieee80211_bpf_params *params)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
struct ath_hal *ah = sc->sc_ah;
struct ieee80211vap *vap = ni->ni_vap;
int error, ismcast, ismrr;
int keyix, hdrlen, pktlen, try0, txantenna;
u_int8_t rix, txrate;
struct ieee80211_frame *wh;
u_int flags;
HAL_PKT_TYPE atype;
const HAL_RATE_TABLE *rt;
struct ath_desc *ds;
u_int pri;
int o_tid = -1;
int do_override;
wh = mtod(m0, struct ieee80211_frame *);
ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
hdrlen = ieee80211_anyhdrsize(wh);
/*
* Packet length must not include any
* pad bytes; deduct them here.
*/
/* XXX honor IEEE80211_BPF_DATAPAD */
pktlen = m0->m_pkthdr.len - (hdrlen & 3) + IEEE80211_CRC_LEN;
DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: ismcast=%d\n",
__func__, ismcast);
/* Handle encryption twiddling if needed */
if (! ath_tx_tag_crypto(sc, ni,
m0, params->ibp_flags & IEEE80211_BPF_CRYPTO, 0,
&hdrlen, &pktlen, &keyix)) {
ath_freetx(m0);
return EIO;
}
/* packet header may have moved, reset our local pointer */
wh = mtod(m0, struct ieee80211_frame *);
/* Do the generic frame setup */
/* XXX should just bzero the bf_state? */
bf->bf_state.bfs_dobaw = 0;
error = ath_tx_dmasetup(sc, bf, m0);
if (error != 0)
return error;
m0 = bf->bf_m; /* NB: may have changed */
wh = mtod(m0, struct ieee80211_frame *);
bf->bf_node = ni; /* NB: held reference */
flags = HAL_TXDESC_CLRDMASK; /* XXX needed for crypto errs */
flags |= HAL_TXDESC_INTREQ; /* force interrupt */
if (params->ibp_flags & IEEE80211_BPF_RTS)
flags |= HAL_TXDESC_RTSENA;
else if (params->ibp_flags & IEEE80211_BPF_CTS) {
/* XXX assume 11g/11n protection? */
bf->bf_state.bfs_doprot = 1;
flags |= HAL_TXDESC_CTSENA;
}
/* XXX leave ismcast to injector? */
if ((params->ibp_flags & IEEE80211_BPF_NOACK) || ismcast)
flags |= HAL_TXDESC_NOACK;
rt = sc->sc_currates;
KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
rix = ath_tx_findrix(sc, params->ibp_rate0);
txrate = rt->info[rix].rateCode;
if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
txrate |= rt->info[rix].shortPreamble;
sc->sc_txrix = rix;
try0 = params->ibp_try0;
ismrr = (params->ibp_try1 != 0);
txantenna = params->ibp_pri >> 2;
if (txantenna == 0) /* XXX? */
txantenna = sc->sc_txantenna;
/*
* Since ctsrate is fixed, store it away for later
* use when the descriptor fields are being set.
*/
if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA))
bf->bf_state.bfs_ctsrate0 = params->ibp_ctsrate;
pri = params->ibp_pri & 3;
/* Override pri if the frame isn't a QoS one */
if (! IEEE80211_QOS_HAS_SEQ(wh))
pri = ath_tx_getac(sc, m0);
/*
* NB: we mark all packets as type PSPOLL so the h/w won't
* set the sequence number, duration, etc.
*/
atype = HAL_PKT_TYPE_PSPOLL;
if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
ieee80211_dump_pkt(ic, mtod(m0, caddr_t), m0->m_len,
sc->sc_hwmap[rix].ieeerate, -1);
if (ieee80211_radiotap_active_vap(vap)) {
u_int64_t tsf = ath_hal_gettsf64(ah);
sc->sc_tx_th.wt_tsf = htole64(tsf);
sc->sc_tx_th.wt_flags = sc->sc_hwmap[rix].txflags;
if (wh->i_fc[1] & IEEE80211_FC1_WEP)
sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
if (m0->m_flags & M_FRAG)
sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
sc->sc_tx_th.wt_rate = sc->sc_hwmap[rix].ieeerate;
sc->sc_tx_th.wt_txpower = ni->ni_txpower;
sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
ieee80211_radiotap_tx(vap, m0);
}
/*
* Formulate first tx descriptor with tx controls.
*/
ds = bf->bf_desc;
/* XXX check return value? */
/* Store the decided rate index values away */
bf->bf_state.bfs_pktlen = pktlen;
bf->bf_state.bfs_hdrlen = hdrlen;
bf->bf_state.bfs_atype = atype;
bf->bf_state.bfs_txpower = params->ibp_power;
bf->bf_state.bfs_txrate0 = txrate;
bf->bf_state.bfs_try0 = try0;
bf->bf_state.bfs_keyix = keyix;
bf->bf_state.bfs_txantenna = txantenna;
bf->bf_state.bfs_txflags = flags;
bf->bf_state.bfs_shpream =
!! (params->ibp_flags & IEEE80211_BPF_SHORTPRE);
/* XXX this should be done in ath_tx_setrate() */
bf->bf_state.bfs_ctsrate = 0;
bf->bf_state.bfs_ctsduration = 0;
bf->bf_state.bfs_ismrr = ismrr;
/* Blank the legacy rate array */
bzero(&bf->bf_state.bfs_rc, sizeof(bf->bf_state.bfs_rc));
bf->bf_state.bfs_rc[0].rix =
ath_tx_findrix(sc, params->ibp_rate0);
bf->bf_state.bfs_rc[0].tries = try0;
bf->bf_state.bfs_rc[0].ratecode = txrate;
if (ismrr) {
int rix;
rix = ath_tx_findrix(sc, params->ibp_rate1);
bf->bf_state.bfs_rc[1].rix = rix;
bf->bf_state.bfs_rc[1].tries = params->ibp_try1;
rix = ath_tx_findrix(sc, params->ibp_rate2);
bf->bf_state.bfs_rc[2].rix = rix;
bf->bf_state.bfs_rc[2].tries = params->ibp_try2;
rix = ath_tx_findrix(sc, params->ibp_rate3);
bf->bf_state.bfs_rc[3].rix = rix;
bf->bf_state.bfs_rc[3].tries = params->ibp_try3;
}
/*
* All the required rate control decisions have been made;
* fill in the rc flags.
*/
ath_tx_rate_fill_rcflags(sc, bf);
/* NB: no buffered multicast in power save support */
/* XXX If it's an ADDBA, override the correct queue */
do_override = ath_tx_action_frame_override_queue(sc, ni, m0, &o_tid);
/* Map ADDBA to the correct priority */
if (do_override) {
#if 0
device_printf(sc->sc_dev,
"%s: overriding tid %d pri %d -> %d\n",
__func__, o_tid, pri, TID_TO_WME_AC(o_tid));
#endif
pri = TID_TO_WME_AC(o_tid);
}
/*
* If we're overiding the ADDBA destination, dump directly
* into the hardware queue, right after any pending
* frames to that node are.
*/
DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: dooverride=%d\n",
__func__, do_override);
if (do_override) {
ATH_TXQ_LOCK(sc->sc_ac2q[pri]);
ath_tx_xmit_normal(sc, sc->sc_ac2q[pri], bf);
ATH_TXQ_UNLOCK(sc->sc_ac2q[pri]);
} else {
/* Queue to software queue */
ath_tx_swq(sc, ni, sc->sc_ac2q[pri], bf);
}
return 0;
}
/*
* Send a raw frame.
*
* This can be called by net80211.
*/
int
ath_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
const struct ieee80211_bpf_params *params)
{
struct ieee80211com *ic = ni->ni_ic;
struct ifnet *ifp = ic->ic_ifp;
struct ath_softc *sc = ifp->if_softc;
struct ath_buf *bf;
struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
int error = 0;
ATH_PCU_LOCK(sc);
if (sc->sc_inreset_cnt > 0) {
device_printf(sc->sc_dev, "%s: sc_inreset_cnt > 0; bailing\n",
__func__);
error = EIO;
ATH_PCU_UNLOCK(sc);
goto bad0;
}
sc->sc_txstart_cnt++;
ATH_PCU_UNLOCK(sc);
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid) {
DPRINTF(sc, ATH_DEBUG_XMIT, "%s: discard frame, %s", __func__,
(ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ?
"!running" : "invalid");
m_freem(m);
error = ENETDOWN;
goto bad;
}
/*
* Enforce how deep the multicast queue can grow.
*
* XXX duplicated in ath_tx_start().
*/
if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
ATH_TXQ_LOCK(sc->sc_cabq);
if (sc->sc_cabq->axq_depth > sc->sc_txq_mcastq_maxdepth) {
sc->sc_stats.ast_tx_mcastq_overflow++;
error = ENOBUFS;
}
ATH_TXQ_UNLOCK(sc->sc_cabq);
if (error != 0) {
m_freem(m);
goto bad;
}
}
/*
* Grab a TX buffer and associated resources.
*/
bf = ath_getbuf(sc);
if (bf == NULL) {
sc->sc_stats.ast_tx_nobuf++;
m_freem(m);
error = ENOBUFS;
goto bad;
}
if (params == NULL) {
/*
* Legacy path; interpret frame contents to decide
* precisely how to send the frame.
*/
if (ath_tx_start(sc, ni, bf, m)) {
error = EIO; /* XXX */
goto bad2;
}
} else {
/*
* Caller supplied explicit parameters to use in
* sending the frame.
*/
if (ath_tx_raw_start(sc, ni, bf, m, params)) {
error = EIO; /* XXX */
goto bad2;
}
}
sc->sc_wd_timer = 5;
ifp->if_opackets++;
sc->sc_stats.ast_tx_raw++;
ATH_PCU_LOCK(sc);
sc->sc_txstart_cnt--;
ATH_PCU_UNLOCK(sc);
return 0;
bad2:
ATH_TXBUF_LOCK(sc);
TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
ATH_TXBUF_UNLOCK(sc);
bad:
ATH_PCU_LOCK(sc);
sc->sc_txstart_cnt--;
ATH_PCU_UNLOCK(sc);
bad0:
ifp->if_oerrors++;
sc->sc_stats.ast_tx_raw_fail++;
ieee80211_free_node(ni);
return error;
}
/* Some helper functions */
/*
* ADDBA (and potentially others) need to be placed in the same
* hardware queue as the TID/node it's relating to. This is so
* it goes out after any pending non-aggregate frames to the
* same node/TID.
*
* If this isn't done, the ADDBA can go out before the frames
* queued in hardware. Even though these frames have a sequence
* number -earlier- than the ADDBA can be transmitted (but
* no frames whose sequence numbers are after the ADDBA should
* be!) they'll arrive after the ADDBA - and the receiving end
* will simply drop them as being out of the BAW.
*
* The frames can't be appended to the TID software queue - it'll
* never be sent out. So these frames have to be directly
* dispatched to the hardware, rather than queued in software.
* So if this function returns true, the TXQ has to be
* overridden and it has to be directly dispatched.
*
* It's a dirty hack, but someone's gotta do it.
*/
/*
* XXX doesn't belong here!
*/
static int
ieee80211_is_action(struct ieee80211_frame *wh)
{
/* Type: Management frame? */
if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) !=
IEEE80211_FC0_TYPE_MGT)
return 0;
/* Subtype: Action frame? */
if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) !=
IEEE80211_FC0_SUBTYPE_ACTION)
return 0;
return 1;
}
#define MS(_v, _f) (((_v) & _f) >> _f##_S)
/*
* Return an alternate TID for ADDBA request frames.
*
* Yes, this likely should be done in the net80211 layer.
*/
static int
ath_tx_action_frame_override_queue(struct ath_softc *sc,
struct ieee80211_node *ni,
struct mbuf *m0, int *tid)
{
struct ieee80211_frame *wh = mtod(m0, struct ieee80211_frame *);
struct ieee80211_action_ba_addbarequest *ia;
uint8_t *frm;
uint16_t baparamset;
/* Not action frame? Bail */
if (! ieee80211_is_action(wh))
return 0;
/* XXX Not needed for frames we send? */
#if 0
/* Correct length? */
if (! ieee80211_parse_action(ni, m))
return 0;
#endif
/* Extract out action frame */
frm = (u_int8_t *)&wh[1];
ia = (struct ieee80211_action_ba_addbarequest *) frm;
/* Not ADDBA? Bail */
if (ia->rq_header.ia_category != IEEE80211_ACTION_CAT_BA)
return 0;
if (ia->rq_header.ia_action != IEEE80211_ACTION_BA_ADDBA_REQUEST)
return 0;
/* Extract TID, return it */
baparamset = le16toh(ia->rq_baparamset);
*tid = (int) MS(baparamset, IEEE80211_BAPS_TID);
return 1;
}
#undef MS
/* Per-node software queue operations */
/*
* Add the current packet to the given BAW.
* It is assumed that the current packet
*
* + fits inside the BAW;
* + already has had a sequence number allocated.
*
* Since the BAW status may be modified by both the ath task and
* the net80211/ifnet contexts, the TID must be locked.
*/
void
ath_tx_addto_baw(struct ath_softc *sc, struct ath_node *an,
struct ath_tid *tid, struct ath_buf *bf)
{
int index, cindex;
struct ieee80211_tx_ampdu *tap;
ATH_TXQ_LOCK_ASSERT(sc->sc_ac2q[tid->ac]);
if (bf->bf_state.bfs_isretried)
return;
/*
* If this occurs we're in a lot of trouble. We should try to
* recover from this without the session hanging?
*/
if (! bf->bf_state.bfs_seqno_assigned) {
device_printf(sc->sc_dev,
"%s: bf=%p, seqno_assigned is 0?!\n", __func__, bf);
return;
}
tap = ath_tx_get_tx_tid(an, tid->tid);
if (bf->bf_state.bfs_addedbaw)
device_printf(sc->sc_dev,
"%s: re-added? bf=%p, tid=%d, seqno %d; window %d:%d; "
"baw head=%d tail=%d\n",
__func__, bf, tid->tid, SEQNO(bf->bf_state.bfs_seqno),
tap->txa_start, tap->txa_wnd, tid->baw_head,
tid->baw_tail);
/*
* Verify that the given sequence number is not outside of the
* BAW. Complain loudly if that's the case.
*/
if (! BAW_WITHIN(tap->txa_start, tap->txa_wnd,
SEQNO(bf->bf_state.bfs_seqno))) {
device_printf(sc->sc_dev,
"%s: bf=%p: outside of BAW?? tid=%d, seqno %d; window %d:%d; "
"baw head=%d tail=%d\n",
__func__, bf, tid->tid, SEQNO(bf->bf_state.bfs_seqno),
tap->txa_start, tap->txa_wnd, tid->baw_head,
tid->baw_tail);
}
/*
* ni->ni_txseqs[] is the currently allocated seqno.
* the txa state contains the current baw start.
*/
index = ATH_BA_INDEX(tap->txa_start, SEQNO(bf->bf_state.bfs_seqno));
cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
"%s: bf=%p, tid=%d, seqno %d; window %d:%d; index=%d cindex=%d "
"baw head=%d tail=%d\n",
__func__, bf, tid->tid, SEQNO(bf->bf_state.bfs_seqno),
tap->txa_start, tap->txa_wnd, index, cindex, tid->baw_head,
tid->baw_tail);
#if 0
assert(tid->tx_buf[cindex] == NULL);
#endif
if (tid->tx_buf[cindex] != NULL) {
device_printf(sc->sc_dev,
"%s: ba packet dup (index=%d, cindex=%d, "
"head=%d, tail=%d)\n",
__func__, index, cindex, tid->baw_head, tid->baw_tail);
device_printf(sc->sc_dev,
"%s: BA bf: %p; seqno=%d ; new bf: %p; seqno=%d\n",
__func__,
tid->tx_buf[cindex],
SEQNO(tid->tx_buf[cindex]->bf_state.bfs_seqno),
bf,
SEQNO(bf->bf_state.bfs_seqno)
);
}
tid->tx_buf[cindex] = bf;
if (index >= ((tid->baw_tail - tid->baw_head) &
(ATH_TID_MAX_BUFS - 1))) {
tid->baw_tail = cindex;
INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
}
}
/*
* Flip the BAW buffer entry over from the existing one to the new one.
*
* When software retransmitting a (sub-)frame, it is entirely possible that
* the frame ath_buf is marked as BUSY and can't be immediately reused.
* In that instance the buffer is cloned and the new buffer is used for
* retransmit. We thus need to update the ath_buf slot in the BAW buf
* tracking array to maintain consistency.
*/
static void
ath_tx_switch_baw_buf(struct ath_softc *sc, struct ath_node *an,
struct ath_tid *tid, struct ath_buf *old_bf, struct ath_buf *new_bf)
{
int index, cindex;
struct ieee80211_tx_ampdu *tap;
int seqno = SEQNO(old_bf->bf_state.bfs_seqno);
ATH_TXQ_LOCK_ASSERT(sc->sc_ac2q[tid->ac]);
tap = ath_tx_get_tx_tid(an, tid->tid);
index = ATH_BA_INDEX(tap->txa_start, seqno);
cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
/*
* Just warn for now; if it happens then we should find out
* about it. It's highly likely the aggregation session will
* soon hang.
*/
if (old_bf->bf_state.bfs_seqno != new_bf->bf_state.bfs_seqno) {
device_printf(sc->sc_dev, "%s: retransmitted buffer"
" has mismatching seqno's, BA session may hang.\n",
__func__);
device_printf(sc->sc_dev, "%s: old seqno=%d, new_seqno=%d\n",
__func__,
old_bf->bf_state.bfs_seqno,
new_bf->bf_state.bfs_seqno);
}
if (tid->tx_buf[cindex] != old_bf) {
device_printf(sc->sc_dev, "%s: ath_buf pointer incorrect; "
" has m BA session may hang.\n",
__func__);
device_printf(sc->sc_dev, "%s: old bf=%p, new bf=%p\n",
__func__,
old_bf, new_bf);
}
tid->tx_buf[cindex] = new_bf;
}
/*
* seq_start - left edge of BAW
* seq_next - current/next sequence number to allocate
*
* Since the BAW status may be modified by both the ath task and
* the net80211/ifnet contexts, the TID must be locked.
*/
static void
ath_tx_update_baw(struct ath_softc *sc, struct ath_node *an,
struct ath_tid *tid, const struct ath_buf *bf)
{
int index, cindex;
struct ieee80211_tx_ampdu *tap;
int seqno = SEQNO(bf->bf_state.bfs_seqno);
ATH_TXQ_LOCK_ASSERT(sc->sc_ac2q[tid->ac]);
tap = ath_tx_get_tx_tid(an, tid->tid);
index = ATH_BA_INDEX(tap->txa_start, seqno);
cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
"%s: bf=%p: tid=%d, baw=%d:%d, seqno=%d, index=%d, cindex=%d, "
"baw head=%d, tail=%d\n",
__func__, bf, tid->tid, tap->txa_start, tap->txa_wnd, seqno, index,
cindex, tid->baw_head, tid->baw_tail);
/*
* If this occurs then we have a big problem - something else
* has slid tap->txa_start along without updating the BAW
* tracking start/end pointers. Thus the TX BAW state is now
* completely busted.
*
* But for now, since I haven't yet fixed TDMA and buffer cloning,
* it's quite possible that a cloned buffer is making its way
* here and causing it to fire off. Disable TDMA for now.
*/
if (tid->tx_buf[cindex] != bf) {
device_printf(sc->sc_dev,
"%s: comp bf=%p, seq=%d; slot bf=%p, seqno=%d\n",
__func__,
bf, SEQNO(bf->bf_state.bfs_seqno),
tid->tx_buf[cindex],
SEQNO(tid->tx_buf[cindex]->bf_state.bfs_seqno));
}
tid->tx_buf[cindex] = NULL;
while (tid->baw_head != tid->baw_tail &&
!tid->tx_buf[tid->baw_head]) {
INCR(tap->txa_start, IEEE80211_SEQ_RANGE);
INCR(tid->baw_head, ATH_TID_MAX_BUFS);
}
DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
"%s: baw is now %d:%d, baw head=%d\n",
__func__, tap->txa_start, tap->txa_wnd, tid->baw_head);
}
/*
* Mark the current node/TID as ready to TX.
*
* This is done to make it easy for the software scheduler to
* find which nodes have data to send.
*
* The TXQ lock must be held.
*/
static void
ath_tx_tid_sched(struct ath_softc *sc, struct ath_tid *tid)
{
struct ath_txq *txq = sc->sc_ac2q[tid->ac];
ATH_TXQ_LOCK_ASSERT(txq);
if (tid->paused)
return; /* paused, can't schedule yet */
if (tid->sched)
return; /* already scheduled */
tid->sched = 1;
TAILQ_INSERT_TAIL(&txq->axq_tidq, tid, axq_qelem);
}
/*
* Mark the current node as no longer needing to be polled for
* TX packets.
*
* The TXQ lock must be held.
*/
static void
ath_tx_tid_unsched(struct ath_softc *sc, struct ath_tid *tid)
{
struct ath_txq *txq = sc->sc_ac2q[tid->ac];
ATH_TXQ_LOCK_ASSERT(txq);
if (tid->sched == 0)
return;
tid->sched = 0;
TAILQ_REMOVE(&txq->axq_tidq, tid, axq_qelem);
}
/*
* Return whether a sequence number is actually required.
*
* A sequence number must only be allocated at the time that a frame
* is considered for addition to the BAW/aggregate and being TXed.
* The sequence number must not be allocated before the frame
* is added to the BAW (protected by the same lock instance)
* otherwise a the multi-entrant TX path may result in a later seqno
* being added to the BAW first. The subsequent addition of the
* earlier seqno would then not go into the BAW as it's now outside
* of said BAW.
*
* This routine is used by ath_tx_start() to mark whether the frame
* should get a sequence number before adding it to the BAW.
*
* Then the actual aggregate TX routines will check whether this
* flag is set and if the frame needs to go into the BAW, it'll
* have a sequence number allocated for it.
*/
static int
ath_tx_seqno_required(struct ath_softc *sc, struct ieee80211_node *ni,
struct ath_buf *bf, struct mbuf *m0)
{
const struct ieee80211_frame *wh;
uint8_t subtype;
wh = mtod(m0, const struct ieee80211_frame *);
subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
/* XXX assert txq lock */
/* XXX assert ampdu is set */
return ((IEEE80211_QOS_HAS_SEQ(wh) &&
subtype != IEEE80211_FC0_SUBTYPE_QOS_NULL));
}
/*
* Assign a sequence number manually to the given frame.
*
* This should only be called for A-MPDU TX frames.
*
* If this is called after the initial frame setup, make sure you've flushed
* the DMA map or you'll risk sending stale data to the NIC. This routine
* updates the actual frame contents with the relevant seqno.
*/
int
ath_tx_tid_seqno_assign(struct ath_softc *sc, struct ieee80211_node *ni,
struct ath_buf *bf, struct mbuf *m0)
{
struct ieee80211_frame *wh;
int tid, pri;
ieee80211_seq seqno;
uint8_t subtype;
/* TID lookup */
wh = mtod(m0, struct ieee80211_frame *);
pri = M_WME_GETAC(m0); /* honor classification */
tid = WME_AC_TO_TID(pri);
DPRINTF(sc, ATH_DEBUG_SW_TX,
"%s: bf=%p, pri=%d, tid=%d, qos has seq=%d\n",
__func__, bf, pri, tid, IEEE80211_QOS_HAS_SEQ(wh));
if (! bf->bf_state.bfs_need_seqno) {
device_printf(sc->sc_dev, "%s: bf=%p: need_seqno not set?!\n",
__func__, bf);
return -1;
}
/* XXX check for bfs_need_seqno? */
if (bf->bf_state.bfs_seqno_assigned) {
device_printf(sc->sc_dev,
"%s: bf=%p: seqno already assigned (%d)?!\n",
__func__, bf, SEQNO(bf->bf_state.bfs_seqno));
return bf->bf_state.bfs_seqno >> IEEE80211_SEQ_SEQ_SHIFT;
}
/* XXX Is it a control frame? Ignore */
/* Does the packet require a sequence number? */
if (! IEEE80211_QOS_HAS_SEQ(wh))
return -1;
/*
* Is it a QOS NULL Data frame? Give it a sequence number from
* the default TID (IEEE80211_NONQOS_TID.)
*
* The RX path of everything I've looked at doesn't include the NULL
* data frame sequence number in the aggregation state updates, so
* assigning it a sequence number there will cause a BAW hole on the
* RX side.
*/
subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
if (subtype == IEEE80211_FC0_SUBTYPE_QOS_NULL) {
seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID];
INCR(ni->ni_txseqs[IEEE80211_NONQOS_TID], IEEE80211_SEQ_RANGE);
} else {
/* Manually assign sequence number */
seqno = ni->ni_txseqs[tid];
INCR(ni->ni_txseqs[tid], IEEE80211_SEQ_RANGE);
}
*(uint16_t *)&wh->i_seq[0] = htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
M_SEQNO_SET(m0, seqno);
bf->bf_state.bfs_seqno = seqno << IEEE80211_SEQ_SEQ_SHIFT;
bf->bf_state.bfs_seqno_assigned = 1;
/* Return so caller can do something with it if needed */
DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: bf=%p: -> seqno=%d\n",
__func__,
bf,
seqno);
return seqno;
}
/*
* Attempt to direct dispatch an aggregate frame to hardware.
* If the frame is out of BAW, queue.
* Otherwise, schedule it as a single frame.
*/
static void
ath_tx_xmit_aggr(struct ath_softc *sc, struct ath_node *an, struct ath_buf *bf)
{
struct ieee80211_node *ni = &an->an_node;
struct ath_tid *tid = &an->an_tid[bf->bf_state.bfs_tid];
struct ath_txq *txq = bf->bf_state.bfs_txq;
struct ieee80211_tx_ampdu *tap;
ATH_TXQ_LOCK_ASSERT(txq);
tap = ath_tx_get_tx_tid(an, tid->tid);
/* paused? queue */
if (tid->paused) {
ATH_TXQ_INSERT_TAIL(tid, bf, bf_list);
/* XXX don't sched - we're paused! */
return;
}
/*
* TODO: If it's _before_ the BAW left edge, complain very loudly.
* This means something (else) has slid the left edge along
* before we got a chance to be TXed.
*/
/*
* Is there space in this BAW for another frame?
* If not, don't bother trying to schedule it; just
* throw it back on the queue.
*
* If we allocate the sequence number before we add
* it to the BAW, we risk racing with another TX
* thread that gets in a frame into the BAW with
* seqno greater than ours. We'd then fail the
* below check and throw the frame on the tail of
* the queue. The sender would then have a hole.
*
* XXX again, we're protecting ni->ni_txseqs[tid]
* behind this hardware TXQ lock, like the rest of
* the TIDs that map to it. Ugh.
*/
if (bf->bf_state.bfs_dobaw) {
ieee80211_seq seqno;
/*
* If the sequence number is allocated, use it.
* Otherwise, use the sequence number we WOULD
* allocate.
*/
if (bf->bf_state.bfs_seqno_assigned)
seqno = SEQNO(bf->bf_state.bfs_seqno);
else
seqno = ni->ni_txseqs[bf->bf_state.bfs_tid];
/*
* Check whether either the currently allocated
* sequence number _OR_ the to-be allocated
* sequence number is inside the BAW.
*/
if (! BAW_WITHIN(tap->txa_start, tap->txa_wnd, seqno)) {
ATH_TXQ_INSERT_TAIL(tid, bf, bf_list);
ath_tx_tid_sched(sc, tid);
return;
}
if (! bf->bf_state.bfs_seqno_assigned) {
int seqno;
seqno = ath_tx_tid_seqno_assign(sc, ni, bf, bf->bf_m);
if (seqno < 0) {
device_printf(sc->sc_dev,
"%s: bf=%p, huh, seqno=-1?\n",
__func__,
bf);
/* XXX what can we even do here? */
}
/* Flush seqno update to RAM */
/*
* XXX This is required because the dmasetup
* XXX is done early rather than at dispatch
* XXX time. Ew, we should fix this!
*/
bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
BUS_DMASYNC_PREWRITE);
}
}
/* outside baw? queue */
if (bf->bf_state.bfs_dobaw &&
(! BAW_WITHIN(tap->txa_start, tap->txa_wnd,
SEQNO(bf->bf_state.bfs_seqno)))) {
device_printf(sc->sc_dev,
"%s: bf=%p, shouldn't be outside BAW now?!\n",
__func__,
bf);
ATH_TXQ_INSERT_TAIL(tid, bf, bf_list);
ath_tx_tid_sched(sc, tid);
return;
}
/* Direct dispatch to hardware */
ath_tx_do_ratelookup(sc, bf);
ath_tx_calc_duration(sc, bf);
ath_tx_calc_protection(sc, bf);
ath_tx_set_rtscts(sc, bf);
ath_tx_rate_fill_rcflags(sc, bf);
ath_tx_setds(sc, bf);
ath_tx_set_ratectrl(sc, bf->bf_node, bf);
ath_tx_chaindesclist(sc, bf);
/* Statistics */
sc->sc_aggr_stats.aggr_low_hwq_single_pkt++;
/* Track per-TID hardware queue depth correctly */
tid->hwq_depth++;
/* Add to BAW */
if (bf->bf_state.bfs_dobaw) {
ath_tx_addto_baw(sc, an, tid, bf);
bf->bf_state.bfs_addedbaw = 1;
}
/* Set completion handler, multi-frame aggregate or not */
bf->bf_comp = ath_tx_aggr_comp;
/* Hand off to hardware */
ath_tx_handoff(sc, txq, bf);
}
/*
* Attempt to send the packet.
* If the queue isn't busy, direct-dispatch.
* If the queue is busy enough, queue the given packet on the
* relevant software queue.
*/
void
ath_tx_swq(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_txq *txq,
struct ath_buf *bf)
{
struct ath_node *an = ATH_NODE(ni);
struct ieee80211_frame *wh;
struct ath_tid *atid;
int pri, tid;
struct mbuf *m0 = bf->bf_m;
/* Fetch the TID - non-QoS frames get assigned to TID 16 */
wh = mtod(m0, struct ieee80211_frame *);
pri = ath_tx_getac(sc, m0);
tid = ath_tx_gettid(sc, m0);
atid = &an->an_tid[tid];
DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: bf=%p, pri=%d, tid=%d, qos=%d, seqno=%d\n",
__func__, bf, pri, tid, IEEE80211_QOS_HAS_SEQ(wh), SEQNO(bf->bf_state.bfs_seqno));
/* Set local packet state, used to queue packets to hardware */
bf->bf_state.bfs_tid = tid;
bf->bf_state.bfs_txq = txq;
bf->bf_state.bfs_pri = pri;
/*
* If the hardware queue isn't busy, queue it directly.
* If the hardware queue is busy, queue it.
* If the TID is paused or the traffic it outside BAW, software
* queue it.
*/
ATH_TXQ_LOCK(txq);
if (atid->paused) {
/* TID is paused, queue */
DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: bf=%p: paused\n", __func__, bf);
ATH_TXQ_INSERT_TAIL(atid, bf, bf_list);
} else if (ath_tx_ampdu_pending(sc, an, tid)) {
/* AMPDU pending; queue */
DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: bf=%p: pending\n", __func__, bf);
ATH_TXQ_INSERT_TAIL(atid, bf, bf_list);
/* XXX sched? */
} else if (ath_tx_ampdu_running(sc, an, tid)) {
/* AMPDU running, attempt direct dispatch if possible */
if (txq->axq_depth < sc->sc_hwq_limit) {
DPRINTF(sc, ATH_DEBUG_SW_TX,
"%s: bf=%p: xmit_aggr\n",
__func__, bf);
ath_tx_xmit_aggr(sc, an, bf);
} else {
DPRINTF(sc, ATH_DEBUG_SW_TX,
"%s: bf=%p: ampdu; swq'ing\n",
__func__, bf);
ATH_TXQ_INSERT_TAIL(atid, bf, bf_list);
ath_tx_tid_sched(sc, atid);
}
} else if (txq->axq_depth < sc->sc_hwq_limit) {
/* AMPDU not running, attempt direct dispatch */
DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: bf=%p: xmit_normal\n", __func__, bf);
ath_tx_xmit_normal(sc, txq, bf);
} else {
/* Busy; queue */
DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: bf=%p: swq'ing\n", __func__, bf);
ATH_TXQ_INSERT_TAIL(atid, bf, bf_list);
ath_tx_tid_sched(sc, atid);
}
ATH_TXQ_UNLOCK(txq);
}
/*
* Do the basic frame setup stuff that's required before the frame
* is added to a software queue.
*
* All frames get mostly the same treatment and it's done once.
* Retransmits fiddle with things like the rate control setup,
* setting the retransmit bit in the packet; doing relevant DMA/bus
* syncing and relinking it (back) into the hardware TX queue.
*
* Note that this may cause the mbuf to be reallocated, so
* m0 may not be valid.
*/
/*
* Configure the per-TID node state.
*
* This likely belongs in if_ath_node.c but I can't think of anywhere
* else to put it just yet.
*
* This sets up the SLISTs and the mutex as appropriate.
*/
void
ath_tx_tid_init(struct ath_softc *sc, struct ath_node *an)
{
int i, j;
struct ath_tid *atid;
for (i = 0; i < IEEE80211_TID_SIZE; i++) {
atid = &an->an_tid[i];
TAILQ_INIT(&atid->axq_q);
atid->tid = i;
atid->an = an;
for (j = 0; j < ATH_TID_MAX_BUFS; j++)
atid->tx_buf[j] = NULL;
atid->baw_head = atid->baw_tail = 0;
atid->paused = 0;
atid->sched = 0;
atid->hwq_depth = 0;
atid->cleanup_inprogress = 0;
if (i == IEEE80211_NONQOS_TID)
atid->ac = WME_AC_BE;
else
atid->ac = TID_TO_WME_AC(i);
}
}
/*
* Pause the current TID. This stops packets from being transmitted
* on it.
*
* Since this is also called from upper layers as well as the driver,
* it will get the TID lock.
*/
static void
ath_tx_tid_pause(struct ath_softc *sc, struct ath_tid *tid)
{
ATH_TXQ_LOCK_ASSERT(sc->sc_ac2q[tid->ac]);
tid->paused++;
DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: paused = %d\n",
__func__, tid->paused);
}
/*
* Unpause the current TID, and schedule it if needed.
*/
static void
ath_tx_tid_resume(struct ath_softc *sc, struct ath_tid *tid)
{
ATH_TXQ_LOCK_ASSERT(sc->sc_ac2q[tid->ac]);
tid->paused--;
DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: unpaused = %d\n",
__func__, tid->paused);
if (tid->paused || tid->axq_depth == 0) {
return;
}
ath_tx_tid_sched(sc, tid);
/* Punt some frames to the hardware if needed */
//ath_txq_sched(sc, sc->sc_ac2q[tid->ac]);
taskqueue_enqueue(sc->sc_tq, &sc->sc_txqtask);
}
/*
* Suspend the queue because we need to TX a BAR.
*/
static void
ath_tx_tid_bar_suspend(struct ath_softc *sc, struct ath_tid *tid)
{
ATH_TXQ_LOCK_ASSERT(sc->sc_ac2q[tid->ac]);
DPRINTF(sc, ATH_DEBUG_SW_TX_BAR,
"%s: tid=%p, bar_wait=%d, bar_tx=%d, called\n",
__func__,
tid,
tid->bar_wait,
tid->bar_tx);
/* We shouldn't be called when bar_tx is 1 */
if (tid->bar_tx) {
device_printf(sc->sc_dev, "%s: bar_tx is 1?!\n",
__func__);
}
/* If we've already been called, just be patient. */
if (tid->bar_wait)
return;
/* Wait! */
tid->bar_wait = 1;
/* Only one pause, no matter how many frames fail */
ath_tx_tid_pause(sc, tid);
}
/*
* We've finished with BAR handling - either we succeeded or
* failed. Either way, unsuspend TX.
*/
static void
ath_tx_tid_bar_unsuspend(struct ath_softc *sc, struct ath_tid *tid)
{
ATH_TXQ_LOCK_ASSERT(sc->sc_ac2q[tid->ac]);
DPRINTF(sc, ATH_DEBUG_SW_TX_BAR,
"%s: tid=%p, called\n",
__func__,
tid);
if (tid->bar_tx == 0 || tid->bar_wait == 0) {
device_printf(sc->sc_dev, "%s: bar_tx=%d, bar_wait=%d: ?\n",
__func__, tid->bar_tx, tid->bar_wait);
}
tid->bar_tx = tid->bar_wait = 0;
ath_tx_tid_resume(sc, tid);
}
/*
* Return whether we're ready to TX a BAR frame.
*
* Requires the TID lock be held.
*/
static int
ath_tx_tid_bar_tx_ready(struct ath_softc *sc, struct ath_tid *tid)
{
ATH_TXQ_LOCK_ASSERT(sc->sc_ac2q[tid->ac]);
if (tid->bar_wait == 0 || tid->hwq_depth > 0)
return (0);
DPRINTF(sc, ATH_DEBUG_SW_TX_BAR, "%s: tid=%p (%d), bar ready\n",
__func__, tid, tid->tid);
return (1);
}
/*
* Check whether the current TID is ready to have a BAR
* TXed and if so, do the TX.
*
* Since the TID/TXQ lock can't be held during a call to
* ieee80211_send_bar(), we have to do the dirty thing of unlocking it,
* sending the BAR and locking it again.
*
* Eventually, the code to send the BAR should be broken out
* from this routine so the lock doesn't have to be reacquired
* just to be immediately dropped by the caller.
*/
static void
ath_tx_tid_bar_tx(struct ath_softc *sc, struct ath_tid *tid)
{
struct ieee80211_tx_ampdu *tap;
ATH_TXQ_LOCK_ASSERT(sc->sc_ac2q[tid->ac]);
DPRINTF(sc, ATH_DEBUG_SW_TX_BAR,
"%s: tid=%p, called\n",
__func__,
tid);
tap = ath_tx_get_tx_tid(tid->an, tid->tid);
/*
* This is an error condition!
*/
if (tid->bar_wait == 0 || tid->bar_tx == 1) {
device_printf(sc->sc_dev,
"%s: tid=%p, bar_tx=%d, bar_wait=%d: ?\n",
__func__,
tid,
tid->bar_tx,
tid->bar_wait);
return;
}
/* Don't do anything if we still have pending frames */
if (tid->hwq_depth > 0) {
DPRINTF(sc, ATH_DEBUG_SW_TX_BAR,
"%s: tid=%p, hwq_depth=%d, waiting\n",
__func__,
tid,
tid->hwq_depth);
return;
}
/* We're now about to TX */
tid->bar_tx = 1;
/*
* Calculate new BAW left edge, now that all frames have either
* succeeded or failed.
*
* XXX verify this is _actually_ the valid value to begin at!
*/
DPRINTF(sc, ATH_DEBUG_SW_TX_BAR,
"%s: tid=%p, new BAW left edge=%d\n",
__func__,
tid,
tap->txa_start);
/* Try sending the BAR frame */
/* We can't hold the lock here! */
ATH_TXQ_UNLOCK(sc->sc_ac2q[tid->ac]);
if (ieee80211_send_bar(&tid->an->an_node, tap, tap->txa_start) == 0) {
/* Success? Now we wait for notification that it's done */
ATH_TXQ_LOCK(sc->sc_ac2q[tid->ac]);
return;
}
/* Failure? For now, warn loudly and continue */
ATH_TXQ_LOCK(sc->sc_ac2q[tid->ac]);
device_printf(sc->sc_dev, "%s: tid=%p, failed to TX BAR, continue!\n",
__func__, tid);
ath_tx_tid_bar_unsuspend(sc, tid);
}
/*
* Free any packets currently pending in the software TX queue.
*
* This will be called when a node is being deleted.
*
* It can also be called on an active node during an interface
* reset or state transition.
*
* (From Linux/reference):
*
* TODO: For frame(s) that are in the retry state, we will reuse the
* sequence number(s) without setting the retry bit. The
* alternative is to give up on these and BAR the receiver's window
* forward.
*/
static void
ath_tx_tid_drain(struct ath_softc *sc, struct ath_node *an,
struct ath_tid *tid, ath_bufhead *bf_cq)
{
struct ath_buf *bf;
struct ieee80211_tx_ampdu *tap;
struct ieee80211_node *ni = &an->an_node;
int t = 0;
struct ath_txq *txq = sc->sc_ac2q[tid->ac];
tap = ath_tx_get_tx_tid(an, tid->tid);
ATH_TXQ_LOCK_ASSERT(sc->sc_ac2q[tid->ac]);
/* Walk the queue, free frames */
for (;;) {
bf = TAILQ_FIRST(&tid->axq_q);
if (bf == NULL) {
break;
}
if (t == 0) {
device_printf(sc->sc_dev,
"%s: node %p: bf=%p: addbaw=%d, dobaw=%d, "
"seqno_assign=%d, seqno_required=%d, seqno=%d, retry=%d\n",
__func__, ni, bf,
bf->bf_state.bfs_addedbaw,
bf->bf_state.bfs_dobaw,
bf->bf_state.bfs_need_seqno,
bf->bf_state.bfs_seqno_assigned,
SEQNO(bf->bf_state.bfs_seqno),
bf->bf_state.bfs_retries);
device_printf(sc->sc_dev,
"%s: node %p: bf=%p: tid txq_depth=%d hwq_depth=%d, bar_wait=%d\n",
__func__, ni, bf,
tid->axq_depth,
tid->hwq_depth,
tid->bar_wait);
device_printf(sc->sc_dev,
"%s: node %p: bf=%p: tid %d: txq_depth=%d, "
"txq_aggr_depth=%d, sched=%d, paused=%d, "
"hwq_depth=%d, incomp=%d, baw_head=%d, "
"baw_tail=%d txa_start=%d, ni_txseqs=%d\n",
__func__, ni, bf, tid->tid, txq->axq_depth,
txq->axq_aggr_depth, tid->sched, tid->paused,
tid->hwq_depth, tid->incomp, tid->baw_head,
tid->baw_tail, tap == NULL ? -1 : tap->txa_start,
ni->ni_txseqs[tid->tid]);
/* XXX Dump the frame, see what it is? */
ieee80211_dump_pkt(ni->ni_ic,
mtod(bf->bf_m, const uint8_t *),
bf->bf_m->m_len, 0, -1);
t = 1;
}
/*
* If the current TID is running AMPDU, update
* the BAW.
*/
if (ath_tx_ampdu_running(sc, an, tid->tid) &&
bf->bf_state.bfs_dobaw) {
/*
* Only remove the frame from the BAW if it's
* been transmitted at least once; this means
* the frame was in the BAW to begin with.
*/
if (bf->bf_state.bfs_retries > 0) {
ath_tx_update_baw(sc, an, tid, bf);
bf->bf_state.bfs_dobaw = 0;
}
/*
* This has become a non-fatal error now
*/
if (! bf->bf_state.bfs_addedbaw)
device_printf(sc->sc_dev,
"%s: wasn't added: seqno %d\n",
__func__, SEQNO(bf->bf_state.bfs_seqno));
}
ATH_TXQ_REMOVE(tid, bf, bf_list);
TAILQ_INSERT_TAIL(bf_cq, bf, bf_list);
}
/*
* Now that it's completed, grab the TID lock and update
* the sequence number and BAW window.
* Because sequence numbers have been assigned to frames
* that haven't been sent yet, it's entirely possible
* we'll be called with some pending frames that have not
* been transmitted.
*
* The cleaner solution is to do the sequence number allocation
* when the packet is first transmitted - and thus the "retries"
* check above would be enough to update the BAW/seqno.
*/
/* But don't do it for non-QoS TIDs */
if (tap) {
#if 0
DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
"%s: node %p: TID %d: sliding BAW left edge to %d\n",
__func__, an, tid->tid, tap->txa_start);
#endif
ni->ni_txseqs[tid->tid] = tap->txa_start;
tid->baw_tail = tid->baw_head;
}
}
/*
* Flush all software queued packets for the given node.
*
* This occurs when a completion handler frees the last buffer
* for a node, and the node is thus freed. This causes the node
* to be cleaned up, which ends up calling ath_tx_node_flush.
*/
void
ath_tx_node_flush(struct ath_softc *sc, struct ath_node *an)
{
int tid;
ath_bufhead bf_cq;
struct ath_buf *bf;
TAILQ_INIT(&bf_cq);
for (tid = 0; tid < IEEE80211_TID_SIZE; tid++) {
struct ath_tid *atid = &an->an_tid[tid];
struct ath_txq *txq = sc->sc_ac2q[atid->ac];
/* Remove this tid from the list of active tids */
ATH_TXQ_LOCK(txq);
ath_tx_tid_unsched(sc, atid);
/* Free packets */
ath_tx_tid_drain(sc, an, atid, &bf_cq);
ATH_TXQ_UNLOCK(txq);
}
/* Handle completed frames */
while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) {
TAILQ_REMOVE(&bf_cq, bf, bf_list);
ath_tx_default_comp(sc, bf, 0);
}
}
/*
* Drain all the software TXQs currently with traffic queued.
*/
void
ath_tx_txq_drain(struct ath_softc *sc, struct ath_txq *txq)
{
struct ath_tid *tid;
ath_bufhead bf_cq;
struct ath_buf *bf;
TAILQ_INIT(&bf_cq);
ATH_TXQ_LOCK(txq);
/*
* Iterate over all active tids for the given txq,
* flushing and unsched'ing them
*/
while (! TAILQ_EMPTY(&txq->axq_tidq)) {
tid = TAILQ_FIRST(&txq->axq_tidq);
ath_tx_tid_drain(sc, tid->an, tid, &bf_cq);
ath_tx_tid_unsched(sc, tid);
}
ATH_TXQ_UNLOCK(txq);
while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) {
TAILQ_REMOVE(&bf_cq, bf, bf_list);
ath_tx_default_comp(sc, bf, 0);
}
}
/*
* Handle completion of non-aggregate session frames.
*/
void
ath_tx_normal_comp(struct ath_softc *sc, struct ath_buf *bf, int fail)
{
struct ieee80211_node *ni = bf->bf_node;
struct ath_node *an = ATH_NODE(ni);
int tid = bf->bf_state.bfs_tid;
struct ath_tid *atid = &an->an_tid[tid];
struct ath_tx_status *ts = &bf->bf_status.ds_txstat;
/* The TID state is protected behind the TXQ lock */
ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: bf=%p: fail=%d, hwq_depth now %d\n",
__func__, bf, fail, atid->hwq_depth - 1);
atid->hwq_depth--;
if (atid->hwq_depth < 0)
device_printf(sc->sc_dev, "%s: hwq_depth < 0: %d\n",
__func__, atid->hwq_depth);
ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
/*
* punt to rate control if we're not being cleaned up
* during a hw queue drain and the frame wanted an ACK.
*/
if (fail == 0 && ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0))
ath_tx_update_ratectrl(sc, ni, bf->bf_state.bfs_rc,
ts, bf->bf_state.bfs_pktlen,
1, (ts->ts_status == 0) ? 0 : 1);
ath_tx_default_comp(sc, bf, fail);
}
/*
* Handle cleanup of aggregate session packets that aren't
* an A-MPDU.
*
* There's no need to update the BAW here - the session is being
* torn down.
*/
static void
ath_tx_comp_cleanup_unaggr(struct ath_softc *sc, struct ath_buf *bf)
{
struct ieee80211_node *ni = bf->bf_node;
struct ath_node *an = ATH_NODE(ni);
int tid = bf->bf_state.bfs_tid;
struct ath_tid *atid = &an->an_tid[tid];
DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: TID %d: incomp=%d\n",
__func__, tid, atid->incomp);
ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
atid->incomp--;
if (atid->incomp == 0) {
DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
"%s: TID %d: cleaned up! resume!\n",
__func__, tid);
atid->cleanup_inprogress = 0;
ath_tx_tid_resume(sc, atid);
}
ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
ath_tx_default_comp(sc, bf, 0);
}
/*
* Performs transmit side cleanup when TID changes from aggregated to
* unaggregated.
*
* - Discard all retry frames from the s/w queue.
* - Fix the tx completion function for all buffers in s/w queue.
* - Count the number of unacked frames, and let transmit completion
* handle it later.
*
* The caller is responsible for pausing the TID.
*/
static void
ath_tx_tid_cleanup(struct ath_softc *sc, struct ath_node *an, int tid)
{
struct ath_tid *atid = &an->an_tid[tid];
struct ieee80211_tx_ampdu *tap;
struct ath_buf *bf, *bf_next;
ath_bufhead bf_cq;
DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
"%s: TID %d: called\n", __func__, tid);
TAILQ_INIT(&bf_cq);
ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
/*
* Update the frames in the software TX queue:
*
* + Discard retry frames in the queue
* + Fix the completion function to be non-aggregate
*/
bf = TAILQ_FIRST(&atid->axq_q);
while (bf) {
if (bf->bf_state.bfs_isretried) {
bf_next = TAILQ_NEXT(bf, bf_list);
TAILQ_REMOVE(&atid->axq_q, bf, bf_list);
atid->axq_depth--;
if (bf->bf_state.bfs_dobaw) {
ath_tx_update_baw(sc, an, atid, bf);
if (! bf->bf_state.bfs_addedbaw)
device_printf(sc->sc_dev,
"%s: wasn't added: seqno %d\n",
__func__,
SEQNO(bf->bf_state.bfs_seqno));
}
bf->bf_state.bfs_dobaw = 0;
/*
* Call the default completion handler with "fail" just
* so upper levels are suitably notified about this.
*/
TAILQ_INSERT_TAIL(&bf_cq, bf, bf_list);
bf = bf_next;
continue;
}
/* Give these the default completion handler */
bf->bf_comp = ath_tx_normal_comp;
bf = TAILQ_NEXT(bf, bf_list);
}
/* The caller is required to pause the TID */
#if 0
/* Pause the TID */
ath_tx_tid_pause(sc, atid);
#endif
/*
* Calculate what hardware-queued frames exist based
* on the current BAW size. Ie, what frames have been
* added to the TX hardware queue for this TID but
* not yet ACKed.
*/
tap = ath_tx_get_tx_tid(an, tid);
/* Need the lock - fiddling with BAW */
while (atid->baw_head != atid->baw_tail) {
if (atid->tx_buf[atid->baw_head]) {
atid->incomp++;
atid->cleanup_inprogress = 1;
atid->tx_buf[atid->baw_head] = NULL;
}
INCR(atid->baw_head, ATH_TID_MAX_BUFS);
INCR(tap->txa_start, IEEE80211_SEQ_RANGE);
}
/*
* If cleanup is required, defer TID scheduling
* until all the HW queued packets have been
* sent.
*/
if (! atid->cleanup_inprogress)
ath_tx_tid_resume(sc, atid);
if (atid->cleanup_inprogress)
DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
"%s: TID %d: cleanup needed: %d packets\n",
__func__, tid, atid->incomp);
ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
/* Handle completing frames and fail them */
while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) {
TAILQ_REMOVE(&bf_cq, bf, bf_list);
ath_tx_default_comp(sc, bf, 1);
}
}
static void
ath_tx_set_retry(struct ath_softc *sc, struct ath_buf *bf)
{
struct ieee80211_frame *wh;
wh = mtod(bf->bf_m, struct ieee80211_frame *);
/* Only update/resync if needed */
if (bf->bf_state.bfs_isretried == 0) {
wh->i_fc[1] |= IEEE80211_FC1_RETRY;
bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
BUS_DMASYNC_PREWRITE);
}
sc->sc_stats.ast_tx_swretries++;
bf->bf_state.bfs_isretried = 1;
bf->bf_state.bfs_retries ++;
}
static struct ath_buf *
ath_tx_retry_clone(struct ath_softc *sc, struct ath_node *an,
struct ath_tid *tid, struct ath_buf *bf)
{
struct ath_buf *nbf;
int error;
nbf = ath_buf_clone(sc, bf);
#if 0
device_printf(sc->sc_dev, "%s: ATH_BUF_BUSY; cloning\n",
__func__);
#endif
if (nbf == NULL) {
/* Failed to clone */
device_printf(sc->sc_dev,
"%s: failed to clone a busy buffer\n",
__func__);
return NULL;
}
/* Setup the dma for the new buffer */
error = ath_tx_dmasetup(sc, nbf, nbf->bf_m);
if (error != 0) {
device_printf(sc->sc_dev,
"%s: failed to setup dma for clone\n",
__func__);
/*
* Put this at the head of the list, not tail;
* that way it doesn't interfere with the
* busy buffer logic (which uses the tail of
* the list.)
*/
ATH_TXBUF_LOCK(sc);
TAILQ_INSERT_HEAD(&sc->sc_txbuf, nbf, bf_list);
ATH_TXBUF_UNLOCK(sc);
return NULL;
}
/* Update BAW if required, before we free the original buf */
if (bf->bf_state.bfs_dobaw)
ath_tx_switch_baw_buf(sc, an, tid, bf, nbf);
/* Free current buffer; return the older buffer */
bf->bf_m = NULL;
bf->bf_node = NULL;
ath_freebuf(sc, bf);
return nbf;
}
/*
* Handle retrying an unaggregate frame in an aggregate
* session.
*
* If too many retries occur, pause the TID, wait for
* any further retransmits (as there's no reason why
* non-aggregate frames in an aggregate session are
* transmitted in-order; they just have to be in-BAW)
* and then queue a BAR.
*/
static void
ath_tx_aggr_retry_unaggr(struct ath_softc *sc, struct ath_buf *bf)
{
struct ieee80211_node *ni = bf->bf_node;
struct ath_node *an = ATH_NODE(ni);
int tid = bf->bf_state.bfs_tid;
struct ath_tid *atid = &an->an_tid[tid];
struct ieee80211_tx_ampdu *tap;
ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
tap = ath_tx_get_tx_tid(an, tid);
/*
* If the buffer is marked as busy, we can't directly
* reuse it. Instead, try to clone the buffer.
* If the clone is successful, recycle the old buffer.
* If the clone is unsuccessful, set bfs_retries to max
* to force the next bit of code to free the buffer
* for us.
*/
if ((bf->bf_state.bfs_retries < SWMAX_RETRIES) &&
(bf->bf_flags & ATH_BUF_BUSY)) {
struct ath_buf *nbf;
nbf = ath_tx_retry_clone(sc, an, atid, bf);
if (nbf)
/* bf has been freed at this point */
bf = nbf;
else
bf->bf_state.bfs_retries = SWMAX_RETRIES + 1;
}
if (bf->bf_state.bfs_retries >= SWMAX_RETRIES) {
DPRINTF(sc, ATH_DEBUG_SW_TX_RETRIES,
"%s: exceeded retries; seqno %d\n",
__func__, SEQNO(bf->bf_state.bfs_seqno));
sc->sc_stats.ast_tx_swretrymax++;
/* Update BAW anyway */
if (bf->bf_state.bfs_dobaw) {
ath_tx_update_baw(sc, an, atid, bf);
if (! bf->bf_state.bfs_addedbaw)
device_printf(sc->sc_dev,
"%s: wasn't added: seqno %d\n",
__func__, SEQNO(bf->bf_state.bfs_seqno));
}
bf->bf_state.bfs_dobaw = 0;
/* Suspend the TX queue and get ready to send the BAR */
ath_tx_tid_bar_suspend(sc, atid);
/* Send the BAR if there are no other frames waiting */
if (ath_tx_tid_bar_tx_ready(sc, atid))
ath_tx_tid_bar_tx(sc, atid);
ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
/* Free buffer, bf is free after this call */
ath_tx_default_comp(sc, bf, 0);
return;
}
/*
* This increments the retry counter as well as
* sets the retry flag in the ath_buf and packet
* body.
*/
ath_tx_set_retry(sc, bf);
/*
* Insert this at the head of the queue, so it's
* retried before any current/subsequent frames.
*/
ATH_TXQ_INSERT_HEAD(atid, bf, bf_list);
ath_tx_tid_sched(sc, atid);
/* Send the BAR if there are no other frames waiting */
if (ath_tx_tid_bar_tx_ready(sc, atid))
ath_tx_tid_bar_tx(sc, atid);
ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
}
/*
* Common code for aggregate excessive retry/subframe retry.
* If retrying, queues buffers to bf_q. If not, frees the
* buffers.
*
* XXX should unify this with ath_tx_aggr_retry_unaggr()
*/
static int
ath_tx_retry_subframe(struct ath_softc *sc, struct ath_buf *bf,
ath_bufhead *bf_q)
{
struct ieee80211_node *ni = bf->bf_node;
struct ath_node *an = ATH_NODE(ni);
int tid = bf->bf_state.bfs_tid;
struct ath_tid *atid = &an->an_tid[tid];
ATH_TXQ_LOCK_ASSERT(sc->sc_ac2q[atid->ac]);
ath_hal_clr11n_aggr(sc->sc_ah, bf->bf_desc);
ath_hal_set11nburstduration(sc->sc_ah, bf->bf_desc, 0);
/* ath_hal_set11n_virtualmorefrag(sc->sc_ah, bf->bf_desc, 0); */
/*
* If the buffer is marked as busy, we can't directly
* reuse it. Instead, try to clone the buffer.
* If the clone is successful, recycle the old buffer.
* If the clone is unsuccessful, set bfs_retries to max
* to force the next bit of code to free the buffer
* for us.
*/
if ((bf->bf_state.bfs_retries < SWMAX_RETRIES) &&
(bf->bf_flags & ATH_BUF_BUSY)) {
struct ath_buf *nbf;
nbf = ath_tx_retry_clone(sc, an, atid, bf);
if (nbf)
/* bf has been freed at this point */
bf = nbf;
else
bf->bf_state.bfs_retries = SWMAX_RETRIES + 1;
}
if (bf->bf_state.bfs_retries >= SWMAX_RETRIES) {
sc->sc_stats.ast_tx_swretrymax++;
DPRINTF(sc, ATH_DEBUG_SW_TX_RETRIES,
"%s: max retries: seqno %d\n",
__func__, SEQNO(bf->bf_state.bfs_seqno));
ath_tx_update_baw(sc, an, atid, bf);
if (! bf->bf_state.bfs_addedbaw)
device_printf(sc->sc_dev,
"%s: wasn't added: seqno %d\n",
__func__, SEQNO(bf->bf_state.bfs_seqno));
bf->bf_state.bfs_dobaw = 0;
return 1;
}
ath_tx_set_retry(sc, bf);
bf->bf_next = NULL; /* Just to make sure */
TAILQ_INSERT_TAIL(bf_q, bf, bf_list);
return 0;
}
/*
* error pkt completion for an aggregate destination
*/
static void
ath_tx_comp_aggr_error(struct ath_softc *sc, struct ath_buf *bf_first,
struct ath_tid *tid)
{
struct ieee80211_node *ni = bf_first->bf_node;
struct ath_node *an = ATH_NODE(ni);
struct ath_buf *bf_next, *bf;
ath_bufhead bf_q;
int drops = 0;
struct ieee80211_tx_ampdu *tap;
ath_bufhead bf_cq;
TAILQ_INIT(&bf_q);
TAILQ_INIT(&bf_cq);
/*
* Update rate control - all frames have failed.
*
* XXX use the length in the first frame in the series;
* XXX just so things are consistent for now.
*/
ath_tx_update_ratectrl(sc, ni, bf_first->bf_state.bfs_rc,
&bf_first->bf_status.ds_txstat,
bf_first->bf_state.bfs_pktlen,
bf_first->bf_state.bfs_nframes, bf_first->bf_state.bfs_nframes);
ATH_TXQ_LOCK(sc->sc_ac2q[tid->ac]);
tap = ath_tx_get_tx_tid(an, tid->tid);
sc->sc_stats.ast_tx_aggr_failall++;
/* Retry all subframes */
bf = bf_first;
while (bf) {
bf_next = bf->bf_next;
bf->bf_next = NULL; /* Remove it from the aggr list */
sc->sc_stats.ast_tx_aggr_fail++;
if (ath_tx_retry_subframe(sc, bf, &bf_q)) {
drops++;
bf->bf_next = NULL;
TAILQ_INSERT_TAIL(&bf_cq, bf, bf_list);
}
bf = bf_next;
}
/* Prepend all frames to the beginning of the queue */
while ((bf = TAILQ_LAST(&bf_q, ath_bufhead_s)) != NULL) {
TAILQ_REMOVE(&bf_q, bf, bf_list);
ATH_TXQ_INSERT_HEAD(tid, bf, bf_list);
}
/*
* Schedule the TID to be re-tried.
*/
ath_tx_tid_sched(sc, tid);
/*
* send bar if we dropped any frames
*
* Keep the txq lock held for now, as we need to ensure
* that ni_txseqs[] is consistent (as it's being updated
* in the ifnet TX context or raw TX context.)
*/
if (drops) {
/* Suspend the TX queue and get ready to send the BAR */
ath_tx_tid_bar_suspend(sc, tid);
}
/*
* Send BAR if required
*/
if (ath_tx_tid_bar_tx_ready(sc, tid))
ath_tx_tid_bar_tx(sc, tid);
ATH_TXQ_UNLOCK(sc->sc_ac2q[tid->ac]);
/* Complete frames which errored out */
while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) {
TAILQ_REMOVE(&bf_cq, bf, bf_list);
ath_tx_default_comp(sc, bf, 0);
}
}
/*
* Handle clean-up of packets from an aggregate list.
*
* There's no need to update the BAW here - the session is being
* torn down.
*/
static void
ath_tx_comp_cleanup_aggr(struct ath_softc *sc, struct ath_buf *bf_first)
{
struct ath_buf *bf, *bf_next;
struct ieee80211_node *ni = bf_first->bf_node;
struct ath_node *an = ATH_NODE(ni);
int tid = bf_first->bf_state.bfs_tid;
struct ath_tid *atid = &an->an_tid[tid];
bf = bf_first;
ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
/* update incomp */
while (bf) {
atid->incomp--;
bf = bf->bf_next;
}
if (atid->incomp == 0) {
DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
"%s: TID %d: cleaned up! resume!\n",
__func__, tid);
atid->cleanup_inprogress = 0;
ath_tx_tid_resume(sc, atid);
}
/* Send BAR if required */
if (ath_tx_tid_bar_tx_ready(sc, atid))
ath_tx_tid_bar_tx(sc, atid);
ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
/* Handle frame completion */
while (bf) {
bf_next = bf->bf_next;
ath_tx_default_comp(sc, bf, 1);
bf = bf_next;
}
}
/*
* Handle completion of an set of aggregate frames.
*
* XXX for now, simply complete each sub-frame.
*
* Note: the completion handler is the last descriptor in the aggregate,
* not the last descriptor in the first frame.
*/
static void
ath_tx_aggr_comp_aggr(struct ath_softc *sc, struct ath_buf *bf_first,
int fail)
{
//struct ath_desc *ds = bf->bf_lastds;
struct ieee80211_node *ni = bf_first->bf_node;
struct ath_node *an = ATH_NODE(ni);
int tid = bf_first->bf_state.bfs_tid;
struct ath_tid *atid = &an->an_tid[tid];
struct ath_tx_status ts;
struct ieee80211_tx_ampdu *tap;
ath_bufhead bf_q;
ath_bufhead bf_cq;
int seq_st, tx_ok;
int hasba, isaggr;
uint32_t ba[2];
struct ath_buf *bf, *bf_next;
int ba_index;
int drops = 0;
int nframes = 0, nbad = 0, nf;
int pktlen;
/* XXX there's too much on the stack? */
struct ath_rc_series rc[4];
int txseq;
DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: called; hwq_depth=%d\n",
__func__, atid->hwq_depth);
/* The TID state is kept behind the TXQ lock */
ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
atid->hwq_depth--;
if (atid->hwq_depth < 0)
device_printf(sc->sc_dev, "%s: hwq_depth < 0: %d\n",
__func__, atid->hwq_depth);
/*
* Punt cleanup to the relevant function, not our problem now
*/
if (atid->cleanup_inprogress) {
ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
ath_tx_comp_cleanup_aggr(sc, bf_first);
return;
}
/*
* Take a copy; this may be needed -after- bf_first
* has been completed and freed.
*/
ts = bf_first->bf_status.ds_txstat;
/*
* XXX for now, use the first frame in the aggregate for
* XXX rate control completion; it's at least consistent.
*/
pktlen = bf_first->bf_state.bfs_pktlen;
/*
* Handle errors first!
*
* Here, handle _any_ error as a "exceeded retries" error.
* Later on (when filtered frames are to be specially handled)
* it'll have to be expanded.
*/
#if 0
if (ts.ts_status & HAL_TXERR_XRETRY) {
#endif
if (ts.ts_status != 0) {
ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
ath_tx_comp_aggr_error(sc, bf_first, atid);
return;
}
TAILQ_INIT(&bf_q);
TAILQ_INIT(&bf_cq);
tap = ath_tx_get_tx_tid(an, tid);
/*
* extract starting sequence and block-ack bitmap
*/
/* XXX endian-ness of seq_st, ba? */
seq_st = ts.ts_seqnum;
hasba = !! (ts.ts_flags & HAL_TX_BA);
tx_ok = (ts.ts_status == 0);
isaggr = bf_first->bf_state.bfs_aggr;
ba[0] = ts.ts_ba_low;
ba[1] = ts.ts_ba_high;
/*
* Copy the TX completion status and the rate control
* series from the first descriptor, as it may be freed
* before the rate control code can get its grubby fingers
* into things.
*/
memcpy(rc, bf_first->bf_state.bfs_rc, sizeof(rc));
DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
"%s: txa_start=%d, tx_ok=%d, status=%.8x, flags=%.8x, "
"isaggr=%d, seq_st=%d, hasba=%d, ba=%.8x, %.8x\n",
__func__, tap->txa_start, tx_ok, ts.ts_status, ts.ts_flags,
isaggr, seq_st, hasba, ba[0], ba[1]);
/* Occasionally, the MAC sends a tx status for the wrong TID. */
if (tid != ts.ts_tid) {
device_printf(sc->sc_dev, "%s: tid %d != hw tid %d\n",
__func__, tid, ts.ts_tid);
tx_ok = 0;
}
/* AR5416 BA bug; this requires an interface reset */
if (isaggr && tx_ok && (! hasba)) {
device_printf(sc->sc_dev,
"%s: AR5416 bug: hasba=%d; txok=%d, isaggr=%d, "
"seq_st=%d\n",
__func__, hasba, tx_ok, isaggr, seq_st);
/* XXX TODO: schedule an interface reset */
}
/*
* Walk the list of frames, figure out which ones were correctly
* sent and which weren't.
*/
bf = bf_first;
nf = bf_first->bf_state.bfs_nframes;
/* bf_first is going to be invalid once this list is walked */
bf_first = NULL;
/*
* Walk the list of completed frames and determine
* which need to be completed and which need to be
* retransmitted.
*
* For completed frames, the completion functions need
* to be called at the end of this function as the last
* node reference may free the node.
*
* Finally, since the TXQ lock can't be held during the
* completion callback (to avoid lock recursion),
* the completion calls have to be done outside of the
* lock.
*/
while (bf) {
nframes++;
ba_index = ATH_BA_INDEX(seq_st,
SEQNO(bf->bf_state.bfs_seqno));
bf_next = bf->bf_next;
bf->bf_next = NULL; /* Remove it from the aggr list */
DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
"%s: checking bf=%p seqno=%d; ack=%d\n",
__func__, bf, SEQNO(bf->bf_state.bfs_seqno),
ATH_BA_ISSET(ba, ba_index));
if (tx_ok && ATH_BA_ISSET(ba, ba_index)) {
sc->sc_stats.ast_tx_aggr_ok++;
ath_tx_update_baw(sc, an, atid, bf);
bf->bf_state.bfs_dobaw = 0;
if (! bf->bf_state.bfs_addedbaw)
device_printf(sc->sc_dev,
"%s: wasn't added: seqno %d\n",
__func__, SEQNO(bf->bf_state.bfs_seqno));
bf->bf_next = NULL;
TAILQ_INSERT_TAIL(&bf_cq, bf, bf_list);
} else {
sc->sc_stats.ast_tx_aggr_fail++;
if (ath_tx_retry_subframe(sc, bf, &bf_q)) {
drops++;
bf->bf_next = NULL;
TAILQ_INSERT_TAIL(&bf_cq, bf, bf_list);
}
nbad++;
}
bf = bf_next;
}
/*
* Now that the BAW updates have been done, unlock
*
* txseq is grabbed before the lock is released so we
* have a consistent view of what -was- in the BAW.
* Anything after this point will not yet have been
* TXed.
*/
txseq = tap->txa_start;
ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
if (nframes != nf)
device_printf(sc->sc_dev,
"%s: num frames seen=%d; bf nframes=%d\n",
__func__, nframes, nf);
/*
* Now we know how many frames were bad, call the rate
* control code.
*/
if (fail == 0)
ath_tx_update_ratectrl(sc, ni, rc, &ts, pktlen, nframes,
nbad);
/*
* send bar if we dropped any frames
*/
if (drops) {
/* Suspend the TX queue and get ready to send the BAR */
ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
ath_tx_tid_bar_suspend(sc, atid);
ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
}
DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
"%s: txa_start now %d\n", __func__, tap->txa_start);
ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
/* Prepend all frames to the beginning of the queue */
while ((bf = TAILQ_LAST(&bf_q, ath_bufhead_s)) != NULL) {
TAILQ_REMOVE(&bf_q, bf, bf_list);
ATH_TXQ_INSERT_HEAD(atid, bf, bf_list);
}
/*
* Reschedule to grab some further frames.
*/
ath_tx_tid_sched(sc, atid);
/*
* Send BAR if required
*/
if (ath_tx_tid_bar_tx_ready(sc, atid))
ath_tx_tid_bar_tx(sc, atid);
ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
/* Do deferred completion */
while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) {
TAILQ_REMOVE(&bf_cq, bf, bf_list);
ath_tx_default_comp(sc, bf, 0);
}
}
/*
* Handle completion of unaggregated frames in an ADDBA
* session.
*
* Fail is set to 1 if the entry is being freed via a call to
* ath_tx_draintxq().
*/
static void
ath_tx_aggr_comp_unaggr(struct ath_softc *sc, struct ath_buf *bf, int fail)
{
struct ieee80211_node *ni = bf->bf_node;
struct ath_node *an = ATH_NODE(ni);
int tid = bf->bf_state.bfs_tid;
struct ath_tid *atid = &an->an_tid[tid];
struct ath_tx_status *ts = &bf->bf_status.ds_txstat;
/*
* Update rate control status here, before we possibly
* punt to retry or cleanup.
*
* Do it outside of the TXQ lock.
*/
if (fail == 0 && ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0))
ath_tx_update_ratectrl(sc, ni, bf->bf_state.bfs_rc,
&bf->bf_status.ds_txstat,
bf->bf_state.bfs_pktlen,
1, (ts->ts_status == 0) ? 0 : 1);
/*
* This is called early so atid->hwq_depth can be tracked.
* This unfortunately means that it's released and regrabbed
* during retry and cleanup. That's rather inefficient.
*/
ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
if (tid == IEEE80211_NONQOS_TID)
device_printf(sc->sc_dev, "%s: TID=16!\n", __func__);
DPRINTF(sc, ATH_DEBUG_SW_TX,
"%s: bf=%p: tid=%d, hwq_depth=%d, seqno=%d\n",
__func__, bf, bf->bf_state.bfs_tid, atid->hwq_depth,
SEQNO(bf->bf_state.bfs_seqno));
atid->hwq_depth--;
if (atid->hwq_depth < 0)
device_printf(sc->sc_dev, "%s: hwq_depth < 0: %d\n",
__func__, atid->hwq_depth);
/*
* If a cleanup is in progress, punt to comp_cleanup;
* rather than handling it here. It's thus their
* responsibility to clean up, call the completion
* function in net80211, etc.
*/
if (atid->cleanup_inprogress) {
ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: cleanup_unaggr\n",
__func__);
ath_tx_comp_cleanup_unaggr(sc, bf);
return;
}
/*
* Don't bother with the retry check if all frames
* are being failed (eg during queue deletion.)
*/
#if 0
if (fail == 0 && ts->ts_status & HAL_TXERR_XRETRY) {
#endif
if (fail == 0 && ts->ts_status != 0) {
ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: retry_unaggr\n",
__func__);
ath_tx_aggr_retry_unaggr(sc, bf);
return;
}
/* Success? Complete */
DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: TID=%d, seqno %d\n",
__func__, tid, SEQNO(bf->bf_state.bfs_seqno));
if (bf->bf_state.bfs_dobaw) {
ath_tx_update_baw(sc, an, atid, bf);
bf->bf_state.bfs_dobaw = 0;
if (! bf->bf_state.bfs_addedbaw)
device_printf(sc->sc_dev,
"%s: wasn't added: seqno %d\n",
__func__, SEQNO(bf->bf_state.bfs_seqno));
}
/*
* Send BAR if required
*/
if (ath_tx_tid_bar_tx_ready(sc, atid))
ath_tx_tid_bar_tx(sc, atid);
ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
ath_tx_default_comp(sc, bf, fail);
/* bf is freed at this point */
}
void
ath_tx_aggr_comp(struct ath_softc *sc, struct ath_buf *bf, int fail)
{
if (bf->bf_state.bfs_aggr)
ath_tx_aggr_comp_aggr(sc, bf, fail);
else
ath_tx_aggr_comp_unaggr(sc, bf, fail);
}
/*
* Schedule some packets from the given node/TID to the hardware.
*
* This is the aggregate version.
*/
void
ath_tx_tid_hw_queue_aggr(struct ath_softc *sc, struct ath_node *an,
struct ath_tid *tid)
{
struct ath_buf *bf;
struct ath_txq *txq = sc->sc_ac2q[tid->ac];
struct ieee80211_tx_ampdu *tap;
struct ieee80211_node *ni = &an->an_node;
ATH_AGGR_STATUS status;
ath_bufhead bf_q;
DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: tid=%d\n", __func__, tid->tid);
ATH_TXQ_LOCK_ASSERT(txq);
tap = ath_tx_get_tx_tid(an, tid->tid);
if (tid->tid == IEEE80211_NONQOS_TID)
device_printf(sc->sc_dev, "%s: called for TID=NONQOS_TID?\n",
__func__);
for (;;) {
status = ATH_AGGR_DONE;
/*
* If the upper layer has paused the TID, don't
* queue any further packets.
*
* This can also occur from the completion task because
* of packet loss; but as its serialised with this code,
* it won't "appear" half way through queuing packets.
*/
if (tid->paused)
break;
bf = TAILQ_FIRST(&tid->axq_q);
if (bf == NULL) {
break;
}
/*
* If the packet doesn't fall within the BAW (eg a NULL
* data frame), schedule it directly; continue.
*/
if (! bf->bf_state.bfs_dobaw) {
DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
"%s: non-baw packet\n",
__func__);
ATH_TXQ_REMOVE(tid, bf, bf_list);
bf->bf_state.bfs_aggr = 0;
ath_tx_do_ratelookup(sc, bf);
ath_tx_calc_duration(sc, bf);
ath_tx_calc_protection(sc, bf);
ath_tx_set_rtscts(sc, bf);
ath_tx_rate_fill_rcflags(sc, bf);
ath_tx_setds(sc, bf);
ath_tx_chaindesclist(sc, bf);
ath_hal_clr11n_aggr(sc->sc_ah, bf->bf_desc);
ath_tx_set_ratectrl(sc, ni, bf);
sc->sc_aggr_stats.aggr_nonbaw_pkt++;
/* Queue the packet; continue */
goto queuepkt;
}
TAILQ_INIT(&bf_q);
/*
* Do a rate control lookup on the first frame in the
* list. The rate control code needs that to occur
* before it can determine whether to TX.
* It's inaccurate because the rate control code doesn't
* really "do" aggregate lookups, so it only considers
* the size of the first frame.
*/
ath_tx_do_ratelookup(sc, bf);
bf->bf_state.bfs_rc[3].rix = 0;
bf->bf_state.bfs_rc[3].tries = 0;
ath_tx_calc_duration(sc, bf);
ath_tx_calc_protection(sc, bf);
ath_tx_set_rtscts(sc, bf);
ath_tx_rate_fill_rcflags(sc, bf);
status = ath_tx_form_aggr(sc, an, tid, &bf_q);
DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
"%s: ath_tx_form_aggr() status=%d\n", __func__, status);
/*
* No frames to be picked up - out of BAW
*/
if (TAILQ_EMPTY(&bf_q))
break;
/*
* This assumes that the descriptor list in the ath_bufhead
* are already linked together via bf_next pointers.
*/
bf = TAILQ_FIRST(&bf_q);
if (status == ATH_AGGR_8K_LIMITED)
sc->sc_aggr_stats.aggr_rts_aggr_limited++;
/*
* If it's the only frame send as non-aggregate
* assume that ath_tx_form_aggr() has checked
* whether it's in the BAW and added it appropriately.
*/
if (bf->bf_state.bfs_nframes == 1) {
DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
"%s: single-frame aggregate\n", __func__);
bf->bf_state.bfs_aggr = 0;
ath_tx_setds(sc, bf);
ath_tx_chaindesclist(sc, bf);
ath_hal_clr11n_aggr(sc->sc_ah, bf->bf_desc);
ath_tx_set_ratectrl(sc, ni, bf);
if (status == ATH_AGGR_BAW_CLOSED)
sc->sc_aggr_stats.aggr_baw_closed_single_pkt++;
else
sc->sc_aggr_stats.aggr_single_pkt++;
} else {
DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
"%s: multi-frame aggregate: %d frames, "
"length %d\n",
__func__, bf->bf_state.bfs_nframes,
bf->bf_state.bfs_al);
bf->bf_state.bfs_aggr = 1;
sc->sc_aggr_stats.aggr_pkts[bf->bf_state.bfs_nframes]++;
sc->sc_aggr_stats.aggr_aggr_pkt++;
/*
* Calculate the duration/protection as required.
*/
ath_tx_calc_duration(sc, bf);
ath_tx_calc_protection(sc, bf);
/*
* Update the rate and rtscts information based on the
* rate decision made by the rate control code;
* the first frame in the aggregate needs it.
*/
ath_tx_set_rtscts(sc, bf);
/*
* Setup the relevant descriptor fields
* for aggregation. The first descriptor
* already points to the rest in the chain.
*/
ath_tx_setds_11n(sc, bf);
/*
* setup first desc with rate and aggr info
*/
ath_tx_set_ratectrl(sc, ni, bf);
}
queuepkt:
//txq = bf->bf_state.bfs_txq;
/* Set completion handler, multi-frame aggregate or not */
bf->bf_comp = ath_tx_aggr_comp;
if (bf->bf_state.bfs_tid == IEEE80211_NONQOS_TID)
device_printf(sc->sc_dev, "%s: TID=16?\n", __func__);
/* Punt to txq */
ath_tx_handoff(sc, txq, bf);
/* Track outstanding buffer count to hardware */
/* aggregates are "one" buffer */
tid->hwq_depth++;
/*
* Break out if ath_tx_form_aggr() indicated
* there can't be any further progress (eg BAW is full.)
* Checking for an empty txq is done above.
*
* XXX locking on txq here?
*/
if (txq->axq_aggr_depth >= sc->sc_hwq_limit ||
status == ATH_AGGR_BAW_CLOSED)
break;
}
}
/*
* Schedule some packets from the given node/TID to the hardware.
*/
void
ath_tx_tid_hw_queue_norm(struct ath_softc *sc, struct ath_node *an,
struct ath_tid *tid)
{
struct ath_buf *bf;
struct ath_txq *txq = sc->sc_ac2q[tid->ac];
struct ieee80211_node *ni = &an->an_node;
DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: node %p: TID %d: called\n",
__func__, an, tid->tid);
ATH_TXQ_LOCK_ASSERT(txq);
/* Check - is AMPDU pending or running? then print out something */
if (ath_tx_ampdu_pending(sc, an, tid->tid))
device_printf(sc->sc_dev, "%s: tid=%d, ampdu pending?\n",
__func__, tid->tid);
if (ath_tx_ampdu_running(sc, an, tid->tid))
device_printf(sc->sc_dev, "%s: tid=%d, ampdu running?\n",
__func__, tid->tid);
for (;;) {
/*
* If the upper layers have paused the TID, don't
* queue any further packets.
*/
if (tid->paused)
break;
bf = TAILQ_FIRST(&tid->axq_q);
if (bf == NULL) {
break;
}
ATH_TXQ_REMOVE(tid, bf, bf_list);
KASSERT(txq == bf->bf_state.bfs_txq, ("txqs not equal!\n"));
/* Sanity check! */
if (tid->tid != bf->bf_state.bfs_tid) {
device_printf(sc->sc_dev, "%s: bfs_tid %d !="
" tid %d\n",
__func__, bf->bf_state.bfs_tid, tid->tid);
}
/* Normal completion handler */
bf->bf_comp = ath_tx_normal_comp;
/* Program descriptors + rate control */
ath_tx_do_ratelookup(sc, bf);
ath_tx_calc_duration(sc, bf);
ath_tx_calc_protection(sc, bf);
ath_tx_set_rtscts(sc, bf);
ath_tx_rate_fill_rcflags(sc, bf);
ath_tx_setds(sc, bf);
ath_tx_chaindesclist(sc, bf);
ath_tx_set_ratectrl(sc, ni, bf);
/* Track outstanding buffer count to hardware */
/* aggregates are "one" buffer */
tid->hwq_depth++;
/* Punt to hardware or software txq */
ath_tx_handoff(sc, txq, bf);
}
}
/*
* Schedule some packets to the given hardware queue.
*
* This function walks the list of TIDs (ie, ath_node TIDs
* with queued traffic) and attempts to schedule traffic
* from them.
*
* TID scheduling is implemented as a FIFO, with TIDs being
* added to the end of the queue after some frames have been
* scheduled.
*/
void
ath_txq_sched(struct ath_softc *sc, struct ath_txq *txq)
{
struct ath_tid *tid, *next, *last;
ATH_TXQ_LOCK_ASSERT(txq);
/*
* Don't schedule if the hardware queue is busy.
* This (hopefully) gives some more time to aggregate
* some packets in the aggregation queue.
*/
if (txq->axq_aggr_depth >= sc->sc_hwq_limit) {
sc->sc_aggr_stats.aggr_sched_nopkt++;
return;
}
last = TAILQ_LAST(&txq->axq_tidq, axq_t_s);
TAILQ_FOREACH_SAFE(tid, &txq->axq_tidq, axq_qelem, next) {
/*
* Suspend paused queues here; they'll be resumed
* once the addba completes or times out.
*/
DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: tid=%d, paused=%d\n",
__func__, tid->tid, tid->paused);
ath_tx_tid_unsched(sc, tid);
if (tid->paused) {
continue;
}
if (ath_tx_ampdu_running(sc, tid->an, tid->tid))
ath_tx_tid_hw_queue_aggr(sc, tid->an, tid);
else
ath_tx_tid_hw_queue_norm(sc, tid->an, tid);
/* Not empty? Re-schedule */
if (tid->axq_depth != 0)
ath_tx_tid_sched(sc, tid);
/* Give the software queue time to aggregate more packets */
if (txq->axq_aggr_depth >= sc->sc_hwq_limit) {
break;
}
/*
* If this was the last entry on the original list, stop.
* Otherwise nodes that have been rescheduled onto the end
* of the TID FIFO list will just keep being rescheduled.
*/
if (tid == last)
break;
}
}
/*
* TX addba handling
*/
/*
* Return net80211 TID struct pointer, or NULL for none
*/
struct ieee80211_tx_ampdu *
ath_tx_get_tx_tid(struct ath_node *an, int tid)
{
struct ieee80211_node *ni = &an->an_node;
struct ieee80211_tx_ampdu *tap;
if (tid == IEEE80211_NONQOS_TID)
return NULL;
tap = &ni->ni_tx_ampdu[tid];
return tap;
}
/*
* Is AMPDU-TX running?
*/
static int
ath_tx_ampdu_running(struct ath_softc *sc, struct ath_node *an, int tid)
{
struct ieee80211_tx_ampdu *tap;
if (tid == IEEE80211_NONQOS_TID)
return 0;
tap = ath_tx_get_tx_tid(an, tid);
if (tap == NULL)
return 0; /* Not valid; default to not running */
return !! (tap->txa_flags & IEEE80211_AGGR_RUNNING);
}
/*
* Is AMPDU-TX negotiation pending?
*/
static int
ath_tx_ampdu_pending(struct ath_softc *sc, struct ath_node *an, int tid)
{
struct ieee80211_tx_ampdu *tap;
if (tid == IEEE80211_NONQOS_TID)
return 0;
tap = ath_tx_get_tx_tid(an, tid);
if (tap == NULL)
return 0; /* Not valid; default to not pending */
return !! (tap->txa_flags & IEEE80211_AGGR_XCHGPEND);
}
/*
* Is AMPDU-TX pending for the given TID?
*/
/*
* Method to handle sending an ADDBA request.
*
* We tap this so the relevant flags can be set to pause the TID
* whilst waiting for the response.
*
* XXX there's no timeout handler we can override?
*/
int
ath_addba_request(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
int dialogtoken, int baparamset, int batimeout)
{
struct ath_softc *sc = ni->ni_ic->ic_ifp->if_softc;
int tid = tap->txa_tid;
struct ath_node *an = ATH_NODE(ni);
struct ath_tid *atid = &an->an_tid[tid];
/*
* XXX danger Will Robinson!
*
* Although the taskqueue may be running and scheduling some more
* packets, these should all be _before_ the addba sequence number.
* However, net80211 will keep self-assigning sequence numbers
* until addba has been negotiated.
*
* In the past, these packets would be "paused" (which still works
* fine, as they're being scheduled to the driver in the same
* serialised method which is calling the addba request routine)
* and when the aggregation session begins, they'll be dequeued
* as aggregate packets and added to the BAW. However, now there's
* a "bf->bf_state.bfs_dobaw" flag, and this isn't set for these
* packets. Thus they never get included in the BAW tracking and
* this can cause the initial burst of packets after the addba
* negotiation to "hang", as they quickly fall outside the BAW.
*
* The "eventual" solution should be to tag these packets with
* dobaw. Although net80211 has given us a sequence number,
* it'll be "after" the left edge of the BAW and thus it'll
* fall within it.
*/
ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
ath_tx_tid_pause(sc, atid);
ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
"%s: called; dialogtoken=%d, baparamset=%d, batimeout=%d\n",
__func__, dialogtoken, baparamset, batimeout);
DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
"%s: txa_start=%d, ni_txseqs=%d\n",
__func__, tap->txa_start, ni->ni_txseqs[tid]);
return sc->sc_addba_request(ni, tap, dialogtoken, baparamset,
batimeout);
}
/*
* Handle an ADDBA response.
*
* We unpause the queue so TX'ing can resume.
*
* Any packets TX'ed from this point should be "aggregate" (whether
* aggregate or not) so the BAW is updated.
*
* Note! net80211 keeps self-assigning sequence numbers until
* ampdu is negotiated. This means the initially-negotiated BAW left
* edge won't match the ni->ni_txseq.
*
* So, being very dirty, the BAW left edge is "slid" here to match
* ni->ni_txseq.
*
* What likely SHOULD happen is that all packets subsequent to the
* addba request should be tagged as aggregate and queued as non-aggregate
* frames; thus updating the BAW. For now though, I'll just slide the
* window.
*/
int
ath_addba_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
int status, int code, int batimeout)
{
struct ath_softc *sc = ni->ni_ic->ic_ifp->if_softc;
int tid = tap->txa_tid;
struct ath_node *an = ATH_NODE(ni);
struct ath_tid *atid = &an->an_tid[tid];
int r;
DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
"%s: called; status=%d, code=%d, batimeout=%d\n", __func__,
status, code, batimeout);
DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
"%s: txa_start=%d, ni_txseqs=%d\n",
__func__, tap->txa_start, ni->ni_txseqs[tid]);
/*
* Call this first, so the interface flags get updated
* before the TID is unpaused. Otherwise a race condition
* exists where the unpaused TID still doesn't yet have
* IEEE80211_AGGR_RUNNING set.
*/
r = sc->sc_addba_response(ni, tap, status, code, batimeout);
ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
/*
* XXX dirty!
* Slide the BAW left edge to wherever net80211 left it for us.
* Read above for more information.
*/
tap->txa_start = ni->ni_txseqs[tid];
ath_tx_tid_resume(sc, atid);
ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
return r;
}
/*
* Stop ADDBA on a queue.
*/
void
ath_addba_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap)
{
struct ath_softc *sc = ni->ni_ic->ic_ifp->if_softc;
int tid = tap->txa_tid;
struct ath_node *an = ATH_NODE(ni);
struct ath_tid *atid = &an->an_tid[tid];
DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: called\n", __func__);
/* Pause TID traffic early, so there aren't any races */
ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
ath_tx_tid_pause(sc, atid);
ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
/* There's no need to hold the TXQ lock here */
sc->sc_addba_stop(ni, tap);
/*
* ath_tx_tid_cleanup will resume the TID if possible, otherwise
* it'll set the cleanup flag, and it'll be unpaused once
* things have been cleaned up.
*/
ath_tx_tid_cleanup(sc, an, tid);
}
/*
* Note: net80211 bar_timeout() doesn't call this function on BAR failure;
* it simply tears down the aggregation session. Ew.
*
* It however will call ieee80211_ampdu_stop() which will call
* ic->ic_addba_stop().
*
* XXX This uses a hard-coded max BAR count value; the whole
* XXX BAR TX success or failure should be better handled!
*/
void
ath_bar_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
int status)
{
struct ath_softc *sc = ni->ni_ic->ic_ifp->if_softc;
int tid = tap->txa_tid;
struct ath_node *an = ATH_NODE(ni);
struct ath_tid *atid = &an->an_tid[tid];
int attempts = tap->txa_attempts;
DPRINTF(sc, ATH_DEBUG_SW_TX_BAR,
"%s: called; tap=%p, atid=%p, txa_tid=%d, atid->tid=%d, status=%d, attempts=%d\n",
__func__,
tap,
atid,
tap->txa_tid,
atid->tid,
status,
attempts);
/* Note: This may update the BAW details */
sc->sc_bar_response(ni, tap, status);
/* Unpause the TID */
/*
* XXX if this is attempt=50, the TID will be downgraded
* XXX to a non-aggregate session. So we must unpause the
* XXX TID here or it'll never be done.
*/
if (status == 0 || attempts == 50) {
ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
ath_tx_tid_bar_unsuspend(sc, atid);
ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
}
}
/*
* This is called whenever the pending ADDBA request times out.
* Unpause and reschedule the TID.
*/
void
ath_addba_response_timeout(struct ieee80211_node *ni,
struct ieee80211_tx_ampdu *tap)
{
struct ath_softc *sc = ni->ni_ic->ic_ifp->if_softc;
int tid = tap->txa_tid;
struct ath_node *an = ATH_NODE(ni);
struct ath_tid *atid = &an->an_tid[tid];
DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
"%s: called; resuming\n", __func__);
/* Note: This updates the aggregate state to (again) pending */
sc->sc_addba_response_timeout(ni, tap);
/* Unpause the TID; which reschedules it */
ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
ath_tx_tid_resume(sc, atid);
ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
}