freebsd-dev/sys/vm/vm_extern.h
Jonathan T. Looney 0766f278d8 Make UMA and malloc(9) return non-executable memory in most cases.
Most kernel memory that is allocated after boot does not need to be
executable.  There are a few exceptions.  For example, kernel modules
do need executable memory, but they don't use UMA or malloc(9).  The
BPF JIT compiler also needs executable memory and did use malloc(9)
until r317072.

(Note that a side effect of r316767 was that the "small allocation"
path in UMA on amd64 already returned non-executable memory.  This
meant that some calls to malloc(9) or the UMA zone(9) allocator could
return executable memory, while others could return non-executable
memory.  This change makes the behavior consistent.)

This change makes malloc(9) return non-executable memory unless the new
M_EXEC flag is specified.  After this change, the UMA zone(9) allocator
will always return non-executable memory, and a KASSERT will catch
attempts to use the M_EXEC flag to allocate executable memory using
uma_zalloc() or its variants.

Allocations that do need executable memory have various choices.  They
may use the M_EXEC flag to malloc(9), or they may use a different VM
interfact to obtain executable pages.

Now that malloc(9) again allows executable allocations, this change also
reverts most of r317072.

PR:		228927
Reviewed by:	alc, kib, markj, jhb (previous version)
Sponsored by:	Netflix
Differential Revision:	https://reviews.freebsd.org/D15691
2018-06-13 17:04:41 +00:00

132 lines
5.7 KiB
C

/*-
* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright (c) 1992, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)vm_extern.h 8.2 (Berkeley) 1/12/94
* $FreeBSD$
*/
#ifndef _VM_EXTERN_H_
#define _VM_EXTERN_H_
struct pmap;
struct proc;
struct vmspace;
struct vnode;
struct vmem;
#ifdef _KERNEL
struct cdev;
struct cdevsw;
/* These operate on kernel virtual addresses only. */
vm_offset_t kva_alloc(vm_size_t);
void kva_free(vm_offset_t, vm_size_t);
/* These operate on pageable virtual addresses. */
vm_offset_t kmap_alloc_wait(vm_map_t, vm_size_t);
void kmap_free_wakeup(vm_map_t, vm_offset_t, vm_size_t);
/* These operate on virtual addresses backed by memory. */
vm_offset_t kmem_alloc_attr(struct vmem *, vm_size_t size, int flags,
vm_paddr_t low, vm_paddr_t high, vm_memattr_t memattr);
vm_offset_t kmem_alloc_attr_domain(int domain, vm_size_t size, int flags,
vm_paddr_t low, vm_paddr_t high, vm_memattr_t memattr);
vm_offset_t kmem_alloc_contig(struct vmem *, vm_size_t size, int flags,
vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
vm_memattr_t memattr);
vm_offset_t kmem_alloc_contig_domain(int domain, vm_size_t size, int flags,
vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
vm_memattr_t memattr);
vm_offset_t kmem_malloc(struct vmem *, vm_size_t size, int flags);
vm_offset_t kmem_malloc_domain(struct vmem *, int domain, vm_size_t size,
int flags);
void kmem_free(struct vmem *, vm_offset_t, vm_size_t);
/* This provides memory for previously allocated address space. */
int kmem_back(vm_object_t, vm_offset_t, vm_size_t, int);
int kmem_back_domain(int, vm_object_t, vm_offset_t, vm_size_t, int);
void kmem_unback(vm_object_t, vm_offset_t, vm_size_t);
/* Bootstrapping. */
vm_map_t kmem_suballoc(vm_map_t, vm_offset_t *, vm_offset_t *, vm_size_t,
boolean_t);
void kmem_init(vm_offset_t, vm_offset_t);
void kmem_init_zero_region(void);
void kmeminit(void);
int kernacc(void *, int, int);
int useracc(void *, int, int);
int vm_fault(vm_map_t, vm_offset_t, vm_prot_t, int);
void vm_fault_copy_entry(vm_map_t, vm_map_t, vm_map_entry_t, vm_map_entry_t,
vm_ooffset_t *);
int vm_fault_disable_pagefaults(void);
void vm_fault_enable_pagefaults(int save);
int vm_fault_hold(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
int fault_flags, vm_page_t *m_hold);
int vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
vm_prot_t prot, vm_page_t *ma, int max_count);
int vm_forkproc(struct thread *, struct proc *, struct thread *,
struct vmspace *, int);
void vm_waitproc(struct proc *);
int vm_mmap(vm_map_t, vm_offset_t *, vm_size_t, vm_prot_t, vm_prot_t, int,
objtype_t, void *, vm_ooffset_t);
int vm_mmap_object(vm_map_t, vm_offset_t *, vm_size_t, vm_prot_t,
vm_prot_t, int, vm_object_t, vm_ooffset_t, boolean_t, struct thread *);
int vm_mmap_to_errno(int rv);
int vm_mmap_cdev(struct thread *, vm_size_t, vm_prot_t, vm_prot_t *,
int *, struct cdev *, struct cdevsw *, vm_ooffset_t *, vm_object_t *);
int vm_mmap_vnode(struct thread *, vm_size_t, vm_prot_t, vm_prot_t *, int *,
struct vnode *, vm_ooffset_t *, vm_object_t *, boolean_t *);
void vm_set_page_size(void);
void vm_sync_icache(vm_map_t, vm_offset_t, vm_size_t);
typedef int (*pmap_pinit_t)(struct pmap *pmap);
struct vmspace *vmspace_alloc(vm_offset_t, vm_offset_t, pmap_pinit_t);
struct vmspace *vmspace_fork(struct vmspace *, vm_ooffset_t *);
int vmspace_exec(struct proc *, vm_offset_t, vm_offset_t);
int vmspace_unshare(struct proc *);
void vmspace_exit(struct thread *);
struct vmspace *vmspace_acquire_ref(struct proc *);
void vmspace_free(struct vmspace *);
void vmspace_exitfree(struct proc *);
void vmspace_switch_aio(struct vmspace *);
void vnode_pager_setsize(struct vnode *, vm_ooffset_t);
int vslock(void *, size_t);
void vsunlock(void *, size_t);
struct sf_buf *vm_imgact_map_page(vm_object_t object, vm_ooffset_t offset);
void vm_imgact_unmap_page(struct sf_buf *sf);
void vm_thread_dispose(struct thread *td);
int vm_thread_new(struct thread *td, int pages);
u_int vm_active_count(void);
u_int vm_inactive_count(void);
u_int vm_laundry_count(void);
u_int vm_wait_count(void);
#endif /* _KERNEL */
#endif /* !_VM_EXTERN_H_ */