freebsd-dev/sys/dev/ral/rt2560.c
Kevin Lo 5945b5f5ab Rename definition of IEEE80211_FC1_WEP to IEEE80211_FC1_PROTECTED.
The origin of WEP comes from IEEE Std 802.11-1997 where it defines
whether the frame body of MAC frame has been encrypted using WEP
algorithm or not.
IEEE Std. 802.11-2007 changes WEP to Protected Frame, indicates
whether the frame is protected by a cryptographic encapsulation
algorithm.

Reviewed by:	adrian, rpaulo
2014-01-08 08:06:56 +00:00

2827 lines
72 KiB
C

/* $FreeBSD$ */
/*-
* Copyright (c) 2005, 2006
* Damien Bergamini <damien.bergamini@free.fr>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*-
* Ralink Technology RT2560 chipset driver
* http://www.ralinktech.com/
*/
#include <sys/param.h>
#include <sys/sysctl.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/module.h>
#include <sys/bus.h>
#include <sys/endian.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/rman.h>
#include <net/bpf.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_radiotap.h>
#include <net80211/ieee80211_regdomain.h>
#include <net80211/ieee80211_ratectl.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <netinet/if_ether.h>
#include <dev/ral/rt2560reg.h>
#include <dev/ral/rt2560var.h>
#define RT2560_RSSI(sc, rssi) \
((rssi) > (RT2560_NOISE_FLOOR + (sc)->rssi_corr) ? \
((rssi) - RT2560_NOISE_FLOOR - (sc)->rssi_corr) : 0)
#define RAL_DEBUG
#ifdef RAL_DEBUG
#define DPRINTF(sc, fmt, ...) do { \
if (sc->sc_debug > 0) \
printf(fmt, __VA_ARGS__); \
} while (0)
#define DPRINTFN(sc, n, fmt, ...) do { \
if (sc->sc_debug >= (n)) \
printf(fmt, __VA_ARGS__); \
} while (0)
#else
#define DPRINTF(sc, fmt, ...)
#define DPRINTFN(sc, n, fmt, ...)
#endif
static struct ieee80211vap *rt2560_vap_create(struct ieee80211com *,
const char [IFNAMSIZ], int, enum ieee80211_opmode,
int, const uint8_t [IEEE80211_ADDR_LEN],
const uint8_t [IEEE80211_ADDR_LEN]);
static void rt2560_vap_delete(struct ieee80211vap *);
static void rt2560_dma_map_addr(void *, bus_dma_segment_t *, int,
int);
static int rt2560_alloc_tx_ring(struct rt2560_softc *,
struct rt2560_tx_ring *, int);
static void rt2560_reset_tx_ring(struct rt2560_softc *,
struct rt2560_tx_ring *);
static void rt2560_free_tx_ring(struct rt2560_softc *,
struct rt2560_tx_ring *);
static int rt2560_alloc_rx_ring(struct rt2560_softc *,
struct rt2560_rx_ring *, int);
static void rt2560_reset_rx_ring(struct rt2560_softc *,
struct rt2560_rx_ring *);
static void rt2560_free_rx_ring(struct rt2560_softc *,
struct rt2560_rx_ring *);
static int rt2560_newstate(struct ieee80211vap *,
enum ieee80211_state, int);
static uint16_t rt2560_eeprom_read(struct rt2560_softc *, uint8_t);
static void rt2560_encryption_intr(struct rt2560_softc *);
static void rt2560_tx_intr(struct rt2560_softc *);
static void rt2560_prio_intr(struct rt2560_softc *);
static void rt2560_decryption_intr(struct rt2560_softc *);
static void rt2560_rx_intr(struct rt2560_softc *);
static void rt2560_beacon_update(struct ieee80211vap *, int item);
static void rt2560_beacon_expire(struct rt2560_softc *);
static void rt2560_wakeup_expire(struct rt2560_softc *);
static void rt2560_scan_start(struct ieee80211com *);
static void rt2560_scan_end(struct ieee80211com *);
static void rt2560_set_channel(struct ieee80211com *);
static void rt2560_setup_tx_desc(struct rt2560_softc *,
struct rt2560_tx_desc *, uint32_t, int, int, int,
bus_addr_t);
static int rt2560_tx_bcn(struct rt2560_softc *, struct mbuf *,
struct ieee80211_node *);
static int rt2560_tx_mgt(struct rt2560_softc *, struct mbuf *,
struct ieee80211_node *);
static int rt2560_tx_data(struct rt2560_softc *, struct mbuf *,
struct ieee80211_node *);
static void rt2560_start_locked(struct ifnet *);
static void rt2560_start(struct ifnet *);
static void rt2560_watchdog(void *);
static int rt2560_ioctl(struct ifnet *, u_long, caddr_t);
static void rt2560_bbp_write(struct rt2560_softc *, uint8_t,
uint8_t);
static uint8_t rt2560_bbp_read(struct rt2560_softc *, uint8_t);
static void rt2560_rf_write(struct rt2560_softc *, uint8_t,
uint32_t);
static void rt2560_set_chan(struct rt2560_softc *,
struct ieee80211_channel *);
#if 0
static void rt2560_disable_rf_tune(struct rt2560_softc *);
#endif
static void rt2560_enable_tsf_sync(struct rt2560_softc *);
static void rt2560_enable_tsf(struct rt2560_softc *);
static void rt2560_update_plcp(struct rt2560_softc *);
static void rt2560_update_slot(struct ifnet *);
static void rt2560_set_basicrates(struct rt2560_softc *,
const struct ieee80211_rateset *);
static void rt2560_update_led(struct rt2560_softc *, int, int);
static void rt2560_set_bssid(struct rt2560_softc *, const uint8_t *);
static void rt2560_set_macaddr(struct rt2560_softc *, uint8_t *);
static void rt2560_get_macaddr(struct rt2560_softc *, uint8_t *);
static void rt2560_update_promisc(struct ifnet *);
static const char *rt2560_get_rf(int);
static void rt2560_read_config(struct rt2560_softc *);
static int rt2560_bbp_init(struct rt2560_softc *);
static void rt2560_set_txantenna(struct rt2560_softc *, int);
static void rt2560_set_rxantenna(struct rt2560_softc *, int);
static void rt2560_init_locked(struct rt2560_softc *);
static void rt2560_init(void *);
static void rt2560_stop_locked(struct rt2560_softc *);
static int rt2560_raw_xmit(struct ieee80211_node *, struct mbuf *,
const struct ieee80211_bpf_params *);
static const struct {
uint32_t reg;
uint32_t val;
} rt2560_def_mac[] = {
RT2560_DEF_MAC
};
static const struct {
uint8_t reg;
uint8_t val;
} rt2560_def_bbp[] = {
RT2560_DEF_BBP
};
static const uint32_t rt2560_rf2522_r2[] = RT2560_RF2522_R2;
static const uint32_t rt2560_rf2523_r2[] = RT2560_RF2523_R2;
static const uint32_t rt2560_rf2524_r2[] = RT2560_RF2524_R2;
static const uint32_t rt2560_rf2525_r2[] = RT2560_RF2525_R2;
static const uint32_t rt2560_rf2525_hi_r2[] = RT2560_RF2525_HI_R2;
static const uint32_t rt2560_rf2525e_r2[] = RT2560_RF2525E_R2;
static const uint32_t rt2560_rf2526_r2[] = RT2560_RF2526_R2;
static const uint32_t rt2560_rf2526_hi_r2[] = RT2560_RF2526_HI_R2;
static const struct {
uint8_t chan;
uint32_t r1, r2, r4;
} rt2560_rf5222[] = {
RT2560_RF5222
};
int
rt2560_attach(device_t dev, int id)
{
struct rt2560_softc *sc = device_get_softc(dev);
struct ieee80211com *ic;
struct ifnet *ifp;
int error;
uint8_t bands;
uint8_t macaddr[IEEE80211_ADDR_LEN];
sc->sc_dev = dev;
mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
MTX_DEF | MTX_RECURSE);
callout_init_mtx(&sc->watchdog_ch, &sc->sc_mtx, 0);
/* retrieve RT2560 rev. no */
sc->asic_rev = RAL_READ(sc, RT2560_CSR0);
/* retrieve RF rev. no and various other things from EEPROM */
rt2560_read_config(sc);
device_printf(dev, "MAC/BBP RT2560 (rev 0x%02x), RF %s\n",
sc->asic_rev, rt2560_get_rf(sc->rf_rev));
/*
* Allocate Tx and Rx rings.
*/
error = rt2560_alloc_tx_ring(sc, &sc->txq, RT2560_TX_RING_COUNT);
if (error != 0) {
device_printf(sc->sc_dev, "could not allocate Tx ring\n");
goto fail1;
}
error = rt2560_alloc_tx_ring(sc, &sc->atimq, RT2560_ATIM_RING_COUNT);
if (error != 0) {
device_printf(sc->sc_dev, "could not allocate ATIM ring\n");
goto fail2;
}
error = rt2560_alloc_tx_ring(sc, &sc->prioq, RT2560_PRIO_RING_COUNT);
if (error != 0) {
device_printf(sc->sc_dev, "could not allocate Prio ring\n");
goto fail3;
}
error = rt2560_alloc_tx_ring(sc, &sc->bcnq, RT2560_BEACON_RING_COUNT);
if (error != 0) {
device_printf(sc->sc_dev, "could not allocate Beacon ring\n");
goto fail4;
}
error = rt2560_alloc_rx_ring(sc, &sc->rxq, RT2560_RX_RING_COUNT);
if (error != 0) {
device_printf(sc->sc_dev, "could not allocate Rx ring\n");
goto fail5;
}
ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
if (ifp == NULL) {
device_printf(sc->sc_dev, "can not if_alloc()\n");
goto fail6;
}
ic = ifp->if_l2com;
/* retrieve MAC address */
rt2560_get_macaddr(sc, macaddr);
ifp->if_softc = sc;
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_init = rt2560_init;
ifp->if_ioctl = rt2560_ioctl;
ifp->if_start = rt2560_start;
IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
IFQ_SET_READY(&ifp->if_snd);
ic->ic_ifp = ifp;
ic->ic_opmode = IEEE80211_M_STA;
ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
/* set device capabilities */
ic->ic_caps =
IEEE80211_C_STA /* station mode */
| IEEE80211_C_IBSS /* ibss, nee adhoc, mode */
| IEEE80211_C_HOSTAP /* hostap mode */
| IEEE80211_C_MONITOR /* monitor mode */
| IEEE80211_C_AHDEMO /* adhoc demo mode */
| IEEE80211_C_WDS /* 4-address traffic works */
| IEEE80211_C_MBSS /* mesh point link mode */
| IEEE80211_C_SHPREAMBLE /* short preamble supported */
| IEEE80211_C_SHSLOT /* short slot time supported */
| IEEE80211_C_WPA /* capable of WPA1+WPA2 */
| IEEE80211_C_BGSCAN /* capable of bg scanning */
#ifdef notyet
| IEEE80211_C_TXFRAG /* handle tx frags */
#endif
;
bands = 0;
setbit(&bands, IEEE80211_MODE_11B);
setbit(&bands, IEEE80211_MODE_11G);
if (sc->rf_rev == RT2560_RF_5222)
setbit(&bands, IEEE80211_MODE_11A);
ieee80211_init_channels(ic, NULL, &bands);
ieee80211_ifattach(ic, macaddr);
ic->ic_raw_xmit = rt2560_raw_xmit;
ic->ic_updateslot = rt2560_update_slot;
ic->ic_update_promisc = rt2560_update_promisc;
ic->ic_scan_start = rt2560_scan_start;
ic->ic_scan_end = rt2560_scan_end;
ic->ic_set_channel = rt2560_set_channel;
ic->ic_vap_create = rt2560_vap_create;
ic->ic_vap_delete = rt2560_vap_delete;
ieee80211_radiotap_attach(ic,
&sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
RT2560_TX_RADIOTAP_PRESENT,
&sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
RT2560_RX_RADIOTAP_PRESENT);
/*
* Add a few sysctl knobs.
*/
#ifdef RAL_DEBUG
SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
"debug", CTLFLAG_RW, &sc->sc_debug, 0, "debug msgs");
#endif
SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
"txantenna", CTLFLAG_RW, &sc->tx_ant, 0, "tx antenna (0=auto)");
SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
"rxantenna", CTLFLAG_RW, &sc->rx_ant, 0, "rx antenna (0=auto)");
if (bootverbose)
ieee80211_announce(ic);
return 0;
fail6: rt2560_free_rx_ring(sc, &sc->rxq);
fail5: rt2560_free_tx_ring(sc, &sc->bcnq);
fail4: rt2560_free_tx_ring(sc, &sc->prioq);
fail3: rt2560_free_tx_ring(sc, &sc->atimq);
fail2: rt2560_free_tx_ring(sc, &sc->txq);
fail1: mtx_destroy(&sc->sc_mtx);
return ENXIO;
}
int
rt2560_detach(void *xsc)
{
struct rt2560_softc *sc = xsc;
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
rt2560_stop(sc);
ieee80211_ifdetach(ic);
rt2560_free_tx_ring(sc, &sc->txq);
rt2560_free_tx_ring(sc, &sc->atimq);
rt2560_free_tx_ring(sc, &sc->prioq);
rt2560_free_tx_ring(sc, &sc->bcnq);
rt2560_free_rx_ring(sc, &sc->rxq);
if_free(ifp);
mtx_destroy(&sc->sc_mtx);
return 0;
}
static struct ieee80211vap *
rt2560_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
enum ieee80211_opmode opmode, int flags,
const uint8_t bssid[IEEE80211_ADDR_LEN],
const uint8_t mac[IEEE80211_ADDR_LEN])
{
struct ifnet *ifp = ic->ic_ifp;
struct rt2560_vap *rvp;
struct ieee80211vap *vap;
switch (opmode) {
case IEEE80211_M_STA:
case IEEE80211_M_IBSS:
case IEEE80211_M_AHDEMO:
case IEEE80211_M_MONITOR:
case IEEE80211_M_HOSTAP:
case IEEE80211_M_MBSS:
/* XXXRP: TBD */
if (!TAILQ_EMPTY(&ic->ic_vaps)) {
if_printf(ifp, "only 1 vap supported\n");
return NULL;
}
if (opmode == IEEE80211_M_STA)
flags |= IEEE80211_CLONE_NOBEACONS;
break;
case IEEE80211_M_WDS:
if (TAILQ_EMPTY(&ic->ic_vaps) ||
ic->ic_opmode != IEEE80211_M_HOSTAP) {
if_printf(ifp, "wds only supported in ap mode\n");
return NULL;
}
/*
* Silently remove any request for a unique
* bssid; WDS vap's always share the local
* mac address.
*/
flags &= ~IEEE80211_CLONE_BSSID;
break;
default:
if_printf(ifp, "unknown opmode %d\n", opmode);
return NULL;
}
rvp = (struct rt2560_vap *) malloc(sizeof(struct rt2560_vap),
M_80211_VAP, M_NOWAIT | M_ZERO);
if (rvp == NULL)
return NULL;
vap = &rvp->ral_vap;
ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
/* override state transition machine */
rvp->ral_newstate = vap->iv_newstate;
vap->iv_newstate = rt2560_newstate;
vap->iv_update_beacon = rt2560_beacon_update;
ieee80211_ratectl_init(vap);
/* complete setup */
ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
if (TAILQ_FIRST(&ic->ic_vaps) == vap)
ic->ic_opmode = opmode;
return vap;
}
static void
rt2560_vap_delete(struct ieee80211vap *vap)
{
struct rt2560_vap *rvp = RT2560_VAP(vap);
ieee80211_ratectl_deinit(vap);
ieee80211_vap_detach(vap);
free(rvp, M_80211_VAP);
}
void
rt2560_resume(void *xsc)
{
struct rt2560_softc *sc = xsc;
struct ifnet *ifp = sc->sc_ifp;
if (ifp->if_flags & IFF_UP)
rt2560_init(sc);
}
static void
rt2560_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
if (error != 0)
return;
KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
*(bus_addr_t *)arg = segs[0].ds_addr;
}
static int
rt2560_alloc_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring,
int count)
{
int i, error;
ring->count = count;
ring->queued = 0;
ring->cur = ring->next = 0;
ring->cur_encrypt = ring->next_encrypt = 0;
error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0,
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
count * RT2560_TX_DESC_SIZE, 1, count * RT2560_TX_DESC_SIZE,
0, NULL, NULL, &ring->desc_dmat);
if (error != 0) {
device_printf(sc->sc_dev, "could not create desc DMA tag\n");
goto fail;
}
error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc,
BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map);
if (error != 0) {
device_printf(sc->sc_dev, "could not allocate DMA memory\n");
goto fail;
}
error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc,
count * RT2560_TX_DESC_SIZE, rt2560_dma_map_addr, &ring->physaddr,
0);
if (error != 0) {
device_printf(sc->sc_dev, "could not load desc DMA map\n");
goto fail;
}
ring->data = malloc(count * sizeof (struct rt2560_tx_data), M_DEVBUF,
M_NOWAIT | M_ZERO);
if (ring->data == NULL) {
device_printf(sc->sc_dev, "could not allocate soft data\n");
error = ENOMEM;
goto fail;
}
error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
MCLBYTES, RT2560_MAX_SCATTER, MCLBYTES, 0, NULL, NULL,
&ring->data_dmat);
if (error != 0) {
device_printf(sc->sc_dev, "could not create data DMA tag\n");
goto fail;
}
for (i = 0; i < count; i++) {
error = bus_dmamap_create(ring->data_dmat, 0,
&ring->data[i].map);
if (error != 0) {
device_printf(sc->sc_dev, "could not create DMA map\n");
goto fail;
}
}
return 0;
fail: rt2560_free_tx_ring(sc, ring);
return error;
}
static void
rt2560_reset_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring)
{
struct rt2560_tx_desc *desc;
struct rt2560_tx_data *data;
int i;
for (i = 0; i < ring->count; i++) {
desc = &ring->desc[i];
data = &ring->data[i];
if (data->m != NULL) {
bus_dmamap_sync(ring->data_dmat, data->map,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(ring->data_dmat, data->map);
m_freem(data->m);
data->m = NULL;
}
if (data->ni != NULL) {
ieee80211_free_node(data->ni);
data->ni = NULL;
}
desc->flags = 0;
}
bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE);
ring->queued = 0;
ring->cur = ring->next = 0;
ring->cur_encrypt = ring->next_encrypt = 0;
}
static void
rt2560_free_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring)
{
struct rt2560_tx_data *data;
int i;
if (ring->desc != NULL) {
bus_dmamap_sync(ring->desc_dmat, ring->desc_map,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(ring->desc_dmat, ring->desc_map);
bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
}
if (ring->desc_dmat != NULL)
bus_dma_tag_destroy(ring->desc_dmat);
if (ring->data != NULL) {
for (i = 0; i < ring->count; i++) {
data = &ring->data[i];
if (data->m != NULL) {
bus_dmamap_sync(ring->data_dmat, data->map,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(ring->data_dmat, data->map);
m_freem(data->m);
}
if (data->ni != NULL)
ieee80211_free_node(data->ni);
if (data->map != NULL)
bus_dmamap_destroy(ring->data_dmat, data->map);
}
free(ring->data, M_DEVBUF);
}
if (ring->data_dmat != NULL)
bus_dma_tag_destroy(ring->data_dmat);
}
static int
rt2560_alloc_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring,
int count)
{
struct rt2560_rx_desc *desc;
struct rt2560_rx_data *data;
bus_addr_t physaddr;
int i, error;
ring->count = count;
ring->cur = ring->next = 0;
ring->cur_decrypt = 0;
error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0,
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
count * RT2560_RX_DESC_SIZE, 1, count * RT2560_RX_DESC_SIZE,
0, NULL, NULL, &ring->desc_dmat);
if (error != 0) {
device_printf(sc->sc_dev, "could not create desc DMA tag\n");
goto fail;
}
error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc,
BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map);
if (error != 0) {
device_printf(sc->sc_dev, "could not allocate DMA memory\n");
goto fail;
}
error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc,
count * RT2560_RX_DESC_SIZE, rt2560_dma_map_addr, &ring->physaddr,
0);
if (error != 0) {
device_printf(sc->sc_dev, "could not load desc DMA map\n");
goto fail;
}
ring->data = malloc(count * sizeof (struct rt2560_rx_data), M_DEVBUF,
M_NOWAIT | M_ZERO);
if (ring->data == NULL) {
device_printf(sc->sc_dev, "could not allocate soft data\n");
error = ENOMEM;
goto fail;
}
/*
* Pre-allocate Rx buffers and populate Rx ring.
*/
error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1, MCLBYTES, 0, NULL, NULL, &ring->data_dmat);
if (error != 0) {
device_printf(sc->sc_dev, "could not create data DMA tag\n");
goto fail;
}
for (i = 0; i < count; i++) {
desc = &sc->rxq.desc[i];
data = &sc->rxq.data[i];
error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
if (error != 0) {
device_printf(sc->sc_dev, "could not create DMA map\n");
goto fail;
}
data->m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
if (data->m == NULL) {
device_printf(sc->sc_dev,
"could not allocate rx mbuf\n");
error = ENOMEM;
goto fail;
}
error = bus_dmamap_load(ring->data_dmat, data->map,
mtod(data->m, void *), MCLBYTES, rt2560_dma_map_addr,
&physaddr, 0);
if (error != 0) {
device_printf(sc->sc_dev,
"could not load rx buf DMA map");
goto fail;
}
desc->flags = htole32(RT2560_RX_BUSY);
desc->physaddr = htole32(physaddr);
}
bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE);
return 0;
fail: rt2560_free_rx_ring(sc, ring);
return error;
}
static void
rt2560_reset_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring)
{
int i;
for (i = 0; i < ring->count; i++) {
ring->desc[i].flags = htole32(RT2560_RX_BUSY);
ring->data[i].drop = 0;
}
bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE);
ring->cur = ring->next = 0;
ring->cur_decrypt = 0;
}
static void
rt2560_free_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring)
{
struct rt2560_rx_data *data;
int i;
if (ring->desc != NULL) {
bus_dmamap_sync(ring->desc_dmat, ring->desc_map,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(ring->desc_dmat, ring->desc_map);
bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
}
if (ring->desc_dmat != NULL)
bus_dma_tag_destroy(ring->desc_dmat);
if (ring->data != NULL) {
for (i = 0; i < ring->count; i++) {
data = &ring->data[i];
if (data->m != NULL) {
bus_dmamap_sync(ring->data_dmat, data->map,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(ring->data_dmat, data->map);
m_freem(data->m);
}
if (data->map != NULL)
bus_dmamap_destroy(ring->data_dmat, data->map);
}
free(ring->data, M_DEVBUF);
}
if (ring->data_dmat != NULL)
bus_dma_tag_destroy(ring->data_dmat);
}
static int
rt2560_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
{
struct rt2560_vap *rvp = RT2560_VAP(vap);
struct ifnet *ifp = vap->iv_ic->ic_ifp;
struct rt2560_softc *sc = ifp->if_softc;
int error;
if (nstate == IEEE80211_S_INIT && vap->iv_state == IEEE80211_S_RUN) {
/* abort TSF synchronization */
RAL_WRITE(sc, RT2560_CSR14, 0);
/* turn association led off */
rt2560_update_led(sc, 0, 0);
}
error = rvp->ral_newstate(vap, nstate, arg);
if (error == 0 && nstate == IEEE80211_S_RUN) {
struct ieee80211_node *ni = vap->iv_bss;
struct mbuf *m;
if (vap->iv_opmode != IEEE80211_M_MONITOR) {
rt2560_update_plcp(sc);
rt2560_set_basicrates(sc, &ni->ni_rates);
rt2560_set_bssid(sc, ni->ni_bssid);
}
if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
vap->iv_opmode == IEEE80211_M_IBSS ||
vap->iv_opmode == IEEE80211_M_MBSS) {
m = ieee80211_beacon_alloc(ni, &rvp->ral_bo);
if (m == NULL) {
if_printf(ifp, "could not allocate beacon\n");
return ENOBUFS;
}
ieee80211_ref_node(ni);
error = rt2560_tx_bcn(sc, m, ni);
if (error != 0)
return error;
}
/* turn assocation led on */
rt2560_update_led(sc, 1, 0);
if (vap->iv_opmode != IEEE80211_M_MONITOR)
rt2560_enable_tsf_sync(sc);
else
rt2560_enable_tsf(sc);
}
return error;
}
/*
* Read 16 bits at address 'addr' from the serial EEPROM (either 93C46 or
* 93C66).
*/
static uint16_t
rt2560_eeprom_read(struct rt2560_softc *sc, uint8_t addr)
{
uint32_t tmp;
uint16_t val;
int n;
/* clock C once before the first command */
RT2560_EEPROM_CTL(sc, 0);
RT2560_EEPROM_CTL(sc, RT2560_S);
RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
RT2560_EEPROM_CTL(sc, RT2560_S);
/* write start bit (1) */
RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D);
RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D | RT2560_C);
/* write READ opcode (10) */
RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D);
RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D | RT2560_C);
RT2560_EEPROM_CTL(sc, RT2560_S);
RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
/* write address (A5-A0 or A7-A0) */
n = (RAL_READ(sc, RT2560_CSR21) & RT2560_93C46) ? 5 : 7;
for (; n >= 0; n--) {
RT2560_EEPROM_CTL(sc, RT2560_S |
(((addr >> n) & 1) << RT2560_SHIFT_D));
RT2560_EEPROM_CTL(sc, RT2560_S |
(((addr >> n) & 1) << RT2560_SHIFT_D) | RT2560_C);
}
RT2560_EEPROM_CTL(sc, RT2560_S);
/* read data Q15-Q0 */
val = 0;
for (n = 15; n >= 0; n--) {
RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
tmp = RAL_READ(sc, RT2560_CSR21);
val |= ((tmp & RT2560_Q) >> RT2560_SHIFT_Q) << n;
RT2560_EEPROM_CTL(sc, RT2560_S);
}
RT2560_EEPROM_CTL(sc, 0);
/* clear Chip Select and clock C */
RT2560_EEPROM_CTL(sc, RT2560_S);
RT2560_EEPROM_CTL(sc, 0);
RT2560_EEPROM_CTL(sc, RT2560_C);
return val;
}
/*
* Some frames were processed by the hardware cipher engine and are ready for
* transmission.
*/
static void
rt2560_encryption_intr(struct rt2560_softc *sc)
{
struct rt2560_tx_desc *desc;
int hw;
/* retrieve last descriptor index processed by cipher engine */
hw = RAL_READ(sc, RT2560_SECCSR1) - sc->txq.physaddr;
hw /= RT2560_TX_DESC_SIZE;
bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map,
BUS_DMASYNC_POSTREAD);
while (sc->txq.next_encrypt != hw) {
if (sc->txq.next_encrypt == sc->txq.cur_encrypt) {
printf("hw encrypt %d, cur_encrypt %d\n", hw,
sc->txq.cur_encrypt);
break;
}
desc = &sc->txq.desc[sc->txq.next_encrypt];
if ((le32toh(desc->flags) & RT2560_TX_BUSY) ||
(le32toh(desc->flags) & RT2560_TX_CIPHER_BUSY))
break;
/* for TKIP, swap eiv field to fix a bug in ASIC */
if ((le32toh(desc->flags) & RT2560_TX_CIPHER_MASK) ==
RT2560_TX_CIPHER_TKIP)
desc->eiv = bswap32(desc->eiv);
/* mark the frame ready for transmission */
desc->flags |= htole32(RT2560_TX_VALID);
desc->flags |= htole32(RT2560_TX_BUSY);
DPRINTFN(sc, 15, "encryption done idx=%u\n",
sc->txq.next_encrypt);
sc->txq.next_encrypt =
(sc->txq.next_encrypt + 1) % RT2560_TX_RING_COUNT;
}
bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map,
BUS_DMASYNC_PREWRITE);
/* kick Tx */
RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_TX);
}
static void
rt2560_tx_intr(struct rt2560_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
struct rt2560_tx_desc *desc;
struct rt2560_tx_data *data;
struct mbuf *m;
uint32_t flags;
int retrycnt;
struct ieee80211vap *vap;
struct ieee80211_node *ni;
bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map,
BUS_DMASYNC_POSTREAD);
for (;;) {
desc = &sc->txq.desc[sc->txq.next];
data = &sc->txq.data[sc->txq.next];
flags = le32toh(desc->flags);
if ((flags & RT2560_TX_BUSY) ||
(flags & RT2560_TX_CIPHER_BUSY) ||
!(flags & RT2560_TX_VALID))
break;
m = data->m;
ni = data->ni;
vap = ni->ni_vap;
switch (flags & RT2560_TX_RESULT_MASK) {
case RT2560_TX_SUCCESS:
retrycnt = 0;
DPRINTFN(sc, 10, "%s\n", "data frame sent successfully");
if (data->rix != IEEE80211_FIXED_RATE_NONE)
ieee80211_ratectl_tx_complete(vap, ni,
IEEE80211_RATECTL_TX_SUCCESS,
&retrycnt, NULL);
ifp->if_opackets++;
break;
case RT2560_TX_SUCCESS_RETRY:
retrycnt = RT2560_TX_RETRYCNT(flags);
DPRINTFN(sc, 9, "data frame sent after %u retries\n",
retrycnt);
if (data->rix != IEEE80211_FIXED_RATE_NONE)
ieee80211_ratectl_tx_complete(vap, ni,
IEEE80211_RATECTL_TX_SUCCESS,
&retrycnt, NULL);
ifp->if_opackets++;
break;
case RT2560_TX_FAIL_RETRY:
retrycnt = RT2560_TX_RETRYCNT(flags);
DPRINTFN(sc, 9, "data frame failed after %d retries\n",
retrycnt);
if (data->rix != IEEE80211_FIXED_RATE_NONE)
ieee80211_ratectl_tx_complete(vap, ni,
IEEE80211_RATECTL_TX_FAILURE,
&retrycnt, NULL);
ifp->if_oerrors++;
break;
case RT2560_TX_FAIL_INVALID:
case RT2560_TX_FAIL_OTHER:
default:
device_printf(sc->sc_dev, "sending data frame failed "
"0x%08x\n", flags);
ifp->if_oerrors++;
}
bus_dmamap_sync(sc->txq.data_dmat, data->map,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->txq.data_dmat, data->map);
m_freem(m);
data->m = NULL;
ieee80211_free_node(data->ni);
data->ni = NULL;
/* descriptor is no longer valid */
desc->flags &= ~htole32(RT2560_TX_VALID);
DPRINTFN(sc, 15, "tx done idx=%u\n", sc->txq.next);
sc->txq.queued--;
sc->txq.next = (sc->txq.next + 1) % RT2560_TX_RING_COUNT;
}
bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map,
BUS_DMASYNC_PREWRITE);
if (sc->prioq.queued == 0 && sc->txq.queued == 0)
sc->sc_tx_timer = 0;
if (sc->txq.queued < RT2560_TX_RING_COUNT - 1) {
sc->sc_flags &= ~RT2560_F_DATA_OACTIVE;
if ((sc->sc_flags &
(RT2560_F_DATA_OACTIVE | RT2560_F_PRIO_OACTIVE)) == 0)
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
rt2560_start_locked(ifp);
}
}
static void
rt2560_prio_intr(struct rt2560_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
struct rt2560_tx_desc *desc;
struct rt2560_tx_data *data;
struct ieee80211_node *ni;
struct mbuf *m;
int flags;
bus_dmamap_sync(sc->prioq.desc_dmat, sc->prioq.desc_map,
BUS_DMASYNC_POSTREAD);
for (;;) {
desc = &sc->prioq.desc[sc->prioq.next];
data = &sc->prioq.data[sc->prioq.next];
flags = le32toh(desc->flags);
if ((flags & RT2560_TX_BUSY) || (flags & RT2560_TX_VALID) == 0)
break;
switch (flags & RT2560_TX_RESULT_MASK) {
case RT2560_TX_SUCCESS:
DPRINTFN(sc, 10, "%s\n", "mgt frame sent successfully");
break;
case RT2560_TX_SUCCESS_RETRY:
DPRINTFN(sc, 9, "mgt frame sent after %u retries\n",
(flags >> 5) & 0x7);
break;
case RT2560_TX_FAIL_RETRY:
DPRINTFN(sc, 9, "%s\n",
"sending mgt frame failed (too much retries)");
break;
case RT2560_TX_FAIL_INVALID:
case RT2560_TX_FAIL_OTHER:
default:
device_printf(sc->sc_dev, "sending mgt frame failed "
"0x%08x\n", flags);
break;
}
bus_dmamap_sync(sc->prioq.data_dmat, data->map,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->prioq.data_dmat, data->map);
m = data->m;
data->m = NULL;
ni = data->ni;
data->ni = NULL;
/* descriptor is no longer valid */
desc->flags &= ~htole32(RT2560_TX_VALID);
DPRINTFN(sc, 15, "prio done idx=%u\n", sc->prioq.next);
sc->prioq.queued--;
sc->prioq.next = (sc->prioq.next + 1) % RT2560_PRIO_RING_COUNT;
if (m->m_flags & M_TXCB)
ieee80211_process_callback(ni, m,
(flags & RT2560_TX_RESULT_MASK) &~
(RT2560_TX_SUCCESS | RT2560_TX_SUCCESS_RETRY));
m_freem(m);
ieee80211_free_node(ni);
}
bus_dmamap_sync(sc->prioq.desc_dmat, sc->prioq.desc_map,
BUS_DMASYNC_PREWRITE);
if (sc->prioq.queued == 0 && sc->txq.queued == 0)
sc->sc_tx_timer = 0;
if (sc->prioq.queued < RT2560_PRIO_RING_COUNT) {
sc->sc_flags &= ~RT2560_F_PRIO_OACTIVE;
if ((sc->sc_flags &
(RT2560_F_DATA_OACTIVE | RT2560_F_PRIO_OACTIVE)) == 0)
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
rt2560_start_locked(ifp);
}
}
/*
* Some frames were processed by the hardware cipher engine and are ready for
* handoff to the IEEE802.11 layer.
*/
static void
rt2560_decryption_intr(struct rt2560_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
struct rt2560_rx_desc *desc;
struct rt2560_rx_data *data;
bus_addr_t physaddr;
struct ieee80211_frame *wh;
struct ieee80211_node *ni;
struct mbuf *mnew, *m;
int hw, error;
int8_t rssi, nf;
/* retrieve last decriptor index processed by cipher engine */
hw = RAL_READ(sc, RT2560_SECCSR0) - sc->rxq.physaddr;
hw /= RT2560_RX_DESC_SIZE;
bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map,
BUS_DMASYNC_POSTREAD);
for (; sc->rxq.cur_decrypt != hw;) {
desc = &sc->rxq.desc[sc->rxq.cur_decrypt];
data = &sc->rxq.data[sc->rxq.cur_decrypt];
if ((le32toh(desc->flags) & RT2560_RX_BUSY) ||
(le32toh(desc->flags) & RT2560_RX_CIPHER_BUSY))
break;
if (data->drop) {
ifp->if_ierrors++;
goto skip;
}
if ((le32toh(desc->flags) & RT2560_RX_CIPHER_MASK) != 0 &&
(le32toh(desc->flags) & RT2560_RX_ICV_ERROR)) {
ifp->if_ierrors++;
goto skip;
}
/*
* Try to allocate a new mbuf for this ring element and load it
* before processing the current mbuf. If the ring element
* cannot be loaded, drop the received packet and reuse the old
* mbuf. In the unlikely case that the old mbuf can't be
* reloaded either, explicitly panic.
*/
mnew = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
if (mnew == NULL) {
ifp->if_ierrors++;
goto skip;
}
bus_dmamap_sync(sc->rxq.data_dmat, data->map,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->rxq.data_dmat, data->map);
error = bus_dmamap_load(sc->rxq.data_dmat, data->map,
mtod(mnew, void *), MCLBYTES, rt2560_dma_map_addr,
&physaddr, 0);
if (error != 0) {
m_freem(mnew);
/* try to reload the old mbuf */
error = bus_dmamap_load(sc->rxq.data_dmat, data->map,
mtod(data->m, void *), MCLBYTES,
rt2560_dma_map_addr, &physaddr, 0);
if (error != 0) {
/* very unlikely that it will fail... */
panic("%s: could not load old rx mbuf",
device_get_name(sc->sc_dev));
}
ifp->if_ierrors++;
goto skip;
}
/*
* New mbuf successfully loaded, update Rx ring and continue
* processing.
*/
m = data->m;
data->m = mnew;
desc->physaddr = htole32(physaddr);
/* finalize mbuf */
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = m->m_len =
(le32toh(desc->flags) >> 16) & 0xfff;
rssi = RT2560_RSSI(sc, desc->rssi);
nf = RT2560_NOISE_FLOOR;
if (ieee80211_radiotap_active(ic)) {
struct rt2560_rx_radiotap_header *tap = &sc->sc_rxtap;
uint32_t tsf_lo, tsf_hi;
/* get timestamp (low and high 32 bits) */
tsf_hi = RAL_READ(sc, RT2560_CSR17);
tsf_lo = RAL_READ(sc, RT2560_CSR16);
tap->wr_tsf =
htole64(((uint64_t)tsf_hi << 32) | tsf_lo);
tap->wr_flags = 0;
tap->wr_rate = ieee80211_plcp2rate(desc->rate,
(desc->flags & htole32(RT2560_RX_OFDM)) ?
IEEE80211_T_OFDM : IEEE80211_T_CCK);
tap->wr_antenna = sc->rx_ant;
tap->wr_antsignal = nf + rssi;
tap->wr_antnoise = nf;
}
sc->sc_flags |= RT2560_F_INPUT_RUNNING;
RAL_UNLOCK(sc);
wh = mtod(m, struct ieee80211_frame *);
ni = ieee80211_find_rxnode(ic,
(struct ieee80211_frame_min *)wh);
if (ni != NULL) {
(void) ieee80211_input(ni, m, rssi, nf);
ieee80211_free_node(ni);
} else
(void) ieee80211_input_all(ic, m, rssi, nf);
RAL_LOCK(sc);
sc->sc_flags &= ~RT2560_F_INPUT_RUNNING;
skip: desc->flags = htole32(RT2560_RX_BUSY);
DPRINTFN(sc, 15, "decryption done idx=%u\n", sc->rxq.cur_decrypt);
sc->rxq.cur_decrypt =
(sc->rxq.cur_decrypt + 1) % RT2560_RX_RING_COUNT;
}
bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map,
BUS_DMASYNC_PREWRITE);
}
/*
* Some frames were received. Pass them to the hardware cipher engine before
* sending them to the 802.11 layer.
*/
static void
rt2560_rx_intr(struct rt2560_softc *sc)
{
struct rt2560_rx_desc *desc;
struct rt2560_rx_data *data;
bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map,
BUS_DMASYNC_POSTREAD);
for (;;) {
desc = &sc->rxq.desc[sc->rxq.cur];
data = &sc->rxq.data[sc->rxq.cur];
if ((le32toh(desc->flags) & RT2560_RX_BUSY) ||
(le32toh(desc->flags) & RT2560_RX_CIPHER_BUSY))
break;
data->drop = 0;
if ((le32toh(desc->flags) & RT2560_RX_PHY_ERROR) ||
(le32toh(desc->flags) & RT2560_RX_CRC_ERROR)) {
/*
* This should not happen since we did not request
* to receive those frames when we filled RXCSR0.
*/
DPRINTFN(sc, 5, "PHY or CRC error flags 0x%08x\n",
le32toh(desc->flags));
data->drop = 1;
}
if (((le32toh(desc->flags) >> 16) & 0xfff) > MCLBYTES) {
DPRINTFN(sc, 5, "%s\n", "bad length");
data->drop = 1;
}
/* mark the frame for decryption */
desc->flags |= htole32(RT2560_RX_CIPHER_BUSY);
DPRINTFN(sc, 15, "rx done idx=%u\n", sc->rxq.cur);
sc->rxq.cur = (sc->rxq.cur + 1) % RT2560_RX_RING_COUNT;
}
bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map,
BUS_DMASYNC_PREWRITE);
/* kick decrypt */
RAL_WRITE(sc, RT2560_SECCSR0, RT2560_KICK_DECRYPT);
}
static void
rt2560_beacon_update(struct ieee80211vap *vap, int item)
{
struct rt2560_vap *rvp = RT2560_VAP(vap);
struct ieee80211_beacon_offsets *bo = &rvp->ral_bo;
setbit(bo->bo_flags, item);
}
/*
* This function is called periodically in IBSS mode when a new beacon must be
* sent out.
*/
static void
rt2560_beacon_expire(struct rt2560_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
struct rt2560_vap *rvp = RT2560_VAP(vap);
struct rt2560_tx_data *data;
if (ic->ic_opmode != IEEE80211_M_IBSS &&
ic->ic_opmode != IEEE80211_M_HOSTAP &&
ic->ic_opmode != IEEE80211_M_MBSS)
return;
data = &sc->bcnq.data[sc->bcnq.next];
/*
* Don't send beacon if bsschan isn't set
*/
if (data->ni == NULL)
return;
bus_dmamap_sync(sc->bcnq.data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->bcnq.data_dmat, data->map);
/* XXX 1 =>'s mcast frames which means all PS sta's will wakeup! */
ieee80211_beacon_update(data->ni, &rvp->ral_bo, data->m, 1);
rt2560_tx_bcn(sc, data->m, data->ni);
DPRINTFN(sc, 15, "%s", "beacon expired\n");
sc->bcnq.next = (sc->bcnq.next + 1) % RT2560_BEACON_RING_COUNT;
}
/* ARGSUSED */
static void
rt2560_wakeup_expire(struct rt2560_softc *sc)
{
DPRINTFN(sc, 2, "%s", "wakeup expired\n");
}
void
rt2560_intr(void *arg)
{
struct rt2560_softc *sc = arg;
struct ifnet *ifp = sc->sc_ifp;
uint32_t r;
RAL_LOCK(sc);
/* disable interrupts */
RAL_WRITE(sc, RT2560_CSR8, 0xffffffff);
/* don't re-enable interrupts if we're shutting down */
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
RAL_UNLOCK(sc);
return;
}
r = RAL_READ(sc, RT2560_CSR7);
RAL_WRITE(sc, RT2560_CSR7, r);
if (r & RT2560_BEACON_EXPIRE)
rt2560_beacon_expire(sc);
if (r & RT2560_WAKEUP_EXPIRE)
rt2560_wakeup_expire(sc);
if (r & RT2560_ENCRYPTION_DONE)
rt2560_encryption_intr(sc);
if (r & RT2560_TX_DONE)
rt2560_tx_intr(sc);
if (r & RT2560_PRIO_DONE)
rt2560_prio_intr(sc);
if (r & RT2560_DECRYPTION_DONE)
rt2560_decryption_intr(sc);
if (r & RT2560_RX_DONE) {
rt2560_rx_intr(sc);
rt2560_encryption_intr(sc);
}
/* re-enable interrupts */
RAL_WRITE(sc, RT2560_CSR8, RT2560_INTR_MASK);
RAL_UNLOCK(sc);
}
#define RAL_SIFS 10 /* us */
#define RT2560_TXRX_TURNAROUND 10 /* us */
static uint8_t
rt2560_plcp_signal(int rate)
{
switch (rate) {
/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
case 12: return 0xb;
case 18: return 0xf;
case 24: return 0xa;
case 36: return 0xe;
case 48: return 0x9;
case 72: return 0xd;
case 96: return 0x8;
case 108: return 0xc;
/* CCK rates (NB: not IEEE std, device-specific) */
case 2: return 0x0;
case 4: return 0x1;
case 11: return 0x2;
case 22: return 0x3;
}
return 0xff; /* XXX unsupported/unknown rate */
}
static void
rt2560_setup_tx_desc(struct rt2560_softc *sc, struct rt2560_tx_desc *desc,
uint32_t flags, int len, int rate, int encrypt, bus_addr_t physaddr)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
uint16_t plcp_length;
int remainder;
desc->flags = htole32(flags);
desc->flags |= htole32(len << 16);
desc->physaddr = htole32(physaddr);
desc->wme = htole16(
RT2560_AIFSN(2) |
RT2560_LOGCWMIN(3) |
RT2560_LOGCWMAX(8));
/* setup PLCP fields */
desc->plcp_signal = rt2560_plcp_signal(rate);
desc->plcp_service = 4;
len += IEEE80211_CRC_LEN;
if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM) {
desc->flags |= htole32(RT2560_TX_OFDM);
plcp_length = len & 0xfff;
desc->plcp_length_hi = plcp_length >> 6;
desc->plcp_length_lo = plcp_length & 0x3f;
} else {
plcp_length = (16 * len + rate - 1) / rate;
if (rate == 22) {
remainder = (16 * len) % 22;
if (remainder != 0 && remainder < 7)
desc->plcp_service |= RT2560_PLCP_LENGEXT;
}
desc->plcp_length_hi = plcp_length >> 8;
desc->plcp_length_lo = plcp_length & 0xff;
if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
desc->plcp_signal |= 0x08;
}
if (!encrypt)
desc->flags |= htole32(RT2560_TX_VALID);
desc->flags |= encrypt ? htole32(RT2560_TX_CIPHER_BUSY)
: htole32(RT2560_TX_BUSY);
}
static int
rt2560_tx_bcn(struct rt2560_softc *sc, struct mbuf *m0,
struct ieee80211_node *ni)
{
struct ieee80211vap *vap = ni->ni_vap;
struct rt2560_tx_desc *desc;
struct rt2560_tx_data *data;
bus_dma_segment_t segs[RT2560_MAX_SCATTER];
int nsegs, rate, error;
desc = &sc->bcnq.desc[sc->bcnq.cur];
data = &sc->bcnq.data[sc->bcnq.cur];
/* XXX maybe a separate beacon rate? */
rate = vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)].mgmtrate;
error = bus_dmamap_load_mbuf_sg(sc->bcnq.data_dmat, data->map, m0,
segs, &nsegs, BUS_DMA_NOWAIT);
if (error != 0) {
device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
error);
m_freem(m0);
return error;
}
if (ieee80211_radiotap_active_vap(vap)) {
struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap;
tap->wt_flags = 0;
tap->wt_rate = rate;
tap->wt_antenna = sc->tx_ant;
ieee80211_radiotap_tx(vap, m0);
}
data->m = m0;
data->ni = ni;
rt2560_setup_tx_desc(sc, desc, RT2560_TX_IFS_NEWBACKOFF |
RT2560_TX_TIMESTAMP, m0->m_pkthdr.len, rate, 0, segs->ds_addr);
DPRINTFN(sc, 10, "sending beacon frame len=%u idx=%u rate=%u\n",
m0->m_pkthdr.len, sc->bcnq.cur, rate);
bus_dmamap_sync(sc->bcnq.data_dmat, data->map, BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(sc->bcnq.desc_dmat, sc->bcnq.desc_map,
BUS_DMASYNC_PREWRITE);
sc->bcnq.cur = (sc->bcnq.cur + 1) % RT2560_BEACON_RING_COUNT;
return 0;
}
static int
rt2560_tx_mgt(struct rt2560_softc *sc, struct mbuf *m0,
struct ieee80211_node *ni)
{
struct ieee80211vap *vap = ni->ni_vap;
struct ieee80211com *ic = ni->ni_ic;
struct rt2560_tx_desc *desc;
struct rt2560_tx_data *data;
struct ieee80211_frame *wh;
struct ieee80211_key *k;
bus_dma_segment_t segs[RT2560_MAX_SCATTER];
uint16_t dur;
uint32_t flags = 0;
int nsegs, rate, error;
desc = &sc->prioq.desc[sc->prioq.cur];
data = &sc->prioq.data[sc->prioq.cur];
rate = vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)].mgmtrate;
wh = mtod(m0, struct ieee80211_frame *);
if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
k = ieee80211_crypto_encap(ni, m0);
if (k == NULL) {
m_freem(m0);
return ENOBUFS;
}
}
error = bus_dmamap_load_mbuf_sg(sc->prioq.data_dmat, data->map, m0,
segs, &nsegs, 0);
if (error != 0) {
device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
error);
m_freem(m0);
return error;
}
if (ieee80211_radiotap_active_vap(vap)) {
struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap;
tap->wt_flags = 0;
tap->wt_rate = rate;
tap->wt_antenna = sc->tx_ant;
ieee80211_radiotap_tx(vap, m0);
}
data->m = m0;
data->ni = ni;
/* management frames are not taken into account for amrr */
data->rix = IEEE80211_FIXED_RATE_NONE;
wh = mtod(m0, struct ieee80211_frame *);
if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
flags |= RT2560_TX_ACK;
dur = ieee80211_ack_duration(ic->ic_rt,
rate, ic->ic_flags & IEEE80211_F_SHPREAMBLE);
*(uint16_t *)wh->i_dur = htole16(dur);
/* tell hardware to add timestamp for probe responses */
if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
IEEE80211_FC0_TYPE_MGT &&
(wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
IEEE80211_FC0_SUBTYPE_PROBE_RESP)
flags |= RT2560_TX_TIMESTAMP;
}
rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate, 0,
segs->ds_addr);
bus_dmamap_sync(sc->prioq.data_dmat, data->map, BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(sc->prioq.desc_dmat, sc->prioq.desc_map,
BUS_DMASYNC_PREWRITE);
DPRINTFN(sc, 10, "sending mgt frame len=%u idx=%u rate=%u\n",
m0->m_pkthdr.len, sc->prioq.cur, rate);
/* kick prio */
sc->prioq.queued++;
sc->prioq.cur = (sc->prioq.cur + 1) % RT2560_PRIO_RING_COUNT;
RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_PRIO);
return 0;
}
static int
rt2560_sendprot(struct rt2560_softc *sc,
const struct mbuf *m, struct ieee80211_node *ni, int prot, int rate)
{
struct ieee80211com *ic = ni->ni_ic;
const struct ieee80211_frame *wh;
struct rt2560_tx_desc *desc;
struct rt2560_tx_data *data;
struct mbuf *mprot;
int protrate, ackrate, pktlen, flags, isshort, error;
uint16_t dur;
bus_dma_segment_t segs[RT2560_MAX_SCATTER];
int nsegs;
KASSERT(prot == IEEE80211_PROT_RTSCTS || prot == IEEE80211_PROT_CTSONLY,
("protection %d", prot));
wh = mtod(m, const struct ieee80211_frame *);
pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN;
protrate = ieee80211_ctl_rate(ic->ic_rt, rate);
ackrate = ieee80211_ack_rate(ic->ic_rt, rate);
isshort = (ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0;
dur = ieee80211_compute_duration(ic->ic_rt, pktlen, rate, isshort)
+ ieee80211_ack_duration(ic->ic_rt, rate, isshort);
flags = RT2560_TX_MORE_FRAG;
if (prot == IEEE80211_PROT_RTSCTS) {
/* NB: CTS is the same size as an ACK */
dur += ieee80211_ack_duration(ic->ic_rt, rate, isshort);
flags |= RT2560_TX_ACK;
mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur);
} else {
mprot = ieee80211_alloc_cts(ic, ni->ni_vap->iv_myaddr, dur);
}
if (mprot == NULL) {
/* XXX stat + msg */
return ENOBUFS;
}
desc = &sc->txq.desc[sc->txq.cur_encrypt];
data = &sc->txq.data[sc->txq.cur_encrypt];
error = bus_dmamap_load_mbuf_sg(sc->txq.data_dmat, data->map,
mprot, segs, &nsegs, 0);
if (error != 0) {
device_printf(sc->sc_dev,
"could not map mbuf (error %d)\n", error);
m_freem(mprot);
return error;
}
data->m = mprot;
data->ni = ieee80211_ref_node(ni);
/* ctl frames are not taken into account for amrr */
data->rix = IEEE80211_FIXED_RATE_NONE;
rt2560_setup_tx_desc(sc, desc, flags, mprot->m_pkthdr.len, protrate, 1,
segs->ds_addr);
bus_dmamap_sync(sc->txq.data_dmat, data->map,
BUS_DMASYNC_PREWRITE);
sc->txq.queued++;
sc->txq.cur_encrypt = (sc->txq.cur_encrypt + 1) % RT2560_TX_RING_COUNT;
return 0;
}
static int
rt2560_tx_raw(struct rt2560_softc *sc, struct mbuf *m0,
struct ieee80211_node *ni, const struct ieee80211_bpf_params *params)
{
struct ieee80211vap *vap = ni->ni_vap;
struct ieee80211com *ic = ni->ni_ic;
struct rt2560_tx_desc *desc;
struct rt2560_tx_data *data;
bus_dma_segment_t segs[RT2560_MAX_SCATTER];
uint32_t flags;
int nsegs, rate, error;
desc = &sc->prioq.desc[sc->prioq.cur];
data = &sc->prioq.data[sc->prioq.cur];
rate = params->ibp_rate0;
if (!ieee80211_isratevalid(ic->ic_rt, rate)) {
/* XXX fall back to mcast/mgmt rate? */
m_freem(m0);
return EINVAL;
}
flags = 0;
if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
flags |= RT2560_TX_ACK;
if (params->ibp_flags & (IEEE80211_BPF_RTS|IEEE80211_BPF_CTS)) {
error = rt2560_sendprot(sc, m0, ni,
params->ibp_flags & IEEE80211_BPF_RTS ?
IEEE80211_PROT_RTSCTS : IEEE80211_PROT_CTSONLY,
rate);
if (error) {
m_freem(m0);
return error;
}
flags |= RT2560_TX_LONG_RETRY | RT2560_TX_IFS_SIFS;
}
error = bus_dmamap_load_mbuf_sg(sc->prioq.data_dmat, data->map, m0,
segs, &nsegs, 0);
if (error != 0) {
device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
error);
m_freem(m0);
return error;
}
if (ieee80211_radiotap_active_vap(vap)) {
struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap;
tap->wt_flags = 0;
tap->wt_rate = rate;
tap->wt_antenna = sc->tx_ant;
ieee80211_radiotap_tx(ni->ni_vap, m0);
}
data->m = m0;
data->ni = ni;
/* XXX need to setup descriptor ourself */
rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len,
rate, (params->ibp_flags & IEEE80211_BPF_CRYPTO) != 0,
segs->ds_addr);
bus_dmamap_sync(sc->prioq.data_dmat, data->map, BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(sc->prioq.desc_dmat, sc->prioq.desc_map,
BUS_DMASYNC_PREWRITE);
DPRINTFN(sc, 10, "sending raw frame len=%u idx=%u rate=%u\n",
m0->m_pkthdr.len, sc->prioq.cur, rate);
/* kick prio */
sc->prioq.queued++;
sc->prioq.cur = (sc->prioq.cur + 1) % RT2560_PRIO_RING_COUNT;
RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_PRIO);
return 0;
}
static int
rt2560_tx_data(struct rt2560_softc *sc, struct mbuf *m0,
struct ieee80211_node *ni)
{
struct ieee80211vap *vap = ni->ni_vap;
struct ieee80211com *ic = ni->ni_ic;
struct rt2560_tx_desc *desc;
struct rt2560_tx_data *data;
struct ieee80211_frame *wh;
const struct ieee80211_txparam *tp;
struct ieee80211_key *k;
struct mbuf *mnew;
bus_dma_segment_t segs[RT2560_MAX_SCATTER];
uint16_t dur;
uint32_t flags;
int nsegs, rate, error;
wh = mtod(m0, struct ieee80211_frame *);
tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
rate = tp->mcastrate;
} else if (m0->m_flags & M_EAPOL) {
rate = tp->mgmtrate;
} else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
rate = tp->ucastrate;
} else {
(void) ieee80211_ratectl_rate(ni, NULL, 0);
rate = ni->ni_txrate;
}
if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
k = ieee80211_crypto_encap(ni, m0);
if (k == NULL) {
m_freem(m0);
return ENOBUFS;
}
/* packet header may have moved, reset our local pointer */
wh = mtod(m0, struct ieee80211_frame *);
}
flags = 0;
if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
int prot = IEEE80211_PROT_NONE;
if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold)
prot = IEEE80211_PROT_RTSCTS;
else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM)
prot = ic->ic_protmode;
if (prot != IEEE80211_PROT_NONE) {
error = rt2560_sendprot(sc, m0, ni, prot, rate);
if (error) {
m_freem(m0);
return error;
}
flags |= RT2560_TX_LONG_RETRY | RT2560_TX_IFS_SIFS;
}
}
data = &sc->txq.data[sc->txq.cur_encrypt];
desc = &sc->txq.desc[sc->txq.cur_encrypt];
error = bus_dmamap_load_mbuf_sg(sc->txq.data_dmat, data->map, m0,
segs, &nsegs, 0);
if (error != 0 && error != EFBIG) {
device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
error);
m_freem(m0);
return error;
}
if (error != 0) {
mnew = m_defrag(m0, M_NOWAIT);
if (mnew == NULL) {
device_printf(sc->sc_dev,
"could not defragment mbuf\n");
m_freem(m0);
return ENOBUFS;
}
m0 = mnew;
error = bus_dmamap_load_mbuf_sg(sc->txq.data_dmat, data->map,
m0, segs, &nsegs, 0);
if (error != 0) {
device_printf(sc->sc_dev,
"could not map mbuf (error %d)\n", error);
m_freem(m0);
return error;
}
/* packet header may have moved, reset our local pointer */
wh = mtod(m0, struct ieee80211_frame *);
}
if (ieee80211_radiotap_active_vap(vap)) {
struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap;
tap->wt_flags = 0;
tap->wt_rate = rate;
tap->wt_antenna = sc->tx_ant;
ieee80211_radiotap_tx(vap, m0);
}
data->m = m0;
data->ni = ni;
/* remember link conditions for rate adaptation algorithm */
if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE) {
data->rix = ni->ni_txrate;
/* XXX probably need last rssi value and not avg */
data->rssi = ic->ic_node_getrssi(ni);
} else
data->rix = IEEE80211_FIXED_RATE_NONE;
if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
flags |= RT2560_TX_ACK;
dur = ieee80211_ack_duration(ic->ic_rt,
rate, ic->ic_flags & IEEE80211_F_SHPREAMBLE);
*(uint16_t *)wh->i_dur = htole16(dur);
}
rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate, 1,
segs->ds_addr);
bus_dmamap_sync(sc->txq.data_dmat, data->map, BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map,
BUS_DMASYNC_PREWRITE);
DPRINTFN(sc, 10, "sending data frame len=%u idx=%u rate=%u\n",
m0->m_pkthdr.len, sc->txq.cur_encrypt, rate);
/* kick encrypt */
sc->txq.queued++;
sc->txq.cur_encrypt = (sc->txq.cur_encrypt + 1) % RT2560_TX_RING_COUNT;
RAL_WRITE(sc, RT2560_SECCSR1, RT2560_KICK_ENCRYPT);
return 0;
}
static void
rt2560_start_locked(struct ifnet *ifp)
{
struct rt2560_softc *sc = ifp->if_softc;
struct mbuf *m;
struct ieee80211_node *ni;
RAL_LOCK_ASSERT(sc);
for (;;) {
IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
if (m == NULL)
break;
if (sc->txq.queued >= RT2560_TX_RING_COUNT - 1) {
IFQ_DRV_PREPEND(&ifp->if_snd, m);
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
sc->sc_flags |= RT2560_F_DATA_OACTIVE;
break;
}
ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
if (rt2560_tx_data(sc, m, ni) != 0) {
ieee80211_free_node(ni);
ifp->if_oerrors++;
break;
}
sc->sc_tx_timer = 5;
}
}
static void
rt2560_start(struct ifnet *ifp)
{
struct rt2560_softc *sc = ifp->if_softc;
RAL_LOCK(sc);
rt2560_start_locked(ifp);
RAL_UNLOCK(sc);
}
static void
rt2560_watchdog(void *arg)
{
struct rt2560_softc *sc = arg;
struct ifnet *ifp = sc->sc_ifp;
RAL_LOCK_ASSERT(sc);
KASSERT(ifp->if_drv_flags & IFF_DRV_RUNNING, ("not running"));
if (sc->sc_invalid) /* card ejected */
return;
rt2560_encryption_intr(sc);
rt2560_tx_intr(sc);
if (sc->sc_tx_timer > 0 && --sc->sc_tx_timer == 0) {
if_printf(ifp, "device timeout\n");
rt2560_init_locked(sc);
ifp->if_oerrors++;
/* NB: callout is reset in rt2560_init() */
return;
}
callout_reset(&sc->watchdog_ch, hz, rt2560_watchdog, sc);
}
static int
rt2560_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct rt2560_softc *sc = ifp->if_softc;
struct ieee80211com *ic = ifp->if_l2com;
struct ifreq *ifr = (struct ifreq *) data;
int error = 0, startall = 0;
switch (cmd) {
case SIOCSIFFLAGS:
RAL_LOCK(sc);
if (ifp->if_flags & IFF_UP) {
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
rt2560_init_locked(sc);
startall = 1;
} else
rt2560_update_promisc(ifp);
} else {
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
rt2560_stop_locked(sc);
}
RAL_UNLOCK(sc);
if (startall)
ieee80211_start_all(ic);
break;
case SIOCGIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
break;
case SIOCGIFADDR:
error = ether_ioctl(ifp, cmd, data);
break;
default:
error = EINVAL;
break;
}
return error;
}
static void
rt2560_bbp_write(struct rt2560_softc *sc, uint8_t reg, uint8_t val)
{
uint32_t tmp;
int ntries;
for (ntries = 0; ntries < 100; ntries++) {
if (!(RAL_READ(sc, RT2560_BBPCSR) & RT2560_BBP_BUSY))
break;
DELAY(1);
}
if (ntries == 100) {
device_printf(sc->sc_dev, "could not write to BBP\n");
return;
}
tmp = RT2560_BBP_WRITE | RT2560_BBP_BUSY | reg << 8 | val;
RAL_WRITE(sc, RT2560_BBPCSR, tmp);
DPRINTFN(sc, 15, "BBP R%u <- 0x%02x\n", reg, val);
}
static uint8_t
rt2560_bbp_read(struct rt2560_softc *sc, uint8_t reg)
{
uint32_t val;
int ntries;
for (ntries = 0; ntries < 100; ntries++) {
if (!(RAL_READ(sc, RT2560_BBPCSR) & RT2560_BBP_BUSY))
break;
DELAY(1);
}
if (ntries == 100) {
device_printf(sc->sc_dev, "could not read from BBP\n");
return 0;
}
val = RT2560_BBP_BUSY | reg << 8;
RAL_WRITE(sc, RT2560_BBPCSR, val);
for (ntries = 0; ntries < 100; ntries++) {
val = RAL_READ(sc, RT2560_BBPCSR);
if (!(val & RT2560_BBP_BUSY))
return val & 0xff;
DELAY(1);
}
device_printf(sc->sc_dev, "could not read from BBP\n");
return 0;
}
static void
rt2560_rf_write(struct rt2560_softc *sc, uint8_t reg, uint32_t val)
{
uint32_t tmp;
int ntries;
for (ntries = 0; ntries < 100; ntries++) {
if (!(RAL_READ(sc, RT2560_RFCSR) & RT2560_RF_BUSY))
break;
DELAY(1);
}
if (ntries == 100) {
device_printf(sc->sc_dev, "could not write to RF\n");
return;
}
tmp = RT2560_RF_BUSY | RT2560_RF_20BIT | (val & 0xfffff) << 2 |
(reg & 0x3);
RAL_WRITE(sc, RT2560_RFCSR, tmp);
/* remember last written value in sc */
sc->rf_regs[reg] = val;
DPRINTFN(sc, 15, "RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff);
}
static void
rt2560_set_chan(struct rt2560_softc *sc, struct ieee80211_channel *c)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
uint8_t power, tmp;
u_int i, chan;
chan = ieee80211_chan2ieee(ic, c);
KASSERT(chan != 0 && chan != IEEE80211_CHAN_ANY, ("chan 0x%x", chan));
if (IEEE80211_IS_CHAN_2GHZ(c))
power = min(sc->txpow[chan - 1], 31);
else
power = 31;
/* adjust txpower using ifconfig settings */
power -= (100 - ic->ic_txpowlimit) / 8;
DPRINTFN(sc, 2, "setting channel to %u, txpower to %u\n", chan, power);
switch (sc->rf_rev) {
case RT2560_RF_2522:
rt2560_rf_write(sc, RAL_RF1, 0x00814);
rt2560_rf_write(sc, RAL_RF2, rt2560_rf2522_r2[chan - 1]);
rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
break;
case RT2560_RF_2523:
rt2560_rf_write(sc, RAL_RF1, 0x08804);
rt2560_rf_write(sc, RAL_RF2, rt2560_rf2523_r2[chan - 1]);
rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x38044);
rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
break;
case RT2560_RF_2524:
rt2560_rf_write(sc, RAL_RF1, 0x0c808);
rt2560_rf_write(sc, RAL_RF2, rt2560_rf2524_r2[chan - 1]);
rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
break;
case RT2560_RF_2525:
rt2560_rf_write(sc, RAL_RF1, 0x08808);
rt2560_rf_write(sc, RAL_RF2, rt2560_rf2525_hi_r2[chan - 1]);
rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
rt2560_rf_write(sc, RAL_RF1, 0x08808);
rt2560_rf_write(sc, RAL_RF2, rt2560_rf2525_r2[chan - 1]);
rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
break;
case RT2560_RF_2525E:
rt2560_rf_write(sc, RAL_RF1, 0x08808);
rt2560_rf_write(sc, RAL_RF2, rt2560_rf2525e_r2[chan - 1]);
rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282);
break;
case RT2560_RF_2526:
rt2560_rf_write(sc, RAL_RF2, rt2560_rf2526_hi_r2[chan - 1]);
rt2560_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
rt2560_rf_write(sc, RAL_RF1, 0x08804);
rt2560_rf_write(sc, RAL_RF2, rt2560_rf2526_r2[chan - 1]);
rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
rt2560_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
break;
/* dual-band RF */
case RT2560_RF_5222:
for (i = 0; rt2560_rf5222[i].chan != chan; i++);
rt2560_rf_write(sc, RAL_RF1, rt2560_rf5222[i].r1);
rt2560_rf_write(sc, RAL_RF2, rt2560_rf5222[i].r2);
rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
rt2560_rf_write(sc, RAL_RF4, rt2560_rf5222[i].r4);
break;
default:
printf("unknown ral rev=%d\n", sc->rf_rev);
}
/* XXX */
if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
/* set Japan filter bit for channel 14 */
tmp = rt2560_bbp_read(sc, 70);
tmp &= ~RT2560_JAPAN_FILTER;
if (chan == 14)
tmp |= RT2560_JAPAN_FILTER;
rt2560_bbp_write(sc, 70, tmp);
/* clear CRC errors */
RAL_READ(sc, RT2560_CNT0);
}
}
static void
rt2560_set_channel(struct ieee80211com *ic)
{
struct ifnet *ifp = ic->ic_ifp;
struct rt2560_softc *sc = ifp->if_softc;
RAL_LOCK(sc);
rt2560_set_chan(sc, ic->ic_curchan);
RAL_UNLOCK(sc);
}
#if 0
/*
* Disable RF auto-tuning.
*/
static void
rt2560_disable_rf_tune(struct rt2560_softc *sc)
{
uint32_t tmp;
if (sc->rf_rev != RT2560_RF_2523) {
tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE;
rt2560_rf_write(sc, RAL_RF1, tmp);
}
tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE;
rt2560_rf_write(sc, RAL_RF3, tmp);
DPRINTFN(sc, 2, "%s", "disabling RF autotune\n");
}
#endif
/*
* Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
* synchronization.
*/
static void
rt2560_enable_tsf_sync(struct rt2560_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
uint16_t logcwmin, preload;
uint32_t tmp;
/* first, disable TSF synchronization */
RAL_WRITE(sc, RT2560_CSR14, 0);
tmp = 16 * vap->iv_bss->ni_intval;
RAL_WRITE(sc, RT2560_CSR12, tmp);
RAL_WRITE(sc, RT2560_CSR13, 0);
logcwmin = 5;
preload = (vap->iv_opmode == IEEE80211_M_STA) ? 384 : 1024;
tmp = logcwmin << 16 | preload;
RAL_WRITE(sc, RT2560_BCNOCSR, tmp);
/* finally, enable TSF synchronization */
tmp = RT2560_ENABLE_TSF | RT2560_ENABLE_TBCN;
if (ic->ic_opmode == IEEE80211_M_STA)
tmp |= RT2560_ENABLE_TSF_SYNC(1);
else
tmp |= RT2560_ENABLE_TSF_SYNC(2) |
RT2560_ENABLE_BEACON_GENERATOR;
RAL_WRITE(sc, RT2560_CSR14, tmp);
DPRINTF(sc, "%s", "enabling TSF synchronization\n");
}
static void
rt2560_enable_tsf(struct rt2560_softc *sc)
{
RAL_WRITE(sc, RT2560_CSR14, 0);
RAL_WRITE(sc, RT2560_CSR14,
RT2560_ENABLE_TSF_SYNC(2) | RT2560_ENABLE_TSF);
}
static void
rt2560_update_plcp(struct rt2560_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
/* no short preamble for 1Mbps */
RAL_WRITE(sc, RT2560_PLCP1MCSR, 0x00700400);
if (!(ic->ic_flags & IEEE80211_F_SHPREAMBLE)) {
/* values taken from the reference driver */
RAL_WRITE(sc, RT2560_PLCP2MCSR, 0x00380401);
RAL_WRITE(sc, RT2560_PLCP5p5MCSR, 0x00150402);
RAL_WRITE(sc, RT2560_PLCP11MCSR, 0x000b8403);
} else {
/* same values as above or'ed 0x8 */
RAL_WRITE(sc, RT2560_PLCP2MCSR, 0x00380409);
RAL_WRITE(sc, RT2560_PLCP5p5MCSR, 0x0015040a);
RAL_WRITE(sc, RT2560_PLCP11MCSR, 0x000b840b);
}
DPRINTF(sc, "updating PLCP for %s preamble\n",
(ic->ic_flags & IEEE80211_F_SHPREAMBLE) ? "short" : "long");
}
/*
* This function can be called by ieee80211_set_shortslottime(). Refer to
* IEEE Std 802.11-1999 pp. 85 to know how these values are computed.
*/
static void
rt2560_update_slot(struct ifnet *ifp)
{
struct rt2560_softc *sc = ifp->if_softc;
struct ieee80211com *ic = ifp->if_l2com;
uint8_t slottime;
uint16_t tx_sifs, tx_pifs, tx_difs, eifs;
uint32_t tmp;
#ifndef FORCE_SLOTTIME
slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
#else
/*
* Setting slot time according to "short slot time" capability
* in beacon/probe_resp seems to cause problem to acknowledge
* certain AP's data frames transimitted at CCK/DS rates: the
* problematic AP keeps retransmitting data frames, probably
* because MAC level acks are not received by hardware.
* So we cheat a little bit here by claiming we are capable of
* "short slot time" but setting hardware slot time to the normal
* slot time. ral(4) does not seem to have trouble to receive
* frames transmitted using short slot time even if hardware
* slot time is set to normal slot time. If we didn't use this
* trick, we would have to claim that short slot time is not
* supported; this would give relative poor RX performance
* (-1Mb~-2Mb lower) and the _whole_ BSS would stop using short
* slot time.
*/
slottime = 20;
#endif
/* update the MAC slot boundaries */
tx_sifs = RAL_SIFS - RT2560_TXRX_TURNAROUND;
tx_pifs = tx_sifs + slottime;
tx_difs = tx_sifs + 2 * slottime;
eifs = (ic->ic_curmode == IEEE80211_MODE_11B) ? 364 : 60;
tmp = RAL_READ(sc, RT2560_CSR11);
tmp = (tmp & ~0x1f00) | slottime << 8;
RAL_WRITE(sc, RT2560_CSR11, tmp);
tmp = tx_pifs << 16 | tx_sifs;
RAL_WRITE(sc, RT2560_CSR18, tmp);
tmp = eifs << 16 | tx_difs;
RAL_WRITE(sc, RT2560_CSR19, tmp);
DPRINTF(sc, "setting slottime to %uus\n", slottime);
}
static void
rt2560_set_basicrates(struct rt2560_softc *sc,
const struct ieee80211_rateset *rs)
{
#define RV(r) ((r) & IEEE80211_RATE_VAL)
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
uint32_t mask = 0;
uint8_t rate;
int i;
for (i = 0; i < rs->rs_nrates; i++) {
rate = rs->rs_rates[i];
if (!(rate & IEEE80211_RATE_BASIC))
continue;
mask |= 1 << ieee80211_legacy_rate_lookup(ic->ic_rt, RV(rate));
}
RAL_WRITE(sc, RT2560_ARSP_PLCP_1, mask);
DPRINTF(sc, "Setting basic rate mask to 0x%x\n", mask);
#undef RV
}
static void
rt2560_update_led(struct rt2560_softc *sc, int led1, int led2)
{
uint32_t tmp;
/* set ON period to 70ms and OFF period to 30ms */
tmp = led1 << 16 | led2 << 17 | 70 << 8 | 30;
RAL_WRITE(sc, RT2560_LEDCSR, tmp);
}
static void
rt2560_set_bssid(struct rt2560_softc *sc, const uint8_t *bssid)
{
uint32_t tmp;
tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
RAL_WRITE(sc, RT2560_CSR5, tmp);
tmp = bssid[4] | bssid[5] << 8;
RAL_WRITE(sc, RT2560_CSR6, tmp);
DPRINTF(sc, "setting BSSID to %6D\n", bssid, ":");
}
static void
rt2560_set_macaddr(struct rt2560_softc *sc, uint8_t *addr)
{
uint32_t tmp;
tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
RAL_WRITE(sc, RT2560_CSR3, tmp);
tmp = addr[4] | addr[5] << 8;
RAL_WRITE(sc, RT2560_CSR4, tmp);
DPRINTF(sc, "setting MAC address to %6D\n", addr, ":");
}
static void
rt2560_get_macaddr(struct rt2560_softc *sc, uint8_t *addr)
{
uint32_t tmp;
tmp = RAL_READ(sc, RT2560_CSR3);
addr[0] = tmp & 0xff;
addr[1] = (tmp >> 8) & 0xff;
addr[2] = (tmp >> 16) & 0xff;
addr[3] = (tmp >> 24);
tmp = RAL_READ(sc, RT2560_CSR4);
addr[4] = tmp & 0xff;
addr[5] = (tmp >> 8) & 0xff;
}
static void
rt2560_update_promisc(struct ifnet *ifp)
{
struct rt2560_softc *sc = ifp->if_softc;
uint32_t tmp;
tmp = RAL_READ(sc, RT2560_RXCSR0);
tmp &= ~RT2560_DROP_NOT_TO_ME;
if (!(ifp->if_flags & IFF_PROMISC))
tmp |= RT2560_DROP_NOT_TO_ME;
RAL_WRITE(sc, RT2560_RXCSR0, tmp);
DPRINTF(sc, "%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
"entering" : "leaving");
}
static const char *
rt2560_get_rf(int rev)
{
switch (rev) {
case RT2560_RF_2522: return "RT2522";
case RT2560_RF_2523: return "RT2523";
case RT2560_RF_2524: return "RT2524";
case RT2560_RF_2525: return "RT2525";
case RT2560_RF_2525E: return "RT2525e";
case RT2560_RF_2526: return "RT2526";
case RT2560_RF_5222: return "RT5222";
default: return "unknown";
}
}
static void
rt2560_read_config(struct rt2560_softc *sc)
{
uint16_t val;
int i;
val = rt2560_eeprom_read(sc, RT2560_EEPROM_CONFIG0);
sc->rf_rev = (val >> 11) & 0x7;
sc->hw_radio = (val >> 10) & 0x1;
sc->led_mode = (val >> 6) & 0x7;
sc->rx_ant = (val >> 4) & 0x3;
sc->tx_ant = (val >> 2) & 0x3;
sc->nb_ant = val & 0x3;
/* read default values for BBP registers */
for (i = 0; i < 16; i++) {
val = rt2560_eeprom_read(sc, RT2560_EEPROM_BBP_BASE + i);
if (val == 0 || val == 0xffff)
continue;
sc->bbp_prom[i].reg = val >> 8;
sc->bbp_prom[i].val = val & 0xff;
}
/* read Tx power for all b/g channels */
for (i = 0; i < 14 / 2; i++) {
val = rt2560_eeprom_read(sc, RT2560_EEPROM_TXPOWER + i);
sc->txpow[i * 2] = val & 0xff;
sc->txpow[i * 2 + 1] = val >> 8;
}
for (i = 0; i < 14; ++i) {
if (sc->txpow[i] > 31)
sc->txpow[i] = 24;
}
val = rt2560_eeprom_read(sc, RT2560_EEPROM_CALIBRATE);
if ((val & 0xff) == 0xff)
sc->rssi_corr = RT2560_DEFAULT_RSSI_CORR;
else
sc->rssi_corr = val & 0xff;
DPRINTF(sc, "rssi correction %d, calibrate 0x%02x\n",
sc->rssi_corr, val);
}
static void
rt2560_scan_start(struct ieee80211com *ic)
{
struct ifnet *ifp = ic->ic_ifp;
struct rt2560_softc *sc = ifp->if_softc;
/* abort TSF synchronization */
RAL_WRITE(sc, RT2560_CSR14, 0);
rt2560_set_bssid(sc, ifp->if_broadcastaddr);
}
static void
rt2560_scan_end(struct ieee80211com *ic)
{
struct ifnet *ifp = ic->ic_ifp;
struct rt2560_softc *sc = ifp->if_softc;
struct ieee80211vap *vap = ic->ic_scan->ss_vap;
rt2560_enable_tsf_sync(sc);
/* XXX keep local copy */
rt2560_set_bssid(sc, vap->iv_bss->ni_bssid);
}
static int
rt2560_bbp_init(struct rt2560_softc *sc)
{
#define N(a) (sizeof (a) / sizeof ((a)[0]))
int i, ntries;
/* wait for BBP to be ready */
for (ntries = 0; ntries < 100; ntries++) {
if (rt2560_bbp_read(sc, RT2560_BBP_VERSION) != 0)
break;
DELAY(1);
}
if (ntries == 100) {
device_printf(sc->sc_dev, "timeout waiting for BBP\n");
return EIO;
}
/* initialize BBP registers to default values */
for (i = 0; i < N(rt2560_def_bbp); i++) {
rt2560_bbp_write(sc, rt2560_def_bbp[i].reg,
rt2560_def_bbp[i].val);
}
/* initialize BBP registers to values stored in EEPROM */
for (i = 0; i < 16; i++) {
if (sc->bbp_prom[i].reg == 0 && sc->bbp_prom[i].val == 0)
break;
rt2560_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
}
rt2560_bbp_write(sc, 17, 0x48); /* XXX restore bbp17 */
return 0;
#undef N
}
static void
rt2560_set_txantenna(struct rt2560_softc *sc, int antenna)
{
uint32_t tmp;
uint8_t tx;
tx = rt2560_bbp_read(sc, RT2560_BBP_TX) & ~RT2560_BBP_ANTMASK;
if (antenna == 1)
tx |= RT2560_BBP_ANTA;
else if (antenna == 2)
tx |= RT2560_BBP_ANTB;
else
tx |= RT2560_BBP_DIVERSITY;
/* need to force I/Q flip for RF 2525e, 2526 and 5222 */
if (sc->rf_rev == RT2560_RF_2525E || sc->rf_rev == RT2560_RF_2526 ||
sc->rf_rev == RT2560_RF_5222)
tx |= RT2560_BBP_FLIPIQ;
rt2560_bbp_write(sc, RT2560_BBP_TX, tx);
/* update values for CCK and OFDM in BBPCSR1 */
tmp = RAL_READ(sc, RT2560_BBPCSR1) & ~0x00070007;
tmp |= (tx & 0x7) << 16 | (tx & 0x7);
RAL_WRITE(sc, RT2560_BBPCSR1, tmp);
}
static void
rt2560_set_rxantenna(struct rt2560_softc *sc, int antenna)
{
uint8_t rx;
rx = rt2560_bbp_read(sc, RT2560_BBP_RX) & ~RT2560_BBP_ANTMASK;
if (antenna == 1)
rx |= RT2560_BBP_ANTA;
else if (antenna == 2)
rx |= RT2560_BBP_ANTB;
else
rx |= RT2560_BBP_DIVERSITY;
/* need to force no I/Q flip for RF 2525e and 2526 */
if (sc->rf_rev == RT2560_RF_2525E || sc->rf_rev == RT2560_RF_2526)
rx &= ~RT2560_BBP_FLIPIQ;
rt2560_bbp_write(sc, RT2560_BBP_RX, rx);
}
static void
rt2560_init_locked(struct rt2560_softc *sc)
{
#define N(a) (sizeof (a) / sizeof ((a)[0]))
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
uint32_t tmp;
int i;
RAL_LOCK_ASSERT(sc);
rt2560_stop_locked(sc);
/* setup tx rings */
tmp = RT2560_PRIO_RING_COUNT << 24 |
RT2560_ATIM_RING_COUNT << 16 |
RT2560_TX_RING_COUNT << 8 |
RT2560_TX_DESC_SIZE;
/* rings must be initialized in this exact order */
RAL_WRITE(sc, RT2560_TXCSR2, tmp);
RAL_WRITE(sc, RT2560_TXCSR3, sc->txq.physaddr);
RAL_WRITE(sc, RT2560_TXCSR5, sc->prioq.physaddr);
RAL_WRITE(sc, RT2560_TXCSR4, sc->atimq.physaddr);
RAL_WRITE(sc, RT2560_TXCSR6, sc->bcnq.physaddr);
/* setup rx ring */
tmp = RT2560_RX_RING_COUNT << 8 | RT2560_RX_DESC_SIZE;
RAL_WRITE(sc, RT2560_RXCSR1, tmp);
RAL_WRITE(sc, RT2560_RXCSR2, sc->rxq.physaddr);
/* initialize MAC registers to default values */
for (i = 0; i < N(rt2560_def_mac); i++)
RAL_WRITE(sc, rt2560_def_mac[i].reg, rt2560_def_mac[i].val);
rt2560_set_macaddr(sc, IF_LLADDR(ifp));
/* set basic rate set (will be updated later) */
RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x153);
rt2560_update_slot(ifp);
rt2560_update_plcp(sc);
rt2560_update_led(sc, 0, 0);
RAL_WRITE(sc, RT2560_CSR1, RT2560_RESET_ASIC);
RAL_WRITE(sc, RT2560_CSR1, RT2560_HOST_READY);
if (rt2560_bbp_init(sc) != 0) {
rt2560_stop_locked(sc);
return;
}
rt2560_set_txantenna(sc, sc->tx_ant);
rt2560_set_rxantenna(sc, sc->rx_ant);
/* set default BSS channel */
rt2560_set_chan(sc, ic->ic_curchan);
/* kick Rx */
tmp = RT2560_DROP_PHY_ERROR | RT2560_DROP_CRC_ERROR;
if (ic->ic_opmode != IEEE80211_M_MONITOR) {
tmp |= RT2560_DROP_CTL | RT2560_DROP_VERSION_ERROR;
if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
ic->ic_opmode != IEEE80211_M_MBSS)
tmp |= RT2560_DROP_TODS;
if (!(ifp->if_flags & IFF_PROMISC))
tmp |= RT2560_DROP_NOT_TO_ME;
}
RAL_WRITE(sc, RT2560_RXCSR0, tmp);
/* clear old FCS and Rx FIFO errors */
RAL_READ(sc, RT2560_CNT0);
RAL_READ(sc, RT2560_CNT4);
/* clear any pending interrupts */
RAL_WRITE(sc, RT2560_CSR7, 0xffffffff);
/* enable interrupts */
RAL_WRITE(sc, RT2560_CSR8, RT2560_INTR_MASK);
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
ifp->if_drv_flags |= IFF_DRV_RUNNING;
callout_reset(&sc->watchdog_ch, hz, rt2560_watchdog, sc);
#undef N
}
static void
rt2560_init(void *priv)
{
struct rt2560_softc *sc = priv;
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
RAL_LOCK(sc);
rt2560_init_locked(sc);
RAL_UNLOCK(sc);
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
ieee80211_start_all(ic); /* start all vap's */
}
static void
rt2560_stop_locked(struct rt2560_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
volatile int *flags = &sc->sc_flags;
RAL_LOCK_ASSERT(sc);
while (*flags & RT2560_F_INPUT_RUNNING)
msleep(sc, &sc->sc_mtx, 0, "ralrunning", hz/10);
callout_stop(&sc->watchdog_ch);
sc->sc_tx_timer = 0;
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
/* abort Tx */
RAL_WRITE(sc, RT2560_TXCSR0, RT2560_ABORT_TX);
/* disable Rx */
RAL_WRITE(sc, RT2560_RXCSR0, RT2560_DISABLE_RX);
/* reset ASIC (imply reset BBP) */
RAL_WRITE(sc, RT2560_CSR1, RT2560_RESET_ASIC);
RAL_WRITE(sc, RT2560_CSR1, 0);
/* disable interrupts */
RAL_WRITE(sc, RT2560_CSR8, 0xffffffff);
/* reset Tx and Rx rings */
rt2560_reset_tx_ring(sc, &sc->txq);
rt2560_reset_tx_ring(sc, &sc->atimq);
rt2560_reset_tx_ring(sc, &sc->prioq);
rt2560_reset_tx_ring(sc, &sc->bcnq);
rt2560_reset_rx_ring(sc, &sc->rxq);
}
sc->sc_flags &= ~(RT2560_F_PRIO_OACTIVE | RT2560_F_DATA_OACTIVE);
}
void
rt2560_stop(void *arg)
{
struct rt2560_softc *sc = arg;
RAL_LOCK(sc);
rt2560_stop_locked(sc);
RAL_UNLOCK(sc);
}
static int
rt2560_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
const struct ieee80211_bpf_params *params)
{
struct ieee80211com *ic = ni->ni_ic;
struct ifnet *ifp = ic->ic_ifp;
struct rt2560_softc *sc = ifp->if_softc;
RAL_LOCK(sc);
/* prevent management frames from being sent if we're not ready */
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
RAL_UNLOCK(sc);
m_freem(m);
ieee80211_free_node(ni);
return ENETDOWN;
}
if (sc->prioq.queued >= RT2560_PRIO_RING_COUNT) {
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
sc->sc_flags |= RT2560_F_PRIO_OACTIVE;
RAL_UNLOCK(sc);
m_freem(m);
ieee80211_free_node(ni);
return ENOBUFS; /* XXX */
}
ifp->if_opackets++;
if (params == NULL) {
/*
* Legacy path; interpret frame contents to decide
* precisely how to send the frame.
*/
if (rt2560_tx_mgt(sc, m, ni) != 0)
goto bad;
} else {
/*
* Caller supplied explicit parameters to use in
* sending the frame.
*/
if (rt2560_tx_raw(sc, m, ni, params))
goto bad;
}
sc->sc_tx_timer = 5;
RAL_UNLOCK(sc);
return 0;
bad:
ifp->if_oerrors++;
ieee80211_free_node(ni);
RAL_UNLOCK(sc);
return EIO; /* XXX */
}