1952e2e1c1
These bits are taken from the FSF anoncvs repo on 1-Feb-2002 08:20 PST.
2800 lines
78 KiB
C
2800 lines
78 KiB
C
/* RTL simplification functions for GNU compiler.
|
||
Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
|
||
1999, 2000, 2001 Free Software Foundation, Inc.
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it under
|
||
the terms of the GNU General Public License as published by the Free
|
||
Software Foundation; either version 2, or (at your option) any later
|
||
version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING. If not, write to the Free
|
||
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
|
||
02111-1307, USA. */
|
||
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
|
||
#include "rtl.h"
|
||
#include "tm_p.h"
|
||
#include "regs.h"
|
||
#include "hard-reg-set.h"
|
||
#include "flags.h"
|
||
#include "real.h"
|
||
#include "insn-config.h"
|
||
#include "recog.h"
|
||
#include "function.h"
|
||
#include "expr.h"
|
||
#include "toplev.h"
|
||
#include "output.h"
|
||
#include "ggc.h"
|
||
|
||
/* Simplification and canonicalization of RTL. */
|
||
|
||
/* Nonzero if X has the form (PLUS frame-pointer integer). We check for
|
||
virtual regs here because the simplify_*_operation routines are called
|
||
by integrate.c, which is called before virtual register instantiation.
|
||
|
||
?!? FIXED_BASE_PLUS_P and NONZERO_BASE_PLUS_P need to move into
|
||
a header file so that their definitions can be shared with the
|
||
simplification routines in simplify-rtx.c. Until then, do not
|
||
change these macros without also changing the copy in simplify-rtx.c. */
|
||
|
||
#define FIXED_BASE_PLUS_P(X) \
|
||
((X) == frame_pointer_rtx || (X) == hard_frame_pointer_rtx \
|
||
|| ((X) == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])\
|
||
|| (X) == virtual_stack_vars_rtx \
|
||
|| (X) == virtual_incoming_args_rtx \
|
||
|| (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == CONST_INT \
|
||
&& (XEXP (X, 0) == frame_pointer_rtx \
|
||
|| XEXP (X, 0) == hard_frame_pointer_rtx \
|
||
|| ((X) == arg_pointer_rtx \
|
||
&& fixed_regs[ARG_POINTER_REGNUM]) \
|
||
|| XEXP (X, 0) == virtual_stack_vars_rtx \
|
||
|| XEXP (X, 0) == virtual_incoming_args_rtx)) \
|
||
|| GET_CODE (X) == ADDRESSOF)
|
||
|
||
/* Similar, but also allows reference to the stack pointer.
|
||
|
||
This used to include FIXED_BASE_PLUS_P, however, we can't assume that
|
||
arg_pointer_rtx by itself is nonzero, because on at least one machine,
|
||
the i960, the arg pointer is zero when it is unused. */
|
||
|
||
#define NONZERO_BASE_PLUS_P(X) \
|
||
((X) == frame_pointer_rtx || (X) == hard_frame_pointer_rtx \
|
||
|| (X) == virtual_stack_vars_rtx \
|
||
|| (X) == virtual_incoming_args_rtx \
|
||
|| (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == CONST_INT \
|
||
&& (XEXP (X, 0) == frame_pointer_rtx \
|
||
|| XEXP (X, 0) == hard_frame_pointer_rtx \
|
||
|| ((X) == arg_pointer_rtx \
|
||
&& fixed_regs[ARG_POINTER_REGNUM]) \
|
||
|| XEXP (X, 0) == virtual_stack_vars_rtx \
|
||
|| XEXP (X, 0) == virtual_incoming_args_rtx)) \
|
||
|| (X) == stack_pointer_rtx \
|
||
|| (X) == virtual_stack_dynamic_rtx \
|
||
|| (X) == virtual_outgoing_args_rtx \
|
||
|| (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == CONST_INT \
|
||
&& (XEXP (X, 0) == stack_pointer_rtx \
|
||
|| XEXP (X, 0) == virtual_stack_dynamic_rtx \
|
||
|| XEXP (X, 0) == virtual_outgoing_args_rtx)) \
|
||
|| GET_CODE (X) == ADDRESSOF)
|
||
|
||
/* Much code operates on (low, high) pairs; the low value is an
|
||
unsigned wide int, the high value a signed wide int. We
|
||
occasionally need to sign extend from low to high as if low were a
|
||
signed wide int. */
|
||
#define HWI_SIGN_EXTEND(low) \
|
||
((((HOST_WIDE_INT) low) < 0) ? ((HOST_WIDE_INT) -1) : ((HOST_WIDE_INT) 0))
|
||
|
||
static rtx neg_const_int PARAMS ((enum machine_mode, rtx));
|
||
static int simplify_plus_minus_op_data_cmp PARAMS ((const void *,
|
||
const void *));
|
||
static rtx simplify_plus_minus PARAMS ((enum rtx_code,
|
||
enum machine_mode, rtx, rtx));
|
||
static void check_fold_consts PARAMS ((PTR));
|
||
#if ! defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
|
||
static void simplify_unary_real PARAMS ((PTR));
|
||
static void simplify_binary_real PARAMS ((PTR));
|
||
#endif
|
||
static void simplify_binary_is2orm1 PARAMS ((PTR));
|
||
|
||
|
||
/* Negate a CONST_INT rtx, truncating (because a conversion from a
|
||
maximally negative number can overflow). */
|
||
static rtx
|
||
neg_const_int (mode, i)
|
||
enum machine_mode mode;
|
||
rtx i;
|
||
{
|
||
return GEN_INT (trunc_int_for_mode (- INTVAL (i), mode));
|
||
}
|
||
|
||
|
||
/* Make a binary operation by properly ordering the operands and
|
||
seeing if the expression folds. */
|
||
|
||
rtx
|
||
simplify_gen_binary (code, mode, op0, op1)
|
||
enum rtx_code code;
|
||
enum machine_mode mode;
|
||
rtx op0, op1;
|
||
{
|
||
rtx tem;
|
||
|
||
/* Put complex operands first and constants second if commutative. */
|
||
if (GET_RTX_CLASS (code) == 'c'
|
||
&& swap_commutative_operands_p (op0, op1))
|
||
tem = op0, op0 = op1, op1 = tem;
|
||
|
||
/* If this simplifies, do it. */
|
||
tem = simplify_binary_operation (code, mode, op0, op1);
|
||
|
||
if (tem)
|
||
return tem;
|
||
|
||
/* Handle addition and subtraction of CONST_INT specially. Otherwise,
|
||
just form the operation. */
|
||
|
||
if (GET_CODE (op1) == CONST_INT
|
||
&& GET_MODE (op0) != VOIDmode
|
||
&& (code == PLUS || code == MINUS))
|
||
{
|
||
if (code == MINUS)
|
||
op1 = neg_const_int (mode, op1);
|
||
return plus_constant (op0, INTVAL (op1));
|
||
}
|
||
else
|
||
return gen_rtx_fmt_ee (code, mode, op0, op1);
|
||
}
|
||
|
||
/* If X is a MEM referencing the constant pool, return the real value.
|
||
Otherwise return X. */
|
||
rtx
|
||
avoid_constant_pool_reference (x)
|
||
rtx x;
|
||
{
|
||
rtx c, addr;
|
||
enum machine_mode cmode;
|
||
|
||
if (GET_CODE (x) != MEM)
|
||
return x;
|
||
addr = XEXP (x, 0);
|
||
|
||
if (GET_CODE (addr) != SYMBOL_REF
|
||
|| ! CONSTANT_POOL_ADDRESS_P (addr))
|
||
return x;
|
||
|
||
c = get_pool_constant (addr);
|
||
cmode = get_pool_mode (addr);
|
||
|
||
/* If we're accessing the constant in a different mode than it was
|
||
originally stored, attempt to fix that up via subreg simplifications.
|
||
If that fails we have no choice but to return the original memory. */
|
||
if (cmode != GET_MODE (x))
|
||
{
|
||
c = simplify_subreg (GET_MODE (x), c, cmode, 0);
|
||
return c ? c : x;
|
||
}
|
||
|
||
return c;
|
||
}
|
||
|
||
/* Make a unary operation by first seeing if it folds and otherwise making
|
||
the specified operation. */
|
||
|
||
rtx
|
||
simplify_gen_unary (code, mode, op, op_mode)
|
||
enum rtx_code code;
|
||
enum machine_mode mode;
|
||
rtx op;
|
||
enum machine_mode op_mode;
|
||
{
|
||
rtx tem;
|
||
|
||
/* If this simplifies, use it. */
|
||
if ((tem = simplify_unary_operation (code, mode, op, op_mode)) != 0)
|
||
return tem;
|
||
|
||
return gen_rtx_fmt_e (code, mode, op);
|
||
}
|
||
|
||
/* Likewise for ternary operations. */
|
||
|
||
rtx
|
||
simplify_gen_ternary (code, mode, op0_mode, op0, op1, op2)
|
||
enum rtx_code code;
|
||
enum machine_mode mode, op0_mode;
|
||
rtx op0, op1, op2;
|
||
{
|
||
rtx tem;
|
||
|
||
/* If this simplifies, use it. */
|
||
if (0 != (tem = simplify_ternary_operation (code, mode, op0_mode,
|
||
op0, op1, op2)))
|
||
return tem;
|
||
|
||
return gen_rtx_fmt_eee (code, mode, op0, op1, op2);
|
||
}
|
||
|
||
/* Likewise, for relational operations.
|
||
CMP_MODE specifies mode comparison is done in.
|
||
*/
|
||
|
||
rtx
|
||
simplify_gen_relational (code, mode, cmp_mode, op0, op1)
|
||
enum rtx_code code;
|
||
enum machine_mode mode;
|
||
enum machine_mode cmp_mode;
|
||
rtx op0, op1;
|
||
{
|
||
rtx tem;
|
||
|
||
if ((tem = simplify_relational_operation (code, cmp_mode, op0, op1)) != 0)
|
||
return tem;
|
||
|
||
/* Put complex operands first and constants second. */
|
||
if (swap_commutative_operands_p (op0, op1))
|
||
tem = op0, op0 = op1, op1 = tem, code = swap_condition (code);
|
||
|
||
return gen_rtx_fmt_ee (code, mode, op0, op1);
|
||
}
|
||
|
||
/* Replace all occurrences of OLD in X with NEW and try to simplify the
|
||
resulting RTX. Return a new RTX which is as simplified as possible. */
|
||
|
||
rtx
|
||
simplify_replace_rtx (x, old, new)
|
||
rtx x;
|
||
rtx old;
|
||
rtx new;
|
||
{
|
||
enum rtx_code code = GET_CODE (x);
|
||
enum machine_mode mode = GET_MODE (x);
|
||
|
||
/* If X is OLD, return NEW. Otherwise, if this is an expression, try
|
||
to build a new expression substituting recursively. If we can't do
|
||
anything, return our input. */
|
||
|
||
if (x == old)
|
||
return new;
|
||
|
||
switch (GET_RTX_CLASS (code))
|
||
{
|
||
case '1':
|
||
{
|
||
enum machine_mode op_mode = GET_MODE (XEXP (x, 0));
|
||
rtx op = (XEXP (x, 0) == old
|
||
? new : simplify_replace_rtx (XEXP (x, 0), old, new));
|
||
|
||
return simplify_gen_unary (code, mode, op, op_mode);
|
||
}
|
||
|
||
case '2':
|
||
case 'c':
|
||
return
|
||
simplify_gen_binary (code, mode,
|
||
simplify_replace_rtx (XEXP (x, 0), old, new),
|
||
simplify_replace_rtx (XEXP (x, 1), old, new));
|
||
case '<':
|
||
{
|
||
enum machine_mode op_mode = (GET_MODE (XEXP (x, 0)) != VOIDmode
|
||
? GET_MODE (XEXP (x, 0))
|
||
: GET_MODE (XEXP (x, 1)));
|
||
rtx op0 = simplify_replace_rtx (XEXP (x, 0), old, new);
|
||
rtx op1 = simplify_replace_rtx (XEXP (x, 1), old, new);
|
||
|
||
return
|
||
simplify_gen_relational (code, mode,
|
||
(op_mode != VOIDmode
|
||
? op_mode
|
||
: GET_MODE (op0) != VOIDmode
|
||
? GET_MODE (op0)
|
||
: GET_MODE (op1)),
|
||
op0, op1);
|
||
}
|
||
|
||
case '3':
|
||
case 'b':
|
||
{
|
||
enum machine_mode op_mode = GET_MODE (XEXP (x, 0));
|
||
rtx op0 = simplify_replace_rtx (XEXP (x, 0), old, new);
|
||
|
||
return
|
||
simplify_gen_ternary (code, mode,
|
||
(op_mode != VOIDmode
|
||
? op_mode
|
||
: GET_MODE (op0)),
|
||
op0,
|
||
simplify_replace_rtx (XEXP (x, 1), old, new),
|
||
simplify_replace_rtx (XEXP (x, 2), old, new));
|
||
}
|
||
|
||
case 'x':
|
||
/* The only case we try to handle is a SUBREG. */
|
||
if (code == SUBREG)
|
||
{
|
||
rtx exp;
|
||
exp = simplify_gen_subreg (GET_MODE (x),
|
||
simplify_replace_rtx (SUBREG_REG (x),
|
||
old, new),
|
||
GET_MODE (SUBREG_REG (x)),
|
||
SUBREG_BYTE (x));
|
||
if (exp)
|
||
x = exp;
|
||
}
|
||
return x;
|
||
|
||
default:
|
||
if (GET_CODE (x) == MEM)
|
||
return
|
||
replace_equiv_address_nv (x,
|
||
simplify_replace_rtx (XEXP (x, 0),
|
||
old, new));
|
||
|
||
return x;
|
||
}
|
||
return x;
|
||
}
|
||
|
||
#if ! defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
|
||
/* Subroutine of simplify_unary_operation, called via do_float_handler.
|
||
Handles simplification of unary ops on floating point values. */
|
||
struct simplify_unary_real_args
|
||
{
|
||
rtx operand;
|
||
rtx result;
|
||
enum machine_mode mode;
|
||
enum rtx_code code;
|
||
bool want_integer;
|
||
};
|
||
#define REAL_VALUE_ABS(d_) \
|
||
(REAL_VALUE_NEGATIVE (d_) ? REAL_VALUE_NEGATE (d_) : (d_))
|
||
|
||
static void
|
||
simplify_unary_real (p)
|
||
PTR p;
|
||
{
|
||
REAL_VALUE_TYPE d;
|
||
|
||
struct simplify_unary_real_args *args =
|
||
(struct simplify_unary_real_args *) p;
|
||
|
||
REAL_VALUE_FROM_CONST_DOUBLE (d, args->operand);
|
||
|
||
if (args->want_integer)
|
||
{
|
||
HOST_WIDE_INT i;
|
||
|
||
switch (args->code)
|
||
{
|
||
case FIX: i = REAL_VALUE_FIX (d); break;
|
||
case UNSIGNED_FIX: i = REAL_VALUE_UNSIGNED_FIX (d); break;
|
||
default:
|
||
abort ();
|
||
}
|
||
args->result = GEN_INT (trunc_int_for_mode (i, args->mode));
|
||
}
|
||
else
|
||
{
|
||
switch (args->code)
|
||
{
|
||
case SQRT:
|
||
/* We don't attempt to optimize this. */
|
||
args->result = 0;
|
||
return;
|
||
|
||
case ABS: d = REAL_VALUE_ABS (d); break;
|
||
case NEG: d = REAL_VALUE_NEGATE (d); break;
|
||
case FLOAT_TRUNCATE: d = real_value_truncate (args->mode, d); break;
|
||
case FLOAT_EXTEND: /* All this does is change the mode. */ break;
|
||
case FIX: d = REAL_VALUE_RNDZINT (d); break;
|
||
case UNSIGNED_FIX: d = REAL_VALUE_UNSIGNED_RNDZINT (d); break;
|
||
default:
|
||
abort ();
|
||
}
|
||
args->result = CONST_DOUBLE_FROM_REAL_VALUE (d, args->mode);
|
||
}
|
||
}
|
||
#endif
|
||
|
||
/* Try to simplify a unary operation CODE whose output mode is to be
|
||
MODE with input operand OP whose mode was originally OP_MODE.
|
||
Return zero if no simplification can be made. */
|
||
rtx
|
||
simplify_unary_operation (code, mode, op, op_mode)
|
||
enum rtx_code code;
|
||
enum machine_mode mode;
|
||
rtx op;
|
||
enum machine_mode op_mode;
|
||
{
|
||
unsigned int width = GET_MODE_BITSIZE (mode);
|
||
rtx trueop = avoid_constant_pool_reference (op);
|
||
|
||
/* The order of these tests is critical so that, for example, we don't
|
||
check the wrong mode (input vs. output) for a conversion operation,
|
||
such as FIX. At some point, this should be simplified. */
|
||
|
||
#if !defined(REAL_IS_NOT_DOUBLE) || defined(REAL_ARITHMETIC)
|
||
|
||
if (code == FLOAT && GET_MODE (trueop) == VOIDmode
|
||
&& (GET_CODE (trueop) == CONST_DOUBLE || GET_CODE (trueop) == CONST_INT))
|
||
{
|
||
HOST_WIDE_INT hv, lv;
|
||
REAL_VALUE_TYPE d;
|
||
|
||
if (GET_CODE (trueop) == CONST_INT)
|
||
lv = INTVAL (trueop), hv = HWI_SIGN_EXTEND (lv);
|
||
else
|
||
lv = CONST_DOUBLE_LOW (trueop), hv = CONST_DOUBLE_HIGH (trueop);
|
||
|
||
#ifdef REAL_ARITHMETIC
|
||
REAL_VALUE_FROM_INT (d, lv, hv, mode);
|
||
#else
|
||
if (hv < 0)
|
||
{
|
||
d = (double) (~ hv);
|
||
d *= ((double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2))
|
||
* (double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)));
|
||
d += (double) (unsigned HOST_WIDE_INT) (~ lv);
|
||
d = (- d - 1.0);
|
||
}
|
||
else
|
||
{
|
||
d = (double) hv;
|
||
d *= ((double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2))
|
||
* (double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)));
|
||
d += (double) (unsigned HOST_WIDE_INT) lv;
|
||
}
|
||
#endif /* REAL_ARITHMETIC */
|
||
d = real_value_truncate (mode, d);
|
||
return CONST_DOUBLE_FROM_REAL_VALUE (d, mode);
|
||
}
|
||
else if (code == UNSIGNED_FLOAT && GET_MODE (trueop) == VOIDmode
|
||
&& (GET_CODE (trueop) == CONST_DOUBLE
|
||
|| GET_CODE (trueop) == CONST_INT))
|
||
{
|
||
HOST_WIDE_INT hv, lv;
|
||
REAL_VALUE_TYPE d;
|
||
|
||
if (GET_CODE (trueop) == CONST_INT)
|
||
lv = INTVAL (trueop), hv = HWI_SIGN_EXTEND (lv);
|
||
else
|
||
lv = CONST_DOUBLE_LOW (trueop), hv = CONST_DOUBLE_HIGH (trueop);
|
||
|
||
if (op_mode == VOIDmode)
|
||
{
|
||
/* We don't know how to interpret negative-looking numbers in
|
||
this case, so don't try to fold those. */
|
||
if (hv < 0)
|
||
return 0;
|
||
}
|
||
else if (GET_MODE_BITSIZE (op_mode) >= HOST_BITS_PER_WIDE_INT * 2)
|
||
;
|
||
else
|
||
hv = 0, lv &= GET_MODE_MASK (op_mode);
|
||
|
||
#ifdef REAL_ARITHMETIC
|
||
REAL_VALUE_FROM_UNSIGNED_INT (d, lv, hv, mode);
|
||
#else
|
||
|
||
d = (double) (unsigned HOST_WIDE_INT) hv;
|
||
d *= ((double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2))
|
||
* (double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)));
|
||
d += (double) (unsigned HOST_WIDE_INT) lv;
|
||
#endif /* REAL_ARITHMETIC */
|
||
d = real_value_truncate (mode, d);
|
||
return CONST_DOUBLE_FROM_REAL_VALUE (d, mode);
|
||
}
|
||
#endif
|
||
|
||
if (GET_CODE (trueop) == CONST_INT
|
||
&& width <= HOST_BITS_PER_WIDE_INT && width > 0)
|
||
{
|
||
HOST_WIDE_INT arg0 = INTVAL (trueop);
|
||
HOST_WIDE_INT val;
|
||
|
||
switch (code)
|
||
{
|
||
case NOT:
|
||
val = ~ arg0;
|
||
break;
|
||
|
||
case NEG:
|
||
val = - arg0;
|
||
break;
|
||
|
||
case ABS:
|
||
val = (arg0 >= 0 ? arg0 : - arg0);
|
||
break;
|
||
|
||
case FFS:
|
||
/* Don't use ffs here. Instead, get low order bit and then its
|
||
number. If arg0 is zero, this will return 0, as desired. */
|
||
arg0 &= GET_MODE_MASK (mode);
|
||
val = exact_log2 (arg0 & (- arg0)) + 1;
|
||
break;
|
||
|
||
case TRUNCATE:
|
||
val = arg0;
|
||
break;
|
||
|
||
case ZERO_EXTEND:
|
||
if (op_mode == VOIDmode)
|
||
op_mode = mode;
|
||
if (GET_MODE_BITSIZE (op_mode) == HOST_BITS_PER_WIDE_INT)
|
||
{
|
||
/* If we were really extending the mode,
|
||
we would have to distinguish between zero-extension
|
||
and sign-extension. */
|
||
if (width != GET_MODE_BITSIZE (op_mode))
|
||
abort ();
|
||
val = arg0;
|
||
}
|
||
else if (GET_MODE_BITSIZE (op_mode) < HOST_BITS_PER_WIDE_INT)
|
||
val = arg0 & ~((HOST_WIDE_INT) (-1) << GET_MODE_BITSIZE (op_mode));
|
||
else
|
||
return 0;
|
||
break;
|
||
|
||
case SIGN_EXTEND:
|
||
if (op_mode == VOIDmode)
|
||
op_mode = mode;
|
||
if (GET_MODE_BITSIZE (op_mode) == HOST_BITS_PER_WIDE_INT)
|
||
{
|
||
/* If we were really extending the mode,
|
||
we would have to distinguish between zero-extension
|
||
and sign-extension. */
|
||
if (width != GET_MODE_BITSIZE (op_mode))
|
||
abort ();
|
||
val = arg0;
|
||
}
|
||
else if (GET_MODE_BITSIZE (op_mode) < HOST_BITS_PER_WIDE_INT)
|
||
{
|
||
val
|
||
= arg0 & ~((HOST_WIDE_INT) (-1) << GET_MODE_BITSIZE (op_mode));
|
||
if (val
|
||
& ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (op_mode) - 1)))
|
||
val -= (HOST_WIDE_INT) 1 << GET_MODE_BITSIZE (op_mode);
|
||
}
|
||
else
|
||
return 0;
|
||
break;
|
||
|
||
case SQRT:
|
||
case FLOAT_EXTEND:
|
||
case FLOAT_TRUNCATE:
|
||
case SS_TRUNCATE:
|
||
case US_TRUNCATE:
|
||
return 0;
|
||
|
||
default:
|
||
abort ();
|
||
}
|
||
|
||
val = trunc_int_for_mode (val, mode);
|
||
|
||
return GEN_INT (val);
|
||
}
|
||
|
||
/* We can do some operations on integer CONST_DOUBLEs. Also allow
|
||
for a DImode operation on a CONST_INT. */
|
||
else if (GET_MODE (trueop) == VOIDmode && width <= HOST_BITS_PER_INT * 2
|
||
&& (GET_CODE (trueop) == CONST_DOUBLE
|
||
|| GET_CODE (trueop) == CONST_INT))
|
||
{
|
||
unsigned HOST_WIDE_INT l1, lv;
|
||
HOST_WIDE_INT h1, hv;
|
||
|
||
if (GET_CODE (trueop) == CONST_DOUBLE)
|
||
l1 = CONST_DOUBLE_LOW (trueop), h1 = CONST_DOUBLE_HIGH (trueop);
|
||
else
|
||
l1 = INTVAL (trueop), h1 = HWI_SIGN_EXTEND (l1);
|
||
|
||
switch (code)
|
||
{
|
||
case NOT:
|
||
lv = ~ l1;
|
||
hv = ~ h1;
|
||
break;
|
||
|
||
case NEG:
|
||
neg_double (l1, h1, &lv, &hv);
|
||
break;
|
||
|
||
case ABS:
|
||
if (h1 < 0)
|
||
neg_double (l1, h1, &lv, &hv);
|
||
else
|
||
lv = l1, hv = h1;
|
||
break;
|
||
|
||
case FFS:
|
||
hv = 0;
|
||
if (l1 == 0)
|
||
lv = HOST_BITS_PER_WIDE_INT + exact_log2 (h1 & (-h1)) + 1;
|
||
else
|
||
lv = exact_log2 (l1 & (-l1)) + 1;
|
||
break;
|
||
|
||
case TRUNCATE:
|
||
/* This is just a change-of-mode, so do nothing. */
|
||
lv = l1, hv = h1;
|
||
break;
|
||
|
||
case ZERO_EXTEND:
|
||
if (op_mode == VOIDmode
|
||
|| GET_MODE_BITSIZE (op_mode) > HOST_BITS_PER_WIDE_INT)
|
||
return 0;
|
||
|
||
hv = 0;
|
||
lv = l1 & GET_MODE_MASK (op_mode);
|
||
break;
|
||
|
||
case SIGN_EXTEND:
|
||
if (op_mode == VOIDmode
|
||
|| GET_MODE_BITSIZE (op_mode) > HOST_BITS_PER_WIDE_INT)
|
||
return 0;
|
||
else
|
||
{
|
||
lv = l1 & GET_MODE_MASK (op_mode);
|
||
if (GET_MODE_BITSIZE (op_mode) < HOST_BITS_PER_WIDE_INT
|
||
&& (lv & ((HOST_WIDE_INT) 1
|
||
<< (GET_MODE_BITSIZE (op_mode) - 1))) != 0)
|
||
lv -= (HOST_WIDE_INT) 1 << GET_MODE_BITSIZE (op_mode);
|
||
|
||
hv = HWI_SIGN_EXTEND (lv);
|
||
}
|
||
break;
|
||
|
||
case SQRT:
|
||
return 0;
|
||
|
||
default:
|
||
return 0;
|
||
}
|
||
|
||
return immed_double_const (lv, hv, mode);
|
||
}
|
||
|
||
#if ! defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
|
||
else if (GET_CODE (trueop) == CONST_DOUBLE
|
||
&& GET_MODE_CLASS (mode) == MODE_FLOAT)
|
||
{
|
||
struct simplify_unary_real_args args;
|
||
args.operand = trueop;
|
||
args.mode = mode;
|
||
args.code = code;
|
||
args.want_integer = false;
|
||
|
||
if (do_float_handler (simplify_unary_real, (PTR) &args))
|
||
return args.result;
|
||
|
||
return 0;
|
||
}
|
||
|
||
else if (GET_CODE (trueop) == CONST_DOUBLE
|
||
&& GET_MODE_CLASS (GET_MODE (trueop)) == MODE_FLOAT
|
||
&& GET_MODE_CLASS (mode) == MODE_INT
|
||
&& width <= HOST_BITS_PER_WIDE_INT && width > 0)
|
||
{
|
||
struct simplify_unary_real_args args;
|
||
args.operand = trueop;
|
||
args.mode = mode;
|
||
args.code = code;
|
||
args.want_integer = true;
|
||
|
||
if (do_float_handler (simplify_unary_real, (PTR) &args))
|
||
return args.result;
|
||
|
||
return 0;
|
||
}
|
||
#endif
|
||
/* This was formerly used only for non-IEEE float.
|
||
eggert@twinsun.com says it is safe for IEEE also. */
|
||
else
|
||
{
|
||
enum rtx_code reversed;
|
||
/* There are some simplifications we can do even if the operands
|
||
aren't constant. */
|
||
switch (code)
|
||
{
|
||
case NOT:
|
||
/* (not (not X)) == X. */
|
||
if (GET_CODE (op) == NOT)
|
||
return XEXP (op, 0);
|
||
|
||
/* (not (eq X Y)) == (ne X Y), etc. */
|
||
if (mode == BImode && GET_RTX_CLASS (GET_CODE (op)) == '<'
|
||
&& ((reversed = reversed_comparison_code (op, NULL_RTX))
|
||
!= UNKNOWN))
|
||
return gen_rtx_fmt_ee (reversed,
|
||
op_mode, XEXP (op, 0), XEXP (op, 1));
|
||
break;
|
||
|
||
case NEG:
|
||
/* (neg (neg X)) == X. */
|
||
if (GET_CODE (op) == NEG)
|
||
return XEXP (op, 0);
|
||
break;
|
||
|
||
case SIGN_EXTEND:
|
||
/* (sign_extend (truncate (minus (label_ref L1) (label_ref L2))))
|
||
becomes just the MINUS if its mode is MODE. This allows
|
||
folding switch statements on machines using casesi (such as
|
||
the VAX). */
|
||
if (GET_CODE (op) == TRUNCATE
|
||
&& GET_MODE (XEXP (op, 0)) == mode
|
||
&& GET_CODE (XEXP (op, 0)) == MINUS
|
||
&& GET_CODE (XEXP (XEXP (op, 0), 0)) == LABEL_REF
|
||
&& GET_CODE (XEXP (XEXP (op, 0), 1)) == LABEL_REF)
|
||
return XEXP (op, 0);
|
||
|
||
#if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
|
||
if (! POINTERS_EXTEND_UNSIGNED
|
||
&& mode == Pmode && GET_MODE (op) == ptr_mode
|
||
&& (CONSTANT_P (op)
|
||
|| (GET_CODE (op) == SUBREG
|
||
&& GET_CODE (SUBREG_REG (op)) == REG
|
||
&& REG_POINTER (SUBREG_REG (op))
|
||
&& GET_MODE (SUBREG_REG (op)) == Pmode)))
|
||
return convert_memory_address (Pmode, op);
|
||
#endif
|
||
break;
|
||
|
||
#if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
|
||
case ZERO_EXTEND:
|
||
if (POINTERS_EXTEND_UNSIGNED > 0
|
||
&& mode == Pmode && GET_MODE (op) == ptr_mode
|
||
&& (CONSTANT_P (op)
|
||
|| (GET_CODE (op) == SUBREG
|
||
&& GET_CODE (SUBREG_REG (op)) == REG
|
||
&& REG_POINTER (SUBREG_REG (op))
|
||
&& GET_MODE (SUBREG_REG (op)) == Pmode)))
|
||
return convert_memory_address (Pmode, op);
|
||
break;
|
||
#endif
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
#if ! defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
|
||
/* Subroutine of simplify_binary_operation, called via do_float_handler.
|
||
Handles simplification of binary ops on floating point values. */
|
||
struct simplify_binary_real_args
|
||
{
|
||
rtx trueop0, trueop1;
|
||
rtx result;
|
||
enum rtx_code code;
|
||
enum machine_mode mode;
|
||
};
|
||
|
||
static void
|
||
simplify_binary_real (p)
|
||
PTR p;
|
||
{
|
||
REAL_VALUE_TYPE f0, f1, value;
|
||
struct simplify_binary_real_args *args =
|
||
(struct simplify_binary_real_args *) p;
|
||
|
||
REAL_VALUE_FROM_CONST_DOUBLE (f0, args->trueop0);
|
||
REAL_VALUE_FROM_CONST_DOUBLE (f1, args->trueop1);
|
||
f0 = real_value_truncate (args->mode, f0);
|
||
f1 = real_value_truncate (args->mode, f1);
|
||
|
||
#ifdef REAL_ARITHMETIC
|
||
#ifndef REAL_INFINITY
|
||
if (args->code == DIV && REAL_VALUES_EQUAL (f1, dconst0))
|
||
{
|
||
args->result = 0;
|
||
return;
|
||
}
|
||
#endif
|
||
REAL_ARITHMETIC (value, rtx_to_tree_code (args->code), f0, f1);
|
||
#else
|
||
switch (args->code)
|
||
{
|
||
case PLUS:
|
||
value = f0 + f1;
|
||
break;
|
||
case MINUS:
|
||
value = f0 - f1;
|
||
break;
|
||
case MULT:
|
||
value = f0 * f1;
|
||
break;
|
||
case DIV:
|
||
#ifndef REAL_INFINITY
|
||
if (f1 == 0)
|
||
return 0;
|
||
#endif
|
||
value = f0 / f1;
|
||
break;
|
||
case SMIN:
|
||
value = MIN (f0, f1);
|
||
break;
|
||
case SMAX:
|
||
value = MAX (f0, f1);
|
||
break;
|
||
default:
|
||
abort ();
|
||
}
|
||
#endif
|
||
|
||
value = real_value_truncate (args->mode, value);
|
||
args->result = CONST_DOUBLE_FROM_REAL_VALUE (value, args->mode);
|
||
}
|
||
#endif
|
||
|
||
/* Another subroutine called via do_float_handler. This one tests
|
||
the floating point value given against 2. and -1. */
|
||
struct simplify_binary_is2orm1_args
|
||
{
|
||
rtx value;
|
||
bool is_2;
|
||
bool is_m1;
|
||
};
|
||
|
||
static void
|
||
simplify_binary_is2orm1 (p)
|
||
PTR p;
|
||
{
|
||
REAL_VALUE_TYPE d;
|
||
struct simplify_binary_is2orm1_args *args =
|
||
(struct simplify_binary_is2orm1_args *) p;
|
||
|
||
REAL_VALUE_FROM_CONST_DOUBLE (d, args->value);
|
||
args->is_2 = REAL_VALUES_EQUAL (d, dconst2);
|
||
args->is_m1 = REAL_VALUES_EQUAL (d, dconstm1);
|
||
}
|
||
|
||
/* Simplify a binary operation CODE with result mode MODE, operating on OP0
|
||
and OP1. Return 0 if no simplification is possible.
|
||
|
||
Don't use this for relational operations such as EQ or LT.
|
||
Use simplify_relational_operation instead. */
|
||
rtx
|
||
simplify_binary_operation (code, mode, op0, op1)
|
||
enum rtx_code code;
|
||
enum machine_mode mode;
|
||
rtx op0, op1;
|
||
{
|
||
HOST_WIDE_INT arg0, arg1, arg0s, arg1s;
|
||
HOST_WIDE_INT val;
|
||
unsigned int width = GET_MODE_BITSIZE (mode);
|
||
rtx tem;
|
||
rtx trueop0 = avoid_constant_pool_reference (op0);
|
||
rtx trueop1 = avoid_constant_pool_reference (op1);
|
||
|
||
/* Relational operations don't work here. We must know the mode
|
||
of the operands in order to do the comparison correctly.
|
||
Assuming a full word can give incorrect results.
|
||
Consider comparing 128 with -128 in QImode. */
|
||
|
||
if (GET_RTX_CLASS (code) == '<')
|
||
abort ();
|
||
|
||
/* Make sure the constant is second. */
|
||
if (GET_RTX_CLASS (code) == 'c'
|
||
&& swap_commutative_operands_p (trueop0, trueop1))
|
||
{
|
||
tem = op0, op0 = op1, op1 = tem;
|
||
tem = trueop0, trueop0 = trueop1, trueop1 = tem;
|
||
}
|
||
|
||
#if ! defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
|
||
if (GET_MODE_CLASS (mode) == MODE_FLOAT
|
||
&& GET_CODE (trueop0) == CONST_DOUBLE
|
||
&& GET_CODE (trueop1) == CONST_DOUBLE
|
||
&& mode == GET_MODE (op0) && mode == GET_MODE (op1))
|
||
{
|
||
struct simplify_binary_real_args args;
|
||
args.trueop0 = trueop0;
|
||
args.trueop1 = trueop1;
|
||
args.mode = mode;
|
||
args.code = code;
|
||
|
||
if (do_float_handler (simplify_binary_real, (PTR) &args))
|
||
return args.result;
|
||
return 0;
|
||
}
|
||
#endif /* not REAL_IS_NOT_DOUBLE, or REAL_ARITHMETIC */
|
||
|
||
/* We can fold some multi-word operations. */
|
||
if (GET_MODE_CLASS (mode) == MODE_INT
|
||
&& width == HOST_BITS_PER_WIDE_INT * 2
|
||
&& (GET_CODE (trueop0) == CONST_DOUBLE
|
||
|| GET_CODE (trueop0) == CONST_INT)
|
||
&& (GET_CODE (trueop1) == CONST_DOUBLE
|
||
|| GET_CODE (trueop1) == CONST_INT))
|
||
{
|
||
unsigned HOST_WIDE_INT l1, l2, lv;
|
||
HOST_WIDE_INT h1, h2, hv;
|
||
|
||
if (GET_CODE (trueop0) == CONST_DOUBLE)
|
||
l1 = CONST_DOUBLE_LOW (trueop0), h1 = CONST_DOUBLE_HIGH (trueop0);
|
||
else
|
||
l1 = INTVAL (trueop0), h1 = HWI_SIGN_EXTEND (l1);
|
||
|
||
if (GET_CODE (trueop1) == CONST_DOUBLE)
|
||
l2 = CONST_DOUBLE_LOW (trueop1), h2 = CONST_DOUBLE_HIGH (trueop1);
|
||
else
|
||
l2 = INTVAL (trueop1), h2 = HWI_SIGN_EXTEND (l2);
|
||
|
||
switch (code)
|
||
{
|
||
case MINUS:
|
||
/* A - B == A + (-B). */
|
||
neg_double (l2, h2, &lv, &hv);
|
||
l2 = lv, h2 = hv;
|
||
|
||
/* .. fall through ... */
|
||
|
||
case PLUS:
|
||
add_double (l1, h1, l2, h2, &lv, &hv);
|
||
break;
|
||
|
||
case MULT:
|
||
mul_double (l1, h1, l2, h2, &lv, &hv);
|
||
break;
|
||
|
||
case DIV: case MOD: case UDIV: case UMOD:
|
||
/* We'd need to include tree.h to do this and it doesn't seem worth
|
||
it. */
|
||
return 0;
|
||
|
||
case AND:
|
||
lv = l1 & l2, hv = h1 & h2;
|
||
break;
|
||
|
||
case IOR:
|
||
lv = l1 | l2, hv = h1 | h2;
|
||
break;
|
||
|
||
case XOR:
|
||
lv = l1 ^ l2, hv = h1 ^ h2;
|
||
break;
|
||
|
||
case SMIN:
|
||
if (h1 < h2
|
||
|| (h1 == h2
|
||
&& ((unsigned HOST_WIDE_INT) l1
|
||
< (unsigned HOST_WIDE_INT) l2)))
|
||
lv = l1, hv = h1;
|
||
else
|
||
lv = l2, hv = h2;
|
||
break;
|
||
|
||
case SMAX:
|
||
if (h1 > h2
|
||
|| (h1 == h2
|
||
&& ((unsigned HOST_WIDE_INT) l1
|
||
> (unsigned HOST_WIDE_INT) l2)))
|
||
lv = l1, hv = h1;
|
||
else
|
||
lv = l2, hv = h2;
|
||
break;
|
||
|
||
case UMIN:
|
||
if ((unsigned HOST_WIDE_INT) h1 < (unsigned HOST_WIDE_INT) h2
|
||
|| (h1 == h2
|
||
&& ((unsigned HOST_WIDE_INT) l1
|
||
< (unsigned HOST_WIDE_INT) l2)))
|
||
lv = l1, hv = h1;
|
||
else
|
||
lv = l2, hv = h2;
|
||
break;
|
||
|
||
case UMAX:
|
||
if ((unsigned HOST_WIDE_INT) h1 > (unsigned HOST_WIDE_INT) h2
|
||
|| (h1 == h2
|
||
&& ((unsigned HOST_WIDE_INT) l1
|
||
> (unsigned HOST_WIDE_INT) l2)))
|
||
lv = l1, hv = h1;
|
||
else
|
||
lv = l2, hv = h2;
|
||
break;
|
||
|
||
case LSHIFTRT: case ASHIFTRT:
|
||
case ASHIFT:
|
||
case ROTATE: case ROTATERT:
|
||
#ifdef SHIFT_COUNT_TRUNCATED
|
||
if (SHIFT_COUNT_TRUNCATED)
|
||
l2 &= (GET_MODE_BITSIZE (mode) - 1), h2 = 0;
|
||
#endif
|
||
|
||
if (h2 != 0 || l2 >= GET_MODE_BITSIZE (mode))
|
||
return 0;
|
||
|
||
if (code == LSHIFTRT || code == ASHIFTRT)
|
||
rshift_double (l1, h1, l2, GET_MODE_BITSIZE (mode), &lv, &hv,
|
||
code == ASHIFTRT);
|
||
else if (code == ASHIFT)
|
||
lshift_double (l1, h1, l2, GET_MODE_BITSIZE (mode), &lv, &hv, 1);
|
||
else if (code == ROTATE)
|
||
lrotate_double (l1, h1, l2, GET_MODE_BITSIZE (mode), &lv, &hv);
|
||
else /* code == ROTATERT */
|
||
rrotate_double (l1, h1, l2, GET_MODE_BITSIZE (mode), &lv, &hv);
|
||
break;
|
||
|
||
default:
|
||
return 0;
|
||
}
|
||
|
||
return immed_double_const (lv, hv, mode);
|
||
}
|
||
|
||
if (GET_CODE (op0) != CONST_INT || GET_CODE (op1) != CONST_INT
|
||
|| width > HOST_BITS_PER_WIDE_INT || width == 0)
|
||
{
|
||
/* Even if we can't compute a constant result,
|
||
there are some cases worth simplifying. */
|
||
|
||
switch (code)
|
||
{
|
||
case PLUS:
|
||
/* In IEEE floating point, x+0 is not the same as x. Similarly
|
||
for the other optimizations below. */
|
||
if (TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT
|
||
&& FLOAT_MODE_P (mode) && ! flag_unsafe_math_optimizations)
|
||
break;
|
||
|
||
if (trueop1 == CONST0_RTX (mode))
|
||
return op0;
|
||
|
||
/* ((-a) + b) -> (b - a) and similarly for (a + (-b)) */
|
||
if (GET_CODE (op0) == NEG)
|
||
return simplify_gen_binary (MINUS, mode, op1, XEXP (op0, 0));
|
||
else if (GET_CODE (op1) == NEG)
|
||
return simplify_gen_binary (MINUS, mode, op0, XEXP (op1, 0));
|
||
|
||
/* (~a) + 1 -> -a */
|
||
if (INTEGRAL_MODE_P (mode)
|
||
&& GET_CODE (op0) == NOT
|
||
&& trueop1 == const1_rtx)
|
||
return gen_rtx_NEG (mode, XEXP (op0, 0));
|
||
|
||
/* Handle both-operands-constant cases. We can only add
|
||
CONST_INTs to constants since the sum of relocatable symbols
|
||
can't be handled by most assemblers. Don't add CONST_INT
|
||
to CONST_INT since overflow won't be computed properly if wider
|
||
than HOST_BITS_PER_WIDE_INT. */
|
||
|
||
if (CONSTANT_P (op0) && GET_MODE (op0) != VOIDmode
|
||
&& GET_CODE (op1) == CONST_INT)
|
||
return plus_constant (op0, INTVAL (op1));
|
||
else if (CONSTANT_P (op1) && GET_MODE (op1) != VOIDmode
|
||
&& GET_CODE (op0) == CONST_INT)
|
||
return plus_constant (op1, INTVAL (op0));
|
||
|
||
/* See if this is something like X * C - X or vice versa or
|
||
if the multiplication is written as a shift. If so, we can
|
||
distribute and make a new multiply, shift, or maybe just
|
||
have X (if C is 2 in the example above). But don't make
|
||
real multiply if we didn't have one before. */
|
||
|
||
if (! FLOAT_MODE_P (mode))
|
||
{
|
||
HOST_WIDE_INT coeff0 = 1, coeff1 = 1;
|
||
rtx lhs = op0, rhs = op1;
|
||
int had_mult = 0;
|
||
|
||
if (GET_CODE (lhs) == NEG)
|
||
coeff0 = -1, lhs = XEXP (lhs, 0);
|
||
else if (GET_CODE (lhs) == MULT
|
||
&& GET_CODE (XEXP (lhs, 1)) == CONST_INT)
|
||
{
|
||
coeff0 = INTVAL (XEXP (lhs, 1)), lhs = XEXP (lhs, 0);
|
||
had_mult = 1;
|
||
}
|
||
else if (GET_CODE (lhs) == ASHIFT
|
||
&& GET_CODE (XEXP (lhs, 1)) == CONST_INT
|
||
&& INTVAL (XEXP (lhs, 1)) >= 0
|
||
&& INTVAL (XEXP (lhs, 1)) < HOST_BITS_PER_WIDE_INT)
|
||
{
|
||
coeff0 = ((HOST_WIDE_INT) 1) << INTVAL (XEXP (lhs, 1));
|
||
lhs = XEXP (lhs, 0);
|
||
}
|
||
|
||
if (GET_CODE (rhs) == NEG)
|
||
coeff1 = -1, rhs = XEXP (rhs, 0);
|
||
else if (GET_CODE (rhs) == MULT
|
||
&& GET_CODE (XEXP (rhs, 1)) == CONST_INT)
|
||
{
|
||
coeff1 = INTVAL (XEXP (rhs, 1)), rhs = XEXP (rhs, 0);
|
||
had_mult = 1;
|
||
}
|
||
else if (GET_CODE (rhs) == ASHIFT
|
||
&& GET_CODE (XEXP (rhs, 1)) == CONST_INT
|
||
&& INTVAL (XEXP (rhs, 1)) >= 0
|
||
&& INTVAL (XEXP (rhs, 1)) < HOST_BITS_PER_WIDE_INT)
|
||
{
|
||
coeff1 = ((HOST_WIDE_INT) 1) << INTVAL (XEXP (rhs, 1));
|
||
rhs = XEXP (rhs, 0);
|
||
}
|
||
|
||
if (rtx_equal_p (lhs, rhs))
|
||
{
|
||
tem = simplify_gen_binary (MULT, mode, lhs,
|
||
GEN_INT (coeff0 + coeff1));
|
||
return (GET_CODE (tem) == MULT && ! had_mult) ? 0 : tem;
|
||
}
|
||
}
|
||
|
||
/* If one of the operands is a PLUS or a MINUS, see if we can
|
||
simplify this by the associative law.
|
||
Don't use the associative law for floating point.
|
||
The inaccuracy makes it nonassociative,
|
||
and subtle programs can break if operations are associated. */
|
||
|
||
if (INTEGRAL_MODE_P (mode)
|
||
&& (GET_CODE (op0) == PLUS || GET_CODE (op0) == MINUS
|
||
|| GET_CODE (op1) == PLUS || GET_CODE (op1) == MINUS
|
||
|| (GET_CODE (op0) == CONST
|
||
&& GET_CODE (XEXP (op0, 0)) == PLUS)
|
||
|| (GET_CODE (op1) == CONST
|
||
&& GET_CODE (XEXP (op1, 0)) == PLUS))
|
||
&& (tem = simplify_plus_minus (code, mode, op0, op1)) != 0)
|
||
return tem;
|
||
break;
|
||
|
||
case COMPARE:
|
||
#ifdef HAVE_cc0
|
||
/* Convert (compare FOO (const_int 0)) to FOO unless we aren't
|
||
using cc0, in which case we want to leave it as a COMPARE
|
||
so we can distinguish it from a register-register-copy.
|
||
|
||
In IEEE floating point, x-0 is not the same as x. */
|
||
|
||
if ((TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
|
||
|| ! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
|
||
&& trueop1 == CONST0_RTX (mode))
|
||
return op0;
|
||
#endif
|
||
|
||
/* Convert (compare (gt (flags) 0) (lt (flags) 0)) to (flags). */
|
||
if (((GET_CODE (op0) == GT && GET_CODE (op1) == LT)
|
||
|| (GET_CODE (op0) == GTU && GET_CODE (op1) == LTU))
|
||
&& XEXP (op0, 1) == const0_rtx && XEXP (op1, 1) == const0_rtx)
|
||
{
|
||
rtx xop00 = XEXP (op0, 0);
|
||
rtx xop10 = XEXP (op1, 0);
|
||
|
||
#ifdef HAVE_cc0
|
||
if (GET_CODE (xop00) == CC0 && GET_CODE (xop10) == CC0)
|
||
#else
|
||
if (GET_CODE (xop00) == REG && GET_CODE (xop10) == REG
|
||
&& GET_MODE (xop00) == GET_MODE (xop10)
|
||
&& REGNO (xop00) == REGNO (xop10)
|
||
&& GET_MODE_CLASS (GET_MODE (xop00)) == MODE_CC
|
||
&& GET_MODE_CLASS (GET_MODE (xop10)) == MODE_CC)
|
||
#endif
|
||
return xop00;
|
||
}
|
||
break;
|
||
|
||
case MINUS:
|
||
/* None of these optimizations can be done for IEEE
|
||
floating point. */
|
||
if (TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT
|
||
&& FLOAT_MODE_P (mode) && ! flag_unsafe_math_optimizations)
|
||
break;
|
||
|
||
/* We can't assume x-x is 0 even with non-IEEE floating point,
|
||
but since it is zero except in very strange circumstances, we
|
||
will treat it as zero with -funsafe-math-optimizations. */
|
||
if (rtx_equal_p (trueop0, trueop1)
|
||
&& ! side_effects_p (op0)
|
||
&& (! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations))
|
||
return CONST0_RTX (mode);
|
||
|
||
/* Change subtraction from zero into negation. */
|
||
if (trueop0 == CONST0_RTX (mode))
|
||
return gen_rtx_NEG (mode, op1);
|
||
|
||
/* (-1 - a) is ~a. */
|
||
if (trueop0 == constm1_rtx)
|
||
return gen_rtx_NOT (mode, op1);
|
||
|
||
/* Subtracting 0 has no effect. */
|
||
if (trueop1 == CONST0_RTX (mode))
|
||
return op0;
|
||
|
||
/* See if this is something like X * C - X or vice versa or
|
||
if the multiplication is written as a shift. If so, we can
|
||
distribute and make a new multiply, shift, or maybe just
|
||
have X (if C is 2 in the example above). But don't make
|
||
real multiply if we didn't have one before. */
|
||
|
||
if (! FLOAT_MODE_P (mode))
|
||
{
|
||
HOST_WIDE_INT coeff0 = 1, coeff1 = 1;
|
||
rtx lhs = op0, rhs = op1;
|
||
int had_mult = 0;
|
||
|
||
if (GET_CODE (lhs) == NEG)
|
||
coeff0 = -1, lhs = XEXP (lhs, 0);
|
||
else if (GET_CODE (lhs) == MULT
|
||
&& GET_CODE (XEXP (lhs, 1)) == CONST_INT)
|
||
{
|
||
coeff0 = INTVAL (XEXP (lhs, 1)), lhs = XEXP (lhs, 0);
|
||
had_mult = 1;
|
||
}
|
||
else if (GET_CODE (lhs) == ASHIFT
|
||
&& GET_CODE (XEXP (lhs, 1)) == CONST_INT
|
||
&& INTVAL (XEXP (lhs, 1)) >= 0
|
||
&& INTVAL (XEXP (lhs, 1)) < HOST_BITS_PER_WIDE_INT)
|
||
{
|
||
coeff0 = ((HOST_WIDE_INT) 1) << INTVAL (XEXP (lhs, 1));
|
||
lhs = XEXP (lhs, 0);
|
||
}
|
||
|
||
if (GET_CODE (rhs) == NEG)
|
||
coeff1 = - 1, rhs = XEXP (rhs, 0);
|
||
else if (GET_CODE (rhs) == MULT
|
||
&& GET_CODE (XEXP (rhs, 1)) == CONST_INT)
|
||
{
|
||
coeff1 = INTVAL (XEXP (rhs, 1)), rhs = XEXP (rhs, 0);
|
||
had_mult = 1;
|
||
}
|
||
else if (GET_CODE (rhs) == ASHIFT
|
||
&& GET_CODE (XEXP (rhs, 1)) == CONST_INT
|
||
&& INTVAL (XEXP (rhs, 1)) >= 0
|
||
&& INTVAL (XEXP (rhs, 1)) < HOST_BITS_PER_WIDE_INT)
|
||
{
|
||
coeff1 = ((HOST_WIDE_INT) 1) << INTVAL (XEXP (rhs, 1));
|
||
rhs = XEXP (rhs, 0);
|
||
}
|
||
|
||
if (rtx_equal_p (lhs, rhs))
|
||
{
|
||
tem = simplify_gen_binary (MULT, mode, lhs,
|
||
GEN_INT (coeff0 - coeff1));
|
||
return (GET_CODE (tem) == MULT && ! had_mult) ? 0 : tem;
|
||
}
|
||
}
|
||
|
||
/* (a - (-b)) -> (a + b). */
|
||
if (GET_CODE (op1) == NEG)
|
||
return simplify_gen_binary (PLUS, mode, op0, XEXP (op1, 0));
|
||
|
||
/* If one of the operands is a PLUS or a MINUS, see if we can
|
||
simplify this by the associative law.
|
||
Don't use the associative law for floating point.
|
||
The inaccuracy makes it nonassociative,
|
||
and subtle programs can break if operations are associated. */
|
||
|
||
if (INTEGRAL_MODE_P (mode)
|
||
&& (GET_CODE (op0) == PLUS || GET_CODE (op0) == MINUS
|
||
|| GET_CODE (op1) == PLUS || GET_CODE (op1) == MINUS
|
||
|| (GET_CODE (op0) == CONST
|
||
&& GET_CODE (XEXP (op0, 0)) == PLUS)
|
||
|| (GET_CODE (op1) == CONST
|
||
&& GET_CODE (XEXP (op1, 0)) == PLUS))
|
||
&& (tem = simplify_plus_minus (code, mode, op0, op1)) != 0)
|
||
return tem;
|
||
|
||
/* Don't let a relocatable value get a negative coeff. */
|
||
if (GET_CODE (op1) == CONST_INT && GET_MODE (op0) != VOIDmode)
|
||
return simplify_gen_binary (PLUS, mode,
|
||
op0,
|
||
neg_const_int (mode, op1));
|
||
|
||
/* (x - (x & y)) -> (x & ~y) */
|
||
if (GET_CODE (op1) == AND)
|
||
{
|
||
if (rtx_equal_p (op0, XEXP (op1, 0)))
|
||
return simplify_gen_binary (AND, mode, op0,
|
||
gen_rtx_NOT (mode, XEXP (op1, 1)));
|
||
if (rtx_equal_p (op0, XEXP (op1, 1)))
|
||
return simplify_gen_binary (AND, mode, op0,
|
||
gen_rtx_NOT (mode, XEXP (op1, 0)));
|
||
}
|
||
break;
|
||
|
||
case MULT:
|
||
if (trueop1 == constm1_rtx)
|
||
{
|
||
tem = simplify_unary_operation (NEG, mode, op0, mode);
|
||
|
||
return tem ? tem : gen_rtx_NEG (mode, op0);
|
||
}
|
||
|
||
/* In IEEE floating point, x*0 is not always 0. */
|
||
if ((TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
|
||
|| ! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
|
||
&& trueop1 == CONST0_RTX (mode)
|
||
&& ! side_effects_p (op0))
|
||
return op1;
|
||
|
||
/* In IEEE floating point, x*1 is not equivalent to x for nans.
|
||
However, ANSI says we can drop signals,
|
||
so we can do this anyway. */
|
||
if (trueop1 == CONST1_RTX (mode))
|
||
return op0;
|
||
|
||
/* Convert multiply by constant power of two into shift unless
|
||
we are still generating RTL. This test is a kludge. */
|
||
if (GET_CODE (trueop1) == CONST_INT
|
||
&& (val = exact_log2 (INTVAL (trueop1))) >= 0
|
||
/* If the mode is larger than the host word size, and the
|
||
uppermost bit is set, then this isn't a power of two due
|
||
to implicit sign extension. */
|
||
&& (width <= HOST_BITS_PER_WIDE_INT
|
||
|| val != HOST_BITS_PER_WIDE_INT - 1)
|
||
&& ! rtx_equal_function_value_matters)
|
||
return gen_rtx_ASHIFT (mode, op0, GEN_INT (val));
|
||
|
||
if (GET_CODE (trueop1) == CONST_DOUBLE
|
||
&& GET_MODE_CLASS (GET_MODE (trueop1)) == MODE_FLOAT)
|
||
{
|
||
struct simplify_binary_is2orm1_args args;
|
||
|
||
args.value = trueop1;
|
||
if (! do_float_handler (simplify_binary_is2orm1, (PTR) &args))
|
||
return 0;
|
||
|
||
/* x*2 is x+x and x*(-1) is -x */
|
||
if (args.is_2 && GET_MODE (op0) == mode)
|
||
return gen_rtx_PLUS (mode, op0, copy_rtx (op0));
|
||
|
||
else if (args.is_m1 && GET_MODE (op0) == mode)
|
||
return gen_rtx_NEG (mode, op0);
|
||
}
|
||
break;
|
||
|
||
case IOR:
|
||
if (trueop1 == const0_rtx)
|
||
return op0;
|
||
if (GET_CODE (trueop1) == CONST_INT
|
||
&& ((INTVAL (trueop1) & GET_MODE_MASK (mode))
|
||
== GET_MODE_MASK (mode)))
|
||
return op1;
|
||
if (rtx_equal_p (trueop0, trueop1) && ! side_effects_p (op0))
|
||
return op0;
|
||
/* A | (~A) -> -1 */
|
||
if (((GET_CODE (op0) == NOT && rtx_equal_p (XEXP (op0, 0), op1))
|
||
|| (GET_CODE (op1) == NOT && rtx_equal_p (XEXP (op1, 0), op0)))
|
||
&& ! side_effects_p (op0)
|
||
&& GET_MODE_CLASS (mode) != MODE_CC)
|
||
return constm1_rtx;
|
||
break;
|
||
|
||
case XOR:
|
||
if (trueop1 == const0_rtx)
|
||
return op0;
|
||
if (GET_CODE (trueop1) == CONST_INT
|
||
&& ((INTVAL (trueop1) & GET_MODE_MASK (mode))
|
||
== GET_MODE_MASK (mode)))
|
||
return gen_rtx_NOT (mode, op0);
|
||
if (trueop0 == trueop1 && ! side_effects_p (op0)
|
||
&& GET_MODE_CLASS (mode) != MODE_CC)
|
||
return const0_rtx;
|
||
break;
|
||
|
||
case AND:
|
||
if (trueop1 == const0_rtx && ! side_effects_p (op0))
|
||
return const0_rtx;
|
||
if (GET_CODE (trueop1) == CONST_INT
|
||
&& ((INTVAL (trueop1) & GET_MODE_MASK (mode))
|
||
== GET_MODE_MASK (mode)))
|
||
return op0;
|
||
if (trueop0 == trueop1 && ! side_effects_p (op0)
|
||
&& GET_MODE_CLASS (mode) != MODE_CC)
|
||
return op0;
|
||
/* A & (~A) -> 0 */
|
||
if (((GET_CODE (op0) == NOT && rtx_equal_p (XEXP (op0, 0), op1))
|
||
|| (GET_CODE (op1) == NOT && rtx_equal_p (XEXP (op1, 0), op0)))
|
||
&& ! side_effects_p (op0)
|
||
&& GET_MODE_CLASS (mode) != MODE_CC)
|
||
return const0_rtx;
|
||
break;
|
||
|
||
case UDIV:
|
||
/* Convert divide by power of two into shift (divide by 1 handled
|
||
below). */
|
||
if (GET_CODE (trueop1) == CONST_INT
|
||
&& (arg1 = exact_log2 (INTVAL (trueop1))) > 0)
|
||
return gen_rtx_LSHIFTRT (mode, op0, GEN_INT (arg1));
|
||
|
||
/* ... fall through ... */
|
||
|
||
case DIV:
|
||
if (trueop1 == CONST1_RTX (mode))
|
||
{
|
||
/* On some platforms DIV uses narrower mode than its
|
||
operands. */
|
||
rtx x = gen_lowpart_common (mode, op0);
|
||
if (x)
|
||
return x;
|
||
else if (mode != GET_MODE (op0) && GET_MODE (op0) != VOIDmode)
|
||
return gen_lowpart_SUBREG (mode, op0);
|
||
else
|
||
return op0;
|
||
}
|
||
|
||
/* In IEEE floating point, 0/x is not always 0. */
|
||
if ((TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
|
||
|| ! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
|
||
&& trueop0 == CONST0_RTX (mode)
|
||
&& ! side_effects_p (op1))
|
||
return op0;
|
||
|
||
#if ! defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
|
||
/* Change division by a constant into multiplication. Only do
|
||
this with -funsafe-math-optimizations. */
|
||
else if (GET_CODE (trueop1) == CONST_DOUBLE
|
||
&& GET_MODE_CLASS (GET_MODE (trueop1)) == MODE_FLOAT
|
||
&& trueop1 != CONST0_RTX (mode)
|
||
&& flag_unsafe_math_optimizations)
|
||
{
|
||
REAL_VALUE_TYPE d;
|
||
REAL_VALUE_FROM_CONST_DOUBLE (d, trueop1);
|
||
|
||
if (! REAL_VALUES_EQUAL (d, dconst0))
|
||
{
|
||
#if defined (REAL_ARITHMETIC)
|
||
REAL_ARITHMETIC (d, rtx_to_tree_code (DIV), dconst1, d);
|
||
return gen_rtx_MULT (mode, op0,
|
||
CONST_DOUBLE_FROM_REAL_VALUE (d, mode));
|
||
#else
|
||
return
|
||
gen_rtx_MULT (mode, op0,
|
||
CONST_DOUBLE_FROM_REAL_VALUE (1./d, mode));
|
||
#endif
|
||
}
|
||
}
|
||
#endif
|
||
break;
|
||
|
||
case UMOD:
|
||
/* Handle modulus by power of two (mod with 1 handled below). */
|
||
if (GET_CODE (trueop1) == CONST_INT
|
||
&& exact_log2 (INTVAL (trueop1)) > 0)
|
||
return gen_rtx_AND (mode, op0, GEN_INT (INTVAL (op1) - 1));
|
||
|
||
/* ... fall through ... */
|
||
|
||
case MOD:
|
||
if ((trueop0 == const0_rtx || trueop1 == const1_rtx)
|
||
&& ! side_effects_p (op0) && ! side_effects_p (op1))
|
||
return const0_rtx;
|
||
break;
|
||
|
||
case ROTATERT:
|
||
case ROTATE:
|
||
/* Rotating ~0 always results in ~0. */
|
||
if (GET_CODE (trueop0) == CONST_INT && width <= HOST_BITS_PER_WIDE_INT
|
||
&& (unsigned HOST_WIDE_INT) INTVAL (trueop0) == GET_MODE_MASK (mode)
|
||
&& ! side_effects_p (op1))
|
||
return op0;
|
||
|
||
/* ... fall through ... */
|
||
|
||
case ASHIFT:
|
||
case ASHIFTRT:
|
||
case LSHIFTRT:
|
||
if (trueop1 == const0_rtx)
|
||
return op0;
|
||
if (trueop0 == const0_rtx && ! side_effects_p (op1))
|
||
return op0;
|
||
break;
|
||
|
||
case SMIN:
|
||
if (width <= HOST_BITS_PER_WIDE_INT && GET_CODE (trueop1) == CONST_INT
|
||
&& INTVAL (trueop1) == (HOST_WIDE_INT) 1 << (width -1)
|
||
&& ! side_effects_p (op0))
|
||
return op1;
|
||
else if (rtx_equal_p (trueop0, trueop1) && ! side_effects_p (op0))
|
||
return op0;
|
||
break;
|
||
|
||
case SMAX:
|
||
if (width <= HOST_BITS_PER_WIDE_INT && GET_CODE (trueop1) == CONST_INT
|
||
&& ((unsigned HOST_WIDE_INT) INTVAL (trueop1)
|
||
== (unsigned HOST_WIDE_INT) GET_MODE_MASK (mode) >> 1)
|
||
&& ! side_effects_p (op0))
|
||
return op1;
|
||
else if (rtx_equal_p (trueop0, trueop1) && ! side_effects_p (op0))
|
||
return op0;
|
||
break;
|
||
|
||
case UMIN:
|
||
if (trueop1 == const0_rtx && ! side_effects_p (op0))
|
||
return op1;
|
||
else if (rtx_equal_p (trueop0, trueop1) && ! side_effects_p (op0))
|
||
return op0;
|
||
break;
|
||
|
||
case UMAX:
|
||
if (trueop1 == constm1_rtx && ! side_effects_p (op0))
|
||
return op1;
|
||
else if (rtx_equal_p (trueop0, trueop1) && ! side_effects_p (op0))
|
||
return op0;
|
||
break;
|
||
|
||
case SS_PLUS:
|
||
case US_PLUS:
|
||
case SS_MINUS:
|
||
case US_MINUS:
|
||
/* ??? There are simplifications that can be done. */
|
||
return 0;
|
||
|
||
default:
|
||
abort ();
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Get the integer argument values in two forms:
|
||
zero-extended in ARG0, ARG1 and sign-extended in ARG0S, ARG1S. */
|
||
|
||
arg0 = INTVAL (trueop0);
|
||
arg1 = INTVAL (trueop1);
|
||
|
||
if (width < HOST_BITS_PER_WIDE_INT)
|
||
{
|
||
arg0 &= ((HOST_WIDE_INT) 1 << width) - 1;
|
||
arg1 &= ((HOST_WIDE_INT) 1 << width) - 1;
|
||
|
||
arg0s = arg0;
|
||
if (arg0s & ((HOST_WIDE_INT) 1 << (width - 1)))
|
||
arg0s |= ((HOST_WIDE_INT) (-1) << width);
|
||
|
||
arg1s = arg1;
|
||
if (arg1s & ((HOST_WIDE_INT) 1 << (width - 1)))
|
||
arg1s |= ((HOST_WIDE_INT) (-1) << width);
|
||
}
|
||
else
|
||
{
|
||
arg0s = arg0;
|
||
arg1s = arg1;
|
||
}
|
||
|
||
/* Compute the value of the arithmetic. */
|
||
|
||
switch (code)
|
||
{
|
||
case PLUS:
|
||
val = arg0s + arg1s;
|
||
break;
|
||
|
||
case MINUS:
|
||
val = arg0s - arg1s;
|
||
break;
|
||
|
||
case MULT:
|
||
val = arg0s * arg1s;
|
||
break;
|
||
|
||
case DIV:
|
||
if (arg1s == 0
|
||
|| (arg0s == (HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)
|
||
&& arg1s == -1))
|
||
return 0;
|
||
val = arg0s / arg1s;
|
||
break;
|
||
|
||
case MOD:
|
||
if (arg1s == 0
|
||
|| (arg0s == (HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)
|
||
&& arg1s == -1))
|
||
return 0;
|
||
val = arg0s % arg1s;
|
||
break;
|
||
|
||
case UDIV:
|
||
if (arg1 == 0
|
||
|| (arg0s == (HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)
|
||
&& arg1s == -1))
|
||
return 0;
|
||
val = (unsigned HOST_WIDE_INT) arg0 / arg1;
|
||
break;
|
||
|
||
case UMOD:
|
||
if (arg1 == 0
|
||
|| (arg0s == (HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)
|
||
&& arg1s == -1))
|
||
return 0;
|
||
val = (unsigned HOST_WIDE_INT) arg0 % arg1;
|
||
break;
|
||
|
||
case AND:
|
||
val = arg0 & arg1;
|
||
break;
|
||
|
||
case IOR:
|
||
val = arg0 | arg1;
|
||
break;
|
||
|
||
case XOR:
|
||
val = arg0 ^ arg1;
|
||
break;
|
||
|
||
case LSHIFTRT:
|
||
/* If shift count is undefined, don't fold it; let the machine do
|
||
what it wants. But truncate it if the machine will do that. */
|
||
if (arg1 < 0)
|
||
return 0;
|
||
|
||
#ifdef SHIFT_COUNT_TRUNCATED
|
||
if (SHIFT_COUNT_TRUNCATED)
|
||
arg1 %= width;
|
||
#endif
|
||
|
||
val = ((unsigned HOST_WIDE_INT) arg0) >> arg1;
|
||
break;
|
||
|
||
case ASHIFT:
|
||
if (arg1 < 0)
|
||
return 0;
|
||
|
||
#ifdef SHIFT_COUNT_TRUNCATED
|
||
if (SHIFT_COUNT_TRUNCATED)
|
||
arg1 %= width;
|
||
#endif
|
||
|
||
val = ((unsigned HOST_WIDE_INT) arg0) << arg1;
|
||
break;
|
||
|
||
case ASHIFTRT:
|
||
if (arg1 < 0)
|
||
return 0;
|
||
|
||
#ifdef SHIFT_COUNT_TRUNCATED
|
||
if (SHIFT_COUNT_TRUNCATED)
|
||
arg1 %= width;
|
||
#endif
|
||
|
||
val = arg0s >> arg1;
|
||
|
||
/* Bootstrap compiler may not have sign extended the right shift.
|
||
Manually extend the sign to insure bootstrap cc matches gcc. */
|
||
if (arg0s < 0 && arg1 > 0)
|
||
val |= ((HOST_WIDE_INT) -1) << (HOST_BITS_PER_WIDE_INT - arg1);
|
||
|
||
break;
|
||
|
||
case ROTATERT:
|
||
if (arg1 < 0)
|
||
return 0;
|
||
|
||
arg1 %= width;
|
||
val = ((((unsigned HOST_WIDE_INT) arg0) << (width - arg1))
|
||
| (((unsigned HOST_WIDE_INT) arg0) >> arg1));
|
||
break;
|
||
|
||
case ROTATE:
|
||
if (arg1 < 0)
|
||
return 0;
|
||
|
||
arg1 %= width;
|
||
val = ((((unsigned HOST_WIDE_INT) arg0) << arg1)
|
||
| (((unsigned HOST_WIDE_INT) arg0) >> (width - arg1)));
|
||
break;
|
||
|
||
case COMPARE:
|
||
/* Do nothing here. */
|
||
return 0;
|
||
|
||
case SMIN:
|
||
val = arg0s <= arg1s ? arg0s : arg1s;
|
||
break;
|
||
|
||
case UMIN:
|
||
val = ((unsigned HOST_WIDE_INT) arg0
|
||
<= (unsigned HOST_WIDE_INT) arg1 ? arg0 : arg1);
|
||
break;
|
||
|
||
case SMAX:
|
||
val = arg0s > arg1s ? arg0s : arg1s;
|
||
break;
|
||
|
||
case UMAX:
|
||
val = ((unsigned HOST_WIDE_INT) arg0
|
||
> (unsigned HOST_WIDE_INT) arg1 ? arg0 : arg1);
|
||
break;
|
||
|
||
default:
|
||
abort ();
|
||
}
|
||
|
||
val = trunc_int_for_mode (val, mode);
|
||
|
||
return GEN_INT (val);
|
||
}
|
||
|
||
/* Simplify a PLUS or MINUS, at least one of whose operands may be another
|
||
PLUS or MINUS.
|
||
|
||
Rather than test for specific case, we do this by a brute-force method
|
||
and do all possible simplifications until no more changes occur. Then
|
||
we rebuild the operation. */
|
||
|
||
struct simplify_plus_minus_op_data
|
||
{
|
||
rtx op;
|
||
int neg;
|
||
};
|
||
|
||
static int
|
||
simplify_plus_minus_op_data_cmp (p1, p2)
|
||
const void *p1;
|
||
const void *p2;
|
||
{
|
||
const struct simplify_plus_minus_op_data *d1 = p1;
|
||
const struct simplify_plus_minus_op_data *d2 = p2;
|
||
|
||
return (commutative_operand_precedence (d2->op)
|
||
- commutative_operand_precedence (d1->op));
|
||
}
|
||
|
||
static rtx
|
||
simplify_plus_minus (code, mode, op0, op1)
|
||
enum rtx_code code;
|
||
enum machine_mode mode;
|
||
rtx op0, op1;
|
||
{
|
||
struct simplify_plus_minus_op_data ops[8];
|
||
rtx result, tem;
|
||
int n_ops = 2, input_ops = 2, input_consts = 0, n_consts;
|
||
int first, negate, changed;
|
||
int i, j;
|
||
|
||
memset ((char *) ops, 0, sizeof ops);
|
||
|
||
/* Set up the two operands and then expand them until nothing has been
|
||
changed. If we run out of room in our array, give up; this should
|
||
almost never happen. */
|
||
|
||
ops[0].op = op0;
|
||
ops[0].neg = 0;
|
||
ops[1].op = op1;
|
||
ops[1].neg = (code == MINUS);
|
||
|
||
do
|
||
{
|
||
changed = 0;
|
||
|
||
for (i = 0; i < n_ops; i++)
|
||
{
|
||
rtx this_op = ops[i].op;
|
||
int this_neg = ops[i].neg;
|
||
enum rtx_code this_code = GET_CODE (this_op);
|
||
|
||
switch (this_code)
|
||
{
|
||
case PLUS:
|
||
case MINUS:
|
||
if (n_ops == 7)
|
||
return 0;
|
||
|
||
ops[n_ops].op = XEXP (this_op, 1);
|
||
ops[n_ops].neg = (this_code == MINUS) ^ this_neg;
|
||
n_ops++;
|
||
|
||
ops[i].op = XEXP (this_op, 0);
|
||
input_ops++;
|
||
changed = 1;
|
||
break;
|
||
|
||
case NEG:
|
||
ops[i].op = XEXP (this_op, 0);
|
||
ops[i].neg = ! this_neg;
|
||
changed = 1;
|
||
break;
|
||
|
||
case CONST:
|
||
ops[i].op = XEXP (this_op, 0);
|
||
input_consts++;
|
||
changed = 1;
|
||
break;
|
||
|
||
case NOT:
|
||
/* ~a -> (-a - 1) */
|
||
if (n_ops != 7)
|
||
{
|
||
ops[n_ops].op = constm1_rtx;
|
||
ops[n_ops++].neg = this_neg;
|
||
ops[i].op = XEXP (this_op, 0);
|
||
ops[i].neg = !this_neg;
|
||
changed = 1;
|
||
}
|
||
break;
|
||
|
||
case CONST_INT:
|
||
if (this_neg)
|
||
{
|
||
ops[i].op = neg_const_int (mode, this_op);
|
||
ops[i].neg = 0;
|
||
changed = 1;
|
||
}
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
while (changed);
|
||
|
||
/* If we only have two operands, we can't do anything. */
|
||
if (n_ops <= 2)
|
||
return NULL_RTX;
|
||
|
||
/* Now simplify each pair of operands until nothing changes. The first
|
||
time through just simplify constants against each other. */
|
||
|
||
first = 1;
|
||
do
|
||
{
|
||
changed = first;
|
||
|
||
for (i = 0; i < n_ops - 1; i++)
|
||
for (j = i + 1; j < n_ops; j++)
|
||
{
|
||
rtx lhs = ops[i].op, rhs = ops[j].op;
|
||
int lneg = ops[i].neg, rneg = ops[j].neg;
|
||
|
||
if (lhs != 0 && rhs != 0
|
||
&& (! first || (CONSTANT_P (lhs) && CONSTANT_P (rhs))))
|
||
{
|
||
enum rtx_code ncode = PLUS;
|
||
|
||
if (lneg != rneg)
|
||
{
|
||
ncode = MINUS;
|
||
if (lneg)
|
||
tem = lhs, lhs = rhs, rhs = tem;
|
||
}
|
||
else if (swap_commutative_operands_p (lhs, rhs))
|
||
tem = lhs, lhs = rhs, rhs = tem;
|
||
|
||
tem = simplify_binary_operation (ncode, mode, lhs, rhs);
|
||
|
||
/* Reject "simplifications" that just wrap the two
|
||
arguments in a CONST. Failure to do so can result
|
||
in infinite recursion with simplify_binary_operation
|
||
when it calls us to simplify CONST operations. */
|
||
if (tem
|
||
&& ! (GET_CODE (tem) == CONST
|
||
&& GET_CODE (XEXP (tem, 0)) == ncode
|
||
&& XEXP (XEXP (tem, 0), 0) == lhs
|
||
&& XEXP (XEXP (tem, 0), 1) == rhs)
|
||
/* Don't allow -x + -1 -> ~x simplifications in the
|
||
first pass. This allows us the chance to combine
|
||
the -1 with other constants. */
|
||
&& ! (first
|
||
&& GET_CODE (tem) == NOT
|
||
&& XEXP (tem, 0) == rhs))
|
||
{
|
||
lneg &= rneg;
|
||
if (GET_CODE (tem) == NEG)
|
||
tem = XEXP (tem, 0), lneg = !lneg;
|
||
if (GET_CODE (tem) == CONST_INT && lneg)
|
||
tem = neg_const_int (mode, tem), lneg = 0;
|
||
|
||
ops[i].op = tem;
|
||
ops[i].neg = lneg;
|
||
ops[j].op = NULL_RTX;
|
||
changed = 1;
|
||
}
|
||
}
|
||
}
|
||
|
||
first = 0;
|
||
}
|
||
while (changed);
|
||
|
||
/* Pack all the operands to the lower-numbered entries. */
|
||
for (i = 0, j = 0; j < n_ops; j++)
|
||
if (ops[j].op)
|
||
ops[i++] = ops[j];
|
||
n_ops = i;
|
||
|
||
/* Sort the operations based on swap_commutative_operands_p. */
|
||
qsort (ops, n_ops, sizeof (*ops), simplify_plus_minus_op_data_cmp);
|
||
|
||
/* We suppressed creation of trivial CONST expressions in the
|
||
combination loop to avoid recursion. Create one manually now.
|
||
The combination loop should have ensured that there is exactly
|
||
one CONST_INT, and the sort will have ensured that it is last
|
||
in the array and that any other constant will be next-to-last. */
|
||
|
||
if (n_ops > 1
|
||
&& GET_CODE (ops[n_ops - 1].op) == CONST_INT
|
||
&& CONSTANT_P (ops[n_ops - 2].op))
|
||
{
|
||
rtx value = ops[n_ops - 1].op;
|
||
if (ops[n_ops - 1].neg ^ ops[n_ops - 2].neg)
|
||
value = neg_const_int (mode, value);
|
||
ops[n_ops - 2].op = plus_constant (ops[n_ops - 2].op, INTVAL (value));
|
||
n_ops--;
|
||
}
|
||
|
||
/* Count the number of CONSTs that we generated. */
|
||
n_consts = 0;
|
||
for (i = 0; i < n_ops; i++)
|
||
if (GET_CODE (ops[i].op) == CONST)
|
||
n_consts++;
|
||
|
||
/* Give up if we didn't reduce the number of operands we had. Make
|
||
sure we count a CONST as two operands. If we have the same
|
||
number of operands, but have made more CONSTs than before, this
|
||
is also an improvement, so accept it. */
|
||
if (n_ops + n_consts > input_ops
|
||
|| (n_ops + n_consts == input_ops && n_consts <= input_consts))
|
||
return NULL_RTX;
|
||
|
||
/* Put a non-negated operand first. If there aren't any, make all
|
||
operands positive and negate the whole thing later. */
|
||
|
||
negate = 0;
|
||
for (i = 0; i < n_ops && ops[i].neg; i++)
|
||
continue;
|
||
if (i == n_ops)
|
||
{
|
||
for (i = 0; i < n_ops; i++)
|
||
ops[i].neg = 0;
|
||
negate = 1;
|
||
}
|
||
else if (i != 0)
|
||
{
|
||
tem = ops[0].op;
|
||
ops[0] = ops[i];
|
||
ops[i].op = tem;
|
||
ops[i].neg = 1;
|
||
}
|
||
|
||
/* Now make the result by performing the requested operations. */
|
||
result = ops[0].op;
|
||
for (i = 1; i < n_ops; i++)
|
||
result = gen_rtx_fmt_ee (ops[i].neg ? MINUS : PLUS,
|
||
mode, result, ops[i].op);
|
||
|
||
return negate ? gen_rtx_NEG (mode, result) : result;
|
||
}
|
||
|
||
struct cfc_args
|
||
{
|
||
rtx op0, op1; /* Input */
|
||
int equal, op0lt, op1lt; /* Output */
|
||
int unordered;
|
||
};
|
||
|
||
static void
|
||
check_fold_consts (data)
|
||
PTR data;
|
||
{
|
||
struct cfc_args *args = (struct cfc_args *) data;
|
||
REAL_VALUE_TYPE d0, d1;
|
||
|
||
/* We may possibly raise an exception while reading the value. */
|
||
args->unordered = 1;
|
||
REAL_VALUE_FROM_CONST_DOUBLE (d0, args->op0);
|
||
REAL_VALUE_FROM_CONST_DOUBLE (d1, args->op1);
|
||
|
||
/* Comparisons of Inf versus Inf are ordered. */
|
||
if (REAL_VALUE_ISNAN (d0)
|
||
|| REAL_VALUE_ISNAN (d1))
|
||
return;
|
||
args->equal = REAL_VALUES_EQUAL (d0, d1);
|
||
args->op0lt = REAL_VALUES_LESS (d0, d1);
|
||
args->op1lt = REAL_VALUES_LESS (d1, d0);
|
||
args->unordered = 0;
|
||
}
|
||
|
||
/* Like simplify_binary_operation except used for relational operators.
|
||
MODE is the mode of the operands, not that of the result. If MODE
|
||
is VOIDmode, both operands must also be VOIDmode and we compare the
|
||
operands in "infinite precision".
|
||
|
||
If no simplification is possible, this function returns zero. Otherwise,
|
||
it returns either const_true_rtx or const0_rtx. */
|
||
|
||
rtx
|
||
simplify_relational_operation (code, mode, op0, op1)
|
||
enum rtx_code code;
|
||
enum machine_mode mode;
|
||
rtx op0, op1;
|
||
{
|
||
int equal, op0lt, op0ltu, op1lt, op1ltu;
|
||
rtx tem;
|
||
rtx trueop0;
|
||
rtx trueop1;
|
||
|
||
if (mode == VOIDmode
|
||
&& (GET_MODE (op0) != VOIDmode
|
||
|| GET_MODE (op1) != VOIDmode))
|
||
abort ();
|
||
|
||
/* If op0 is a compare, extract the comparison arguments from it. */
|
||
if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
|
||
op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
|
||
|
||
trueop0 = avoid_constant_pool_reference (op0);
|
||
trueop1 = avoid_constant_pool_reference (op1);
|
||
|
||
/* We can't simplify MODE_CC values since we don't know what the
|
||
actual comparison is. */
|
||
if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC
|
||
#ifdef HAVE_cc0
|
||
|| op0 == cc0_rtx
|
||
#endif
|
||
)
|
||
return 0;
|
||
|
||
/* Make sure the constant is second. */
|
||
if (swap_commutative_operands_p (trueop0, trueop1))
|
||
{
|
||
tem = op0, op0 = op1, op1 = tem;
|
||
tem = trueop0, trueop0 = trueop1, trueop1 = tem;
|
||
code = swap_condition (code);
|
||
}
|
||
|
||
/* For integer comparisons of A and B maybe we can simplify A - B and can
|
||
then simplify a comparison of that with zero. If A and B are both either
|
||
a register or a CONST_INT, this can't help; testing for these cases will
|
||
prevent infinite recursion here and speed things up.
|
||
|
||
If CODE is an unsigned comparison, then we can never do this optimization,
|
||
because it gives an incorrect result if the subtraction wraps around zero.
|
||
ANSI C defines unsigned operations such that they never overflow, and
|
||
thus such cases can not be ignored. */
|
||
|
||
if (INTEGRAL_MODE_P (mode) && trueop1 != const0_rtx
|
||
&& ! ((GET_CODE (op0) == REG || GET_CODE (trueop0) == CONST_INT)
|
||
&& (GET_CODE (op1) == REG || GET_CODE (trueop1) == CONST_INT))
|
||
&& 0 != (tem = simplify_binary_operation (MINUS, mode, op0, op1))
|
||
&& code != GTU && code != GEU && code != LTU && code != LEU)
|
||
return simplify_relational_operation (signed_condition (code),
|
||
mode, tem, const0_rtx);
|
||
|
||
if (flag_unsafe_math_optimizations && code == ORDERED)
|
||
return const_true_rtx;
|
||
|
||
if (flag_unsafe_math_optimizations && code == UNORDERED)
|
||
return const0_rtx;
|
||
|
||
/* For non-IEEE floating-point, if the two operands are equal, we know the
|
||
result. */
|
||
if (rtx_equal_p (trueop0, trueop1)
|
||
&& (TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
|
||
|| ! FLOAT_MODE_P (GET_MODE (trueop0))
|
||
|| flag_unsafe_math_optimizations))
|
||
equal = 1, op0lt = 0, op0ltu = 0, op1lt = 0, op1ltu = 0;
|
||
|
||
/* If the operands are floating-point constants, see if we can fold
|
||
the result. */
|
||
#if ! defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
|
||
else if (GET_CODE (trueop0) == CONST_DOUBLE
|
||
&& GET_CODE (trueop1) == CONST_DOUBLE
|
||
&& GET_MODE_CLASS (GET_MODE (trueop0)) == MODE_FLOAT)
|
||
{
|
||
struct cfc_args args;
|
||
|
||
/* Setup input for check_fold_consts() */
|
||
args.op0 = trueop0;
|
||
args.op1 = trueop1;
|
||
|
||
|
||
if (!do_float_handler (check_fold_consts, (PTR) &args))
|
||
args.unordered = 1;
|
||
|
||
if (args.unordered)
|
||
switch (code)
|
||
{
|
||
case UNEQ:
|
||
case UNLT:
|
||
case UNGT:
|
||
case UNLE:
|
||
case UNGE:
|
||
case NE:
|
||
case UNORDERED:
|
||
return const_true_rtx;
|
||
case EQ:
|
||
case LT:
|
||
case GT:
|
||
case LE:
|
||
case GE:
|
||
case LTGT:
|
||
case ORDERED:
|
||
return const0_rtx;
|
||
default:
|
||
return 0;
|
||
}
|
||
|
||
/* Receive output from check_fold_consts() */
|
||
equal = args.equal;
|
||
op0lt = op0ltu = args.op0lt;
|
||
op1lt = op1ltu = args.op1lt;
|
||
}
|
||
#endif /* not REAL_IS_NOT_DOUBLE, or REAL_ARITHMETIC */
|
||
|
||
/* Otherwise, see if the operands are both integers. */
|
||
else if ((GET_MODE_CLASS (mode) == MODE_INT || mode == VOIDmode)
|
||
&& (GET_CODE (trueop0) == CONST_DOUBLE
|
||
|| GET_CODE (trueop0) == CONST_INT)
|
||
&& (GET_CODE (trueop1) == CONST_DOUBLE
|
||
|| GET_CODE (trueop1) == CONST_INT))
|
||
{
|
||
int width = GET_MODE_BITSIZE (mode);
|
||
HOST_WIDE_INT l0s, h0s, l1s, h1s;
|
||
unsigned HOST_WIDE_INT l0u, h0u, l1u, h1u;
|
||
|
||
/* Get the two words comprising each integer constant. */
|
||
if (GET_CODE (trueop0) == CONST_DOUBLE)
|
||
{
|
||
l0u = l0s = CONST_DOUBLE_LOW (trueop0);
|
||
h0u = h0s = CONST_DOUBLE_HIGH (trueop0);
|
||
}
|
||
else
|
||
{
|
||
l0u = l0s = INTVAL (trueop0);
|
||
h0u = h0s = HWI_SIGN_EXTEND (l0s);
|
||
}
|
||
|
||
if (GET_CODE (trueop1) == CONST_DOUBLE)
|
||
{
|
||
l1u = l1s = CONST_DOUBLE_LOW (trueop1);
|
||
h1u = h1s = CONST_DOUBLE_HIGH (trueop1);
|
||
}
|
||
else
|
||
{
|
||
l1u = l1s = INTVAL (trueop1);
|
||
h1u = h1s = HWI_SIGN_EXTEND (l1s);
|
||
}
|
||
|
||
/* If WIDTH is nonzero and smaller than HOST_BITS_PER_WIDE_INT,
|
||
we have to sign or zero-extend the values. */
|
||
if (width != 0 && width < HOST_BITS_PER_WIDE_INT)
|
||
{
|
||
l0u &= ((HOST_WIDE_INT) 1 << width) - 1;
|
||
l1u &= ((HOST_WIDE_INT) 1 << width) - 1;
|
||
|
||
if (l0s & ((HOST_WIDE_INT) 1 << (width - 1)))
|
||
l0s |= ((HOST_WIDE_INT) (-1) << width);
|
||
|
||
if (l1s & ((HOST_WIDE_INT) 1 << (width - 1)))
|
||
l1s |= ((HOST_WIDE_INT) (-1) << width);
|
||
}
|
||
if (width != 0 && width <= HOST_BITS_PER_WIDE_INT)
|
||
h0u = h1u = 0, h0s = HWI_SIGN_EXTEND (l0s), h1s = HWI_SIGN_EXTEND (l1s);
|
||
|
||
equal = (h0u == h1u && l0u == l1u);
|
||
op0lt = (h0s < h1s || (h0s == h1s && l0u < l1u));
|
||
op1lt = (h1s < h0s || (h1s == h0s && l1u < l0u));
|
||
op0ltu = (h0u < h1u || (h0u == h1u && l0u < l1u));
|
||
op1ltu = (h1u < h0u || (h1u == h0u && l1u < l0u));
|
||
}
|
||
|
||
/* Otherwise, there are some code-specific tests we can make. */
|
||
else
|
||
{
|
||
switch (code)
|
||
{
|
||
case EQ:
|
||
/* References to the frame plus a constant or labels cannot
|
||
be zero, but a SYMBOL_REF can due to #pragma weak. */
|
||
if (((NONZERO_BASE_PLUS_P (op0) && trueop1 == const0_rtx)
|
||
|| GET_CODE (trueop0) == LABEL_REF)
|
||
#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
|
||
/* On some machines, the ap reg can be 0 sometimes. */
|
||
&& op0 != arg_pointer_rtx
|
||
#endif
|
||
)
|
||
return const0_rtx;
|
||
break;
|
||
|
||
case NE:
|
||
if (((NONZERO_BASE_PLUS_P (op0) && trueop1 == const0_rtx)
|
||
|| GET_CODE (trueop0) == LABEL_REF)
|
||
#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
|
||
&& op0 != arg_pointer_rtx
|
||
#endif
|
||
)
|
||
return const_true_rtx;
|
||
break;
|
||
|
||
case GEU:
|
||
/* Unsigned values are never negative. */
|
||
if (trueop1 == const0_rtx)
|
||
return const_true_rtx;
|
||
break;
|
||
|
||
case LTU:
|
||
if (trueop1 == const0_rtx)
|
||
return const0_rtx;
|
||
break;
|
||
|
||
case LEU:
|
||
/* Unsigned values are never greater than the largest
|
||
unsigned value. */
|
||
if (GET_CODE (trueop1) == CONST_INT
|
||
&& (unsigned HOST_WIDE_INT) INTVAL (trueop1) == GET_MODE_MASK (mode)
|
||
&& INTEGRAL_MODE_P (mode))
|
||
return const_true_rtx;
|
||
break;
|
||
|
||
case GTU:
|
||
if (GET_CODE (trueop1) == CONST_INT
|
||
&& (unsigned HOST_WIDE_INT) INTVAL (trueop1) == GET_MODE_MASK (mode)
|
||
&& INTEGRAL_MODE_P (mode))
|
||
return const0_rtx;
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* If we reach here, EQUAL, OP0LT, OP0LTU, OP1LT, and OP1LTU are set
|
||
as appropriate. */
|
||
switch (code)
|
||
{
|
||
case EQ:
|
||
case UNEQ:
|
||
return equal ? const_true_rtx : const0_rtx;
|
||
case NE:
|
||
case LTGT:
|
||
return ! equal ? const_true_rtx : const0_rtx;
|
||
case LT:
|
||
case UNLT:
|
||
return op0lt ? const_true_rtx : const0_rtx;
|
||
case GT:
|
||
case UNGT:
|
||
return op1lt ? const_true_rtx : const0_rtx;
|
||
case LTU:
|
||
return op0ltu ? const_true_rtx : const0_rtx;
|
||
case GTU:
|
||
return op1ltu ? const_true_rtx : const0_rtx;
|
||
case LE:
|
||
case UNLE:
|
||
return equal || op0lt ? const_true_rtx : const0_rtx;
|
||
case GE:
|
||
case UNGE:
|
||
return equal || op1lt ? const_true_rtx : const0_rtx;
|
||
case LEU:
|
||
return equal || op0ltu ? const_true_rtx : const0_rtx;
|
||
case GEU:
|
||
return equal || op1ltu ? const_true_rtx : const0_rtx;
|
||
case ORDERED:
|
||
return const_true_rtx;
|
||
case UNORDERED:
|
||
return const0_rtx;
|
||
default:
|
||
abort ();
|
||
}
|
||
}
|
||
|
||
/* Simplify CODE, an operation with result mode MODE and three operands,
|
||
OP0, OP1, and OP2. OP0_MODE was the mode of OP0 before it became
|
||
a constant. Return 0 if no simplifications is possible. */
|
||
|
||
rtx
|
||
simplify_ternary_operation (code, mode, op0_mode, op0, op1, op2)
|
||
enum rtx_code code;
|
||
enum machine_mode mode, op0_mode;
|
||
rtx op0, op1, op2;
|
||
{
|
||
unsigned int width = GET_MODE_BITSIZE (mode);
|
||
|
||
/* VOIDmode means "infinite" precision. */
|
||
if (width == 0)
|
||
width = HOST_BITS_PER_WIDE_INT;
|
||
|
||
switch (code)
|
||
{
|
||
case SIGN_EXTRACT:
|
||
case ZERO_EXTRACT:
|
||
if (GET_CODE (op0) == CONST_INT
|
||
&& GET_CODE (op1) == CONST_INT
|
||
&& GET_CODE (op2) == CONST_INT
|
||
&& ((unsigned) INTVAL (op1) + (unsigned) INTVAL (op2) <= width)
|
||
&& width <= (unsigned) HOST_BITS_PER_WIDE_INT)
|
||
{
|
||
/* Extracting a bit-field from a constant */
|
||
HOST_WIDE_INT val = INTVAL (op0);
|
||
|
||
if (BITS_BIG_ENDIAN)
|
||
val >>= (GET_MODE_BITSIZE (op0_mode)
|
||
- INTVAL (op2) - INTVAL (op1));
|
||
else
|
||
val >>= INTVAL (op2);
|
||
|
||
if (HOST_BITS_PER_WIDE_INT != INTVAL (op1))
|
||
{
|
||
/* First zero-extend. */
|
||
val &= ((HOST_WIDE_INT) 1 << INTVAL (op1)) - 1;
|
||
/* If desired, propagate sign bit. */
|
||
if (code == SIGN_EXTRACT
|
||
&& (val & ((HOST_WIDE_INT) 1 << (INTVAL (op1) - 1))))
|
||
val |= ~ (((HOST_WIDE_INT) 1 << INTVAL (op1)) - 1);
|
||
}
|
||
|
||
/* Clear the bits that don't belong in our mode,
|
||
unless they and our sign bit are all one.
|
||
So we get either a reasonable negative value or a reasonable
|
||
unsigned value for this mode. */
|
||
if (width < HOST_BITS_PER_WIDE_INT
|
||
&& ((val & ((HOST_WIDE_INT) (-1) << (width - 1)))
|
||
!= ((HOST_WIDE_INT) (-1) << (width - 1))))
|
||
val &= ((HOST_WIDE_INT) 1 << width) - 1;
|
||
|
||
return GEN_INT (val);
|
||
}
|
||
break;
|
||
|
||
case IF_THEN_ELSE:
|
||
if (GET_CODE (op0) == CONST_INT)
|
||
return op0 != const0_rtx ? op1 : op2;
|
||
|
||
/* Convert a == b ? b : a to "a". */
|
||
if (GET_CODE (op0) == NE && ! side_effects_p (op0)
|
||
&& (! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
|
||
&& rtx_equal_p (XEXP (op0, 0), op1)
|
||
&& rtx_equal_p (XEXP (op0, 1), op2))
|
||
return op1;
|
||
else if (GET_CODE (op0) == EQ && ! side_effects_p (op0)
|
||
&& (! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
|
||
&& rtx_equal_p (XEXP (op0, 1), op1)
|
||
&& rtx_equal_p (XEXP (op0, 0), op2))
|
||
return op2;
|
||
else if (GET_RTX_CLASS (GET_CODE (op0)) == '<' && ! side_effects_p (op0))
|
||
{
|
||
enum machine_mode cmp_mode = (GET_MODE (XEXP (op0, 0)) == VOIDmode
|
||
? GET_MODE (XEXP (op0, 1))
|
||
: GET_MODE (XEXP (op0, 0)));
|
||
rtx temp;
|
||
if (cmp_mode == VOIDmode)
|
||
cmp_mode = op0_mode;
|
||
temp = simplify_relational_operation (GET_CODE (op0), cmp_mode,
|
||
XEXP (op0, 0), XEXP (op0, 1));
|
||
|
||
/* See if any simplifications were possible. */
|
||
if (temp == const0_rtx)
|
||
return op2;
|
||
else if (temp == const1_rtx)
|
||
return op1;
|
||
else if (temp)
|
||
op0 = temp;
|
||
|
||
/* Look for happy constants in op1 and op2. */
|
||
if (GET_CODE (op1) == CONST_INT && GET_CODE (op2) == CONST_INT)
|
||
{
|
||
HOST_WIDE_INT t = INTVAL (op1);
|
||
HOST_WIDE_INT f = INTVAL (op2);
|
||
|
||
if (t == STORE_FLAG_VALUE && f == 0)
|
||
code = GET_CODE (op0);
|
||
else if (t == 0 && f == STORE_FLAG_VALUE)
|
||
{
|
||
enum rtx_code tmp;
|
||
tmp = reversed_comparison_code (op0, NULL_RTX);
|
||
if (tmp == UNKNOWN)
|
||
break;
|
||
code = tmp;
|
||
}
|
||
else
|
||
break;
|
||
|
||
return gen_rtx_fmt_ee (code, mode, XEXP (op0, 0), XEXP (op0, 1));
|
||
}
|
||
}
|
||
break;
|
||
|
||
default:
|
||
abort ();
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Simplify SUBREG:OUTERMODE(OP:INNERMODE, BYTE)
|
||
Return 0 if no simplifications is possible. */
|
||
rtx
|
||
simplify_subreg (outermode, op, innermode, byte)
|
||
rtx op;
|
||
unsigned int byte;
|
||
enum machine_mode outermode, innermode;
|
||
{
|
||
/* Little bit of sanity checking. */
|
||
if (innermode == VOIDmode || outermode == VOIDmode
|
||
|| innermode == BLKmode || outermode == BLKmode)
|
||
abort ();
|
||
|
||
if (GET_MODE (op) != innermode
|
||
&& GET_MODE (op) != VOIDmode)
|
||
abort ();
|
||
|
||
if (byte % GET_MODE_SIZE (outermode)
|
||
|| byte >= GET_MODE_SIZE (innermode))
|
||
abort ();
|
||
|
||
if (outermode == innermode && !byte)
|
||
return op;
|
||
|
||
/* Attempt to simplify constant to non-SUBREG expression. */
|
||
if (CONSTANT_P (op))
|
||
{
|
||
int offset, part;
|
||
unsigned HOST_WIDE_INT val = 0;
|
||
|
||
/* ??? This code is partly redundant with code below, but can handle
|
||
the subregs of floats and similar corner cases.
|
||
Later it we should move all simplification code here and rewrite
|
||
GEN_LOWPART_IF_POSSIBLE, GEN_HIGHPART, OPERAND_SUBWORD and friends
|
||
using SIMPLIFY_SUBREG. */
|
||
if (subreg_lowpart_offset (outermode, innermode) == byte)
|
||
{
|
||
rtx new = gen_lowpart_if_possible (outermode, op);
|
||
if (new)
|
||
return new;
|
||
}
|
||
|
||
/* Similar comment as above apply here. */
|
||
if (GET_MODE_SIZE (outermode) == UNITS_PER_WORD
|
||
&& GET_MODE_SIZE (innermode) > UNITS_PER_WORD
|
||
&& GET_MODE_CLASS (outermode) == MODE_INT)
|
||
{
|
||
rtx new = constant_subword (op,
|
||
(byte / UNITS_PER_WORD),
|
||
innermode);
|
||
if (new)
|
||
return new;
|
||
}
|
||
|
||
offset = byte * BITS_PER_UNIT;
|
||
switch (GET_CODE (op))
|
||
{
|
||
case CONST_DOUBLE:
|
||
if (GET_MODE (op) != VOIDmode)
|
||
break;
|
||
|
||
/* We can't handle this case yet. */
|
||
if (GET_MODE_BITSIZE (outermode) >= HOST_BITS_PER_WIDE_INT)
|
||
return NULL_RTX;
|
||
|
||
part = offset >= HOST_BITS_PER_WIDE_INT;
|
||
if ((BITS_PER_WORD > HOST_BITS_PER_WIDE_INT
|
||
&& BYTES_BIG_ENDIAN)
|
||
|| (BITS_PER_WORD <= HOST_BITS_PER_WIDE_INT
|
||
&& WORDS_BIG_ENDIAN))
|
||
part = !part;
|
||
val = part ? CONST_DOUBLE_HIGH (op) : CONST_DOUBLE_LOW (op);
|
||
offset %= HOST_BITS_PER_WIDE_INT;
|
||
|
||
/* We've already picked the word we want from a double, so
|
||
pretend this is actually an integer. */
|
||
innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
|
||
|
||
/* FALLTHROUGH */
|
||
case CONST_INT:
|
||
if (GET_CODE (op) == CONST_INT)
|
||
val = INTVAL (op);
|
||
|
||
/* We don't handle synthetizing of non-integral constants yet. */
|
||
if (GET_MODE_CLASS (outermode) != MODE_INT)
|
||
return NULL_RTX;
|
||
|
||
if (BYTES_BIG_ENDIAN || WORDS_BIG_ENDIAN)
|
||
{
|
||
if (WORDS_BIG_ENDIAN)
|
||
offset = (GET_MODE_BITSIZE (innermode)
|
||
- GET_MODE_BITSIZE (outermode) - offset);
|
||
if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN
|
||
&& GET_MODE_SIZE (outermode) < UNITS_PER_WORD)
|
||
offset = (offset + BITS_PER_WORD - GET_MODE_BITSIZE (outermode)
|
||
- 2 * (offset % BITS_PER_WORD));
|
||
}
|
||
|
||
if (offset >= HOST_BITS_PER_WIDE_INT)
|
||
return ((HOST_WIDE_INT) val < 0) ? constm1_rtx : const0_rtx;
|
||
else
|
||
{
|
||
val >>= offset;
|
||
if (GET_MODE_BITSIZE (outermode) < HOST_BITS_PER_WIDE_INT)
|
||
val = trunc_int_for_mode (val, outermode);
|
||
return GEN_INT (val);
|
||
}
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Changing mode twice with SUBREG => just change it once,
|
||
or not at all if changing back op starting mode. */
|
||
if (GET_CODE (op) == SUBREG)
|
||
{
|
||
enum machine_mode innermostmode = GET_MODE (SUBREG_REG (op));
|
||
int final_offset = byte + SUBREG_BYTE (op);
|
||
rtx new;
|
||
|
||
if (outermode == innermostmode
|
||
&& byte == 0 && SUBREG_BYTE (op) == 0)
|
||
return SUBREG_REG (op);
|
||
|
||
/* The SUBREG_BYTE represents offset, as if the value were stored
|
||
in memory. Irritating exception is paradoxical subreg, where
|
||
we define SUBREG_BYTE to be 0. On big endian machines, this
|
||
value should be negative. For a moment, undo this exception. */
|
||
if (byte == 0 && GET_MODE_SIZE (innermode) < GET_MODE_SIZE (outermode))
|
||
{
|
||
int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
|
||
if (WORDS_BIG_ENDIAN)
|
||
final_offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
|
||
if (BYTES_BIG_ENDIAN)
|
||
final_offset += difference % UNITS_PER_WORD;
|
||
}
|
||
if (SUBREG_BYTE (op) == 0
|
||
&& GET_MODE_SIZE (innermostmode) < GET_MODE_SIZE (innermode))
|
||
{
|
||
int difference = (GET_MODE_SIZE (innermostmode) - GET_MODE_SIZE (innermode));
|
||
if (WORDS_BIG_ENDIAN)
|
||
final_offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
|
||
if (BYTES_BIG_ENDIAN)
|
||
final_offset += difference % UNITS_PER_WORD;
|
||
}
|
||
|
||
/* See whether resulting subreg will be paradoxical. */
|
||
if (GET_MODE_SIZE (innermostmode) > GET_MODE_SIZE (outermode))
|
||
{
|
||
/* In nonparadoxical subregs we can't handle negative offsets. */
|
||
if (final_offset < 0)
|
||
return NULL_RTX;
|
||
/* Bail out in case resulting subreg would be incorrect. */
|
||
if (final_offset % GET_MODE_SIZE (outermode)
|
||
|| (unsigned) final_offset >= GET_MODE_SIZE (innermostmode))
|
||
return NULL_RTX;
|
||
}
|
||
else
|
||
{
|
||
int offset = 0;
|
||
int difference = (GET_MODE_SIZE (innermostmode) - GET_MODE_SIZE (outermode));
|
||
|
||
/* In paradoxical subreg, see if we are still looking on lower part.
|
||
If so, our SUBREG_BYTE will be 0. */
|
||
if (WORDS_BIG_ENDIAN)
|
||
offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
|
||
if (BYTES_BIG_ENDIAN)
|
||
offset += difference % UNITS_PER_WORD;
|
||
if (offset == final_offset)
|
||
final_offset = 0;
|
||
else
|
||
return NULL_RTX;
|
||
}
|
||
|
||
/* Recurse for futher possible simplifications. */
|
||
new = simplify_subreg (outermode, SUBREG_REG (op),
|
||
GET_MODE (SUBREG_REG (op)),
|
||
final_offset);
|
||
if (new)
|
||
return new;
|
||
return gen_rtx_SUBREG (outermode, SUBREG_REG (op), final_offset);
|
||
}
|
||
|
||
/* SUBREG of a hard register => just change the register number
|
||
and/or mode. If the hard register is not valid in that mode,
|
||
suppress this simplification. If the hard register is the stack,
|
||
frame, or argument pointer, leave this as a SUBREG. */
|
||
|
||
if (REG_P (op)
|
||
&& (! REG_FUNCTION_VALUE_P (op)
|
||
|| ! rtx_equal_function_value_matters)
|
||
#ifdef CLASS_CANNOT_CHANGE_MODE
|
||
&& ! (CLASS_CANNOT_CHANGE_MODE_P (outermode, innermode)
|
||
&& GET_MODE_CLASS (innermode) != MODE_COMPLEX_INT
|
||
&& GET_MODE_CLASS (innermode) != MODE_COMPLEX_FLOAT
|
||
&& (TEST_HARD_REG_BIT
|
||
(reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE],
|
||
REGNO (op))))
|
||
#endif
|
||
&& REGNO (op) < FIRST_PSEUDO_REGISTER
|
||
&& ((reload_completed && !frame_pointer_needed)
|
||
|| (REGNO (op) != FRAME_POINTER_REGNUM
|
||
#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
|
||
&& REGNO (op) != HARD_FRAME_POINTER_REGNUM
|
||
#endif
|
||
))
|
||
#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
|
||
&& REGNO (op) != ARG_POINTER_REGNUM
|
||
#endif
|
||
&& REGNO (op) != STACK_POINTER_REGNUM)
|
||
{
|
||
int final_regno = subreg_hard_regno (gen_rtx_SUBREG (outermode, op, byte),
|
||
0);
|
||
|
||
/* ??? We do allow it if the current REG is not valid for
|
||
its mode. This is a kludge to work around how float/complex
|
||
arguments are passed on 32-bit Sparc and should be fixed. */
|
||
if (HARD_REGNO_MODE_OK (final_regno, outermode)
|
||
|| ! HARD_REGNO_MODE_OK (REGNO (op), innermode))
|
||
{
|
||
rtx x = gen_rtx_REG (outermode, final_regno);
|
||
|
||
/* Propagate original regno. We don't have any way to specify
|
||
the offset inside orignal regno, so do so only for lowpart.
|
||
The information is used only by alias analysis that can not
|
||
grog partial register anyway. */
|
||
|
||
if (subreg_lowpart_offset (outermode, innermode) == byte)
|
||
ORIGINAL_REGNO (x) = ORIGINAL_REGNO (op);
|
||
return x;
|
||
}
|
||
}
|
||
|
||
/* If we have a SUBREG of a register that we are replacing and we are
|
||
replacing it with a MEM, make a new MEM and try replacing the
|
||
SUBREG with it. Don't do this if the MEM has a mode-dependent address
|
||
or if we would be widening it. */
|
||
|
||
if (GET_CODE (op) == MEM
|
||
&& ! mode_dependent_address_p (XEXP (op, 0))
|
||
/* Allow splitting of volatile memory references in case we don't
|
||
have instruction to move the whole thing. */
|
||
&& (! MEM_VOLATILE_P (op)
|
||
|| ! have_insn_for (SET, innermode))
|
||
&& GET_MODE_SIZE (outermode) <= GET_MODE_SIZE (GET_MODE (op)))
|
||
return adjust_address_nv (op, outermode, byte);
|
||
|
||
/* Handle complex values represented as CONCAT
|
||
of real and imaginary part. */
|
||
if (GET_CODE (op) == CONCAT)
|
||
{
|
||
int is_realpart = byte < GET_MODE_UNIT_SIZE (innermode);
|
||
rtx part = is_realpart ? XEXP (op, 0) : XEXP (op, 1);
|
||
unsigned int final_offset;
|
||
rtx res;
|
||
|
||
final_offset = byte % (GET_MODE_UNIT_SIZE (innermode));
|
||
res = simplify_subreg (outermode, part, GET_MODE (part), final_offset);
|
||
if (res)
|
||
return res;
|
||
/* We can at least simplify it by referring directly to the relevant part. */
|
||
return gen_rtx_SUBREG (outermode, part, final_offset);
|
||
}
|
||
|
||
return NULL_RTX;
|
||
}
|
||
/* Make a SUBREG operation or equivalent if it folds. */
|
||
|
||
rtx
|
||
simplify_gen_subreg (outermode, op, innermode, byte)
|
||
rtx op;
|
||
unsigned int byte;
|
||
enum machine_mode outermode, innermode;
|
||
{
|
||
rtx new;
|
||
/* Little bit of sanity checking. */
|
||
if (innermode == VOIDmode || outermode == VOIDmode
|
||
|| innermode == BLKmode || outermode == BLKmode)
|
||
abort ();
|
||
|
||
if (GET_MODE (op) != innermode
|
||
&& GET_MODE (op) != VOIDmode)
|
||
abort ();
|
||
|
||
if (byte % GET_MODE_SIZE (outermode)
|
||
|| byte >= GET_MODE_SIZE (innermode))
|
||
abort ();
|
||
|
||
if (GET_CODE (op) == QUEUED)
|
||
return NULL_RTX;
|
||
|
||
new = simplify_subreg (outermode, op, innermode, byte);
|
||
if (new)
|
||
return new;
|
||
|
||
if (GET_CODE (op) == SUBREG || GET_MODE (op) == VOIDmode)
|
||
return NULL_RTX;
|
||
|
||
return gen_rtx_SUBREG (outermode, op, byte);
|
||
}
|
||
/* Simplify X, an rtx expression.
|
||
|
||
Return the simplified expression or NULL if no simplifications
|
||
were possible.
|
||
|
||
This is the preferred entry point into the simplification routines;
|
||
however, we still allow passes to call the more specific routines.
|
||
|
||
Right now GCC has three (yes, three) major bodies of RTL simplficiation
|
||
code that need to be unified.
|
||
|
||
1. fold_rtx in cse.c. This code uses various CSE specific
|
||
information to aid in RTL simplification.
|
||
|
||
2. simplify_rtx in combine.c. Similar to fold_rtx, except that
|
||
it uses combine specific information to aid in RTL
|
||
simplification.
|
||
|
||
3. The routines in this file.
|
||
|
||
|
||
Long term we want to only have one body of simplification code; to
|
||
get to that state I recommend the following steps:
|
||
|
||
1. Pour over fold_rtx & simplify_rtx and move any simplifications
|
||
which are not pass dependent state into these routines.
|
||
|
||
2. As code is moved by #1, change fold_rtx & simplify_rtx to
|
||
use this routine whenever possible.
|
||
|
||
3. Allow for pass dependent state to be provided to these
|
||
routines and add simplifications based on the pass dependent
|
||
state. Remove code from cse.c & combine.c that becomes
|
||
redundant/dead.
|
||
|
||
It will take time, but ultimately the compiler will be easier to
|
||
maintain and improve. It's totally silly that when we add a
|
||
simplification that it needs to be added to 4 places (3 for RTL
|
||
simplification and 1 for tree simplification. */
|
||
|
||
rtx
|
||
simplify_rtx (x)
|
||
rtx x;
|
||
{
|
||
enum rtx_code code = GET_CODE (x);
|
||
enum machine_mode mode = GET_MODE (x);
|
||
|
||
switch (GET_RTX_CLASS (code))
|
||
{
|
||
case '1':
|
||
return simplify_unary_operation (code, mode,
|
||
XEXP (x, 0), GET_MODE (XEXP (x, 0)));
|
||
case 'c':
|
||
if (swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
|
||
{
|
||
rtx tem;
|
||
|
||
tem = XEXP (x, 0);
|
||
XEXP (x, 0) = XEXP (x, 1);
|
||
XEXP (x, 1) = tem;
|
||
return simplify_binary_operation (code, mode,
|
||
XEXP (x, 0), XEXP (x, 1));
|
||
}
|
||
|
||
case '2':
|
||
return simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
|
||
|
||
case '3':
|
||
case 'b':
|
||
return simplify_ternary_operation (code, mode, GET_MODE (XEXP (x, 0)),
|
||
XEXP (x, 0), XEXP (x, 1),
|
||
XEXP (x, 2));
|
||
|
||
case '<':
|
||
return simplify_relational_operation (code,
|
||
((GET_MODE (XEXP (x, 0))
|
||
!= VOIDmode)
|
||
? GET_MODE (XEXP (x, 0))
|
||
: GET_MODE (XEXP (x, 1))),
|
||
XEXP (x, 0), XEXP (x, 1));
|
||
case 'x':
|
||
/* The only case we try to handle is a SUBREG. */
|
||
if (code == SUBREG)
|
||
return simplify_gen_subreg (mode, SUBREG_REG (x),
|
||
GET_MODE (SUBREG_REG (x)),
|
||
SUBREG_BYTE (x));
|
||
return NULL;
|
||
default:
|
||
return NULL;
|
||
}
|
||
}
|