dd6029ff3a
There are several bugfixes in this update, but the most important one is to ensure __start_ and __stop_ symbols for linker sets and kernel module metadata are always emitted in object files: http://llvm.org/bugs/show_bug.cgi?id=9292 Before this fix, if you compiled kernel modules with clang, they would not be properly processed by kldxref, and if they had any dependencies, the kernel would fail to load those. Another problem occurred when attempting to mount a tmpfs filesystem, which would result in 'operation not supported by device'.
4673 lines
180 KiB
C++
4673 lines
180 KiB
C++
//===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements semantic analysis for initializers. The main entry
|
|
// point is Sema::CheckInitList(), but all of the work is performed
|
|
// within the InitListChecker class.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/Sema/Designator.h"
|
|
#include "clang/Sema/Initialization.h"
|
|
#include "clang/Sema/Lookup.h"
|
|
#include "clang/Sema/SemaInternal.h"
|
|
#include "clang/Lex/Preprocessor.h"
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/DeclObjC.h"
|
|
#include "clang/AST/ExprCXX.h"
|
|
#include "clang/AST/ExprObjC.h"
|
|
#include "clang/AST/TypeLoc.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include <map>
|
|
using namespace clang;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Sema Initialization Checking
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static Expr *IsStringInit(Expr *Init, const ArrayType *AT,
|
|
ASTContext &Context) {
|
|
if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT))
|
|
return 0;
|
|
|
|
// See if this is a string literal or @encode.
|
|
Init = Init->IgnoreParens();
|
|
|
|
// Handle @encode, which is a narrow string.
|
|
if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType())
|
|
return Init;
|
|
|
|
// Otherwise we can only handle string literals.
|
|
StringLiteral *SL = dyn_cast<StringLiteral>(Init);
|
|
if (SL == 0) return 0;
|
|
|
|
QualType ElemTy = Context.getCanonicalType(AT->getElementType());
|
|
// char array can be initialized with a narrow string.
|
|
// Only allow char x[] = "foo"; not char x[] = L"foo";
|
|
if (!SL->isWide())
|
|
return ElemTy->isCharType() ? Init : 0;
|
|
|
|
// wchar_t array can be initialized with a wide string: C99 6.7.8p15 (with
|
|
// correction from DR343): "An array with element type compatible with a
|
|
// qualified or unqualified version of wchar_t may be initialized by a wide
|
|
// string literal, optionally enclosed in braces."
|
|
if (Context.typesAreCompatible(Context.getWCharType(),
|
|
ElemTy.getUnqualifiedType()))
|
|
return Init;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static Expr *IsStringInit(Expr *init, QualType declType, ASTContext &Context) {
|
|
const ArrayType *arrayType = Context.getAsArrayType(declType);
|
|
if (!arrayType) return 0;
|
|
|
|
return IsStringInit(init, arrayType, Context);
|
|
}
|
|
|
|
static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT,
|
|
Sema &S) {
|
|
// Get the length of the string as parsed.
|
|
uint64_t StrLength =
|
|
cast<ConstantArrayType>(Str->getType())->getSize().getZExtValue();
|
|
|
|
|
|
if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
|
|
// C99 6.7.8p14. We have an array of character type with unknown size
|
|
// being initialized to a string literal.
|
|
llvm::APSInt ConstVal(32);
|
|
ConstVal = StrLength;
|
|
// Return a new array type (C99 6.7.8p22).
|
|
DeclT = S.Context.getConstantArrayType(IAT->getElementType(),
|
|
ConstVal,
|
|
ArrayType::Normal, 0);
|
|
return;
|
|
}
|
|
|
|
const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
|
|
|
|
// C99 6.7.8p14. We have an array of character type with known size. However,
|
|
// the size may be smaller or larger than the string we are initializing.
|
|
// FIXME: Avoid truncation for 64-bit length strings.
|
|
if (StrLength-1 > CAT->getSize().getZExtValue())
|
|
S.Diag(Str->getSourceRange().getBegin(),
|
|
diag::warn_initializer_string_for_char_array_too_long)
|
|
<< Str->getSourceRange();
|
|
|
|
// Set the type to the actual size that we are initializing. If we have
|
|
// something like:
|
|
// char x[1] = "foo";
|
|
// then this will set the string literal's type to char[1].
|
|
Str->setType(DeclT);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Semantic checking for initializer lists.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// @brief Semantic checking for initializer lists.
|
|
///
|
|
/// The InitListChecker class contains a set of routines that each
|
|
/// handle the initialization of a certain kind of entity, e.g.,
|
|
/// arrays, vectors, struct/union types, scalars, etc. The
|
|
/// InitListChecker itself performs a recursive walk of the subobject
|
|
/// structure of the type to be initialized, while stepping through
|
|
/// the initializer list one element at a time. The IList and Index
|
|
/// parameters to each of the Check* routines contain the active
|
|
/// (syntactic) initializer list and the index into that initializer
|
|
/// list that represents the current initializer. Each routine is
|
|
/// responsible for moving that Index forward as it consumes elements.
|
|
///
|
|
/// Each Check* routine also has a StructuredList/StructuredIndex
|
|
/// arguments, which contains the current "structured" (semantic)
|
|
/// initializer list and the index into that initializer list where we
|
|
/// are copying initializers as we map them over to the semantic
|
|
/// list. Once we have completed our recursive walk of the subobject
|
|
/// structure, we will have constructed a full semantic initializer
|
|
/// list.
|
|
///
|
|
/// C99 designators cause changes in the initializer list traversal,
|
|
/// because they make the initialization "jump" into a specific
|
|
/// subobject and then continue the initialization from that
|
|
/// point. CheckDesignatedInitializer() recursively steps into the
|
|
/// designated subobject and manages backing out the recursion to
|
|
/// initialize the subobjects after the one designated.
|
|
namespace {
|
|
class InitListChecker {
|
|
Sema &SemaRef;
|
|
bool hadError;
|
|
std::map<InitListExpr *, InitListExpr *> SyntacticToSemantic;
|
|
InitListExpr *FullyStructuredList;
|
|
|
|
void CheckImplicitInitList(const InitializedEntity &Entity,
|
|
InitListExpr *ParentIList, QualType T,
|
|
unsigned &Index, InitListExpr *StructuredList,
|
|
unsigned &StructuredIndex,
|
|
bool TopLevelObject = false);
|
|
void CheckExplicitInitList(const InitializedEntity &Entity,
|
|
InitListExpr *IList, QualType &T,
|
|
unsigned &Index, InitListExpr *StructuredList,
|
|
unsigned &StructuredIndex,
|
|
bool TopLevelObject = false);
|
|
void CheckListElementTypes(const InitializedEntity &Entity,
|
|
InitListExpr *IList, QualType &DeclType,
|
|
bool SubobjectIsDesignatorContext,
|
|
unsigned &Index,
|
|
InitListExpr *StructuredList,
|
|
unsigned &StructuredIndex,
|
|
bool TopLevelObject = false);
|
|
void CheckSubElementType(const InitializedEntity &Entity,
|
|
InitListExpr *IList, QualType ElemType,
|
|
unsigned &Index,
|
|
InitListExpr *StructuredList,
|
|
unsigned &StructuredIndex);
|
|
void CheckScalarType(const InitializedEntity &Entity,
|
|
InitListExpr *IList, QualType DeclType,
|
|
unsigned &Index,
|
|
InitListExpr *StructuredList,
|
|
unsigned &StructuredIndex);
|
|
void CheckReferenceType(const InitializedEntity &Entity,
|
|
InitListExpr *IList, QualType DeclType,
|
|
unsigned &Index,
|
|
InitListExpr *StructuredList,
|
|
unsigned &StructuredIndex);
|
|
void CheckVectorType(const InitializedEntity &Entity,
|
|
InitListExpr *IList, QualType DeclType, unsigned &Index,
|
|
InitListExpr *StructuredList,
|
|
unsigned &StructuredIndex);
|
|
void CheckStructUnionTypes(const InitializedEntity &Entity,
|
|
InitListExpr *IList, QualType DeclType,
|
|
RecordDecl::field_iterator Field,
|
|
bool SubobjectIsDesignatorContext, unsigned &Index,
|
|
InitListExpr *StructuredList,
|
|
unsigned &StructuredIndex,
|
|
bool TopLevelObject = false);
|
|
void CheckArrayType(const InitializedEntity &Entity,
|
|
InitListExpr *IList, QualType &DeclType,
|
|
llvm::APSInt elementIndex,
|
|
bool SubobjectIsDesignatorContext, unsigned &Index,
|
|
InitListExpr *StructuredList,
|
|
unsigned &StructuredIndex);
|
|
bool CheckDesignatedInitializer(const InitializedEntity &Entity,
|
|
InitListExpr *IList, DesignatedInitExpr *DIE,
|
|
unsigned DesigIdx,
|
|
QualType &CurrentObjectType,
|
|
RecordDecl::field_iterator *NextField,
|
|
llvm::APSInt *NextElementIndex,
|
|
unsigned &Index,
|
|
InitListExpr *StructuredList,
|
|
unsigned &StructuredIndex,
|
|
bool FinishSubobjectInit,
|
|
bool TopLevelObject);
|
|
InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
|
|
QualType CurrentObjectType,
|
|
InitListExpr *StructuredList,
|
|
unsigned StructuredIndex,
|
|
SourceRange InitRange);
|
|
void UpdateStructuredListElement(InitListExpr *StructuredList,
|
|
unsigned &StructuredIndex,
|
|
Expr *expr);
|
|
int numArrayElements(QualType DeclType);
|
|
int numStructUnionElements(QualType DeclType);
|
|
|
|
void FillInValueInitForField(unsigned Init, FieldDecl *Field,
|
|
const InitializedEntity &ParentEntity,
|
|
InitListExpr *ILE, bool &RequiresSecondPass);
|
|
void FillInValueInitializations(const InitializedEntity &Entity,
|
|
InitListExpr *ILE, bool &RequiresSecondPass);
|
|
public:
|
|
InitListChecker(Sema &S, const InitializedEntity &Entity,
|
|
InitListExpr *IL, QualType &T);
|
|
bool HadError() { return hadError; }
|
|
|
|
// @brief Retrieves the fully-structured initializer list used for
|
|
// semantic analysis and code generation.
|
|
InitListExpr *getFullyStructuredList() const { return FullyStructuredList; }
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
void InitListChecker::FillInValueInitForField(unsigned Init, FieldDecl *Field,
|
|
const InitializedEntity &ParentEntity,
|
|
InitListExpr *ILE,
|
|
bool &RequiresSecondPass) {
|
|
SourceLocation Loc = ILE->getSourceRange().getBegin();
|
|
unsigned NumInits = ILE->getNumInits();
|
|
InitializedEntity MemberEntity
|
|
= InitializedEntity::InitializeMember(Field, &ParentEntity);
|
|
if (Init >= NumInits || !ILE->getInit(Init)) {
|
|
// FIXME: We probably don't need to handle references
|
|
// specially here, since value-initialization of references is
|
|
// handled in InitializationSequence.
|
|
if (Field->getType()->isReferenceType()) {
|
|
// C++ [dcl.init.aggr]p9:
|
|
// If an incomplete or empty initializer-list leaves a
|
|
// member of reference type uninitialized, the program is
|
|
// ill-formed.
|
|
SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized)
|
|
<< Field->getType()
|
|
<< ILE->getSyntacticForm()->getSourceRange();
|
|
SemaRef.Diag(Field->getLocation(),
|
|
diag::note_uninit_reference_member);
|
|
hadError = true;
|
|
return;
|
|
}
|
|
|
|
InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
|
|
true);
|
|
InitializationSequence InitSeq(SemaRef, MemberEntity, Kind, 0, 0);
|
|
if (!InitSeq) {
|
|
InitSeq.Diagnose(SemaRef, MemberEntity, Kind, 0, 0);
|
|
hadError = true;
|
|
return;
|
|
}
|
|
|
|
ExprResult MemberInit
|
|
= InitSeq.Perform(SemaRef, MemberEntity, Kind, MultiExprArg());
|
|
if (MemberInit.isInvalid()) {
|
|
hadError = true;
|
|
return;
|
|
}
|
|
|
|
if (hadError) {
|
|
// Do nothing
|
|
} else if (Init < NumInits) {
|
|
ILE->setInit(Init, MemberInit.takeAs<Expr>());
|
|
} else if (InitSeq.getKind()
|
|
== InitializationSequence::ConstructorInitialization) {
|
|
// Value-initialization requires a constructor call, so
|
|
// extend the initializer list to include the constructor
|
|
// call and make a note that we'll need to take another pass
|
|
// through the initializer list.
|
|
ILE->updateInit(SemaRef.Context, Init, MemberInit.takeAs<Expr>());
|
|
RequiresSecondPass = true;
|
|
}
|
|
} else if (InitListExpr *InnerILE
|
|
= dyn_cast<InitListExpr>(ILE->getInit(Init)))
|
|
FillInValueInitializations(MemberEntity, InnerILE,
|
|
RequiresSecondPass);
|
|
}
|
|
|
|
/// Recursively replaces NULL values within the given initializer list
|
|
/// with expressions that perform value-initialization of the
|
|
/// appropriate type.
|
|
void
|
|
InitListChecker::FillInValueInitializations(const InitializedEntity &Entity,
|
|
InitListExpr *ILE,
|
|
bool &RequiresSecondPass) {
|
|
assert((ILE->getType() != SemaRef.Context.VoidTy) &&
|
|
"Should not have void type");
|
|
SourceLocation Loc = ILE->getSourceRange().getBegin();
|
|
if (ILE->getSyntacticForm())
|
|
Loc = ILE->getSyntacticForm()->getSourceRange().getBegin();
|
|
|
|
if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
|
|
if (RType->getDecl()->isUnion() &&
|
|
ILE->getInitializedFieldInUnion())
|
|
FillInValueInitForField(0, ILE->getInitializedFieldInUnion(),
|
|
Entity, ILE, RequiresSecondPass);
|
|
else {
|
|
unsigned Init = 0;
|
|
for (RecordDecl::field_iterator
|
|
Field = RType->getDecl()->field_begin(),
|
|
FieldEnd = RType->getDecl()->field_end();
|
|
Field != FieldEnd; ++Field) {
|
|
if (Field->isUnnamedBitfield())
|
|
continue;
|
|
|
|
if (hadError)
|
|
return;
|
|
|
|
FillInValueInitForField(Init, *Field, Entity, ILE, RequiresSecondPass);
|
|
if (hadError)
|
|
return;
|
|
|
|
++Init;
|
|
|
|
// Only look at the first initialization of a union.
|
|
if (RType->getDecl()->isUnion())
|
|
break;
|
|
}
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
QualType ElementType;
|
|
|
|
InitializedEntity ElementEntity = Entity;
|
|
unsigned NumInits = ILE->getNumInits();
|
|
unsigned NumElements = NumInits;
|
|
if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) {
|
|
ElementType = AType->getElementType();
|
|
if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType))
|
|
NumElements = CAType->getSize().getZExtValue();
|
|
ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
|
|
0, Entity);
|
|
} else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) {
|
|
ElementType = VType->getElementType();
|
|
NumElements = VType->getNumElements();
|
|
ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
|
|
0, Entity);
|
|
} else
|
|
ElementType = ILE->getType();
|
|
|
|
|
|
for (unsigned Init = 0; Init != NumElements; ++Init) {
|
|
if (hadError)
|
|
return;
|
|
|
|
if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement ||
|
|
ElementEntity.getKind() == InitializedEntity::EK_VectorElement)
|
|
ElementEntity.setElementIndex(Init);
|
|
|
|
if (Init >= NumInits || !ILE->getInit(Init)) {
|
|
InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
|
|
true);
|
|
InitializationSequence InitSeq(SemaRef, ElementEntity, Kind, 0, 0);
|
|
if (!InitSeq) {
|
|
InitSeq.Diagnose(SemaRef, ElementEntity, Kind, 0, 0);
|
|
hadError = true;
|
|
return;
|
|
}
|
|
|
|
ExprResult ElementInit
|
|
= InitSeq.Perform(SemaRef, ElementEntity, Kind, MultiExprArg());
|
|
if (ElementInit.isInvalid()) {
|
|
hadError = true;
|
|
return;
|
|
}
|
|
|
|
if (hadError) {
|
|
// Do nothing
|
|
} else if (Init < NumInits) {
|
|
ILE->setInit(Init, ElementInit.takeAs<Expr>());
|
|
} else if (InitSeq.getKind()
|
|
== InitializationSequence::ConstructorInitialization) {
|
|
// Value-initialization requires a constructor call, so
|
|
// extend the initializer list to include the constructor
|
|
// call and make a note that we'll need to take another pass
|
|
// through the initializer list.
|
|
ILE->updateInit(SemaRef.Context, Init, ElementInit.takeAs<Expr>());
|
|
RequiresSecondPass = true;
|
|
}
|
|
} else if (InitListExpr *InnerILE
|
|
= dyn_cast<InitListExpr>(ILE->getInit(Init)))
|
|
FillInValueInitializations(ElementEntity, InnerILE, RequiresSecondPass);
|
|
}
|
|
}
|
|
|
|
|
|
InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity,
|
|
InitListExpr *IL, QualType &T)
|
|
: SemaRef(S) {
|
|
hadError = false;
|
|
|
|
unsigned newIndex = 0;
|
|
unsigned newStructuredIndex = 0;
|
|
FullyStructuredList
|
|
= getStructuredSubobjectInit(IL, newIndex, T, 0, 0, IL->getSourceRange());
|
|
CheckExplicitInitList(Entity, IL, T, newIndex,
|
|
FullyStructuredList, newStructuredIndex,
|
|
/*TopLevelObject=*/true);
|
|
|
|
if (!hadError) {
|
|
bool RequiresSecondPass = false;
|
|
FillInValueInitializations(Entity, FullyStructuredList, RequiresSecondPass);
|
|
if (RequiresSecondPass && !hadError)
|
|
FillInValueInitializations(Entity, FullyStructuredList,
|
|
RequiresSecondPass);
|
|
}
|
|
}
|
|
|
|
int InitListChecker::numArrayElements(QualType DeclType) {
|
|
// FIXME: use a proper constant
|
|
int maxElements = 0x7FFFFFFF;
|
|
if (const ConstantArrayType *CAT =
|
|
SemaRef.Context.getAsConstantArrayType(DeclType)) {
|
|
maxElements = static_cast<int>(CAT->getSize().getZExtValue());
|
|
}
|
|
return maxElements;
|
|
}
|
|
|
|
int InitListChecker::numStructUnionElements(QualType DeclType) {
|
|
RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl();
|
|
int InitializableMembers = 0;
|
|
for (RecordDecl::field_iterator
|
|
Field = structDecl->field_begin(),
|
|
FieldEnd = structDecl->field_end();
|
|
Field != FieldEnd; ++Field) {
|
|
if ((*Field)->getIdentifier() || !(*Field)->isBitField())
|
|
++InitializableMembers;
|
|
}
|
|
if (structDecl->isUnion())
|
|
return std::min(InitializableMembers, 1);
|
|
return InitializableMembers - structDecl->hasFlexibleArrayMember();
|
|
}
|
|
|
|
void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity,
|
|
InitListExpr *ParentIList,
|
|
QualType T, unsigned &Index,
|
|
InitListExpr *StructuredList,
|
|
unsigned &StructuredIndex,
|
|
bool TopLevelObject) {
|
|
int maxElements = 0;
|
|
|
|
if (T->isArrayType())
|
|
maxElements = numArrayElements(T);
|
|
else if (T->isRecordType())
|
|
maxElements = numStructUnionElements(T);
|
|
else if (T->isVectorType())
|
|
maxElements = T->getAs<VectorType>()->getNumElements();
|
|
else
|
|
assert(0 && "CheckImplicitInitList(): Illegal type");
|
|
|
|
if (maxElements == 0) {
|
|
SemaRef.Diag(ParentIList->getInit(Index)->getLocStart(),
|
|
diag::err_implicit_empty_initializer);
|
|
++Index;
|
|
hadError = true;
|
|
return;
|
|
}
|
|
|
|
// Build a structured initializer list corresponding to this subobject.
|
|
InitListExpr *StructuredSubobjectInitList
|
|
= getStructuredSubobjectInit(ParentIList, Index, T, StructuredList,
|
|
StructuredIndex,
|
|
SourceRange(ParentIList->getInit(Index)->getSourceRange().getBegin(),
|
|
ParentIList->getSourceRange().getEnd()));
|
|
unsigned StructuredSubobjectInitIndex = 0;
|
|
|
|
// Check the element types and build the structural subobject.
|
|
unsigned StartIndex = Index;
|
|
CheckListElementTypes(Entity, ParentIList, T,
|
|
/*SubobjectIsDesignatorContext=*/false, Index,
|
|
StructuredSubobjectInitList,
|
|
StructuredSubobjectInitIndex,
|
|
TopLevelObject);
|
|
unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1);
|
|
StructuredSubobjectInitList->setType(T);
|
|
|
|
// Update the structured sub-object initializer so that it's ending
|
|
// range corresponds with the end of the last initializer it used.
|
|
if (EndIndex < ParentIList->getNumInits()) {
|
|
SourceLocation EndLoc
|
|
= ParentIList->getInit(EndIndex)->getSourceRange().getEnd();
|
|
StructuredSubobjectInitList->setRBraceLoc(EndLoc);
|
|
}
|
|
|
|
// Warn about missing braces.
|
|
if (T->isArrayType() || T->isRecordType()) {
|
|
SemaRef.Diag(StructuredSubobjectInitList->getLocStart(),
|
|
diag::warn_missing_braces)
|
|
<< StructuredSubobjectInitList->getSourceRange()
|
|
<< FixItHint::CreateInsertion(StructuredSubobjectInitList->getLocStart(),
|
|
"{")
|
|
<< FixItHint::CreateInsertion(SemaRef.PP.getLocForEndOfToken(
|
|
StructuredSubobjectInitList->getLocEnd()),
|
|
"}");
|
|
}
|
|
}
|
|
|
|
void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity,
|
|
InitListExpr *IList, QualType &T,
|
|
unsigned &Index,
|
|
InitListExpr *StructuredList,
|
|
unsigned &StructuredIndex,
|
|
bool TopLevelObject) {
|
|
assert(IList->isExplicit() && "Illegal Implicit InitListExpr");
|
|
SyntacticToSemantic[IList] = StructuredList;
|
|
StructuredList->setSyntacticForm(IList);
|
|
CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true,
|
|
Index, StructuredList, StructuredIndex, TopLevelObject);
|
|
QualType ExprTy = T.getNonLValueExprType(SemaRef.Context);
|
|
IList->setType(ExprTy);
|
|
StructuredList->setType(ExprTy);
|
|
if (hadError)
|
|
return;
|
|
|
|
if (Index < IList->getNumInits()) {
|
|
// We have leftover initializers
|
|
if (StructuredIndex == 1 &&
|
|
IsStringInit(StructuredList->getInit(0), T, SemaRef.Context)) {
|
|
unsigned DK = diag::warn_excess_initializers_in_char_array_initializer;
|
|
if (SemaRef.getLangOptions().CPlusPlus) {
|
|
DK = diag::err_excess_initializers_in_char_array_initializer;
|
|
hadError = true;
|
|
}
|
|
// Special-case
|
|
SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
|
|
<< IList->getInit(Index)->getSourceRange();
|
|
} else if (!T->isIncompleteType()) {
|
|
// Don't complain for incomplete types, since we'll get an error
|
|
// elsewhere
|
|
QualType CurrentObjectType = StructuredList->getType();
|
|
int initKind =
|
|
CurrentObjectType->isArrayType()? 0 :
|
|
CurrentObjectType->isVectorType()? 1 :
|
|
CurrentObjectType->isScalarType()? 2 :
|
|
CurrentObjectType->isUnionType()? 3 :
|
|
4;
|
|
|
|
unsigned DK = diag::warn_excess_initializers;
|
|
if (SemaRef.getLangOptions().CPlusPlus) {
|
|
DK = diag::err_excess_initializers;
|
|
hadError = true;
|
|
}
|
|
if (SemaRef.getLangOptions().OpenCL && initKind == 1) {
|
|
DK = diag::err_excess_initializers;
|
|
hadError = true;
|
|
}
|
|
|
|
SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
|
|
<< initKind << IList->getInit(Index)->getSourceRange();
|
|
}
|
|
}
|
|
|
|
if (T->isScalarType() && !TopLevelObject)
|
|
SemaRef.Diag(IList->getLocStart(), diag::warn_braces_around_scalar_init)
|
|
<< IList->getSourceRange()
|
|
<< FixItHint::CreateRemoval(IList->getLocStart())
|
|
<< FixItHint::CreateRemoval(IList->getLocEnd());
|
|
}
|
|
|
|
void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity,
|
|
InitListExpr *IList,
|
|
QualType &DeclType,
|
|
bool SubobjectIsDesignatorContext,
|
|
unsigned &Index,
|
|
InitListExpr *StructuredList,
|
|
unsigned &StructuredIndex,
|
|
bool TopLevelObject) {
|
|
if (DeclType->isScalarType()) {
|
|
CheckScalarType(Entity, IList, DeclType, Index,
|
|
StructuredList, StructuredIndex);
|
|
} else if (DeclType->isVectorType()) {
|
|
CheckVectorType(Entity, IList, DeclType, Index,
|
|
StructuredList, StructuredIndex);
|
|
} else if (DeclType->isAggregateType()) {
|
|
if (DeclType->isRecordType()) {
|
|
RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
|
|
CheckStructUnionTypes(Entity, IList, DeclType, RD->field_begin(),
|
|
SubobjectIsDesignatorContext, Index,
|
|
StructuredList, StructuredIndex,
|
|
TopLevelObject);
|
|
} else if (DeclType->isArrayType()) {
|
|
llvm::APSInt Zero(
|
|
SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()),
|
|
false);
|
|
CheckArrayType(Entity, IList, DeclType, Zero,
|
|
SubobjectIsDesignatorContext, Index,
|
|
StructuredList, StructuredIndex);
|
|
} else
|
|
assert(0 && "Aggregate that isn't a structure or array?!");
|
|
} else if (DeclType->isVoidType() || DeclType->isFunctionType()) {
|
|
// This type is invalid, issue a diagnostic.
|
|
++Index;
|
|
SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
|
|
<< DeclType;
|
|
hadError = true;
|
|
} else if (DeclType->isRecordType()) {
|
|
// C++ [dcl.init]p14:
|
|
// [...] If the class is an aggregate (8.5.1), and the initializer
|
|
// is a brace-enclosed list, see 8.5.1.
|
|
//
|
|
// Note: 8.5.1 is handled below; here, we diagnose the case where
|
|
// we have an initializer list and a destination type that is not
|
|
// an aggregate.
|
|
// FIXME: In C++0x, this is yet another form of initialization.
|
|
SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
|
|
<< DeclType << IList->getSourceRange();
|
|
hadError = true;
|
|
} else if (DeclType->isReferenceType()) {
|
|
CheckReferenceType(Entity, IList, DeclType, Index,
|
|
StructuredList, StructuredIndex);
|
|
} else if (DeclType->isObjCObjectType()) {
|
|
SemaRef.Diag(IList->getLocStart(), diag::err_init_objc_class)
|
|
<< DeclType;
|
|
hadError = true;
|
|
} else {
|
|
SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
|
|
<< DeclType;
|
|
hadError = true;
|
|
}
|
|
}
|
|
|
|
void InitListChecker::CheckSubElementType(const InitializedEntity &Entity,
|
|
InitListExpr *IList,
|
|
QualType ElemType,
|
|
unsigned &Index,
|
|
InitListExpr *StructuredList,
|
|
unsigned &StructuredIndex) {
|
|
Expr *expr = IList->getInit(Index);
|
|
if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
|
|
unsigned newIndex = 0;
|
|
unsigned newStructuredIndex = 0;
|
|
InitListExpr *newStructuredList
|
|
= getStructuredSubobjectInit(IList, Index, ElemType,
|
|
StructuredList, StructuredIndex,
|
|
SubInitList->getSourceRange());
|
|
CheckExplicitInitList(Entity, SubInitList, ElemType, newIndex,
|
|
newStructuredList, newStructuredIndex);
|
|
++StructuredIndex;
|
|
++Index;
|
|
return;
|
|
} else if (ElemType->isScalarType()) {
|
|
return CheckScalarType(Entity, IList, ElemType, Index,
|
|
StructuredList, StructuredIndex);
|
|
} else if (ElemType->isReferenceType()) {
|
|
return CheckReferenceType(Entity, IList, ElemType, Index,
|
|
StructuredList, StructuredIndex);
|
|
}
|
|
|
|
if (const ArrayType *arrayType = SemaRef.Context.getAsArrayType(ElemType)) {
|
|
// arrayType can be incomplete if we're initializing a flexible
|
|
// array member. There's nothing we can do with the completed
|
|
// type here, though.
|
|
|
|
if (Expr *Str = IsStringInit(expr, arrayType, SemaRef.Context)) {
|
|
CheckStringInit(Str, ElemType, arrayType, SemaRef);
|
|
UpdateStructuredListElement(StructuredList, StructuredIndex, Str);
|
|
++Index;
|
|
return;
|
|
}
|
|
|
|
// Fall through for subaggregate initialization.
|
|
|
|
} else if (SemaRef.getLangOptions().CPlusPlus) {
|
|
// C++ [dcl.init.aggr]p12:
|
|
// All implicit type conversions (clause 4) are considered when
|
|
// initializing the aggregate member with an ini- tializer from
|
|
// an initializer-list. If the initializer can initialize a
|
|
// member, the member is initialized. [...]
|
|
|
|
// FIXME: Better EqualLoc?
|
|
InitializationKind Kind =
|
|
InitializationKind::CreateCopy(expr->getLocStart(), SourceLocation());
|
|
InitializationSequence Seq(SemaRef, Entity, Kind, &expr, 1);
|
|
|
|
if (Seq) {
|
|
ExprResult Result =
|
|
Seq.Perform(SemaRef, Entity, Kind, MultiExprArg(&expr, 1));
|
|
if (Result.isInvalid())
|
|
hadError = true;
|
|
|
|
UpdateStructuredListElement(StructuredList, StructuredIndex,
|
|
Result.takeAs<Expr>());
|
|
++Index;
|
|
return;
|
|
}
|
|
|
|
// Fall through for subaggregate initialization
|
|
} else {
|
|
// C99 6.7.8p13:
|
|
//
|
|
// The initializer for a structure or union object that has
|
|
// automatic storage duration shall be either an initializer
|
|
// list as described below, or a single expression that has
|
|
// compatible structure or union type. In the latter case, the
|
|
// initial value of the object, including unnamed members, is
|
|
// that of the expression.
|
|
if ((ElemType->isRecordType() || ElemType->isVectorType()) &&
|
|
SemaRef.CheckSingleAssignmentConstraints(ElemType, expr)
|
|
== Sema::Compatible) {
|
|
SemaRef.DefaultFunctionArrayLvalueConversion(expr);
|
|
UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
|
|
++Index;
|
|
return;
|
|
}
|
|
|
|
// Fall through for subaggregate initialization
|
|
}
|
|
|
|
// C++ [dcl.init.aggr]p12:
|
|
//
|
|
// [...] Otherwise, if the member is itself a non-empty
|
|
// subaggregate, brace elision is assumed and the initializer is
|
|
// considered for the initialization of the first member of
|
|
// the subaggregate.
|
|
if (ElemType->isAggregateType() || ElemType->isVectorType()) {
|
|
CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList,
|
|
StructuredIndex);
|
|
++StructuredIndex;
|
|
} else {
|
|
// We cannot initialize this element, so let
|
|
// PerformCopyInitialization produce the appropriate diagnostic.
|
|
SemaRef.PerformCopyInitialization(Entity, SourceLocation(),
|
|
SemaRef.Owned(expr));
|
|
hadError = true;
|
|
++Index;
|
|
++StructuredIndex;
|
|
}
|
|
}
|
|
|
|
void InitListChecker::CheckScalarType(const InitializedEntity &Entity,
|
|
InitListExpr *IList, QualType DeclType,
|
|
unsigned &Index,
|
|
InitListExpr *StructuredList,
|
|
unsigned &StructuredIndex) {
|
|
if (Index >= IList->getNumInits()) {
|
|
SemaRef.Diag(IList->getLocStart(), diag::err_empty_scalar_initializer)
|
|
<< IList->getSourceRange();
|
|
hadError = true;
|
|
++Index;
|
|
++StructuredIndex;
|
|
return;
|
|
}
|
|
|
|
Expr *expr = IList->getInit(Index);
|
|
if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) {
|
|
SemaRef.Diag(SubIList->getLocStart(),
|
|
diag::warn_many_braces_around_scalar_init)
|
|
<< SubIList->getSourceRange();
|
|
|
|
CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList,
|
|
StructuredIndex);
|
|
return;
|
|
} else if (isa<DesignatedInitExpr>(expr)) {
|
|
SemaRef.Diag(expr->getSourceRange().getBegin(),
|
|
diag::err_designator_for_scalar_init)
|
|
<< DeclType << expr->getSourceRange();
|
|
hadError = true;
|
|
++Index;
|
|
++StructuredIndex;
|
|
return;
|
|
}
|
|
|
|
ExprResult Result =
|
|
SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(),
|
|
SemaRef.Owned(expr));
|
|
|
|
Expr *ResultExpr = 0;
|
|
|
|
if (Result.isInvalid())
|
|
hadError = true; // types weren't compatible.
|
|
else {
|
|
ResultExpr = Result.takeAs<Expr>();
|
|
|
|
if (ResultExpr != expr) {
|
|
// The type was promoted, update initializer list.
|
|
IList->setInit(Index, ResultExpr);
|
|
}
|
|
}
|
|
if (hadError)
|
|
++StructuredIndex;
|
|
else
|
|
UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
|
|
++Index;
|
|
}
|
|
|
|
void InitListChecker::CheckReferenceType(const InitializedEntity &Entity,
|
|
InitListExpr *IList, QualType DeclType,
|
|
unsigned &Index,
|
|
InitListExpr *StructuredList,
|
|
unsigned &StructuredIndex) {
|
|
if (Index < IList->getNumInits()) {
|
|
Expr *expr = IList->getInit(Index);
|
|
if (isa<InitListExpr>(expr)) {
|
|
SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
|
|
<< DeclType << IList->getSourceRange();
|
|
hadError = true;
|
|
++Index;
|
|
++StructuredIndex;
|
|
return;
|
|
}
|
|
|
|
ExprResult Result =
|
|
SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(),
|
|
SemaRef.Owned(expr));
|
|
|
|
if (Result.isInvalid())
|
|
hadError = true;
|
|
|
|
expr = Result.takeAs<Expr>();
|
|
IList->setInit(Index, expr);
|
|
|
|
if (hadError)
|
|
++StructuredIndex;
|
|
else
|
|
UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
|
|
++Index;
|
|
} else {
|
|
// FIXME: It would be wonderful if we could point at the actual member. In
|
|
// general, it would be useful to pass location information down the stack,
|
|
// so that we know the location (or decl) of the "current object" being
|
|
// initialized.
|
|
SemaRef.Diag(IList->getLocStart(),
|
|
diag::err_init_reference_member_uninitialized)
|
|
<< DeclType
|
|
<< IList->getSourceRange();
|
|
hadError = true;
|
|
++Index;
|
|
++StructuredIndex;
|
|
return;
|
|
}
|
|
}
|
|
|
|
void InitListChecker::CheckVectorType(const InitializedEntity &Entity,
|
|
InitListExpr *IList, QualType DeclType,
|
|
unsigned &Index,
|
|
InitListExpr *StructuredList,
|
|
unsigned &StructuredIndex) {
|
|
if (Index >= IList->getNumInits())
|
|
return;
|
|
|
|
const VectorType *VT = DeclType->getAs<VectorType>();
|
|
unsigned maxElements = VT->getNumElements();
|
|
unsigned numEltsInit = 0;
|
|
QualType elementType = VT->getElementType();
|
|
|
|
if (!SemaRef.getLangOptions().OpenCL) {
|
|
// If the initializing element is a vector, try to copy-initialize
|
|
// instead of breaking it apart (which is doomed to failure anyway).
|
|
Expr *Init = IList->getInit(Index);
|
|
if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) {
|
|
ExprResult Result =
|
|
SemaRef.PerformCopyInitialization(Entity, Init->getLocStart(),
|
|
SemaRef.Owned(Init));
|
|
|
|
Expr *ResultExpr = 0;
|
|
if (Result.isInvalid())
|
|
hadError = true; // types weren't compatible.
|
|
else {
|
|
ResultExpr = Result.takeAs<Expr>();
|
|
|
|
if (ResultExpr != Init) {
|
|
// The type was promoted, update initializer list.
|
|
IList->setInit(Index, ResultExpr);
|
|
}
|
|
}
|
|
if (hadError)
|
|
++StructuredIndex;
|
|
else
|
|
UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
|
|
++Index;
|
|
return;
|
|
}
|
|
|
|
InitializedEntity ElementEntity =
|
|
InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
|
|
|
|
for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) {
|
|
// Don't attempt to go past the end of the init list
|
|
if (Index >= IList->getNumInits())
|
|
break;
|
|
|
|
ElementEntity.setElementIndex(Index);
|
|
CheckSubElementType(ElementEntity, IList, elementType, Index,
|
|
StructuredList, StructuredIndex);
|
|
}
|
|
return;
|
|
}
|
|
|
|
InitializedEntity ElementEntity =
|
|
InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
|
|
|
|
// OpenCL initializers allows vectors to be constructed from vectors.
|
|
for (unsigned i = 0; i < maxElements; ++i) {
|
|
// Don't attempt to go past the end of the init list
|
|
if (Index >= IList->getNumInits())
|
|
break;
|
|
|
|
ElementEntity.setElementIndex(Index);
|
|
|
|
QualType IType = IList->getInit(Index)->getType();
|
|
if (!IType->isVectorType()) {
|
|
CheckSubElementType(ElementEntity, IList, elementType, Index,
|
|
StructuredList, StructuredIndex);
|
|
++numEltsInit;
|
|
} else {
|
|
QualType VecType;
|
|
const VectorType *IVT = IType->getAs<VectorType>();
|
|
unsigned numIElts = IVT->getNumElements();
|
|
|
|
if (IType->isExtVectorType())
|
|
VecType = SemaRef.Context.getExtVectorType(elementType, numIElts);
|
|
else
|
|
VecType = SemaRef.Context.getVectorType(elementType, numIElts,
|
|
IVT->getVectorKind());
|
|
CheckSubElementType(ElementEntity, IList, VecType, Index,
|
|
StructuredList, StructuredIndex);
|
|
numEltsInit += numIElts;
|
|
}
|
|
}
|
|
|
|
// OpenCL requires all elements to be initialized.
|
|
if (numEltsInit != maxElements)
|
|
if (SemaRef.getLangOptions().OpenCL)
|
|
SemaRef.Diag(IList->getSourceRange().getBegin(),
|
|
diag::err_vector_incorrect_num_initializers)
|
|
<< (numEltsInit < maxElements) << maxElements << numEltsInit;
|
|
}
|
|
|
|
void InitListChecker::CheckArrayType(const InitializedEntity &Entity,
|
|
InitListExpr *IList, QualType &DeclType,
|
|
llvm::APSInt elementIndex,
|
|
bool SubobjectIsDesignatorContext,
|
|
unsigned &Index,
|
|
InitListExpr *StructuredList,
|
|
unsigned &StructuredIndex) {
|
|
const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType);
|
|
|
|
// Check for the special-case of initializing an array with a string.
|
|
if (Index < IList->getNumInits()) {
|
|
if (Expr *Str = IsStringInit(IList->getInit(Index), arrayType,
|
|
SemaRef.Context)) {
|
|
CheckStringInit(Str, DeclType, arrayType, SemaRef);
|
|
// We place the string literal directly into the resulting
|
|
// initializer list. This is the only place where the structure
|
|
// of the structured initializer list doesn't match exactly,
|
|
// because doing so would involve allocating one character
|
|
// constant for each string.
|
|
UpdateStructuredListElement(StructuredList, StructuredIndex, Str);
|
|
StructuredList->resizeInits(SemaRef.Context, StructuredIndex);
|
|
++Index;
|
|
return;
|
|
}
|
|
}
|
|
if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) {
|
|
// Check for VLAs; in standard C it would be possible to check this
|
|
// earlier, but I don't know where clang accepts VLAs (gcc accepts
|
|
// them in all sorts of strange places).
|
|
SemaRef.Diag(VAT->getSizeExpr()->getLocStart(),
|
|
diag::err_variable_object_no_init)
|
|
<< VAT->getSizeExpr()->getSourceRange();
|
|
hadError = true;
|
|
++Index;
|
|
++StructuredIndex;
|
|
return;
|
|
}
|
|
|
|
// We might know the maximum number of elements in advance.
|
|
llvm::APSInt maxElements(elementIndex.getBitWidth(),
|
|
elementIndex.isUnsigned());
|
|
bool maxElementsKnown = false;
|
|
if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) {
|
|
maxElements = CAT->getSize();
|
|
elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth());
|
|
elementIndex.setIsUnsigned(maxElements.isUnsigned());
|
|
maxElementsKnown = true;
|
|
}
|
|
|
|
QualType elementType = arrayType->getElementType();
|
|
while (Index < IList->getNumInits()) {
|
|
Expr *Init = IList->getInit(Index);
|
|
if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
|
|
// If we're not the subobject that matches up with the '{' for
|
|
// the designator, we shouldn't be handling the
|
|
// designator. Return immediately.
|
|
if (!SubobjectIsDesignatorContext)
|
|
return;
|
|
|
|
// Handle this designated initializer. elementIndex will be
|
|
// updated to be the next array element we'll initialize.
|
|
if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
|
|
DeclType, 0, &elementIndex, Index,
|
|
StructuredList, StructuredIndex, true,
|
|
false)) {
|
|
hadError = true;
|
|
continue;
|
|
}
|
|
|
|
if (elementIndex.getBitWidth() > maxElements.getBitWidth())
|
|
maxElements = maxElements.extend(elementIndex.getBitWidth());
|
|
else if (elementIndex.getBitWidth() < maxElements.getBitWidth())
|
|
elementIndex = elementIndex.extend(maxElements.getBitWidth());
|
|
elementIndex.setIsUnsigned(maxElements.isUnsigned());
|
|
|
|
// If the array is of incomplete type, keep track of the number of
|
|
// elements in the initializer.
|
|
if (!maxElementsKnown && elementIndex > maxElements)
|
|
maxElements = elementIndex;
|
|
|
|
continue;
|
|
}
|
|
|
|
// If we know the maximum number of elements, and we've already
|
|
// hit it, stop consuming elements in the initializer list.
|
|
if (maxElementsKnown && elementIndex == maxElements)
|
|
break;
|
|
|
|
InitializedEntity ElementEntity =
|
|
InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex,
|
|
Entity);
|
|
// Check this element.
|
|
CheckSubElementType(ElementEntity, IList, elementType, Index,
|
|
StructuredList, StructuredIndex);
|
|
++elementIndex;
|
|
|
|
// If the array is of incomplete type, keep track of the number of
|
|
// elements in the initializer.
|
|
if (!maxElementsKnown && elementIndex > maxElements)
|
|
maxElements = elementIndex;
|
|
}
|
|
if (!hadError && DeclType->isIncompleteArrayType()) {
|
|
// If this is an incomplete array type, the actual type needs to
|
|
// be calculated here.
|
|
llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned());
|
|
if (maxElements == Zero) {
|
|
// Sizing an array implicitly to zero is not allowed by ISO C,
|
|
// but is supported by GNU.
|
|
SemaRef.Diag(IList->getLocStart(),
|
|
diag::ext_typecheck_zero_array_size);
|
|
}
|
|
|
|
DeclType = SemaRef.Context.getConstantArrayType(elementType, maxElements,
|
|
ArrayType::Normal, 0);
|
|
}
|
|
}
|
|
|
|
void InitListChecker::CheckStructUnionTypes(const InitializedEntity &Entity,
|
|
InitListExpr *IList,
|
|
QualType DeclType,
|
|
RecordDecl::field_iterator Field,
|
|
bool SubobjectIsDesignatorContext,
|
|
unsigned &Index,
|
|
InitListExpr *StructuredList,
|
|
unsigned &StructuredIndex,
|
|
bool TopLevelObject) {
|
|
RecordDecl* structDecl = DeclType->getAs<RecordType>()->getDecl();
|
|
|
|
// If the record is invalid, some of it's members are invalid. To avoid
|
|
// confusion, we forgo checking the intializer for the entire record.
|
|
if (structDecl->isInvalidDecl()) {
|
|
hadError = true;
|
|
return;
|
|
}
|
|
|
|
if (DeclType->isUnionType() && IList->getNumInits() == 0) {
|
|
// Value-initialize the first named member of the union.
|
|
RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
|
|
for (RecordDecl::field_iterator FieldEnd = RD->field_end();
|
|
Field != FieldEnd; ++Field) {
|
|
if (Field->getDeclName()) {
|
|
StructuredList->setInitializedFieldInUnion(*Field);
|
|
break;
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
// If structDecl is a forward declaration, this loop won't do
|
|
// anything except look at designated initializers; That's okay,
|
|
// because an error should get printed out elsewhere. It might be
|
|
// worthwhile to skip over the rest of the initializer, though.
|
|
RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
|
|
RecordDecl::field_iterator FieldEnd = RD->field_end();
|
|
bool InitializedSomething = false;
|
|
bool CheckForMissingFields = true;
|
|
while (Index < IList->getNumInits()) {
|
|
Expr *Init = IList->getInit(Index);
|
|
|
|
if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
|
|
// If we're not the subobject that matches up with the '{' for
|
|
// the designator, we shouldn't be handling the
|
|
// designator. Return immediately.
|
|
if (!SubobjectIsDesignatorContext)
|
|
return;
|
|
|
|
// Handle this designated initializer. Field will be updated to
|
|
// the next field that we'll be initializing.
|
|
if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
|
|
DeclType, &Field, 0, Index,
|
|
StructuredList, StructuredIndex,
|
|
true, TopLevelObject))
|
|
hadError = true;
|
|
|
|
InitializedSomething = true;
|
|
|
|
// Disable check for missing fields when designators are used.
|
|
// This matches gcc behaviour.
|
|
CheckForMissingFields = false;
|
|
continue;
|
|
}
|
|
|
|
if (Field == FieldEnd) {
|
|
// We've run out of fields. We're done.
|
|
break;
|
|
}
|
|
|
|
// We've already initialized a member of a union. We're done.
|
|
if (InitializedSomething && DeclType->isUnionType())
|
|
break;
|
|
|
|
// If we've hit the flexible array member at the end, we're done.
|
|
if (Field->getType()->isIncompleteArrayType())
|
|
break;
|
|
|
|
if (Field->isUnnamedBitfield()) {
|
|
// Don't initialize unnamed bitfields, e.g. "int : 20;"
|
|
++Field;
|
|
continue;
|
|
}
|
|
|
|
InitializedEntity MemberEntity =
|
|
InitializedEntity::InitializeMember(*Field, &Entity);
|
|
CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
|
|
StructuredList, StructuredIndex);
|
|
InitializedSomething = true;
|
|
|
|
if (DeclType->isUnionType()) {
|
|
// Initialize the first field within the union.
|
|
StructuredList->setInitializedFieldInUnion(*Field);
|
|
}
|
|
|
|
++Field;
|
|
}
|
|
|
|
// Emit warnings for missing struct field initializers.
|
|
if (InitializedSomething && CheckForMissingFields && Field != FieldEnd &&
|
|
!Field->getType()->isIncompleteArrayType() && !DeclType->isUnionType()) {
|
|
// It is possible we have one or more unnamed bitfields remaining.
|
|
// Find first (if any) named field and emit warning.
|
|
for (RecordDecl::field_iterator it = Field, end = RD->field_end();
|
|
it != end; ++it) {
|
|
if (!it->isUnnamedBitfield()) {
|
|
SemaRef.Diag(IList->getSourceRange().getEnd(),
|
|
diag::warn_missing_field_initializers) << it->getName();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() ||
|
|
Index >= IList->getNumInits())
|
|
return;
|
|
|
|
// Handle GNU flexible array initializers.
|
|
if (!TopLevelObject &&
|
|
(!isa<InitListExpr>(IList->getInit(Index)) ||
|
|
cast<InitListExpr>(IList->getInit(Index))->getNumInits() > 0)) {
|
|
SemaRef.Diag(IList->getInit(Index)->getSourceRange().getBegin(),
|
|
diag::err_flexible_array_init_nonempty)
|
|
<< IList->getInit(Index)->getSourceRange().getBegin();
|
|
SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
|
|
<< *Field;
|
|
hadError = true;
|
|
++Index;
|
|
return;
|
|
} else {
|
|
SemaRef.Diag(IList->getInit(Index)->getSourceRange().getBegin(),
|
|
diag::ext_flexible_array_init)
|
|
<< IList->getInit(Index)->getSourceRange().getBegin();
|
|
SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
|
|
<< *Field;
|
|
}
|
|
|
|
InitializedEntity MemberEntity =
|
|
InitializedEntity::InitializeMember(*Field, &Entity);
|
|
|
|
if (isa<InitListExpr>(IList->getInit(Index)))
|
|
CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
|
|
StructuredList, StructuredIndex);
|
|
else
|
|
CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index,
|
|
StructuredList, StructuredIndex);
|
|
}
|
|
|
|
/// \brief Expand a field designator that refers to a member of an
|
|
/// anonymous struct or union into a series of field designators that
|
|
/// refers to the field within the appropriate subobject.
|
|
///
|
|
static void ExpandAnonymousFieldDesignator(Sema &SemaRef,
|
|
DesignatedInitExpr *DIE,
|
|
unsigned DesigIdx,
|
|
IndirectFieldDecl *IndirectField) {
|
|
typedef DesignatedInitExpr::Designator Designator;
|
|
|
|
// Build the replacement designators.
|
|
llvm::SmallVector<Designator, 4> Replacements;
|
|
for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(),
|
|
PE = IndirectField->chain_end(); PI != PE; ++PI) {
|
|
if (PI + 1 == PE)
|
|
Replacements.push_back(Designator((IdentifierInfo *)0,
|
|
DIE->getDesignator(DesigIdx)->getDotLoc(),
|
|
DIE->getDesignator(DesigIdx)->getFieldLoc()));
|
|
else
|
|
Replacements.push_back(Designator((IdentifierInfo *)0, SourceLocation(),
|
|
SourceLocation()));
|
|
assert(isa<FieldDecl>(*PI));
|
|
Replacements.back().setField(cast<FieldDecl>(*PI));
|
|
}
|
|
|
|
// Expand the current designator into the set of replacement
|
|
// designators, so we have a full subobject path down to where the
|
|
// member of the anonymous struct/union is actually stored.
|
|
DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0],
|
|
&Replacements[0] + Replacements.size());
|
|
}
|
|
|
|
/// \brief Given an implicit anonymous field, search the IndirectField that
|
|
/// corresponds to FieldName.
|
|
static IndirectFieldDecl *FindIndirectFieldDesignator(FieldDecl *AnonField,
|
|
IdentifierInfo *FieldName) {
|
|
assert(AnonField->isAnonymousStructOrUnion());
|
|
Decl *NextDecl = AnonField->getNextDeclInContext();
|
|
while (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(NextDecl)) {
|
|
if (FieldName && FieldName == IF->getAnonField()->getIdentifier())
|
|
return IF;
|
|
NextDecl = NextDecl->getNextDeclInContext();
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/// @brief Check the well-formedness of a C99 designated initializer.
|
|
///
|
|
/// Determines whether the designated initializer @p DIE, which
|
|
/// resides at the given @p Index within the initializer list @p
|
|
/// IList, is well-formed for a current object of type @p DeclType
|
|
/// (C99 6.7.8). The actual subobject that this designator refers to
|
|
/// within the current subobject is returned in either
|
|
/// @p NextField or @p NextElementIndex (whichever is appropriate).
|
|
///
|
|
/// @param IList The initializer list in which this designated
|
|
/// initializer occurs.
|
|
///
|
|
/// @param DIE The designated initializer expression.
|
|
///
|
|
/// @param DesigIdx The index of the current designator.
|
|
///
|
|
/// @param DeclType The type of the "current object" (C99 6.7.8p17),
|
|
/// into which the designation in @p DIE should refer.
|
|
///
|
|
/// @param NextField If non-NULL and the first designator in @p DIE is
|
|
/// a field, this will be set to the field declaration corresponding
|
|
/// to the field named by the designator.
|
|
///
|
|
/// @param NextElementIndex If non-NULL and the first designator in @p
|
|
/// DIE is an array designator or GNU array-range designator, this
|
|
/// will be set to the last index initialized by this designator.
|
|
///
|
|
/// @param Index Index into @p IList where the designated initializer
|
|
/// @p DIE occurs.
|
|
///
|
|
/// @param StructuredList The initializer list expression that
|
|
/// describes all of the subobject initializers in the order they'll
|
|
/// actually be initialized.
|
|
///
|
|
/// @returns true if there was an error, false otherwise.
|
|
bool
|
|
InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity,
|
|
InitListExpr *IList,
|
|
DesignatedInitExpr *DIE,
|
|
unsigned DesigIdx,
|
|
QualType &CurrentObjectType,
|
|
RecordDecl::field_iterator *NextField,
|
|
llvm::APSInt *NextElementIndex,
|
|
unsigned &Index,
|
|
InitListExpr *StructuredList,
|
|
unsigned &StructuredIndex,
|
|
bool FinishSubobjectInit,
|
|
bool TopLevelObject) {
|
|
if (DesigIdx == DIE->size()) {
|
|
// Check the actual initialization for the designated object type.
|
|
bool prevHadError = hadError;
|
|
|
|
// Temporarily remove the designator expression from the
|
|
// initializer list that the child calls see, so that we don't try
|
|
// to re-process the designator.
|
|
unsigned OldIndex = Index;
|
|
IList->setInit(OldIndex, DIE->getInit());
|
|
|
|
CheckSubElementType(Entity, IList, CurrentObjectType, Index,
|
|
StructuredList, StructuredIndex);
|
|
|
|
// Restore the designated initializer expression in the syntactic
|
|
// form of the initializer list.
|
|
if (IList->getInit(OldIndex) != DIE->getInit())
|
|
DIE->setInit(IList->getInit(OldIndex));
|
|
IList->setInit(OldIndex, DIE);
|
|
|
|
return hadError && !prevHadError;
|
|
}
|
|
|
|
bool IsFirstDesignator = (DesigIdx == 0);
|
|
assert((IsFirstDesignator || StructuredList) &&
|
|
"Need a non-designated initializer list to start from");
|
|
|
|
DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx);
|
|
// Determine the structural initializer list that corresponds to the
|
|
// current subobject.
|
|
StructuredList = IsFirstDesignator? SyntacticToSemantic[IList]
|
|
: getStructuredSubobjectInit(IList, Index, CurrentObjectType,
|
|
StructuredList, StructuredIndex,
|
|
SourceRange(D->getStartLocation(),
|
|
DIE->getSourceRange().getEnd()));
|
|
assert(StructuredList && "Expected a structured initializer list");
|
|
|
|
if (D->isFieldDesignator()) {
|
|
// C99 6.7.8p7:
|
|
//
|
|
// If a designator has the form
|
|
//
|
|
// . identifier
|
|
//
|
|
// then the current object (defined below) shall have
|
|
// structure or union type and the identifier shall be the
|
|
// name of a member of that type.
|
|
const RecordType *RT = CurrentObjectType->getAs<RecordType>();
|
|
if (!RT) {
|
|
SourceLocation Loc = D->getDotLoc();
|
|
if (Loc.isInvalid())
|
|
Loc = D->getFieldLoc();
|
|
SemaRef.Diag(Loc, diag::err_field_designator_non_aggr)
|
|
<< SemaRef.getLangOptions().CPlusPlus << CurrentObjectType;
|
|
++Index;
|
|
return true;
|
|
}
|
|
|
|
// Note: we perform a linear search of the fields here, despite
|
|
// the fact that we have a faster lookup method, because we always
|
|
// need to compute the field's index.
|
|
FieldDecl *KnownField = D->getField();
|
|
IdentifierInfo *FieldName = D->getFieldName();
|
|
unsigned FieldIndex = 0;
|
|
RecordDecl::field_iterator
|
|
Field = RT->getDecl()->field_begin(),
|
|
FieldEnd = RT->getDecl()->field_end();
|
|
for (; Field != FieldEnd; ++Field) {
|
|
if (Field->isUnnamedBitfield())
|
|
continue;
|
|
|
|
// If we find a field representing an anonymous field, look in the
|
|
// IndirectFieldDecl that follow for the designated initializer.
|
|
if (!KnownField && Field->isAnonymousStructOrUnion()) {
|
|
if (IndirectFieldDecl *IF =
|
|
FindIndirectFieldDesignator(*Field, FieldName)) {
|
|
ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IF);
|
|
D = DIE->getDesignator(DesigIdx);
|
|
break;
|
|
}
|
|
}
|
|
if (KnownField && KnownField == *Field)
|
|
break;
|
|
if (FieldName && FieldName == Field->getIdentifier())
|
|
break;
|
|
|
|
++FieldIndex;
|
|
}
|
|
|
|
if (Field == FieldEnd) {
|
|
// There was no normal field in the struct with the designated
|
|
// name. Perform another lookup for this name, which may find
|
|
// something that we can't designate (e.g., a member function),
|
|
// may find nothing, or may find a member of an anonymous
|
|
// struct/union.
|
|
DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName);
|
|
FieldDecl *ReplacementField = 0;
|
|
if (Lookup.first == Lookup.second) {
|
|
// Name lookup didn't find anything. Determine whether this
|
|
// was a typo for another field name.
|
|
LookupResult R(SemaRef, FieldName, D->getFieldLoc(),
|
|
Sema::LookupMemberName);
|
|
if (SemaRef.CorrectTypo(R, /*Scope=*/0, /*SS=*/0, RT->getDecl(), false,
|
|
Sema::CTC_NoKeywords) &&
|
|
(ReplacementField = R.getAsSingle<FieldDecl>()) &&
|
|
ReplacementField->getDeclContext()->getRedeclContext()
|
|
->Equals(RT->getDecl())) {
|
|
SemaRef.Diag(D->getFieldLoc(),
|
|
diag::err_field_designator_unknown_suggest)
|
|
<< FieldName << CurrentObjectType << R.getLookupName()
|
|
<< FixItHint::CreateReplacement(D->getFieldLoc(),
|
|
R.getLookupName().getAsString());
|
|
SemaRef.Diag(ReplacementField->getLocation(),
|
|
diag::note_previous_decl)
|
|
<< ReplacementField->getDeclName();
|
|
} else {
|
|
SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown)
|
|
<< FieldName << CurrentObjectType;
|
|
++Index;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (!ReplacementField) {
|
|
// Name lookup found something, but it wasn't a field.
|
|
SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield)
|
|
<< FieldName;
|
|
SemaRef.Diag((*Lookup.first)->getLocation(),
|
|
diag::note_field_designator_found);
|
|
++Index;
|
|
return true;
|
|
}
|
|
|
|
if (!KnownField) {
|
|
// The replacement field comes from typo correction; find it
|
|
// in the list of fields.
|
|
FieldIndex = 0;
|
|
Field = RT->getDecl()->field_begin();
|
|
for (; Field != FieldEnd; ++Field) {
|
|
if (Field->isUnnamedBitfield())
|
|
continue;
|
|
|
|
if (ReplacementField == *Field ||
|
|
Field->getIdentifier() == ReplacementField->getIdentifier())
|
|
break;
|
|
|
|
++FieldIndex;
|
|
}
|
|
}
|
|
}
|
|
|
|
// All of the fields of a union are located at the same place in
|
|
// the initializer list.
|
|
if (RT->getDecl()->isUnion()) {
|
|
FieldIndex = 0;
|
|
StructuredList->setInitializedFieldInUnion(*Field);
|
|
}
|
|
|
|
// Update the designator with the field declaration.
|
|
D->setField(*Field);
|
|
|
|
// Make sure that our non-designated initializer list has space
|
|
// for a subobject corresponding to this field.
|
|
if (FieldIndex >= StructuredList->getNumInits())
|
|
StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1);
|
|
|
|
// This designator names a flexible array member.
|
|
if (Field->getType()->isIncompleteArrayType()) {
|
|
bool Invalid = false;
|
|
if ((DesigIdx + 1) != DIE->size()) {
|
|
// We can't designate an object within the flexible array
|
|
// member (because GCC doesn't allow it).
|
|
DesignatedInitExpr::Designator *NextD
|
|
= DIE->getDesignator(DesigIdx + 1);
|
|
SemaRef.Diag(NextD->getStartLocation(),
|
|
diag::err_designator_into_flexible_array_member)
|
|
<< SourceRange(NextD->getStartLocation(),
|
|
DIE->getSourceRange().getEnd());
|
|
SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
|
|
<< *Field;
|
|
Invalid = true;
|
|
}
|
|
|
|
if (!hadError && !isa<InitListExpr>(DIE->getInit()) &&
|
|
!isa<StringLiteral>(DIE->getInit())) {
|
|
// The initializer is not an initializer list.
|
|
SemaRef.Diag(DIE->getInit()->getSourceRange().getBegin(),
|
|
diag::err_flexible_array_init_needs_braces)
|
|
<< DIE->getInit()->getSourceRange();
|
|
SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
|
|
<< *Field;
|
|
Invalid = true;
|
|
}
|
|
|
|
// Handle GNU flexible array initializers.
|
|
if (!Invalid && !TopLevelObject &&
|
|
cast<InitListExpr>(DIE->getInit())->getNumInits() > 0) {
|
|
SemaRef.Diag(DIE->getSourceRange().getBegin(),
|
|
diag::err_flexible_array_init_nonempty)
|
|
<< DIE->getSourceRange().getBegin();
|
|
SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
|
|
<< *Field;
|
|
Invalid = true;
|
|
}
|
|
|
|
if (Invalid) {
|
|
++Index;
|
|
return true;
|
|
}
|
|
|
|
// Initialize the array.
|
|
bool prevHadError = hadError;
|
|
unsigned newStructuredIndex = FieldIndex;
|
|
unsigned OldIndex = Index;
|
|
IList->setInit(Index, DIE->getInit());
|
|
|
|
InitializedEntity MemberEntity =
|
|
InitializedEntity::InitializeMember(*Field, &Entity);
|
|
CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
|
|
StructuredList, newStructuredIndex);
|
|
|
|
IList->setInit(OldIndex, DIE);
|
|
if (hadError && !prevHadError) {
|
|
++Field;
|
|
++FieldIndex;
|
|
if (NextField)
|
|
*NextField = Field;
|
|
StructuredIndex = FieldIndex;
|
|
return true;
|
|
}
|
|
} else {
|
|
// Recurse to check later designated subobjects.
|
|
QualType FieldType = (*Field)->getType();
|
|
unsigned newStructuredIndex = FieldIndex;
|
|
|
|
InitializedEntity MemberEntity =
|
|
InitializedEntity::InitializeMember(*Field, &Entity);
|
|
if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1,
|
|
FieldType, 0, 0, Index,
|
|
StructuredList, newStructuredIndex,
|
|
true, false))
|
|
return true;
|
|
}
|
|
|
|
// Find the position of the next field to be initialized in this
|
|
// subobject.
|
|
++Field;
|
|
++FieldIndex;
|
|
|
|
// If this the first designator, our caller will continue checking
|
|
// the rest of this struct/class/union subobject.
|
|
if (IsFirstDesignator) {
|
|
if (NextField)
|
|
*NextField = Field;
|
|
StructuredIndex = FieldIndex;
|
|
return false;
|
|
}
|
|
|
|
if (!FinishSubobjectInit)
|
|
return false;
|
|
|
|
// We've already initialized something in the union; we're done.
|
|
if (RT->getDecl()->isUnion())
|
|
return hadError;
|
|
|
|
// Check the remaining fields within this class/struct/union subobject.
|
|
bool prevHadError = hadError;
|
|
|
|
CheckStructUnionTypes(Entity, IList, CurrentObjectType, Field, false, Index,
|
|
StructuredList, FieldIndex);
|
|
return hadError && !prevHadError;
|
|
}
|
|
|
|
// C99 6.7.8p6:
|
|
//
|
|
// If a designator has the form
|
|
//
|
|
// [ constant-expression ]
|
|
//
|
|
// then the current object (defined below) shall have array
|
|
// type and the expression shall be an integer constant
|
|
// expression. If the array is of unknown size, any
|
|
// nonnegative value is valid.
|
|
//
|
|
// Additionally, cope with the GNU extension that permits
|
|
// designators of the form
|
|
//
|
|
// [ constant-expression ... constant-expression ]
|
|
const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType);
|
|
if (!AT) {
|
|
SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array)
|
|
<< CurrentObjectType;
|
|
++Index;
|
|
return true;
|
|
}
|
|
|
|
Expr *IndexExpr = 0;
|
|
llvm::APSInt DesignatedStartIndex, DesignatedEndIndex;
|
|
if (D->isArrayDesignator()) {
|
|
IndexExpr = DIE->getArrayIndex(*D);
|
|
DesignatedStartIndex = IndexExpr->EvaluateAsInt(SemaRef.Context);
|
|
DesignatedEndIndex = DesignatedStartIndex;
|
|
} else {
|
|
assert(D->isArrayRangeDesignator() && "Need array-range designator");
|
|
|
|
DesignatedStartIndex =
|
|
DIE->getArrayRangeStart(*D)->EvaluateAsInt(SemaRef.Context);
|
|
DesignatedEndIndex =
|
|
DIE->getArrayRangeEnd(*D)->EvaluateAsInt(SemaRef.Context);
|
|
IndexExpr = DIE->getArrayRangeEnd(*D);
|
|
|
|
// Codegen can't handle evaluating array range designators that have side
|
|
// effects, because we replicate the AST value for each initialized element.
|
|
// As such, set the sawArrayRangeDesignator() bit if we initialize multiple
|
|
// elements with something that has a side effect, so codegen can emit an
|
|
// "error unsupported" error instead of miscompiling the app.
|
|
if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&&
|
|
DIE->getInit()->HasSideEffects(SemaRef.Context))
|
|
FullyStructuredList->sawArrayRangeDesignator();
|
|
}
|
|
|
|
if (isa<ConstantArrayType>(AT)) {
|
|
llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false);
|
|
DesignatedStartIndex
|
|
= DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth());
|
|
DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned());
|
|
DesignatedEndIndex
|
|
= DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth());
|
|
DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned());
|
|
if (DesignatedEndIndex >= MaxElements) {
|
|
SemaRef.Diag(IndexExpr->getSourceRange().getBegin(),
|
|
diag::err_array_designator_too_large)
|
|
<< DesignatedEndIndex.toString(10) << MaxElements.toString(10)
|
|
<< IndexExpr->getSourceRange();
|
|
++Index;
|
|
return true;
|
|
}
|
|
} else {
|
|
// Make sure the bit-widths and signedness match.
|
|
if (DesignatedStartIndex.getBitWidth() > DesignatedEndIndex.getBitWidth())
|
|
DesignatedEndIndex
|
|
= DesignatedEndIndex.extend(DesignatedStartIndex.getBitWidth());
|
|
else if (DesignatedStartIndex.getBitWidth() <
|
|
DesignatedEndIndex.getBitWidth())
|
|
DesignatedStartIndex
|
|
= DesignatedStartIndex.extend(DesignatedEndIndex.getBitWidth());
|
|
DesignatedStartIndex.setIsUnsigned(true);
|
|
DesignatedEndIndex.setIsUnsigned(true);
|
|
}
|
|
|
|
// Make sure that our non-designated initializer list has space
|
|
// for a subobject corresponding to this array element.
|
|
if (DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits())
|
|
StructuredList->resizeInits(SemaRef.Context,
|
|
DesignatedEndIndex.getZExtValue() + 1);
|
|
|
|
// Repeatedly perform subobject initializations in the range
|
|
// [DesignatedStartIndex, DesignatedEndIndex].
|
|
|
|
// Move to the next designator
|
|
unsigned ElementIndex = DesignatedStartIndex.getZExtValue();
|
|
unsigned OldIndex = Index;
|
|
|
|
InitializedEntity ElementEntity =
|
|
InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
|
|
|
|
while (DesignatedStartIndex <= DesignatedEndIndex) {
|
|
// Recurse to check later designated subobjects.
|
|
QualType ElementType = AT->getElementType();
|
|
Index = OldIndex;
|
|
|
|
ElementEntity.setElementIndex(ElementIndex);
|
|
if (CheckDesignatedInitializer(ElementEntity, IList, DIE, DesigIdx + 1,
|
|
ElementType, 0, 0, Index,
|
|
StructuredList, ElementIndex,
|
|
(DesignatedStartIndex == DesignatedEndIndex),
|
|
false))
|
|
return true;
|
|
|
|
// Move to the next index in the array that we'll be initializing.
|
|
++DesignatedStartIndex;
|
|
ElementIndex = DesignatedStartIndex.getZExtValue();
|
|
}
|
|
|
|
// If this the first designator, our caller will continue checking
|
|
// the rest of this array subobject.
|
|
if (IsFirstDesignator) {
|
|
if (NextElementIndex)
|
|
*NextElementIndex = DesignatedStartIndex;
|
|
StructuredIndex = ElementIndex;
|
|
return false;
|
|
}
|
|
|
|
if (!FinishSubobjectInit)
|
|
return false;
|
|
|
|
// Check the remaining elements within this array subobject.
|
|
bool prevHadError = hadError;
|
|
CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex,
|
|
/*SubobjectIsDesignatorContext=*/false, Index,
|
|
StructuredList, ElementIndex);
|
|
return hadError && !prevHadError;
|
|
}
|
|
|
|
// Get the structured initializer list for a subobject of type
|
|
// @p CurrentObjectType.
|
|
InitListExpr *
|
|
InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
|
|
QualType CurrentObjectType,
|
|
InitListExpr *StructuredList,
|
|
unsigned StructuredIndex,
|
|
SourceRange InitRange) {
|
|
Expr *ExistingInit = 0;
|
|
if (!StructuredList)
|
|
ExistingInit = SyntacticToSemantic[IList];
|
|
else if (StructuredIndex < StructuredList->getNumInits())
|
|
ExistingInit = StructuredList->getInit(StructuredIndex);
|
|
|
|
if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit))
|
|
return Result;
|
|
|
|
if (ExistingInit) {
|
|
// We are creating an initializer list that initializes the
|
|
// subobjects of the current object, but there was already an
|
|
// initialization that completely initialized the current
|
|
// subobject, e.g., by a compound literal:
|
|
//
|
|
// struct X { int a, b; };
|
|
// struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
|
|
//
|
|
// Here, xs[0].a == 0 and xs[0].b == 3, since the second,
|
|
// designated initializer re-initializes the whole
|
|
// subobject [0], overwriting previous initializers.
|
|
SemaRef.Diag(InitRange.getBegin(),
|
|
diag::warn_subobject_initializer_overrides)
|
|
<< InitRange;
|
|
SemaRef.Diag(ExistingInit->getSourceRange().getBegin(),
|
|
diag::note_previous_initializer)
|
|
<< /*FIXME:has side effects=*/0
|
|
<< ExistingInit->getSourceRange();
|
|
}
|
|
|
|
InitListExpr *Result
|
|
= new (SemaRef.Context) InitListExpr(SemaRef.Context,
|
|
InitRange.getBegin(), 0, 0,
|
|
InitRange.getEnd());
|
|
|
|
Result->setType(CurrentObjectType.getNonLValueExprType(SemaRef.Context));
|
|
|
|
// Pre-allocate storage for the structured initializer list.
|
|
unsigned NumElements = 0;
|
|
unsigned NumInits = 0;
|
|
if (!StructuredList)
|
|
NumInits = IList->getNumInits();
|
|
else if (Index < IList->getNumInits()) {
|
|
if (InitListExpr *SubList = dyn_cast<InitListExpr>(IList->getInit(Index)))
|
|
NumInits = SubList->getNumInits();
|
|
}
|
|
|
|
if (const ArrayType *AType
|
|
= SemaRef.Context.getAsArrayType(CurrentObjectType)) {
|
|
if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) {
|
|
NumElements = CAType->getSize().getZExtValue();
|
|
// Simple heuristic so that we don't allocate a very large
|
|
// initializer with many empty entries at the end.
|
|
if (NumInits && NumElements > NumInits)
|
|
NumElements = 0;
|
|
}
|
|
} else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>())
|
|
NumElements = VType->getNumElements();
|
|
else if (const RecordType *RType = CurrentObjectType->getAs<RecordType>()) {
|
|
RecordDecl *RDecl = RType->getDecl();
|
|
if (RDecl->isUnion())
|
|
NumElements = 1;
|
|
else
|
|
NumElements = std::distance(RDecl->field_begin(),
|
|
RDecl->field_end());
|
|
}
|
|
|
|
if (NumElements < NumInits)
|
|
NumElements = IList->getNumInits();
|
|
|
|
Result->reserveInits(SemaRef.Context, NumElements);
|
|
|
|
// Link this new initializer list into the structured initializer
|
|
// lists.
|
|
if (StructuredList)
|
|
StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result);
|
|
else {
|
|
Result->setSyntacticForm(IList);
|
|
SyntacticToSemantic[IList] = Result;
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
/// Update the initializer at index @p StructuredIndex within the
|
|
/// structured initializer list to the value @p expr.
|
|
void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList,
|
|
unsigned &StructuredIndex,
|
|
Expr *expr) {
|
|
// No structured initializer list to update
|
|
if (!StructuredList)
|
|
return;
|
|
|
|
if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context,
|
|
StructuredIndex, expr)) {
|
|
// This initializer overwrites a previous initializer. Warn.
|
|
SemaRef.Diag(expr->getSourceRange().getBegin(),
|
|
diag::warn_initializer_overrides)
|
|
<< expr->getSourceRange();
|
|
SemaRef.Diag(PrevInit->getSourceRange().getBegin(),
|
|
diag::note_previous_initializer)
|
|
<< /*FIXME:has side effects=*/0
|
|
<< PrevInit->getSourceRange();
|
|
}
|
|
|
|
++StructuredIndex;
|
|
}
|
|
|
|
/// Check that the given Index expression is a valid array designator
|
|
/// value. This is essentailly just a wrapper around
|
|
/// VerifyIntegerConstantExpression that also checks for negative values
|
|
/// and produces a reasonable diagnostic if there is a
|
|
/// failure. Returns true if there was an error, false otherwise. If
|
|
/// everything went okay, Value will receive the value of the constant
|
|
/// expression.
|
|
static bool
|
|
CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) {
|
|
SourceLocation Loc = Index->getSourceRange().getBegin();
|
|
|
|
// Make sure this is an integer constant expression.
|
|
if (S.VerifyIntegerConstantExpression(Index, &Value))
|
|
return true;
|
|
|
|
if (Value.isSigned() && Value.isNegative())
|
|
return S.Diag(Loc, diag::err_array_designator_negative)
|
|
<< Value.toString(10) << Index->getSourceRange();
|
|
|
|
Value.setIsUnsigned(true);
|
|
return false;
|
|
}
|
|
|
|
ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig,
|
|
SourceLocation Loc,
|
|
bool GNUSyntax,
|
|
ExprResult Init) {
|
|
typedef DesignatedInitExpr::Designator ASTDesignator;
|
|
|
|
bool Invalid = false;
|
|
llvm::SmallVector<ASTDesignator, 32> Designators;
|
|
llvm::SmallVector<Expr *, 32> InitExpressions;
|
|
|
|
// Build designators and check array designator expressions.
|
|
for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) {
|
|
const Designator &D = Desig.getDesignator(Idx);
|
|
switch (D.getKind()) {
|
|
case Designator::FieldDesignator:
|
|
Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(),
|
|
D.getFieldLoc()));
|
|
break;
|
|
|
|
case Designator::ArrayDesignator: {
|
|
Expr *Index = static_cast<Expr *>(D.getArrayIndex());
|
|
llvm::APSInt IndexValue;
|
|
if (!Index->isTypeDependent() &&
|
|
!Index->isValueDependent() &&
|
|
CheckArrayDesignatorExpr(*this, Index, IndexValue))
|
|
Invalid = true;
|
|
else {
|
|
Designators.push_back(ASTDesignator(InitExpressions.size(),
|
|
D.getLBracketLoc(),
|
|
D.getRBracketLoc()));
|
|
InitExpressions.push_back(Index);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Designator::ArrayRangeDesignator: {
|
|
Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart());
|
|
Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd());
|
|
llvm::APSInt StartValue;
|
|
llvm::APSInt EndValue;
|
|
bool StartDependent = StartIndex->isTypeDependent() ||
|
|
StartIndex->isValueDependent();
|
|
bool EndDependent = EndIndex->isTypeDependent() ||
|
|
EndIndex->isValueDependent();
|
|
if ((!StartDependent &&
|
|
CheckArrayDesignatorExpr(*this, StartIndex, StartValue)) ||
|
|
(!EndDependent &&
|
|
CheckArrayDesignatorExpr(*this, EndIndex, EndValue)))
|
|
Invalid = true;
|
|
else {
|
|
// Make sure we're comparing values with the same bit width.
|
|
if (StartDependent || EndDependent) {
|
|
// Nothing to compute.
|
|
} else if (StartValue.getBitWidth() > EndValue.getBitWidth())
|
|
EndValue = EndValue.extend(StartValue.getBitWidth());
|
|
else if (StartValue.getBitWidth() < EndValue.getBitWidth())
|
|
StartValue = StartValue.extend(EndValue.getBitWidth());
|
|
|
|
if (!StartDependent && !EndDependent && EndValue < StartValue) {
|
|
Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range)
|
|
<< StartValue.toString(10) << EndValue.toString(10)
|
|
<< StartIndex->getSourceRange() << EndIndex->getSourceRange();
|
|
Invalid = true;
|
|
} else {
|
|
Designators.push_back(ASTDesignator(InitExpressions.size(),
|
|
D.getLBracketLoc(),
|
|
D.getEllipsisLoc(),
|
|
D.getRBracketLoc()));
|
|
InitExpressions.push_back(StartIndex);
|
|
InitExpressions.push_back(EndIndex);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (Invalid || Init.isInvalid())
|
|
return ExprError();
|
|
|
|
// Clear out the expressions within the designation.
|
|
Desig.ClearExprs(*this);
|
|
|
|
DesignatedInitExpr *DIE
|
|
= DesignatedInitExpr::Create(Context,
|
|
Designators.data(), Designators.size(),
|
|
InitExpressions.data(), InitExpressions.size(),
|
|
Loc, GNUSyntax, Init.takeAs<Expr>());
|
|
|
|
if (getLangOptions().CPlusPlus)
|
|
Diag(DIE->getLocStart(), diag::ext_designated_init)
|
|
<< DIE->getSourceRange();
|
|
|
|
return Owned(DIE);
|
|
}
|
|
|
|
bool Sema::CheckInitList(const InitializedEntity &Entity,
|
|
InitListExpr *&InitList, QualType &DeclType) {
|
|
InitListChecker CheckInitList(*this, Entity, InitList, DeclType);
|
|
if (!CheckInitList.HadError())
|
|
InitList = CheckInitList.getFullyStructuredList();
|
|
|
|
return CheckInitList.HadError();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Initialization entity
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index,
|
|
const InitializedEntity &Parent)
|
|
: Parent(&Parent), Index(Index)
|
|
{
|
|
if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) {
|
|
Kind = EK_ArrayElement;
|
|
Type = AT->getElementType();
|
|
} else {
|
|
Kind = EK_VectorElement;
|
|
Type = Parent.getType()->getAs<VectorType>()->getElementType();
|
|
}
|
|
}
|
|
|
|
InitializedEntity InitializedEntity::InitializeBase(ASTContext &Context,
|
|
CXXBaseSpecifier *Base,
|
|
bool IsInheritedVirtualBase)
|
|
{
|
|
InitializedEntity Result;
|
|
Result.Kind = EK_Base;
|
|
Result.Base = reinterpret_cast<uintptr_t>(Base);
|
|
if (IsInheritedVirtualBase)
|
|
Result.Base |= 0x01;
|
|
|
|
Result.Type = Base->getType();
|
|
return Result;
|
|
}
|
|
|
|
DeclarationName InitializedEntity::getName() const {
|
|
switch (getKind()) {
|
|
case EK_Parameter:
|
|
if (!VariableOrMember)
|
|
return DeclarationName();
|
|
// Fall through
|
|
|
|
case EK_Variable:
|
|
case EK_Member:
|
|
return VariableOrMember->getDeclName();
|
|
|
|
case EK_Result:
|
|
case EK_Exception:
|
|
case EK_New:
|
|
case EK_Temporary:
|
|
case EK_Base:
|
|
case EK_ArrayElement:
|
|
case EK_VectorElement:
|
|
case EK_BlockElement:
|
|
return DeclarationName();
|
|
}
|
|
|
|
// Silence GCC warning
|
|
return DeclarationName();
|
|
}
|
|
|
|
DeclaratorDecl *InitializedEntity::getDecl() const {
|
|
switch (getKind()) {
|
|
case EK_Variable:
|
|
case EK_Parameter:
|
|
case EK_Member:
|
|
return VariableOrMember;
|
|
|
|
case EK_Result:
|
|
case EK_Exception:
|
|
case EK_New:
|
|
case EK_Temporary:
|
|
case EK_Base:
|
|
case EK_ArrayElement:
|
|
case EK_VectorElement:
|
|
case EK_BlockElement:
|
|
return 0;
|
|
}
|
|
|
|
// Silence GCC warning
|
|
return 0;
|
|
}
|
|
|
|
bool InitializedEntity::allowsNRVO() const {
|
|
switch (getKind()) {
|
|
case EK_Result:
|
|
case EK_Exception:
|
|
return LocAndNRVO.NRVO;
|
|
|
|
case EK_Variable:
|
|
case EK_Parameter:
|
|
case EK_Member:
|
|
case EK_New:
|
|
case EK_Temporary:
|
|
case EK_Base:
|
|
case EK_ArrayElement:
|
|
case EK_VectorElement:
|
|
case EK_BlockElement:
|
|
break;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Initialization sequence
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void InitializationSequence::Step::Destroy() {
|
|
switch (Kind) {
|
|
case SK_ResolveAddressOfOverloadedFunction:
|
|
case SK_CastDerivedToBaseRValue:
|
|
case SK_CastDerivedToBaseXValue:
|
|
case SK_CastDerivedToBaseLValue:
|
|
case SK_BindReference:
|
|
case SK_BindReferenceToTemporary:
|
|
case SK_ExtraneousCopyToTemporary:
|
|
case SK_UserConversion:
|
|
case SK_QualificationConversionRValue:
|
|
case SK_QualificationConversionXValue:
|
|
case SK_QualificationConversionLValue:
|
|
case SK_ListInitialization:
|
|
case SK_ConstructorInitialization:
|
|
case SK_ZeroInitialization:
|
|
case SK_CAssignment:
|
|
case SK_StringInit:
|
|
case SK_ObjCObjectConversion:
|
|
case SK_ArrayInit:
|
|
break;
|
|
|
|
case SK_ConversionSequence:
|
|
delete ICS;
|
|
}
|
|
}
|
|
|
|
bool InitializationSequence::isDirectReferenceBinding() const {
|
|
return getKind() == ReferenceBinding && Steps.back().Kind == SK_BindReference;
|
|
}
|
|
|
|
bool InitializationSequence::isAmbiguous() const {
|
|
if (getKind() != FailedSequence)
|
|
return false;
|
|
|
|
switch (getFailureKind()) {
|
|
case FK_TooManyInitsForReference:
|
|
case FK_ArrayNeedsInitList:
|
|
case FK_ArrayNeedsInitListOrStringLiteral:
|
|
case FK_AddressOfOverloadFailed: // FIXME: Could do better
|
|
case FK_NonConstLValueReferenceBindingToTemporary:
|
|
case FK_NonConstLValueReferenceBindingToUnrelated:
|
|
case FK_RValueReferenceBindingToLValue:
|
|
case FK_ReferenceInitDropsQualifiers:
|
|
case FK_ReferenceInitFailed:
|
|
case FK_ConversionFailed:
|
|
case FK_TooManyInitsForScalar:
|
|
case FK_ReferenceBindingToInitList:
|
|
case FK_InitListBadDestinationType:
|
|
case FK_DefaultInitOfConst:
|
|
case FK_Incomplete:
|
|
case FK_ArrayTypeMismatch:
|
|
case FK_NonConstantArrayInit:
|
|
return false;
|
|
|
|
case FK_ReferenceInitOverloadFailed:
|
|
case FK_UserConversionOverloadFailed:
|
|
case FK_ConstructorOverloadFailed:
|
|
return FailedOverloadResult == OR_Ambiguous;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool InitializationSequence::isConstructorInitialization() const {
|
|
return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization;
|
|
}
|
|
|
|
void InitializationSequence::AddAddressOverloadResolutionStep(
|
|
FunctionDecl *Function,
|
|
DeclAccessPair Found) {
|
|
Step S;
|
|
S.Kind = SK_ResolveAddressOfOverloadedFunction;
|
|
S.Type = Function->getType();
|
|
S.Function.Function = Function;
|
|
S.Function.FoundDecl = Found;
|
|
Steps.push_back(S);
|
|
}
|
|
|
|
void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType,
|
|
ExprValueKind VK) {
|
|
Step S;
|
|
switch (VK) {
|
|
case VK_RValue: S.Kind = SK_CastDerivedToBaseRValue; break;
|
|
case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break;
|
|
case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break;
|
|
default: llvm_unreachable("No such category");
|
|
}
|
|
S.Type = BaseType;
|
|
Steps.push_back(S);
|
|
}
|
|
|
|
void InitializationSequence::AddReferenceBindingStep(QualType T,
|
|
bool BindingTemporary) {
|
|
Step S;
|
|
S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference;
|
|
S.Type = T;
|
|
Steps.push_back(S);
|
|
}
|
|
|
|
void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) {
|
|
Step S;
|
|
S.Kind = SK_ExtraneousCopyToTemporary;
|
|
S.Type = T;
|
|
Steps.push_back(S);
|
|
}
|
|
|
|
void InitializationSequence::AddUserConversionStep(FunctionDecl *Function,
|
|
DeclAccessPair FoundDecl,
|
|
QualType T) {
|
|
Step S;
|
|
S.Kind = SK_UserConversion;
|
|
S.Type = T;
|
|
S.Function.Function = Function;
|
|
S.Function.FoundDecl = FoundDecl;
|
|
Steps.push_back(S);
|
|
}
|
|
|
|
void InitializationSequence::AddQualificationConversionStep(QualType Ty,
|
|
ExprValueKind VK) {
|
|
Step S;
|
|
S.Kind = SK_QualificationConversionRValue; // work around a gcc warning
|
|
switch (VK) {
|
|
case VK_RValue:
|
|
S.Kind = SK_QualificationConversionRValue;
|
|
break;
|
|
case VK_XValue:
|
|
S.Kind = SK_QualificationConversionXValue;
|
|
break;
|
|
case VK_LValue:
|
|
S.Kind = SK_QualificationConversionLValue;
|
|
break;
|
|
}
|
|
S.Type = Ty;
|
|
Steps.push_back(S);
|
|
}
|
|
|
|
void InitializationSequence::AddConversionSequenceStep(
|
|
const ImplicitConversionSequence &ICS,
|
|
QualType T) {
|
|
Step S;
|
|
S.Kind = SK_ConversionSequence;
|
|
S.Type = T;
|
|
S.ICS = new ImplicitConversionSequence(ICS);
|
|
Steps.push_back(S);
|
|
}
|
|
|
|
void InitializationSequence::AddListInitializationStep(QualType T) {
|
|
Step S;
|
|
S.Kind = SK_ListInitialization;
|
|
S.Type = T;
|
|
Steps.push_back(S);
|
|
}
|
|
|
|
void
|
|
InitializationSequence::AddConstructorInitializationStep(
|
|
CXXConstructorDecl *Constructor,
|
|
AccessSpecifier Access,
|
|
QualType T) {
|
|
Step S;
|
|
S.Kind = SK_ConstructorInitialization;
|
|
S.Type = T;
|
|
S.Function.Function = Constructor;
|
|
S.Function.FoundDecl = DeclAccessPair::make(Constructor, Access);
|
|
Steps.push_back(S);
|
|
}
|
|
|
|
void InitializationSequence::AddZeroInitializationStep(QualType T) {
|
|
Step S;
|
|
S.Kind = SK_ZeroInitialization;
|
|
S.Type = T;
|
|
Steps.push_back(S);
|
|
}
|
|
|
|
void InitializationSequence::AddCAssignmentStep(QualType T) {
|
|
Step S;
|
|
S.Kind = SK_CAssignment;
|
|
S.Type = T;
|
|
Steps.push_back(S);
|
|
}
|
|
|
|
void InitializationSequence::AddStringInitStep(QualType T) {
|
|
Step S;
|
|
S.Kind = SK_StringInit;
|
|
S.Type = T;
|
|
Steps.push_back(S);
|
|
}
|
|
|
|
void InitializationSequence::AddObjCObjectConversionStep(QualType T) {
|
|
Step S;
|
|
S.Kind = SK_ObjCObjectConversion;
|
|
S.Type = T;
|
|
Steps.push_back(S);
|
|
}
|
|
|
|
void InitializationSequence::AddArrayInitStep(QualType T) {
|
|
Step S;
|
|
S.Kind = SK_ArrayInit;
|
|
S.Type = T;
|
|
Steps.push_back(S);
|
|
}
|
|
|
|
void InitializationSequence::SetOverloadFailure(FailureKind Failure,
|
|
OverloadingResult Result) {
|
|
SequenceKind = FailedSequence;
|
|
this->Failure = Failure;
|
|
this->FailedOverloadResult = Result;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Attempt initialization
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// \brief Attempt list initialization (C++0x [dcl.init.list])
|
|
static void TryListInitialization(Sema &S,
|
|
const InitializedEntity &Entity,
|
|
const InitializationKind &Kind,
|
|
InitListExpr *InitList,
|
|
InitializationSequence &Sequence) {
|
|
// FIXME: We only perform rudimentary checking of list
|
|
// initializations at this point, then assume that any list
|
|
// initialization of an array, aggregate, or scalar will be
|
|
// well-formed. When we actually "perform" list initialization, we'll
|
|
// do all of the necessary checking. C++0x initializer lists will
|
|
// force us to perform more checking here.
|
|
Sequence.setSequenceKind(InitializationSequence::ListInitialization);
|
|
|
|
QualType DestType = Entity.getType();
|
|
|
|
// C++ [dcl.init]p13:
|
|
// If T is a scalar type, then a declaration of the form
|
|
//
|
|
// T x = { a };
|
|
//
|
|
// is equivalent to
|
|
//
|
|
// T x = a;
|
|
if (DestType->isScalarType()) {
|
|
if (InitList->getNumInits() > 1 && S.getLangOptions().CPlusPlus) {
|
|
Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar);
|
|
return;
|
|
}
|
|
|
|
// Assume scalar initialization from a single value works.
|
|
} else if (DestType->isAggregateType()) {
|
|
// Assume aggregate initialization works.
|
|
} else if (DestType->isVectorType()) {
|
|
// Assume vector initialization works.
|
|
} else if (DestType->isReferenceType()) {
|
|
// FIXME: C++0x defines behavior for this.
|
|
Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
|
|
return;
|
|
} else if (DestType->isRecordType()) {
|
|
// FIXME: C++0x defines behavior for this
|
|
Sequence.SetFailed(InitializationSequence::FK_InitListBadDestinationType);
|
|
}
|
|
|
|
// Add a general "list initialization" step.
|
|
Sequence.AddListInitializationStep(DestType);
|
|
}
|
|
|
|
/// \brief Try a reference initialization that involves calling a conversion
|
|
/// function.
|
|
static OverloadingResult TryRefInitWithConversionFunction(Sema &S,
|
|
const InitializedEntity &Entity,
|
|
const InitializationKind &Kind,
|
|
Expr *Initializer,
|
|
bool AllowRValues,
|
|
InitializationSequence &Sequence) {
|
|
QualType DestType = Entity.getType();
|
|
QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
|
|
QualType T1 = cv1T1.getUnqualifiedType();
|
|
QualType cv2T2 = Initializer->getType();
|
|
QualType T2 = cv2T2.getUnqualifiedType();
|
|
|
|
bool DerivedToBase;
|
|
bool ObjCConversion;
|
|
assert(!S.CompareReferenceRelationship(Initializer->getLocStart(),
|
|
T1, T2, DerivedToBase,
|
|
ObjCConversion) &&
|
|
"Must have incompatible references when binding via conversion");
|
|
(void)DerivedToBase;
|
|
(void)ObjCConversion;
|
|
|
|
// Build the candidate set directly in the initialization sequence
|
|
// structure, so that it will persist if we fail.
|
|
OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
|
|
CandidateSet.clear();
|
|
|
|
// Determine whether we are allowed to call explicit constructors or
|
|
// explicit conversion operators.
|
|
bool AllowExplicit = Kind.getKind() == InitializationKind::IK_Direct;
|
|
|
|
const RecordType *T1RecordType = 0;
|
|
if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) &&
|
|
!S.RequireCompleteType(Kind.getLocation(), T1, 0)) {
|
|
// The type we're converting to is a class type. Enumerate its constructors
|
|
// to see if there is a suitable conversion.
|
|
CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl());
|
|
|
|
DeclContext::lookup_iterator Con, ConEnd;
|
|
for (llvm::tie(Con, ConEnd) = S.LookupConstructors(T1RecordDecl);
|
|
Con != ConEnd; ++Con) {
|
|
NamedDecl *D = *Con;
|
|
DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
|
|
|
|
// Find the constructor (which may be a template).
|
|
CXXConstructorDecl *Constructor = 0;
|
|
FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
|
|
if (ConstructorTmpl)
|
|
Constructor = cast<CXXConstructorDecl>(
|
|
ConstructorTmpl->getTemplatedDecl());
|
|
else
|
|
Constructor = cast<CXXConstructorDecl>(D);
|
|
|
|
if (!Constructor->isInvalidDecl() &&
|
|
Constructor->isConvertingConstructor(AllowExplicit)) {
|
|
if (ConstructorTmpl)
|
|
S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
|
|
/*ExplicitArgs*/ 0,
|
|
&Initializer, 1, CandidateSet,
|
|
/*SuppressUserConversions=*/true);
|
|
else
|
|
S.AddOverloadCandidate(Constructor, FoundDecl,
|
|
&Initializer, 1, CandidateSet,
|
|
/*SuppressUserConversions=*/true);
|
|
}
|
|
}
|
|
}
|
|
if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl())
|
|
return OR_No_Viable_Function;
|
|
|
|
const RecordType *T2RecordType = 0;
|
|
if ((T2RecordType = T2->getAs<RecordType>()) &&
|
|
!S.RequireCompleteType(Kind.getLocation(), T2, 0)) {
|
|
// The type we're converting from is a class type, enumerate its conversion
|
|
// functions.
|
|
CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl());
|
|
|
|
const UnresolvedSetImpl *Conversions
|
|
= T2RecordDecl->getVisibleConversionFunctions();
|
|
for (UnresolvedSetImpl::const_iterator I = Conversions->begin(),
|
|
E = Conversions->end(); I != E; ++I) {
|
|
NamedDecl *D = *I;
|
|
CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
|
|
if (isa<UsingShadowDecl>(D))
|
|
D = cast<UsingShadowDecl>(D)->getTargetDecl();
|
|
|
|
FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
|
|
CXXConversionDecl *Conv;
|
|
if (ConvTemplate)
|
|
Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
|
|
else
|
|
Conv = cast<CXXConversionDecl>(D);
|
|
|
|
// If the conversion function doesn't return a reference type,
|
|
// it can't be considered for this conversion unless we're allowed to
|
|
// consider rvalues.
|
|
// FIXME: Do we need to make sure that we only consider conversion
|
|
// candidates with reference-compatible results? That might be needed to
|
|
// break recursion.
|
|
if ((AllowExplicit || !Conv->isExplicit()) &&
|
|
(AllowRValues || Conv->getConversionType()->isLValueReferenceType())){
|
|
if (ConvTemplate)
|
|
S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
|
|
ActingDC, Initializer,
|
|
DestType, CandidateSet);
|
|
else
|
|
S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
|
|
Initializer, DestType, CandidateSet);
|
|
}
|
|
}
|
|
}
|
|
if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl())
|
|
return OR_No_Viable_Function;
|
|
|
|
SourceLocation DeclLoc = Initializer->getLocStart();
|
|
|
|
// Perform overload resolution. If it fails, return the failed result.
|
|
OverloadCandidateSet::iterator Best;
|
|
if (OverloadingResult Result
|
|
= CandidateSet.BestViableFunction(S, DeclLoc, Best, true))
|
|
return Result;
|
|
|
|
FunctionDecl *Function = Best->Function;
|
|
|
|
// This is the overload that will actually be used for the initialization, so
|
|
// mark it as used.
|
|
S.MarkDeclarationReferenced(DeclLoc, Function);
|
|
|
|
// Compute the returned type of the conversion.
|
|
if (isa<CXXConversionDecl>(Function))
|
|
T2 = Function->getResultType();
|
|
else
|
|
T2 = cv1T1;
|
|
|
|
// Add the user-defined conversion step.
|
|
Sequence.AddUserConversionStep(Function, Best->FoundDecl,
|
|
T2.getNonLValueExprType(S.Context));
|
|
|
|
// Determine whether we need to perform derived-to-base or
|
|
// cv-qualification adjustments.
|
|
ExprValueKind VK = VK_RValue;
|
|
if (T2->isLValueReferenceType())
|
|
VK = VK_LValue;
|
|
else if (const RValueReferenceType *RRef = T2->getAs<RValueReferenceType>())
|
|
VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue;
|
|
|
|
bool NewDerivedToBase = false;
|
|
bool NewObjCConversion = false;
|
|
Sema::ReferenceCompareResult NewRefRelationship
|
|
= S.CompareReferenceRelationship(DeclLoc, T1,
|
|
T2.getNonLValueExprType(S.Context),
|
|
NewDerivedToBase, NewObjCConversion);
|
|
if (NewRefRelationship == Sema::Ref_Incompatible) {
|
|
// If the type we've converted to is not reference-related to the
|
|
// type we're looking for, then there is another conversion step
|
|
// we need to perform to produce a temporary of the right type
|
|
// that we'll be binding to.
|
|
ImplicitConversionSequence ICS;
|
|
ICS.setStandard();
|
|
ICS.Standard = Best->FinalConversion;
|
|
T2 = ICS.Standard.getToType(2);
|
|
Sequence.AddConversionSequenceStep(ICS, T2);
|
|
} else if (NewDerivedToBase)
|
|
Sequence.AddDerivedToBaseCastStep(
|
|
S.Context.getQualifiedType(T1,
|
|
T2.getNonReferenceType().getQualifiers()),
|
|
VK);
|
|
else if (NewObjCConversion)
|
|
Sequence.AddObjCObjectConversionStep(
|
|
S.Context.getQualifiedType(T1,
|
|
T2.getNonReferenceType().getQualifiers()));
|
|
|
|
if (cv1T1.getQualifiers() != T2.getNonReferenceType().getQualifiers())
|
|
Sequence.AddQualificationConversionStep(cv1T1, VK);
|
|
|
|
Sequence.AddReferenceBindingStep(cv1T1, !T2->isReferenceType());
|
|
return OR_Success;
|
|
}
|
|
|
|
/// \brief Attempt reference initialization (C++0x [dcl.init.ref])
|
|
static void TryReferenceInitialization(Sema &S,
|
|
const InitializedEntity &Entity,
|
|
const InitializationKind &Kind,
|
|
Expr *Initializer,
|
|
InitializationSequence &Sequence) {
|
|
Sequence.setSequenceKind(InitializationSequence::ReferenceBinding);
|
|
|
|
QualType DestType = Entity.getType();
|
|
QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
|
|
Qualifiers T1Quals;
|
|
QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
|
|
QualType cv2T2 = Initializer->getType();
|
|
Qualifiers T2Quals;
|
|
QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
|
|
SourceLocation DeclLoc = Initializer->getLocStart();
|
|
|
|
// If the initializer is the address of an overloaded function, try
|
|
// to resolve the overloaded function. If all goes well, T2 is the
|
|
// type of the resulting function.
|
|
if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
|
|
DeclAccessPair Found;
|
|
if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Initializer,
|
|
T1,
|
|
false,
|
|
Found)) {
|
|
Sequence.AddAddressOverloadResolutionStep(Fn, Found);
|
|
cv2T2 = Fn->getType();
|
|
T2 = cv2T2.getUnqualifiedType();
|
|
} else if (!T1->isRecordType()) {
|
|
Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Compute some basic properties of the types and the initializer.
|
|
bool isLValueRef = DestType->isLValueReferenceType();
|
|
bool isRValueRef = !isLValueRef;
|
|
bool DerivedToBase = false;
|
|
bool ObjCConversion = false;
|
|
Expr::Classification InitCategory = Initializer->Classify(S.Context);
|
|
Sema::ReferenceCompareResult RefRelationship
|
|
= S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, DerivedToBase,
|
|
ObjCConversion);
|
|
|
|
// C++0x [dcl.init.ref]p5:
|
|
// A reference to type "cv1 T1" is initialized by an expression of type
|
|
// "cv2 T2" as follows:
|
|
//
|
|
// - If the reference is an lvalue reference and the initializer
|
|
// expression
|
|
// Note the analogous bullet points for rvlaue refs to functions. Because
|
|
// there are no function rvalues in C++, rvalue refs to functions are treated
|
|
// like lvalue refs.
|
|
OverloadingResult ConvOvlResult = OR_Success;
|
|
bool T1Function = T1->isFunctionType();
|
|
if (isLValueRef || T1Function) {
|
|
if (InitCategory.isLValue() &&
|
|
(RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification ||
|
|
(Kind.isCStyleOrFunctionalCast() &&
|
|
RefRelationship == Sema::Ref_Related))) {
|
|
// - is an lvalue (but is not a bit-field), and "cv1 T1" is
|
|
// reference-compatible with "cv2 T2," or
|
|
//
|
|
// Per C++ [over.best.ics]p2, we don't diagnose whether the lvalue is a
|
|
// bit-field when we're determining whether the reference initialization
|
|
// can occur. However, we do pay attention to whether it is a bit-field
|
|
// to decide whether we're actually binding to a temporary created from
|
|
// the bit-field.
|
|
if (DerivedToBase)
|
|
Sequence.AddDerivedToBaseCastStep(
|
|
S.Context.getQualifiedType(T1, T2Quals),
|
|
VK_LValue);
|
|
else if (ObjCConversion)
|
|
Sequence.AddObjCObjectConversionStep(
|
|
S.Context.getQualifiedType(T1, T2Quals));
|
|
|
|
if (T1Quals != T2Quals)
|
|
Sequence.AddQualificationConversionStep(cv1T1, VK_LValue);
|
|
bool BindingTemporary = T1Quals.hasConst() && !T1Quals.hasVolatile() &&
|
|
(Initializer->getBitField() || Initializer->refersToVectorElement());
|
|
Sequence.AddReferenceBindingStep(cv1T1, BindingTemporary);
|
|
return;
|
|
}
|
|
|
|
// - has a class type (i.e., T2 is a class type), where T1 is not
|
|
// reference-related to T2, and can be implicitly converted to an
|
|
// lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible
|
|
// with "cv3 T3" (this conversion is selected by enumerating the
|
|
// applicable conversion functions (13.3.1.6) and choosing the best
|
|
// one through overload resolution (13.3)),
|
|
// If we have an rvalue ref to function type here, the rhs must be
|
|
// an rvalue.
|
|
if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() &&
|
|
(isLValueRef || InitCategory.isRValue())) {
|
|
ConvOvlResult = TryRefInitWithConversionFunction(S, Entity, Kind,
|
|
Initializer,
|
|
/*AllowRValues=*/isRValueRef,
|
|
Sequence);
|
|
if (ConvOvlResult == OR_Success)
|
|
return;
|
|
if (ConvOvlResult != OR_No_Viable_Function) {
|
|
Sequence.SetOverloadFailure(
|
|
InitializationSequence::FK_ReferenceInitOverloadFailed,
|
|
ConvOvlResult);
|
|
}
|
|
}
|
|
}
|
|
|
|
// - Otherwise, the reference shall be an lvalue reference to a
|
|
// non-volatile const type (i.e., cv1 shall be const), or the reference
|
|
// shall be an rvalue reference.
|
|
if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile())) {
|
|
if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
|
|
Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
|
|
else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
|
|
Sequence.SetOverloadFailure(
|
|
InitializationSequence::FK_ReferenceInitOverloadFailed,
|
|
ConvOvlResult);
|
|
else
|
|
Sequence.SetFailed(InitCategory.isLValue()
|
|
? (RefRelationship == Sema::Ref_Related
|
|
? InitializationSequence::FK_ReferenceInitDropsQualifiers
|
|
: InitializationSequence::FK_NonConstLValueReferenceBindingToUnrelated)
|
|
: InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
|
|
|
|
return;
|
|
}
|
|
|
|
// - If the initializer expression
|
|
// - is an xvalue, class prvalue, array prvalue, or function lvalue and
|
|
// "cv1 T1" is reference-compatible with "cv2 T2"
|
|
// Note: functions are handled below.
|
|
if (!T1Function &&
|
|
(RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification ||
|
|
(Kind.isCStyleOrFunctionalCast() &&
|
|
RefRelationship == Sema::Ref_Related)) &&
|
|
(InitCategory.isXValue() ||
|
|
(InitCategory.isPRValue() && T2->isRecordType()) ||
|
|
(InitCategory.isPRValue() && T2->isArrayType()))) {
|
|
ExprValueKind ValueKind = InitCategory.isXValue()? VK_XValue : VK_RValue;
|
|
if (InitCategory.isPRValue() && T2->isRecordType()) {
|
|
// The corresponding bullet in C++03 [dcl.init.ref]p5 gives the
|
|
// compiler the freedom to perform a copy here or bind to the
|
|
// object, while C++0x requires that we bind directly to the
|
|
// object. Hence, we always bind to the object without making an
|
|
// extra copy. However, in C++03 requires that we check for the
|
|
// presence of a suitable copy constructor:
|
|
//
|
|
// The constructor that would be used to make the copy shall
|
|
// be callable whether or not the copy is actually done.
|
|
if (!S.getLangOptions().CPlusPlus0x && !S.getLangOptions().Microsoft)
|
|
Sequence.AddExtraneousCopyToTemporary(cv2T2);
|
|
}
|
|
|
|
if (DerivedToBase)
|
|
Sequence.AddDerivedToBaseCastStep(S.Context.getQualifiedType(T1, T2Quals),
|
|
ValueKind);
|
|
else if (ObjCConversion)
|
|
Sequence.AddObjCObjectConversionStep(
|
|
S.Context.getQualifiedType(T1, T2Quals));
|
|
|
|
if (T1Quals != T2Quals)
|
|
Sequence.AddQualificationConversionStep(cv1T1, ValueKind);
|
|
Sequence.AddReferenceBindingStep(cv1T1,
|
|
/*bindingTemporary=*/(InitCategory.isPRValue() && !T2->isArrayType()));
|
|
return;
|
|
}
|
|
|
|
// - has a class type (i.e., T2 is a class type), where T1 is not
|
|
// reference-related to T2, and can be implicitly converted to an
|
|
// xvalue, class prvalue, or function lvalue of type "cv3 T3",
|
|
// where "cv1 T1" is reference-compatible with "cv3 T3",
|
|
if (T2->isRecordType()) {
|
|
if (RefRelationship == Sema::Ref_Incompatible) {
|
|
ConvOvlResult = TryRefInitWithConversionFunction(S, Entity,
|
|
Kind, Initializer,
|
|
/*AllowRValues=*/true,
|
|
Sequence);
|
|
if (ConvOvlResult)
|
|
Sequence.SetOverloadFailure(
|
|
InitializationSequence::FK_ReferenceInitOverloadFailed,
|
|
ConvOvlResult);
|
|
|
|
return;
|
|
}
|
|
|
|
Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
|
|
return;
|
|
}
|
|
|
|
// - Otherwise, a temporary of type "cv1 T1" is created and initialized
|
|
// from the initializer expression using the rules for a non-reference
|
|
// copy initialization (8.5). The reference is then bound to the
|
|
// temporary. [...]
|
|
|
|
// Determine whether we are allowed to call explicit constructors or
|
|
// explicit conversion operators.
|
|
bool AllowExplicit = (Kind.getKind() == InitializationKind::IK_Direct);
|
|
|
|
InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
|
|
|
|
if (S.TryImplicitConversion(Sequence, TempEntity, Initializer,
|
|
/*SuppressUserConversions*/ false,
|
|
AllowExplicit,
|
|
/*FIXME:InOverloadResolution=*/false,
|
|
/*CStyle=*/Kind.isCStyleOrFunctionalCast())) {
|
|
// FIXME: Use the conversion function set stored in ICS to turn
|
|
// this into an overloading ambiguity diagnostic. However, we need
|
|
// to keep that set as an OverloadCandidateSet rather than as some
|
|
// other kind of set.
|
|
if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
|
|
Sequence.SetOverloadFailure(
|
|
InitializationSequence::FK_ReferenceInitOverloadFailed,
|
|
ConvOvlResult);
|
|
else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
|
|
Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
|
|
else
|
|
Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed);
|
|
return;
|
|
}
|
|
|
|
// [...] If T1 is reference-related to T2, cv1 must be the
|
|
// same cv-qualification as, or greater cv-qualification
|
|
// than, cv2; otherwise, the program is ill-formed.
|
|
unsigned T1CVRQuals = T1Quals.getCVRQualifiers();
|
|
unsigned T2CVRQuals = T2Quals.getCVRQualifiers();
|
|
if (RefRelationship == Sema::Ref_Related &&
|
|
(T1CVRQuals | T2CVRQuals) != T1CVRQuals) {
|
|
Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
|
|
return;
|
|
}
|
|
|
|
// [...] If T1 is reference-related to T2 and the reference is an rvalue
|
|
// reference, the initializer expression shall not be an lvalue.
|
|
if (RefRelationship >= Sema::Ref_Related && !isLValueRef &&
|
|
InitCategory.isLValue()) {
|
|
Sequence.SetFailed(
|
|
InitializationSequence::FK_RValueReferenceBindingToLValue);
|
|
return;
|
|
}
|
|
|
|
Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
|
|
return;
|
|
}
|
|
|
|
/// \brief Attempt character array initialization from a string literal
|
|
/// (C++ [dcl.init.string], C99 6.7.8).
|
|
static void TryStringLiteralInitialization(Sema &S,
|
|
const InitializedEntity &Entity,
|
|
const InitializationKind &Kind,
|
|
Expr *Initializer,
|
|
InitializationSequence &Sequence) {
|
|
Sequence.setSequenceKind(InitializationSequence::StringInit);
|
|
Sequence.AddStringInitStep(Entity.getType());
|
|
}
|
|
|
|
/// \brief Attempt initialization by constructor (C++ [dcl.init]), which
|
|
/// enumerates the constructors of the initialized entity and performs overload
|
|
/// resolution to select the best.
|
|
static void TryConstructorInitialization(Sema &S,
|
|
const InitializedEntity &Entity,
|
|
const InitializationKind &Kind,
|
|
Expr **Args, unsigned NumArgs,
|
|
QualType DestType,
|
|
InitializationSequence &Sequence) {
|
|
Sequence.setSequenceKind(InitializationSequence::ConstructorInitialization);
|
|
|
|
// Build the candidate set directly in the initialization sequence
|
|
// structure, so that it will persist if we fail.
|
|
OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
|
|
CandidateSet.clear();
|
|
|
|
// Determine whether we are allowed to call explicit constructors or
|
|
// explicit conversion operators.
|
|
bool AllowExplicit = (Kind.getKind() == InitializationKind::IK_Direct ||
|
|
Kind.getKind() == InitializationKind::IK_Value ||
|
|
Kind.getKind() == InitializationKind::IK_Default);
|
|
|
|
// The type we're constructing needs to be complete.
|
|
if (S.RequireCompleteType(Kind.getLocation(), DestType, 0)) {
|
|
Sequence.SetFailed(InitializationSequence::FK_Incomplete);
|
|
return;
|
|
}
|
|
|
|
// The type we're converting to is a class type. Enumerate its constructors
|
|
// to see if one is suitable.
|
|
const RecordType *DestRecordType = DestType->getAs<RecordType>();
|
|
assert(DestRecordType && "Constructor initialization requires record type");
|
|
CXXRecordDecl *DestRecordDecl
|
|
= cast<CXXRecordDecl>(DestRecordType->getDecl());
|
|
|
|
DeclContext::lookup_iterator Con, ConEnd;
|
|
for (llvm::tie(Con, ConEnd) = S.LookupConstructors(DestRecordDecl);
|
|
Con != ConEnd; ++Con) {
|
|
NamedDecl *D = *Con;
|
|
DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
|
|
bool SuppressUserConversions = false;
|
|
|
|
// Find the constructor (which may be a template).
|
|
CXXConstructorDecl *Constructor = 0;
|
|
FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
|
|
if (ConstructorTmpl)
|
|
Constructor = cast<CXXConstructorDecl>(
|
|
ConstructorTmpl->getTemplatedDecl());
|
|
else {
|
|
Constructor = cast<CXXConstructorDecl>(D);
|
|
|
|
// If we're performing copy initialization using a copy constructor, we
|
|
// suppress user-defined conversions on the arguments.
|
|
// FIXME: Move constructors?
|
|
if (Kind.getKind() == InitializationKind::IK_Copy &&
|
|
Constructor->isCopyConstructor())
|
|
SuppressUserConversions = true;
|
|
}
|
|
|
|
if (!Constructor->isInvalidDecl() &&
|
|
(AllowExplicit || !Constructor->isExplicit())) {
|
|
if (ConstructorTmpl)
|
|
S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
|
|
/*ExplicitArgs*/ 0,
|
|
Args, NumArgs, CandidateSet,
|
|
SuppressUserConversions);
|
|
else
|
|
S.AddOverloadCandidate(Constructor, FoundDecl,
|
|
Args, NumArgs, CandidateSet,
|
|
SuppressUserConversions);
|
|
}
|
|
}
|
|
|
|
SourceLocation DeclLoc = Kind.getLocation();
|
|
|
|
// Perform overload resolution. If it fails, return the failed result.
|
|
OverloadCandidateSet::iterator Best;
|
|
if (OverloadingResult Result
|
|
= CandidateSet.BestViableFunction(S, DeclLoc, Best)) {
|
|
Sequence.SetOverloadFailure(
|
|
InitializationSequence::FK_ConstructorOverloadFailed,
|
|
Result);
|
|
return;
|
|
}
|
|
|
|
// C++0x [dcl.init]p6:
|
|
// If a program calls for the default initialization of an object
|
|
// of a const-qualified type T, T shall be a class type with a
|
|
// user-provided default constructor.
|
|
if (Kind.getKind() == InitializationKind::IK_Default &&
|
|
Entity.getType().isConstQualified() &&
|
|
cast<CXXConstructorDecl>(Best->Function)->isImplicit()) {
|
|
Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
|
|
return;
|
|
}
|
|
|
|
// Add the constructor initialization step. Any cv-qualification conversion is
|
|
// subsumed by the initialization.
|
|
Sequence.AddConstructorInitializationStep(
|
|
cast<CXXConstructorDecl>(Best->Function),
|
|
Best->FoundDecl.getAccess(),
|
|
DestType);
|
|
}
|
|
|
|
/// \brief Attempt value initialization (C++ [dcl.init]p7).
|
|
static void TryValueInitialization(Sema &S,
|
|
const InitializedEntity &Entity,
|
|
const InitializationKind &Kind,
|
|
InitializationSequence &Sequence) {
|
|
// C++ [dcl.init]p5:
|
|
//
|
|
// To value-initialize an object of type T means:
|
|
QualType T = Entity.getType();
|
|
|
|
// -- if T is an array type, then each element is value-initialized;
|
|
while (const ArrayType *AT = S.Context.getAsArrayType(T))
|
|
T = AT->getElementType();
|
|
|
|
if (const RecordType *RT = T->getAs<RecordType>()) {
|
|
if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
|
|
// -- if T is a class type (clause 9) with a user-declared
|
|
// constructor (12.1), then the default constructor for T is
|
|
// called (and the initialization is ill-formed if T has no
|
|
// accessible default constructor);
|
|
//
|
|
// FIXME: we really want to refer to a single subobject of the array,
|
|
// but Entity doesn't have a way to capture that (yet).
|
|
if (ClassDecl->hasUserDeclaredConstructor())
|
|
return TryConstructorInitialization(S, Entity, Kind, 0, 0, T, Sequence);
|
|
|
|
// -- if T is a (possibly cv-qualified) non-union class type
|
|
// without a user-provided constructor, then the object is
|
|
// zero-initialized and, if T's implicitly-declared default
|
|
// constructor is non-trivial, that constructor is called.
|
|
if ((ClassDecl->getTagKind() == TTK_Class ||
|
|
ClassDecl->getTagKind() == TTK_Struct)) {
|
|
Sequence.AddZeroInitializationStep(Entity.getType());
|
|
return TryConstructorInitialization(S, Entity, Kind, 0, 0, T, Sequence);
|
|
}
|
|
}
|
|
}
|
|
|
|
Sequence.AddZeroInitializationStep(Entity.getType());
|
|
Sequence.setSequenceKind(InitializationSequence::ZeroInitialization);
|
|
}
|
|
|
|
/// \brief Attempt default initialization (C++ [dcl.init]p6).
|
|
static void TryDefaultInitialization(Sema &S,
|
|
const InitializedEntity &Entity,
|
|
const InitializationKind &Kind,
|
|
InitializationSequence &Sequence) {
|
|
assert(Kind.getKind() == InitializationKind::IK_Default);
|
|
|
|
// C++ [dcl.init]p6:
|
|
// To default-initialize an object of type T means:
|
|
// - if T is an array type, each element is default-initialized;
|
|
QualType DestType = Entity.getType();
|
|
while (const ArrayType *Array = S.Context.getAsArrayType(DestType))
|
|
DestType = Array->getElementType();
|
|
|
|
// - if T is a (possibly cv-qualified) class type (Clause 9), the default
|
|
// constructor for T is called (and the initialization is ill-formed if
|
|
// T has no accessible default constructor);
|
|
if (DestType->isRecordType() && S.getLangOptions().CPlusPlus) {
|
|
TryConstructorInitialization(S, Entity, Kind, 0, 0, DestType, Sequence);
|
|
return;
|
|
}
|
|
|
|
// - otherwise, no initialization is performed.
|
|
Sequence.setSequenceKind(InitializationSequence::NoInitialization);
|
|
|
|
// If a program calls for the default initialization of an object of
|
|
// a const-qualified type T, T shall be a class type with a user-provided
|
|
// default constructor.
|
|
if (DestType.isConstQualified() && S.getLangOptions().CPlusPlus)
|
|
Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
|
|
}
|
|
|
|
/// \brief Attempt a user-defined conversion between two types (C++ [dcl.init]),
|
|
/// which enumerates all conversion functions and performs overload resolution
|
|
/// to select the best.
|
|
static void TryUserDefinedConversion(Sema &S,
|
|
const InitializedEntity &Entity,
|
|
const InitializationKind &Kind,
|
|
Expr *Initializer,
|
|
InitializationSequence &Sequence) {
|
|
Sequence.setSequenceKind(InitializationSequence::UserDefinedConversion);
|
|
|
|
QualType DestType = Entity.getType();
|
|
assert(!DestType->isReferenceType() && "References are handled elsewhere");
|
|
QualType SourceType = Initializer->getType();
|
|
assert((DestType->isRecordType() || SourceType->isRecordType()) &&
|
|
"Must have a class type to perform a user-defined conversion");
|
|
|
|
// Build the candidate set directly in the initialization sequence
|
|
// structure, so that it will persist if we fail.
|
|
OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
|
|
CandidateSet.clear();
|
|
|
|
// Determine whether we are allowed to call explicit constructors or
|
|
// explicit conversion operators.
|
|
bool AllowExplicit = Kind.getKind() == InitializationKind::IK_Direct;
|
|
|
|
if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) {
|
|
// The type we're converting to is a class type. Enumerate its constructors
|
|
// to see if there is a suitable conversion.
|
|
CXXRecordDecl *DestRecordDecl
|
|
= cast<CXXRecordDecl>(DestRecordType->getDecl());
|
|
|
|
// Try to complete the type we're converting to.
|
|
if (!S.RequireCompleteType(Kind.getLocation(), DestType, 0)) {
|
|
DeclContext::lookup_iterator Con, ConEnd;
|
|
for (llvm::tie(Con, ConEnd) = S.LookupConstructors(DestRecordDecl);
|
|
Con != ConEnd; ++Con) {
|
|
NamedDecl *D = *Con;
|
|
DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
|
|
|
|
// Find the constructor (which may be a template).
|
|
CXXConstructorDecl *Constructor = 0;
|
|
FunctionTemplateDecl *ConstructorTmpl
|
|
= dyn_cast<FunctionTemplateDecl>(D);
|
|
if (ConstructorTmpl)
|
|
Constructor = cast<CXXConstructorDecl>(
|
|
ConstructorTmpl->getTemplatedDecl());
|
|
else
|
|
Constructor = cast<CXXConstructorDecl>(D);
|
|
|
|
if (!Constructor->isInvalidDecl() &&
|
|
Constructor->isConvertingConstructor(AllowExplicit)) {
|
|
if (ConstructorTmpl)
|
|
S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
|
|
/*ExplicitArgs*/ 0,
|
|
&Initializer, 1, CandidateSet,
|
|
/*SuppressUserConversions=*/true);
|
|
else
|
|
S.AddOverloadCandidate(Constructor, FoundDecl,
|
|
&Initializer, 1, CandidateSet,
|
|
/*SuppressUserConversions=*/true);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
SourceLocation DeclLoc = Initializer->getLocStart();
|
|
|
|
if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) {
|
|
// The type we're converting from is a class type, enumerate its conversion
|
|
// functions.
|
|
|
|
// We can only enumerate the conversion functions for a complete type; if
|
|
// the type isn't complete, simply skip this step.
|
|
if (!S.RequireCompleteType(DeclLoc, SourceType, 0)) {
|
|
CXXRecordDecl *SourceRecordDecl
|
|
= cast<CXXRecordDecl>(SourceRecordType->getDecl());
|
|
|
|
const UnresolvedSetImpl *Conversions
|
|
= SourceRecordDecl->getVisibleConversionFunctions();
|
|
for (UnresolvedSetImpl::const_iterator I = Conversions->begin(),
|
|
E = Conversions->end();
|
|
I != E; ++I) {
|
|
NamedDecl *D = *I;
|
|
CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
|
|
if (isa<UsingShadowDecl>(D))
|
|
D = cast<UsingShadowDecl>(D)->getTargetDecl();
|
|
|
|
FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
|
|
CXXConversionDecl *Conv;
|
|
if (ConvTemplate)
|
|
Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
|
|
else
|
|
Conv = cast<CXXConversionDecl>(D);
|
|
|
|
if (AllowExplicit || !Conv->isExplicit()) {
|
|
if (ConvTemplate)
|
|
S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
|
|
ActingDC, Initializer, DestType,
|
|
CandidateSet);
|
|
else
|
|
S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
|
|
Initializer, DestType, CandidateSet);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Perform overload resolution. If it fails, return the failed result.
|
|
OverloadCandidateSet::iterator Best;
|
|
if (OverloadingResult Result
|
|
= CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) {
|
|
Sequence.SetOverloadFailure(
|
|
InitializationSequence::FK_UserConversionOverloadFailed,
|
|
Result);
|
|
return;
|
|
}
|
|
|
|
FunctionDecl *Function = Best->Function;
|
|
S.MarkDeclarationReferenced(DeclLoc, Function);
|
|
|
|
if (isa<CXXConstructorDecl>(Function)) {
|
|
// Add the user-defined conversion step. Any cv-qualification conversion is
|
|
// subsumed by the initialization.
|
|
Sequence.AddUserConversionStep(Function, Best->FoundDecl, DestType);
|
|
return;
|
|
}
|
|
|
|
// Add the user-defined conversion step that calls the conversion function.
|
|
QualType ConvType = Function->getCallResultType();
|
|
if (ConvType->getAs<RecordType>()) {
|
|
// If we're converting to a class type, there may be an copy if
|
|
// the resulting temporary object (possible to create an object of
|
|
// a base class type). That copy is not a separate conversion, so
|
|
// we just make a note of the actual destination type (possibly a
|
|
// base class of the type returned by the conversion function) and
|
|
// let the user-defined conversion step handle the conversion.
|
|
Sequence.AddUserConversionStep(Function, Best->FoundDecl, DestType);
|
|
return;
|
|
}
|
|
|
|
Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType);
|
|
|
|
// If the conversion following the call to the conversion function
|
|
// is interesting, add it as a separate step.
|
|
if (Best->FinalConversion.First || Best->FinalConversion.Second ||
|
|
Best->FinalConversion.Third) {
|
|
ImplicitConversionSequence ICS;
|
|
ICS.setStandard();
|
|
ICS.Standard = Best->FinalConversion;
|
|
Sequence.AddConversionSequenceStep(ICS, DestType);
|
|
}
|
|
}
|
|
|
|
/// \brief Determine whether we have compatible array types for the
|
|
/// purposes of GNU by-copy array initialization.
|
|
static bool hasCompatibleArrayTypes(ASTContext &Context,
|
|
const ArrayType *Dest,
|
|
const ArrayType *Source) {
|
|
// If the source and destination array types are equivalent, we're
|
|
// done.
|
|
if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0)))
|
|
return true;
|
|
|
|
// Make sure that the element types are the same.
|
|
if (!Context.hasSameType(Dest->getElementType(), Source->getElementType()))
|
|
return false;
|
|
|
|
// The only mismatch we allow is when the destination is an
|
|
// incomplete array type and the source is a constant array type.
|
|
return Source->isConstantArrayType() && Dest->isIncompleteArrayType();
|
|
}
|
|
|
|
InitializationSequence::InitializationSequence(Sema &S,
|
|
const InitializedEntity &Entity,
|
|
const InitializationKind &Kind,
|
|
Expr **Args,
|
|
unsigned NumArgs)
|
|
: FailedCandidateSet(Kind.getLocation()) {
|
|
ASTContext &Context = S.Context;
|
|
|
|
// C++0x [dcl.init]p16:
|
|
// The semantics of initializers are as follows. The destination type is
|
|
// the type of the object or reference being initialized and the source
|
|
// type is the type of the initializer expression. The source type is not
|
|
// defined when the initializer is a braced-init-list or when it is a
|
|
// parenthesized list of expressions.
|
|
QualType DestType = Entity.getType();
|
|
|
|
if (DestType->isDependentType() ||
|
|
Expr::hasAnyTypeDependentArguments(Args, NumArgs)) {
|
|
SequenceKind = DependentSequence;
|
|
return;
|
|
}
|
|
|
|
for (unsigned I = 0; I != NumArgs; ++I)
|
|
if (Args[I]->getObjectKind() == OK_ObjCProperty)
|
|
S.ConvertPropertyForRValue(Args[I]);
|
|
|
|
QualType SourceType;
|
|
Expr *Initializer = 0;
|
|
if (NumArgs == 1) {
|
|
Initializer = Args[0];
|
|
if (!isa<InitListExpr>(Initializer))
|
|
SourceType = Initializer->getType();
|
|
}
|
|
|
|
// - If the initializer is a braced-init-list, the object is
|
|
// list-initialized (8.5.4).
|
|
if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) {
|
|
TryListInitialization(S, Entity, Kind, InitList, *this);
|
|
return;
|
|
}
|
|
|
|
// - If the destination type is a reference type, see 8.5.3.
|
|
if (DestType->isReferenceType()) {
|
|
// C++0x [dcl.init.ref]p1:
|
|
// A variable declared to be a T& or T&&, that is, "reference to type T"
|
|
// (8.3.2), shall be initialized by an object, or function, of type T or
|
|
// by an object that can be converted into a T.
|
|
// (Therefore, multiple arguments are not permitted.)
|
|
if (NumArgs != 1)
|
|
SetFailed(FK_TooManyInitsForReference);
|
|
else
|
|
TryReferenceInitialization(S, Entity, Kind, Args[0], *this);
|
|
return;
|
|
}
|
|
|
|
// - If the initializer is (), the object is value-initialized.
|
|
if (Kind.getKind() == InitializationKind::IK_Value ||
|
|
(Kind.getKind() == InitializationKind::IK_Direct && NumArgs == 0)) {
|
|
TryValueInitialization(S, Entity, Kind, *this);
|
|
return;
|
|
}
|
|
|
|
// Handle default initialization.
|
|
if (Kind.getKind() == InitializationKind::IK_Default) {
|
|
TryDefaultInitialization(S, Entity, Kind, *this);
|
|
return;
|
|
}
|
|
|
|
// - If the destination type is an array of characters, an array of
|
|
// char16_t, an array of char32_t, or an array of wchar_t, and the
|
|
// initializer is a string literal, see 8.5.2.
|
|
// - Otherwise, if the destination type is an array, the program is
|
|
// ill-formed.
|
|
if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) {
|
|
if (Initializer && IsStringInit(Initializer, DestAT, Context)) {
|
|
TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this);
|
|
return;
|
|
}
|
|
|
|
// Note: as an GNU C extension, we allow initialization of an
|
|
// array from a compound literal that creates an array of the same
|
|
// type, so long as the initializer has no side effects.
|
|
if (!S.getLangOptions().CPlusPlus && Initializer &&
|
|
isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) &&
|
|
Initializer->getType()->isArrayType()) {
|
|
const ArrayType *SourceAT
|
|
= Context.getAsArrayType(Initializer->getType());
|
|
if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT))
|
|
SetFailed(FK_ArrayTypeMismatch);
|
|
else if (Initializer->HasSideEffects(S.Context))
|
|
SetFailed(FK_NonConstantArrayInit);
|
|
else {
|
|
setSequenceKind(ArrayInit);
|
|
AddArrayInitStep(DestType);
|
|
}
|
|
} else if (DestAT->getElementType()->isAnyCharacterType())
|
|
SetFailed(FK_ArrayNeedsInitListOrStringLiteral);
|
|
else
|
|
SetFailed(FK_ArrayNeedsInitList);
|
|
|
|
return;
|
|
}
|
|
|
|
// Handle initialization in C
|
|
if (!S.getLangOptions().CPlusPlus) {
|
|
setSequenceKind(CAssignment);
|
|
AddCAssignmentStep(DestType);
|
|
return;
|
|
}
|
|
|
|
// - If the destination type is a (possibly cv-qualified) class type:
|
|
if (DestType->isRecordType()) {
|
|
// - If the initialization is direct-initialization, or if it is
|
|
// copy-initialization where the cv-unqualified version of the
|
|
// source type is the same class as, or a derived class of, the
|
|
// class of the destination, constructors are considered. [...]
|
|
if (Kind.getKind() == InitializationKind::IK_Direct ||
|
|
(Kind.getKind() == InitializationKind::IK_Copy &&
|
|
(Context.hasSameUnqualifiedType(SourceType, DestType) ||
|
|
S.IsDerivedFrom(SourceType, DestType))))
|
|
TryConstructorInitialization(S, Entity, Kind, Args, NumArgs,
|
|
Entity.getType(), *this);
|
|
// - Otherwise (i.e., for the remaining copy-initialization cases),
|
|
// user-defined conversion sequences that can convert from the source
|
|
// type to the destination type or (when a conversion function is
|
|
// used) to a derived class thereof are enumerated as described in
|
|
// 13.3.1.4, and the best one is chosen through overload resolution
|
|
// (13.3).
|
|
else
|
|
TryUserDefinedConversion(S, Entity, Kind, Initializer, *this);
|
|
return;
|
|
}
|
|
|
|
if (NumArgs > 1) {
|
|
SetFailed(FK_TooManyInitsForScalar);
|
|
return;
|
|
}
|
|
assert(NumArgs == 1 && "Zero-argument case handled above");
|
|
|
|
// - Otherwise, if the source type is a (possibly cv-qualified) class
|
|
// type, conversion functions are considered.
|
|
if (!SourceType.isNull() && SourceType->isRecordType()) {
|
|
TryUserDefinedConversion(S, Entity, Kind, Initializer, *this);
|
|
return;
|
|
}
|
|
|
|
// - Otherwise, the initial value of the object being initialized is the
|
|
// (possibly converted) value of the initializer expression. Standard
|
|
// conversions (Clause 4) will be used, if necessary, to convert the
|
|
// initializer expression to the cv-unqualified version of the
|
|
// destination type; no user-defined conversions are considered.
|
|
if (S.TryImplicitConversion(*this, Entity, Initializer,
|
|
/*SuppressUserConversions*/ true,
|
|
/*AllowExplicitConversions*/ false,
|
|
/*InOverloadResolution*/ false,
|
|
/*CStyle=*/Kind.isCStyleOrFunctionalCast()))
|
|
{
|
|
DeclAccessPair dap;
|
|
if (Initializer->getType() == Context.OverloadTy &&
|
|
!S.ResolveAddressOfOverloadedFunction(Initializer
|
|
, DestType, false, dap))
|
|
SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
|
|
else
|
|
SetFailed(InitializationSequence::FK_ConversionFailed);
|
|
}
|
|
else
|
|
setSequenceKind(StandardConversion);
|
|
}
|
|
|
|
InitializationSequence::~InitializationSequence() {
|
|
for (llvm::SmallVectorImpl<Step>::iterator Step = Steps.begin(),
|
|
StepEnd = Steps.end();
|
|
Step != StepEnd; ++Step)
|
|
Step->Destroy();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Perform initialization
|
|
//===----------------------------------------------------------------------===//
|
|
static Sema::AssignmentAction
|
|
getAssignmentAction(const InitializedEntity &Entity) {
|
|
switch(Entity.getKind()) {
|
|
case InitializedEntity::EK_Variable:
|
|
case InitializedEntity::EK_New:
|
|
case InitializedEntity::EK_Exception:
|
|
case InitializedEntity::EK_Base:
|
|
return Sema::AA_Initializing;
|
|
|
|
case InitializedEntity::EK_Parameter:
|
|
if (Entity.getDecl() &&
|
|
isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
|
|
return Sema::AA_Sending;
|
|
|
|
return Sema::AA_Passing;
|
|
|
|
case InitializedEntity::EK_Result:
|
|
return Sema::AA_Returning;
|
|
|
|
case InitializedEntity::EK_Temporary:
|
|
// FIXME: Can we tell apart casting vs. converting?
|
|
return Sema::AA_Casting;
|
|
|
|
case InitializedEntity::EK_Member:
|
|
case InitializedEntity::EK_ArrayElement:
|
|
case InitializedEntity::EK_VectorElement:
|
|
case InitializedEntity::EK_BlockElement:
|
|
return Sema::AA_Initializing;
|
|
}
|
|
|
|
return Sema::AA_Converting;
|
|
}
|
|
|
|
/// \brief Whether we should binding a created object as a temporary when
|
|
/// initializing the given entity.
|
|
static bool shouldBindAsTemporary(const InitializedEntity &Entity) {
|
|
switch (Entity.getKind()) {
|
|
case InitializedEntity::EK_ArrayElement:
|
|
case InitializedEntity::EK_Member:
|
|
case InitializedEntity::EK_Result:
|
|
case InitializedEntity::EK_New:
|
|
case InitializedEntity::EK_Variable:
|
|
case InitializedEntity::EK_Base:
|
|
case InitializedEntity::EK_VectorElement:
|
|
case InitializedEntity::EK_Exception:
|
|
case InitializedEntity::EK_BlockElement:
|
|
return false;
|
|
|
|
case InitializedEntity::EK_Parameter:
|
|
case InitializedEntity::EK_Temporary:
|
|
return true;
|
|
}
|
|
|
|
llvm_unreachable("missed an InitializedEntity kind?");
|
|
}
|
|
|
|
/// \brief Whether the given entity, when initialized with an object
|
|
/// created for that initialization, requires destruction.
|
|
static bool shouldDestroyTemporary(const InitializedEntity &Entity) {
|
|
switch (Entity.getKind()) {
|
|
case InitializedEntity::EK_Member:
|
|
case InitializedEntity::EK_Result:
|
|
case InitializedEntity::EK_New:
|
|
case InitializedEntity::EK_Base:
|
|
case InitializedEntity::EK_VectorElement:
|
|
case InitializedEntity::EK_BlockElement:
|
|
return false;
|
|
|
|
case InitializedEntity::EK_Variable:
|
|
case InitializedEntity::EK_Parameter:
|
|
case InitializedEntity::EK_Temporary:
|
|
case InitializedEntity::EK_ArrayElement:
|
|
case InitializedEntity::EK_Exception:
|
|
return true;
|
|
}
|
|
|
|
llvm_unreachable("missed an InitializedEntity kind?");
|
|
}
|
|
|
|
/// \brief Make a (potentially elidable) temporary copy of the object
|
|
/// provided by the given initializer by calling the appropriate copy
|
|
/// constructor.
|
|
///
|
|
/// \param S The Sema object used for type-checking.
|
|
///
|
|
/// \param T The type of the temporary object, which must either be
|
|
/// the type of the initializer expression or a superclass thereof.
|
|
///
|
|
/// \param Enter The entity being initialized.
|
|
///
|
|
/// \param CurInit The initializer expression.
|
|
///
|
|
/// \param IsExtraneousCopy Whether this is an "extraneous" copy that
|
|
/// is permitted in C++03 (but not C++0x) when binding a reference to
|
|
/// an rvalue.
|
|
///
|
|
/// \returns An expression that copies the initializer expression into
|
|
/// a temporary object, or an error expression if a copy could not be
|
|
/// created.
|
|
static ExprResult CopyObject(Sema &S,
|
|
QualType T,
|
|
const InitializedEntity &Entity,
|
|
ExprResult CurInit,
|
|
bool IsExtraneousCopy) {
|
|
// Determine which class type we're copying to.
|
|
Expr *CurInitExpr = (Expr *)CurInit.get();
|
|
CXXRecordDecl *Class = 0;
|
|
if (const RecordType *Record = T->getAs<RecordType>())
|
|
Class = cast<CXXRecordDecl>(Record->getDecl());
|
|
if (!Class)
|
|
return move(CurInit);
|
|
|
|
// C++0x [class.copy]p32:
|
|
// When certain criteria are met, an implementation is allowed to
|
|
// omit the copy/move construction of a class object, even if the
|
|
// copy/move constructor and/or destructor for the object have
|
|
// side effects. [...]
|
|
// - when a temporary class object that has not been bound to a
|
|
// reference (12.2) would be copied/moved to a class object
|
|
// with the same cv-unqualified type, the copy/move operation
|
|
// can be omitted by constructing the temporary object
|
|
// directly into the target of the omitted copy/move
|
|
//
|
|
// Note that the other three bullets are handled elsewhere. Copy
|
|
// elision for return statements and throw expressions are handled as part
|
|
// of constructor initialization, while copy elision for exception handlers
|
|
// is handled by the run-time.
|
|
bool Elidable = CurInitExpr->isTemporaryObject(S.Context, Class);
|
|
SourceLocation Loc;
|
|
switch (Entity.getKind()) {
|
|
case InitializedEntity::EK_Result:
|
|
Loc = Entity.getReturnLoc();
|
|
break;
|
|
|
|
case InitializedEntity::EK_Exception:
|
|
Loc = Entity.getThrowLoc();
|
|
break;
|
|
|
|
case InitializedEntity::EK_Variable:
|
|
Loc = Entity.getDecl()->getLocation();
|
|
break;
|
|
|
|
case InitializedEntity::EK_ArrayElement:
|
|
case InitializedEntity::EK_Member:
|
|
case InitializedEntity::EK_Parameter:
|
|
case InitializedEntity::EK_Temporary:
|
|
case InitializedEntity::EK_New:
|
|
case InitializedEntity::EK_Base:
|
|
case InitializedEntity::EK_VectorElement:
|
|
case InitializedEntity::EK_BlockElement:
|
|
Loc = CurInitExpr->getLocStart();
|
|
break;
|
|
}
|
|
|
|
// Make sure that the type we are copying is complete.
|
|
if (S.RequireCompleteType(Loc, T, S.PDiag(diag::err_temp_copy_incomplete)))
|
|
return move(CurInit);
|
|
|
|
// Perform overload resolution using the class's copy/move constructors.
|
|
DeclContext::lookup_iterator Con, ConEnd;
|
|
OverloadCandidateSet CandidateSet(Loc);
|
|
for (llvm::tie(Con, ConEnd) = S.LookupConstructors(Class);
|
|
Con != ConEnd; ++Con) {
|
|
// Only consider copy/move constructors and constructor templates. Per
|
|
// C++0x [dcl.init]p16, second bullet to class types, this
|
|
// initialization is direct-initialization.
|
|
CXXConstructorDecl *Constructor = 0;
|
|
|
|
if ((Constructor = dyn_cast<CXXConstructorDecl>(*Con))) {
|
|
// Handle copy/moveconstructors, only.
|
|
if (!Constructor || Constructor->isInvalidDecl() ||
|
|
!Constructor->isCopyOrMoveConstructor() ||
|
|
!Constructor->isConvertingConstructor(/*AllowExplicit=*/true))
|
|
continue;
|
|
|
|
DeclAccessPair FoundDecl
|
|
= DeclAccessPair::make(Constructor, Constructor->getAccess());
|
|
S.AddOverloadCandidate(Constructor, FoundDecl,
|
|
&CurInitExpr, 1, CandidateSet);
|
|
continue;
|
|
}
|
|
|
|
// Handle constructor templates.
|
|
FunctionTemplateDecl *ConstructorTmpl = cast<FunctionTemplateDecl>(*Con);
|
|
if (ConstructorTmpl->isInvalidDecl())
|
|
continue;
|
|
|
|
Constructor = cast<CXXConstructorDecl>(
|
|
ConstructorTmpl->getTemplatedDecl());
|
|
if (!Constructor->isConvertingConstructor(/*AllowExplicit=*/true))
|
|
continue;
|
|
|
|
// FIXME: Do we need to limit this to copy-constructor-like
|
|
// candidates?
|
|
DeclAccessPair FoundDecl
|
|
= DeclAccessPair::make(ConstructorTmpl, ConstructorTmpl->getAccess());
|
|
S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl, 0,
|
|
&CurInitExpr, 1, CandidateSet, true);
|
|
}
|
|
|
|
OverloadCandidateSet::iterator Best;
|
|
switch (CandidateSet.BestViableFunction(S, Loc, Best)) {
|
|
case OR_Success:
|
|
break;
|
|
|
|
case OR_No_Viable_Function:
|
|
S.Diag(Loc, IsExtraneousCopy && !S.isSFINAEContext()
|
|
? diag::ext_rvalue_to_reference_temp_copy_no_viable
|
|
: diag::err_temp_copy_no_viable)
|
|
<< (int)Entity.getKind() << CurInitExpr->getType()
|
|
<< CurInitExpr->getSourceRange();
|
|
CandidateSet.NoteCandidates(S, OCD_AllCandidates, &CurInitExpr, 1);
|
|
if (!IsExtraneousCopy || S.isSFINAEContext())
|
|
return ExprError();
|
|
return move(CurInit);
|
|
|
|
case OR_Ambiguous:
|
|
S.Diag(Loc, diag::err_temp_copy_ambiguous)
|
|
<< (int)Entity.getKind() << CurInitExpr->getType()
|
|
<< CurInitExpr->getSourceRange();
|
|
CandidateSet.NoteCandidates(S, OCD_ViableCandidates, &CurInitExpr, 1);
|
|
return ExprError();
|
|
|
|
case OR_Deleted:
|
|
S.Diag(Loc, diag::err_temp_copy_deleted)
|
|
<< (int)Entity.getKind() << CurInitExpr->getType()
|
|
<< CurInitExpr->getSourceRange();
|
|
S.Diag(Best->Function->getLocation(), diag::note_unavailable_here)
|
|
<< Best->Function->isDeleted();
|
|
return ExprError();
|
|
}
|
|
|
|
CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
|
|
ASTOwningVector<Expr*> ConstructorArgs(S);
|
|
CurInit.release(); // Ownership transferred into MultiExprArg, below.
|
|
|
|
S.CheckConstructorAccess(Loc, Constructor, Entity,
|
|
Best->FoundDecl.getAccess(), IsExtraneousCopy);
|
|
|
|
if (IsExtraneousCopy) {
|
|
// If this is a totally extraneous copy for C++03 reference
|
|
// binding purposes, just return the original initialization
|
|
// expression. We don't generate an (elided) copy operation here
|
|
// because doing so would require us to pass down a flag to avoid
|
|
// infinite recursion, where each step adds another extraneous,
|
|
// elidable copy.
|
|
|
|
// Instantiate the default arguments of any extra parameters in
|
|
// the selected copy constructor, as if we were going to create a
|
|
// proper call to the copy constructor.
|
|
for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) {
|
|
ParmVarDecl *Parm = Constructor->getParamDecl(I);
|
|
if (S.RequireCompleteType(Loc, Parm->getType(),
|
|
S.PDiag(diag::err_call_incomplete_argument)))
|
|
break;
|
|
|
|
// Build the default argument expression; we don't actually care
|
|
// if this succeeds or not, because this routine will complain
|
|
// if there was a problem.
|
|
S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm);
|
|
}
|
|
|
|
return S.Owned(CurInitExpr);
|
|
}
|
|
|
|
S.MarkDeclarationReferenced(Loc, Constructor);
|
|
|
|
// Determine the arguments required to actually perform the
|
|
// constructor call (we might have derived-to-base conversions, or
|
|
// the copy constructor may have default arguments).
|
|
if (S.CompleteConstructorCall(Constructor, MultiExprArg(&CurInitExpr, 1),
|
|
Loc, ConstructorArgs))
|
|
return ExprError();
|
|
|
|
// Actually perform the constructor call.
|
|
CurInit = S.BuildCXXConstructExpr(Loc, T, Constructor, Elidable,
|
|
move_arg(ConstructorArgs),
|
|
/*ZeroInit*/ false,
|
|
CXXConstructExpr::CK_Complete,
|
|
SourceRange());
|
|
|
|
// If we're supposed to bind temporaries, do so.
|
|
if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity))
|
|
CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
|
|
return move(CurInit);
|
|
}
|
|
|
|
void InitializationSequence::PrintInitLocationNote(Sema &S,
|
|
const InitializedEntity &Entity) {
|
|
if (Entity.getKind() == InitializedEntity::EK_Parameter && Entity.getDecl()) {
|
|
if (Entity.getDecl()->getLocation().isInvalid())
|
|
return;
|
|
|
|
if (Entity.getDecl()->getDeclName())
|
|
S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here)
|
|
<< Entity.getDecl()->getDeclName();
|
|
else
|
|
S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here);
|
|
}
|
|
}
|
|
|
|
ExprResult
|
|
InitializationSequence::Perform(Sema &S,
|
|
const InitializedEntity &Entity,
|
|
const InitializationKind &Kind,
|
|
MultiExprArg Args,
|
|
QualType *ResultType) {
|
|
if (SequenceKind == FailedSequence) {
|
|
unsigned NumArgs = Args.size();
|
|
Diagnose(S, Entity, Kind, (Expr **)Args.release(), NumArgs);
|
|
return ExprError();
|
|
}
|
|
|
|
if (SequenceKind == DependentSequence) {
|
|
// If the declaration is a non-dependent, incomplete array type
|
|
// that has an initializer, then its type will be completed once
|
|
// the initializer is instantiated.
|
|
if (ResultType && !Entity.getType()->isDependentType() &&
|
|
Args.size() == 1) {
|
|
QualType DeclType = Entity.getType();
|
|
if (const IncompleteArrayType *ArrayT
|
|
= S.Context.getAsIncompleteArrayType(DeclType)) {
|
|
// FIXME: We don't currently have the ability to accurately
|
|
// compute the length of an initializer list without
|
|
// performing full type-checking of the initializer list
|
|
// (since we have to determine where braces are implicitly
|
|
// introduced and such). So, we fall back to making the array
|
|
// type a dependently-sized array type with no specified
|
|
// bound.
|
|
if (isa<InitListExpr>((Expr *)Args.get()[0])) {
|
|
SourceRange Brackets;
|
|
|
|
// Scavange the location of the brackets from the entity, if we can.
|
|
if (DeclaratorDecl *DD = Entity.getDecl()) {
|
|
if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) {
|
|
TypeLoc TL = TInfo->getTypeLoc();
|
|
if (IncompleteArrayTypeLoc *ArrayLoc
|
|
= dyn_cast<IncompleteArrayTypeLoc>(&TL))
|
|
Brackets = ArrayLoc->getBracketsRange();
|
|
}
|
|
}
|
|
|
|
*ResultType
|
|
= S.Context.getDependentSizedArrayType(ArrayT->getElementType(),
|
|
/*NumElts=*/0,
|
|
ArrayT->getSizeModifier(),
|
|
ArrayT->getIndexTypeCVRQualifiers(),
|
|
Brackets);
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
if (Kind.getKind() == InitializationKind::IK_Copy || Kind.isExplicitCast())
|
|
return ExprResult(Args.release()[0]);
|
|
|
|
if (Args.size() == 0)
|
|
return S.Owned((Expr *)0);
|
|
|
|
unsigned NumArgs = Args.size();
|
|
return S.Owned(new (S.Context) ParenListExpr(S.Context,
|
|
SourceLocation(),
|
|
(Expr **)Args.release(),
|
|
NumArgs,
|
|
SourceLocation()));
|
|
}
|
|
|
|
if (SequenceKind == NoInitialization)
|
|
return S.Owned((Expr *)0);
|
|
|
|
QualType DestType = Entity.getType().getNonReferenceType();
|
|
// FIXME: Ugly hack around the fact that Entity.getType() is not
|
|
// the same as Entity.getDecl()->getType() in cases involving type merging,
|
|
// and we want latter when it makes sense.
|
|
if (ResultType)
|
|
*ResultType = Entity.getDecl() ? Entity.getDecl()->getType() :
|
|
Entity.getType();
|
|
|
|
ExprResult CurInit = S.Owned((Expr *)0);
|
|
|
|
assert(!Steps.empty() && "Cannot have an empty initialization sequence");
|
|
|
|
// For initialization steps that start with a single initializer,
|
|
// grab the only argument out the Args and place it into the "current"
|
|
// initializer.
|
|
switch (Steps.front().Kind) {
|
|
case SK_ResolveAddressOfOverloadedFunction:
|
|
case SK_CastDerivedToBaseRValue:
|
|
case SK_CastDerivedToBaseXValue:
|
|
case SK_CastDerivedToBaseLValue:
|
|
case SK_BindReference:
|
|
case SK_BindReferenceToTemporary:
|
|
case SK_ExtraneousCopyToTemporary:
|
|
case SK_UserConversion:
|
|
case SK_QualificationConversionLValue:
|
|
case SK_QualificationConversionXValue:
|
|
case SK_QualificationConversionRValue:
|
|
case SK_ConversionSequence:
|
|
case SK_ListInitialization:
|
|
case SK_CAssignment:
|
|
case SK_StringInit:
|
|
case SK_ObjCObjectConversion:
|
|
case SK_ArrayInit: {
|
|
assert(Args.size() == 1);
|
|
Expr *CurInitExpr = Args.get()[0];
|
|
if (!CurInitExpr) return ExprError();
|
|
|
|
// Read from a property when initializing something with it.
|
|
if (CurInitExpr->getObjectKind() == OK_ObjCProperty)
|
|
S.ConvertPropertyForRValue(CurInitExpr);
|
|
|
|
CurInit = ExprResult(CurInitExpr);
|
|
break;
|
|
}
|
|
|
|
case SK_ConstructorInitialization:
|
|
case SK_ZeroInitialization:
|
|
break;
|
|
}
|
|
|
|
// Walk through the computed steps for the initialization sequence,
|
|
// performing the specified conversions along the way.
|
|
bool ConstructorInitRequiresZeroInit = false;
|
|
for (step_iterator Step = step_begin(), StepEnd = step_end();
|
|
Step != StepEnd; ++Step) {
|
|
if (CurInit.isInvalid())
|
|
return ExprError();
|
|
|
|
Expr *CurInitExpr = CurInit.get();
|
|
QualType SourceType = CurInitExpr? CurInitExpr->getType() : QualType();
|
|
|
|
switch (Step->Kind) {
|
|
case SK_ResolveAddressOfOverloadedFunction:
|
|
// Overload resolution determined which function invoke; update the
|
|
// initializer to reflect that choice.
|
|
S.CheckAddressOfMemberAccess(CurInitExpr, Step->Function.FoundDecl);
|
|
S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation());
|
|
CurInit = S.FixOverloadedFunctionReference(move(CurInit),
|
|
Step->Function.FoundDecl,
|
|
Step->Function.Function);
|
|
break;
|
|
|
|
case SK_CastDerivedToBaseRValue:
|
|
case SK_CastDerivedToBaseXValue:
|
|
case SK_CastDerivedToBaseLValue: {
|
|
// We have a derived-to-base cast that produces either an rvalue or an
|
|
// lvalue. Perform that cast.
|
|
|
|
CXXCastPath BasePath;
|
|
|
|
// Casts to inaccessible base classes are allowed with C-style casts.
|
|
bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast();
|
|
if (S.CheckDerivedToBaseConversion(SourceType, Step->Type,
|
|
CurInitExpr->getLocStart(),
|
|
CurInitExpr->getSourceRange(),
|
|
&BasePath, IgnoreBaseAccess))
|
|
return ExprError();
|
|
|
|
if (S.BasePathInvolvesVirtualBase(BasePath)) {
|
|
QualType T = SourceType;
|
|
if (const PointerType *Pointer = T->getAs<PointerType>())
|
|
T = Pointer->getPointeeType();
|
|
if (const RecordType *RecordTy = T->getAs<RecordType>())
|
|
S.MarkVTableUsed(CurInitExpr->getLocStart(),
|
|
cast<CXXRecordDecl>(RecordTy->getDecl()));
|
|
}
|
|
|
|
ExprValueKind VK =
|
|
Step->Kind == SK_CastDerivedToBaseLValue ?
|
|
VK_LValue :
|
|
(Step->Kind == SK_CastDerivedToBaseXValue ?
|
|
VK_XValue :
|
|
VK_RValue);
|
|
CurInit = S.Owned(ImplicitCastExpr::Create(S.Context,
|
|
Step->Type,
|
|
CK_DerivedToBase,
|
|
CurInit.get(),
|
|
&BasePath, VK));
|
|
break;
|
|
}
|
|
|
|
case SK_BindReference:
|
|
if (FieldDecl *BitField = CurInitExpr->getBitField()) {
|
|
// References cannot bind to bit fields (C++ [dcl.init.ref]p5).
|
|
S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield)
|
|
<< Entity.getType().isVolatileQualified()
|
|
<< BitField->getDeclName()
|
|
<< CurInitExpr->getSourceRange();
|
|
S.Diag(BitField->getLocation(), diag::note_bitfield_decl);
|
|
return ExprError();
|
|
}
|
|
|
|
if (CurInitExpr->refersToVectorElement()) {
|
|
// References cannot bind to vector elements.
|
|
S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element)
|
|
<< Entity.getType().isVolatileQualified()
|
|
<< CurInitExpr->getSourceRange();
|
|
PrintInitLocationNote(S, Entity);
|
|
return ExprError();
|
|
}
|
|
|
|
// Reference binding does not have any corresponding ASTs.
|
|
|
|
// Check exception specifications
|
|
if (S.CheckExceptionSpecCompatibility(CurInitExpr, DestType))
|
|
return ExprError();
|
|
|
|
break;
|
|
|
|
case SK_BindReferenceToTemporary:
|
|
// Reference binding does not have any corresponding ASTs.
|
|
|
|
// Check exception specifications
|
|
if (S.CheckExceptionSpecCompatibility(CurInitExpr, DestType))
|
|
return ExprError();
|
|
|
|
break;
|
|
|
|
case SK_ExtraneousCopyToTemporary:
|
|
CurInit = CopyObject(S, Step->Type, Entity, move(CurInit),
|
|
/*IsExtraneousCopy=*/true);
|
|
break;
|
|
|
|
case SK_UserConversion: {
|
|
// We have a user-defined conversion that invokes either a constructor
|
|
// or a conversion function.
|
|
CastKind CastKind;
|
|
bool IsCopy = false;
|
|
FunctionDecl *Fn = Step->Function.Function;
|
|
DeclAccessPair FoundFn = Step->Function.FoundDecl;
|
|
bool CreatedObject = false;
|
|
bool IsLvalue = false;
|
|
if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) {
|
|
// Build a call to the selected constructor.
|
|
ASTOwningVector<Expr*> ConstructorArgs(S);
|
|
SourceLocation Loc = CurInitExpr->getLocStart();
|
|
CurInit.release(); // Ownership transferred into MultiExprArg, below.
|
|
|
|
// Determine the arguments required to actually perform the constructor
|
|
// call.
|
|
if (S.CompleteConstructorCall(Constructor,
|
|
MultiExprArg(&CurInitExpr, 1),
|
|
Loc, ConstructorArgs))
|
|
return ExprError();
|
|
|
|
// Build the an expression that constructs a temporary.
|
|
CurInit = S.BuildCXXConstructExpr(Loc, Step->Type, Constructor,
|
|
move_arg(ConstructorArgs),
|
|
/*ZeroInit*/ false,
|
|
CXXConstructExpr::CK_Complete,
|
|
SourceRange());
|
|
if (CurInit.isInvalid())
|
|
return ExprError();
|
|
|
|
S.CheckConstructorAccess(Kind.getLocation(), Constructor, Entity,
|
|
FoundFn.getAccess());
|
|
S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation());
|
|
|
|
CastKind = CK_ConstructorConversion;
|
|
QualType Class = S.Context.getTypeDeclType(Constructor->getParent());
|
|
if (S.Context.hasSameUnqualifiedType(SourceType, Class) ||
|
|
S.IsDerivedFrom(SourceType, Class))
|
|
IsCopy = true;
|
|
|
|
CreatedObject = true;
|
|
} else {
|
|
// Build a call to the conversion function.
|
|
CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn);
|
|
IsLvalue = Conversion->getResultType()->isLValueReferenceType();
|
|
S.CheckMemberOperatorAccess(Kind.getLocation(), CurInitExpr, 0,
|
|
FoundFn);
|
|
S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation());
|
|
|
|
// FIXME: Should we move this initialization into a separate
|
|
// derived-to-base conversion? I believe the answer is "no", because
|
|
// we don't want to turn off access control here for c-style casts.
|
|
if (S.PerformObjectArgumentInitialization(CurInitExpr, /*Qualifier=*/0,
|
|
FoundFn, Conversion))
|
|
return ExprError();
|
|
|
|
// Do a little dance to make sure that CurInit has the proper
|
|
// pointer.
|
|
CurInit.release();
|
|
|
|
// Build the actual call to the conversion function.
|
|
CurInit = S.BuildCXXMemberCallExpr(CurInitExpr, FoundFn, Conversion);
|
|
if (CurInit.isInvalid() || !CurInit.get())
|
|
return ExprError();
|
|
|
|
CastKind = CK_UserDefinedConversion;
|
|
|
|
CreatedObject = Conversion->getResultType()->isRecordType();
|
|
}
|
|
|
|
bool RequiresCopy = !IsCopy &&
|
|
getKind() != InitializationSequence::ReferenceBinding;
|
|
if (RequiresCopy || shouldBindAsTemporary(Entity))
|
|
CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
|
|
else if (CreatedObject && shouldDestroyTemporary(Entity)) {
|
|
CurInitExpr = static_cast<Expr *>(CurInit.get());
|
|
QualType T = CurInitExpr->getType();
|
|
if (const RecordType *Record = T->getAs<RecordType>()) {
|
|
CXXDestructorDecl *Destructor
|
|
= S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl()));
|
|
S.CheckDestructorAccess(CurInitExpr->getLocStart(), Destructor,
|
|
S.PDiag(diag::err_access_dtor_temp) << T);
|
|
S.MarkDeclarationReferenced(CurInitExpr->getLocStart(), Destructor);
|
|
S.DiagnoseUseOfDecl(Destructor, CurInitExpr->getLocStart());
|
|
}
|
|
}
|
|
|
|
CurInitExpr = CurInit.takeAs<Expr>();
|
|
// FIXME: xvalues
|
|
CurInit = S.Owned(ImplicitCastExpr::Create(S.Context,
|
|
CurInitExpr->getType(),
|
|
CastKind, CurInitExpr, 0,
|
|
IsLvalue ? VK_LValue : VK_RValue));
|
|
|
|
if (RequiresCopy)
|
|
CurInit = CopyObject(S, Entity.getType().getNonReferenceType(), Entity,
|
|
move(CurInit), /*IsExtraneousCopy=*/false);
|
|
|
|
break;
|
|
}
|
|
|
|
case SK_QualificationConversionLValue:
|
|
case SK_QualificationConversionXValue:
|
|
case SK_QualificationConversionRValue: {
|
|
// Perform a qualification conversion; these can never go wrong.
|
|
ExprValueKind VK =
|
|
Step->Kind == SK_QualificationConversionLValue ?
|
|
VK_LValue :
|
|
(Step->Kind == SK_QualificationConversionXValue ?
|
|
VK_XValue :
|
|
VK_RValue);
|
|
S.ImpCastExprToType(CurInitExpr, Step->Type, CK_NoOp, VK);
|
|
CurInit.release();
|
|
CurInit = S.Owned(CurInitExpr);
|
|
break;
|
|
}
|
|
|
|
case SK_ConversionSequence: {
|
|
if (S.PerformImplicitConversion(CurInitExpr, Step->Type, *Step->ICS,
|
|
getAssignmentAction(Entity),
|
|
Kind.isCStyleOrFunctionalCast()))
|
|
return ExprError();
|
|
|
|
CurInit.release();
|
|
CurInit = S.Owned(CurInitExpr);
|
|
break;
|
|
}
|
|
|
|
case SK_ListInitialization: {
|
|
InitListExpr *InitList = cast<InitListExpr>(CurInitExpr);
|
|
QualType Ty = Step->Type;
|
|
if (S.CheckInitList(Entity, InitList, ResultType? *ResultType : Ty))
|
|
return ExprError();
|
|
|
|
CurInit.release();
|
|
CurInit = S.Owned(InitList);
|
|
break;
|
|
}
|
|
|
|
case SK_ConstructorInitialization: {
|
|
unsigned NumArgs = Args.size();
|
|
CXXConstructorDecl *Constructor
|
|
= cast<CXXConstructorDecl>(Step->Function.Function);
|
|
|
|
// Build a call to the selected constructor.
|
|
ASTOwningVector<Expr*> ConstructorArgs(S);
|
|
SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid())
|
|
? Kind.getEqualLoc()
|
|
: Kind.getLocation();
|
|
|
|
if (Kind.getKind() == InitializationKind::IK_Default) {
|
|
// Force even a trivial, implicit default constructor to be
|
|
// semantically checked. We do this explicitly because we don't build
|
|
// the definition for completely trivial constructors.
|
|
CXXRecordDecl *ClassDecl = Constructor->getParent();
|
|
assert(ClassDecl && "No parent class for constructor.");
|
|
if (Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
|
|
ClassDecl->hasTrivialConstructor() && !Constructor->isUsed(false))
|
|
S.DefineImplicitDefaultConstructor(Loc, Constructor);
|
|
}
|
|
|
|
// Determine the arguments required to actually perform the constructor
|
|
// call.
|
|
if (S.CompleteConstructorCall(Constructor, move(Args),
|
|
Loc, ConstructorArgs))
|
|
return ExprError();
|
|
|
|
|
|
if (Entity.getKind() == InitializedEntity::EK_Temporary &&
|
|
NumArgs != 1 && // FIXME: Hack to work around cast weirdness
|
|
(Kind.getKind() == InitializationKind::IK_Direct ||
|
|
Kind.getKind() == InitializationKind::IK_Value)) {
|
|
// An explicitly-constructed temporary, e.g., X(1, 2).
|
|
unsigned NumExprs = ConstructorArgs.size();
|
|
Expr **Exprs = (Expr **)ConstructorArgs.take();
|
|
S.MarkDeclarationReferenced(Loc, Constructor);
|
|
S.DiagnoseUseOfDecl(Constructor, Loc);
|
|
|
|
TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
|
|
if (!TSInfo)
|
|
TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc);
|
|
|
|
CurInit = S.Owned(new (S.Context) CXXTemporaryObjectExpr(S.Context,
|
|
Constructor,
|
|
TSInfo,
|
|
Exprs,
|
|
NumExprs,
|
|
Kind.getParenRange(),
|
|
ConstructorInitRequiresZeroInit));
|
|
} else {
|
|
CXXConstructExpr::ConstructionKind ConstructKind =
|
|
CXXConstructExpr::CK_Complete;
|
|
|
|
if (Entity.getKind() == InitializedEntity::EK_Base) {
|
|
ConstructKind = Entity.getBaseSpecifier()->isVirtual() ?
|
|
CXXConstructExpr::CK_VirtualBase :
|
|
CXXConstructExpr::CK_NonVirtualBase;
|
|
}
|
|
|
|
// Only get the parenthesis range if it is a direct construction.
|
|
SourceRange parenRange =
|
|
Kind.getKind() == InitializationKind::IK_Direct ?
|
|
Kind.getParenRange() : SourceRange();
|
|
|
|
// If the entity allows NRVO, mark the construction as elidable
|
|
// unconditionally.
|
|
if (Entity.allowsNRVO())
|
|
CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
|
|
Constructor, /*Elidable=*/true,
|
|
move_arg(ConstructorArgs),
|
|
ConstructorInitRequiresZeroInit,
|
|
ConstructKind,
|
|
parenRange);
|
|
else
|
|
CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
|
|
Constructor,
|
|
move_arg(ConstructorArgs),
|
|
ConstructorInitRequiresZeroInit,
|
|
ConstructKind,
|
|
parenRange);
|
|
}
|
|
if (CurInit.isInvalid())
|
|
return ExprError();
|
|
|
|
// Only check access if all of that succeeded.
|
|
S.CheckConstructorAccess(Loc, Constructor, Entity,
|
|
Step->Function.FoundDecl.getAccess());
|
|
S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Loc);
|
|
|
|
if (shouldBindAsTemporary(Entity))
|
|
CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
|
|
|
|
break;
|
|
}
|
|
|
|
case SK_ZeroInitialization: {
|
|
step_iterator NextStep = Step;
|
|
++NextStep;
|
|
if (NextStep != StepEnd &&
|
|
NextStep->Kind == SK_ConstructorInitialization) {
|
|
// The need for zero-initialization is recorded directly into
|
|
// the call to the object's constructor within the next step.
|
|
ConstructorInitRequiresZeroInit = true;
|
|
} else if (Kind.getKind() == InitializationKind::IK_Value &&
|
|
S.getLangOptions().CPlusPlus &&
|
|
!Kind.isImplicitValueInit()) {
|
|
TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
|
|
if (!TSInfo)
|
|
TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type,
|
|
Kind.getRange().getBegin());
|
|
|
|
CurInit = S.Owned(new (S.Context) CXXScalarValueInitExpr(
|
|
TSInfo->getType().getNonLValueExprType(S.Context),
|
|
TSInfo,
|
|
Kind.getRange().getEnd()));
|
|
} else {
|
|
CurInit = S.Owned(new (S.Context) ImplicitValueInitExpr(Step->Type));
|
|
}
|
|
break;
|
|
}
|
|
|
|
case SK_CAssignment: {
|
|
QualType SourceType = CurInitExpr->getType();
|
|
Sema::AssignConvertType ConvTy =
|
|
S.CheckSingleAssignmentConstraints(Step->Type, CurInitExpr);
|
|
|
|
// If this is a call, allow conversion to a transparent union.
|
|
if (ConvTy != Sema::Compatible &&
|
|
Entity.getKind() == InitializedEntity::EK_Parameter &&
|
|
S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExpr)
|
|
== Sema::Compatible)
|
|
ConvTy = Sema::Compatible;
|
|
|
|
bool Complained;
|
|
if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(),
|
|
Step->Type, SourceType,
|
|
CurInitExpr,
|
|
getAssignmentAction(Entity),
|
|
&Complained)) {
|
|
PrintInitLocationNote(S, Entity);
|
|
return ExprError();
|
|
} else if (Complained)
|
|
PrintInitLocationNote(S, Entity);
|
|
|
|
CurInit.release();
|
|
CurInit = S.Owned(CurInitExpr);
|
|
break;
|
|
}
|
|
|
|
case SK_StringInit: {
|
|
QualType Ty = Step->Type;
|
|
CheckStringInit(CurInitExpr, ResultType ? *ResultType : Ty,
|
|
S.Context.getAsArrayType(Ty), S);
|
|
break;
|
|
}
|
|
|
|
case SK_ObjCObjectConversion:
|
|
S.ImpCastExprToType(CurInitExpr, Step->Type,
|
|
CK_ObjCObjectLValueCast,
|
|
S.CastCategory(CurInitExpr));
|
|
CurInit.release();
|
|
CurInit = S.Owned(CurInitExpr);
|
|
break;
|
|
|
|
case SK_ArrayInit:
|
|
// Okay: we checked everything before creating this step. Note that
|
|
// this is a GNU extension.
|
|
S.Diag(Kind.getLocation(), diag::ext_array_init_copy)
|
|
<< Step->Type << CurInitExpr->getType()
|
|
<< CurInitExpr->getSourceRange();
|
|
|
|
// If the destination type is an incomplete array type, update the
|
|
// type accordingly.
|
|
if (ResultType) {
|
|
if (const IncompleteArrayType *IncompleteDest
|
|
= S.Context.getAsIncompleteArrayType(Step->Type)) {
|
|
if (const ConstantArrayType *ConstantSource
|
|
= S.Context.getAsConstantArrayType(CurInitExpr->getType())) {
|
|
*ResultType = S.Context.getConstantArrayType(
|
|
IncompleteDest->getElementType(),
|
|
ConstantSource->getSize(),
|
|
ArrayType::Normal, 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Diagnose non-fatal problems with the completed initialization.
|
|
if (Entity.getKind() == InitializedEntity::EK_Member &&
|
|
cast<FieldDecl>(Entity.getDecl())->isBitField())
|
|
S.CheckBitFieldInitialization(Kind.getLocation(),
|
|
cast<FieldDecl>(Entity.getDecl()),
|
|
CurInit.get());
|
|
|
|
return move(CurInit);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Diagnose initialization failures
|
|
//===----------------------------------------------------------------------===//
|
|
bool InitializationSequence::Diagnose(Sema &S,
|
|
const InitializedEntity &Entity,
|
|
const InitializationKind &Kind,
|
|
Expr **Args, unsigned NumArgs) {
|
|
if (SequenceKind != FailedSequence)
|
|
return false;
|
|
|
|
QualType DestType = Entity.getType();
|
|
switch (Failure) {
|
|
case FK_TooManyInitsForReference:
|
|
// FIXME: Customize for the initialized entity?
|
|
if (NumArgs == 0)
|
|
S.Diag(Kind.getLocation(), diag::err_reference_without_init)
|
|
<< DestType.getNonReferenceType();
|
|
else // FIXME: diagnostic below could be better!
|
|
S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits)
|
|
<< SourceRange(Args[0]->getLocStart(), Args[NumArgs - 1]->getLocEnd());
|
|
break;
|
|
|
|
case FK_ArrayNeedsInitList:
|
|
case FK_ArrayNeedsInitListOrStringLiteral:
|
|
S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list)
|
|
<< (Failure == FK_ArrayNeedsInitListOrStringLiteral);
|
|
break;
|
|
|
|
case FK_ArrayTypeMismatch:
|
|
case FK_NonConstantArrayInit:
|
|
S.Diag(Kind.getLocation(),
|
|
(Failure == FK_ArrayTypeMismatch
|
|
? diag::err_array_init_different_type
|
|
: diag::err_array_init_non_constant_array))
|
|
<< DestType.getNonReferenceType()
|
|
<< Args[0]->getType()
|
|
<< Args[0]->getSourceRange();
|
|
break;
|
|
|
|
case FK_AddressOfOverloadFailed: {
|
|
DeclAccessPair Found;
|
|
S.ResolveAddressOfOverloadedFunction(Args[0],
|
|
DestType.getNonReferenceType(),
|
|
true,
|
|
Found);
|
|
break;
|
|
}
|
|
|
|
case FK_ReferenceInitOverloadFailed:
|
|
case FK_UserConversionOverloadFailed:
|
|
switch (FailedOverloadResult) {
|
|
case OR_Ambiguous:
|
|
if (Failure == FK_UserConversionOverloadFailed)
|
|
S.Diag(Kind.getLocation(), diag::err_typecheck_ambiguous_condition)
|
|
<< Args[0]->getType() << DestType
|
|
<< Args[0]->getSourceRange();
|
|
else
|
|
S.Diag(Kind.getLocation(), diag::err_ref_init_ambiguous)
|
|
<< DestType << Args[0]->getType()
|
|
<< Args[0]->getSourceRange();
|
|
|
|
FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args, NumArgs);
|
|
break;
|
|
|
|
case OR_No_Viable_Function:
|
|
S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition)
|
|
<< Args[0]->getType() << DestType.getNonReferenceType()
|
|
<< Args[0]->getSourceRange();
|
|
FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args, NumArgs);
|
|
break;
|
|
|
|
case OR_Deleted: {
|
|
S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function)
|
|
<< Args[0]->getType() << DestType.getNonReferenceType()
|
|
<< Args[0]->getSourceRange();
|
|
OverloadCandidateSet::iterator Best;
|
|
OverloadingResult Ovl
|
|
= FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best,
|
|
true);
|
|
if (Ovl == OR_Deleted) {
|
|
S.Diag(Best->Function->getLocation(), diag::note_unavailable_here)
|
|
<< Best->Function->isDeleted();
|
|
} else {
|
|
llvm_unreachable("Inconsistent overload resolution?");
|
|
}
|
|
break;
|
|
}
|
|
|
|
case OR_Success:
|
|
llvm_unreachable("Conversion did not fail!");
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case FK_NonConstLValueReferenceBindingToTemporary:
|
|
case FK_NonConstLValueReferenceBindingToUnrelated:
|
|
S.Diag(Kind.getLocation(),
|
|
Failure == FK_NonConstLValueReferenceBindingToTemporary
|
|
? diag::err_lvalue_reference_bind_to_temporary
|
|
: diag::err_lvalue_reference_bind_to_unrelated)
|
|
<< DestType.getNonReferenceType().isVolatileQualified()
|
|
<< DestType.getNonReferenceType()
|
|
<< Args[0]->getType()
|
|
<< Args[0]->getSourceRange();
|
|
break;
|
|
|
|
case FK_RValueReferenceBindingToLValue:
|
|
S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref)
|
|
<< DestType.getNonReferenceType() << Args[0]->getType()
|
|
<< Args[0]->getSourceRange();
|
|
break;
|
|
|
|
case FK_ReferenceInitDropsQualifiers:
|
|
S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
|
|
<< DestType.getNonReferenceType()
|
|
<< Args[0]->getType()
|
|
<< Args[0]->getSourceRange();
|
|
break;
|
|
|
|
case FK_ReferenceInitFailed:
|
|
S.Diag(Kind.getLocation(), diag::err_reference_bind_failed)
|
|
<< DestType.getNonReferenceType()
|
|
<< Args[0]->isLValue()
|
|
<< Args[0]->getType()
|
|
<< Args[0]->getSourceRange();
|
|
break;
|
|
|
|
case FK_ConversionFailed: {
|
|
QualType FromType = Args[0]->getType();
|
|
S.Diag(Kind.getLocation(), diag::err_init_conversion_failed)
|
|
<< (int)Entity.getKind()
|
|
<< DestType
|
|
<< Args[0]->isLValue()
|
|
<< FromType
|
|
<< Args[0]->getSourceRange();
|
|
break;
|
|
}
|
|
case FK_TooManyInitsForScalar: {
|
|
SourceRange R;
|
|
|
|
if (InitListExpr *InitList = dyn_cast<InitListExpr>(Args[0]))
|
|
R = SourceRange(InitList->getInit(0)->getLocEnd(),
|
|
InitList->getLocEnd());
|
|
else
|
|
R = SourceRange(Args[0]->getLocEnd(), Args[NumArgs - 1]->getLocEnd());
|
|
|
|
R.setBegin(S.PP.getLocForEndOfToken(R.getBegin()));
|
|
if (Kind.isCStyleOrFunctionalCast())
|
|
S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg)
|
|
<< R;
|
|
else
|
|
S.Diag(Kind.getLocation(), diag::err_excess_initializers)
|
|
<< /*scalar=*/2 << R;
|
|
break;
|
|
}
|
|
|
|
case FK_ReferenceBindingToInitList:
|
|
S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list)
|
|
<< DestType.getNonReferenceType() << Args[0]->getSourceRange();
|
|
break;
|
|
|
|
case FK_InitListBadDestinationType:
|
|
S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type)
|
|
<< (DestType->isRecordType()) << DestType << Args[0]->getSourceRange();
|
|
break;
|
|
|
|
case FK_ConstructorOverloadFailed: {
|
|
SourceRange ArgsRange;
|
|
if (NumArgs)
|
|
ArgsRange = SourceRange(Args[0]->getLocStart(),
|
|
Args[NumArgs - 1]->getLocEnd());
|
|
|
|
// FIXME: Using "DestType" for the entity we're printing is probably
|
|
// bad.
|
|
switch (FailedOverloadResult) {
|
|
case OR_Ambiguous:
|
|
S.Diag(Kind.getLocation(), diag::err_ovl_ambiguous_init)
|
|
<< DestType << ArgsRange;
|
|
FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates,
|
|
Args, NumArgs);
|
|
break;
|
|
|
|
case OR_No_Viable_Function:
|
|
if (Kind.getKind() == InitializationKind::IK_Default &&
|
|
(Entity.getKind() == InitializedEntity::EK_Base ||
|
|
Entity.getKind() == InitializedEntity::EK_Member) &&
|
|
isa<CXXConstructorDecl>(S.CurContext)) {
|
|
// This is implicit default initialization of a member or
|
|
// base within a constructor. If no viable function was
|
|
// found, notify the user that she needs to explicitly
|
|
// initialize this base/member.
|
|
CXXConstructorDecl *Constructor
|
|
= cast<CXXConstructorDecl>(S.CurContext);
|
|
if (Entity.getKind() == InitializedEntity::EK_Base) {
|
|
S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
|
|
<< Constructor->isImplicit()
|
|
<< S.Context.getTypeDeclType(Constructor->getParent())
|
|
<< /*base=*/0
|
|
<< Entity.getType();
|
|
|
|
RecordDecl *BaseDecl
|
|
= Entity.getBaseSpecifier()->getType()->getAs<RecordType>()
|
|
->getDecl();
|
|
S.Diag(BaseDecl->getLocation(), diag::note_previous_decl)
|
|
<< S.Context.getTagDeclType(BaseDecl);
|
|
} else {
|
|
S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
|
|
<< Constructor->isImplicit()
|
|
<< S.Context.getTypeDeclType(Constructor->getParent())
|
|
<< /*member=*/1
|
|
<< Entity.getName();
|
|
S.Diag(Entity.getDecl()->getLocation(), diag::note_field_decl);
|
|
|
|
if (const RecordType *Record
|
|
= Entity.getType()->getAs<RecordType>())
|
|
S.Diag(Record->getDecl()->getLocation(),
|
|
diag::note_previous_decl)
|
|
<< S.Context.getTagDeclType(Record->getDecl());
|
|
}
|
|
break;
|
|
}
|
|
|
|
S.Diag(Kind.getLocation(), diag::err_ovl_no_viable_function_in_init)
|
|
<< DestType << ArgsRange;
|
|
FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args, NumArgs);
|
|
break;
|
|
|
|
case OR_Deleted: {
|
|
S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
|
|
<< true << DestType << ArgsRange;
|
|
OverloadCandidateSet::iterator Best;
|
|
OverloadingResult Ovl
|
|
= FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
|
|
if (Ovl == OR_Deleted) {
|
|
S.Diag(Best->Function->getLocation(), diag::note_unavailable_here)
|
|
<< Best->Function->isDeleted();
|
|
} else {
|
|
llvm_unreachable("Inconsistent overload resolution?");
|
|
}
|
|
break;
|
|
}
|
|
|
|
case OR_Success:
|
|
llvm_unreachable("Conversion did not fail!");
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case FK_DefaultInitOfConst:
|
|
if (Entity.getKind() == InitializedEntity::EK_Member &&
|
|
isa<CXXConstructorDecl>(S.CurContext)) {
|
|
// This is implicit default-initialization of a const member in
|
|
// a constructor. Complain that it needs to be explicitly
|
|
// initialized.
|
|
CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext);
|
|
S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor)
|
|
<< Constructor->isImplicit()
|
|
<< S.Context.getTypeDeclType(Constructor->getParent())
|
|
<< /*const=*/1
|
|
<< Entity.getName();
|
|
S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl)
|
|
<< Entity.getName();
|
|
} else {
|
|
S.Diag(Kind.getLocation(), diag::err_default_init_const)
|
|
<< DestType << (bool)DestType->getAs<RecordType>();
|
|
}
|
|
break;
|
|
|
|
case FK_Incomplete:
|
|
S.RequireCompleteType(Kind.getLocation(), DestType,
|
|
diag::err_init_incomplete_type);
|
|
break;
|
|
}
|
|
|
|
PrintInitLocationNote(S, Entity);
|
|
return true;
|
|
}
|
|
|
|
void InitializationSequence::dump(llvm::raw_ostream &OS) const {
|
|
switch (SequenceKind) {
|
|
case FailedSequence: {
|
|
OS << "Failed sequence: ";
|
|
switch (Failure) {
|
|
case FK_TooManyInitsForReference:
|
|
OS << "too many initializers for reference";
|
|
break;
|
|
|
|
case FK_ArrayNeedsInitList:
|
|
OS << "array requires initializer list";
|
|
break;
|
|
|
|
case FK_ArrayNeedsInitListOrStringLiteral:
|
|
OS << "array requires initializer list or string literal";
|
|
break;
|
|
|
|
case FK_ArrayTypeMismatch:
|
|
OS << "array type mismatch";
|
|
break;
|
|
|
|
case FK_NonConstantArrayInit:
|
|
OS << "non-constant array initializer";
|
|
break;
|
|
|
|
case FK_AddressOfOverloadFailed:
|
|
OS << "address of overloaded function failed";
|
|
break;
|
|
|
|
case FK_ReferenceInitOverloadFailed:
|
|
OS << "overload resolution for reference initialization failed";
|
|
break;
|
|
|
|
case FK_NonConstLValueReferenceBindingToTemporary:
|
|
OS << "non-const lvalue reference bound to temporary";
|
|
break;
|
|
|
|
case FK_NonConstLValueReferenceBindingToUnrelated:
|
|
OS << "non-const lvalue reference bound to unrelated type";
|
|
break;
|
|
|
|
case FK_RValueReferenceBindingToLValue:
|
|
OS << "rvalue reference bound to an lvalue";
|
|
break;
|
|
|
|
case FK_ReferenceInitDropsQualifiers:
|
|
OS << "reference initialization drops qualifiers";
|
|
break;
|
|
|
|
case FK_ReferenceInitFailed:
|
|
OS << "reference initialization failed";
|
|
break;
|
|
|
|
case FK_ConversionFailed:
|
|
OS << "conversion failed";
|
|
break;
|
|
|
|
case FK_TooManyInitsForScalar:
|
|
OS << "too many initializers for scalar";
|
|
break;
|
|
|
|
case FK_ReferenceBindingToInitList:
|
|
OS << "referencing binding to initializer list";
|
|
break;
|
|
|
|
case FK_InitListBadDestinationType:
|
|
OS << "initializer list for non-aggregate, non-scalar type";
|
|
break;
|
|
|
|
case FK_UserConversionOverloadFailed:
|
|
OS << "overloading failed for user-defined conversion";
|
|
break;
|
|
|
|
case FK_ConstructorOverloadFailed:
|
|
OS << "constructor overloading failed";
|
|
break;
|
|
|
|
case FK_DefaultInitOfConst:
|
|
OS << "default initialization of a const variable";
|
|
break;
|
|
|
|
case FK_Incomplete:
|
|
OS << "initialization of incomplete type";
|
|
break;
|
|
}
|
|
OS << '\n';
|
|
return;
|
|
}
|
|
|
|
case DependentSequence:
|
|
OS << "Dependent sequence: ";
|
|
return;
|
|
|
|
case UserDefinedConversion:
|
|
OS << "User-defined conversion sequence: ";
|
|
break;
|
|
|
|
case ConstructorInitialization:
|
|
OS << "Constructor initialization sequence: ";
|
|
break;
|
|
|
|
case ReferenceBinding:
|
|
OS << "Reference binding: ";
|
|
break;
|
|
|
|
case ListInitialization:
|
|
OS << "List initialization: ";
|
|
break;
|
|
|
|
case ZeroInitialization:
|
|
OS << "Zero initialization\n";
|
|
return;
|
|
|
|
case NoInitialization:
|
|
OS << "No initialization\n";
|
|
return;
|
|
|
|
case StandardConversion:
|
|
OS << "Standard conversion: ";
|
|
break;
|
|
|
|
case CAssignment:
|
|
OS << "C assignment: ";
|
|
break;
|
|
|
|
case StringInit:
|
|
OS << "String initialization: ";
|
|
break;
|
|
|
|
case ArrayInit:
|
|
OS << "Array initialization: ";
|
|
break;
|
|
}
|
|
|
|
for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) {
|
|
if (S != step_begin()) {
|
|
OS << " -> ";
|
|
}
|
|
|
|
switch (S->Kind) {
|
|
case SK_ResolveAddressOfOverloadedFunction:
|
|
OS << "resolve address of overloaded function";
|
|
break;
|
|
|
|
case SK_CastDerivedToBaseRValue:
|
|
OS << "derived-to-base case (rvalue" << S->Type.getAsString() << ")";
|
|
break;
|
|
|
|
case SK_CastDerivedToBaseXValue:
|
|
OS << "derived-to-base case (xvalue" << S->Type.getAsString() << ")";
|
|
break;
|
|
|
|
case SK_CastDerivedToBaseLValue:
|
|
OS << "derived-to-base case (lvalue" << S->Type.getAsString() << ")";
|
|
break;
|
|
|
|
case SK_BindReference:
|
|
OS << "bind reference to lvalue";
|
|
break;
|
|
|
|
case SK_BindReferenceToTemporary:
|
|
OS << "bind reference to a temporary";
|
|
break;
|
|
|
|
case SK_ExtraneousCopyToTemporary:
|
|
OS << "extraneous C++03 copy to temporary";
|
|
break;
|
|
|
|
case SK_UserConversion:
|
|
OS << "user-defined conversion via " << S->Function.Function;
|
|
break;
|
|
|
|
case SK_QualificationConversionRValue:
|
|
OS << "qualification conversion (rvalue)";
|
|
|
|
case SK_QualificationConversionXValue:
|
|
OS << "qualification conversion (xvalue)";
|
|
|
|
case SK_QualificationConversionLValue:
|
|
OS << "qualification conversion (lvalue)";
|
|
break;
|
|
|
|
case SK_ConversionSequence:
|
|
OS << "implicit conversion sequence (";
|
|
S->ICS->DebugPrint(); // FIXME: use OS
|
|
OS << ")";
|
|
break;
|
|
|
|
case SK_ListInitialization:
|
|
OS << "list initialization";
|
|
break;
|
|
|
|
case SK_ConstructorInitialization:
|
|
OS << "constructor initialization";
|
|
break;
|
|
|
|
case SK_ZeroInitialization:
|
|
OS << "zero initialization";
|
|
break;
|
|
|
|
case SK_CAssignment:
|
|
OS << "C assignment";
|
|
break;
|
|
|
|
case SK_StringInit:
|
|
OS << "string initialization";
|
|
break;
|
|
|
|
case SK_ObjCObjectConversion:
|
|
OS << "Objective-C object conversion";
|
|
break;
|
|
|
|
case SK_ArrayInit:
|
|
OS << "array initialization";
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void InitializationSequence::dump() const {
|
|
dump(llvm::errs());
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Initialization helper functions
|
|
//===----------------------------------------------------------------------===//
|
|
ExprResult
|
|
Sema::PerformCopyInitialization(const InitializedEntity &Entity,
|
|
SourceLocation EqualLoc,
|
|
ExprResult Init) {
|
|
if (Init.isInvalid())
|
|
return ExprError();
|
|
|
|
Expr *InitE = Init.get();
|
|
assert(InitE && "No initialization expression?");
|
|
|
|
if (EqualLoc.isInvalid())
|
|
EqualLoc = InitE->getLocStart();
|
|
|
|
InitializationKind Kind = InitializationKind::CreateCopy(InitE->getLocStart(),
|
|
EqualLoc);
|
|
InitializationSequence Seq(*this, Entity, Kind, &InitE, 1);
|
|
Init.release();
|
|
return Seq.Perform(*this, Entity, Kind, MultiExprArg(&InitE, 1));
|
|
}
|