freebsd-dev/sys/amd64/vmm/amd/svm.c
2013-08-23 00:37:26 +00:00

1364 lines
32 KiB
C

/*-
* Copyright (c) 2013, Anish Gupta (akgupt3@gmail.com)
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice unmodified, this list of conditions, and the following
* disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/smp.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/pcpu.h>
#include <sys/proc.h>
#include <vm/vm.h>
#include <vm/pmap.h>
#include <machine/cpufunc.h>
#include <machine/psl.h>
#include <machine/pmap.h>
#include <machine/md_var.h>
#include <machine/vmparam.h>
#include <machine/specialreg.h>
#include <machine/segments.h>
#include <machine/vmm.h>
#include <x86/apicreg.h>
#include "vmm_lapic.h"
#include "vmm_msr.h"
#include "vmm_stat.h"
#include "vmm_ktr.h"
#include "x86.h"
#include "vmcb.h"
#include "svm.h"
#include "svm_softc.h"
#include "npt.h"
/*
* SVM CPUID function 0x8000_000Ai, edx bit decoding.
*/
#define AMD_CPUID_SVM_NP BIT(0) /* Nested paging or RVI */
#define AMD_CPUID_SVM_LBR BIT(1) /* Last branch virtualization */
#define AMD_CPUID_SVM_SVML BIT(2) /* SVM lock */
#define AMD_CPUID_SVM_NRIP_SAVE BIT(3) /* Next RIP is saved */
#define AMD_CPUID_SVM_TSC_RATE BIT(4) /* TSC rate control. */
#define AMD_CPUID_SVM_VMCB_CLEAN BIT(5) /* VMCB state caching */
#define AMD_CPUID_SVM_ASID_FLUSH BIT(6) /* Flush by ASID */
#define AMD_CPUID_SVM_DECODE_ASSIST BIT(7) /* Decode assist */
#define AMD_CPUID_SVM_PAUSE_INC BIT(10) /* Pause intercept filter. */
#define AMD_CPUID_SVM_PAUSE_FTH BIT(12) /* Pause filter threshold */
MALLOC_DEFINE(M_SVM, "svm", "svm");
/* Per-CPU context area. */
extern struct pcpu __pcpu[];
static int svm_vmexit(struct svm_softc *svm_sc, int vcpu,
struct vm_exit *vmexit);
static int svm_msr_rw_ok(uint8_t *btmap, uint64_t msr);
static int svm_msr_index(uint64_t msr, int *index, int *bit);
static uint32_t svm_feature; /* AMD SVM features. */
/*
* Starting guest ASID, 0 is reserved for host.
* Each guest will have its own unique ASID.
*/
static uint32_t guest_asid = 1;
/*
* Max ASID processor can support.
* This limit the maximum number of virtual machines that can be created.
*/
static int max_asid;
/*
* Statistics
*/
static VMM_STAT_AMD(VMEXIT_NPF_LAPIC, "vm exits due to Local APIC access");
/*
* SVM host state saved area of size 4KB for each core.
*/
static uint8_t hsave[MAXCPU][PAGE_SIZE] __aligned(PAGE_SIZE);
/*
* S/w saved host context.
*/
static struct svm_regctx host_ctx[MAXCPU];
/*
* Common function to enable or disabled SVM for a CPU.
*/
static int
cpu_svm_enable_disable(boolean_t enable)
{
uint64_t efer_msr;
efer_msr = rdmsr(MSR_EFER);
if (enable) {
efer_msr |= EFER_SVM;
} else {
efer_msr &= ~EFER_SVM;
}
wrmsr(MSR_EFER, efer_msr);
if(rdmsr(MSR_EFER) != efer_msr) {
ERR("SVM couldn't be enabled on CPU%d.\n", curcpu);
return (EIO);
}
return(0);
}
/*
* Disable SVM on a CPU.
*/
static void
svm_disable(void *arg __unused)
{
(void)cpu_svm_enable_disable(FALSE);
}
/*
* Disable SVM for all CPUs.
*/
static int
svm_cleanup(void)
{
smp_rendezvous(NULL, svm_disable, NULL, NULL);
return (0);
}
/*
* Check for required BHyVe SVM features in a CPU.
*/
static int
svm_cpuid_features(void)
{
u_int regs[4];
/* CPUID Fn8000_000A is for SVM */
do_cpuid(0x8000000A, regs);
svm_feature = regs[3];
printf("SVM rev: 0x%x NASID:0x%x\n", regs[0] & 0xFF, regs[1]);
max_asid = regs[1];
printf("SVM Features:0x%b\n", svm_feature,
"\020"
"\001NP" /* Nested paging */
"\002LbrVirt" /* LBR virtualization */
"\003SVML" /* SVM lock */
"\004NRIPS" /* NRIP save */
"\005TscRateMsr" /* MSR based TSC rate control */
"\006VmcbClean" /* VMCB clean bits */
"\007FlushByAsid" /* Flush by ASID */
"\010DecodeAssist" /* Decode assist */
"\011<b20>"
"\012<b20>"
"\013PauseFilter"
"\014<b20>"
"\013PauseFilterThreshold"
);
/* SVM Lock */
if (!(svm_feature & AMD_CPUID_SVM_SVML)) {
printf("SVM is disabled by BIOS, please enable in BIOS.\n");
return (ENXIO);
}
/*
* XXX: BHyVe need EPT or RVI to work.
*/
if (!(svm_feature & AMD_CPUID_SVM_NP)) {
printf("Missing Nested paging or RVI SVM support in processor.\n");
return (EIO);
}
if (svm_feature & (AMD_CPUID_SVM_NRIP_SAVE |
AMD_CPUID_SVM_DECODE_ASSIST)) {
return (0);
}
/* XXX: Should never be here? */
printf("Processor doesn't support nRIP or decode assist, can't"
"run BhyVe.\n");
return (EIO);
}
/*
* Enable SVM for a CPU.
*/
static void
svm_enable(void *arg __unused)
{
uint64_t hsave_pa;
(void)cpu_svm_enable_disable(TRUE);
hsave_pa = vtophys(hsave[curcpu]);
wrmsr(MSR_VM_HSAVE_PA, hsave_pa);
if (rdmsr(MSR_VM_HSAVE_PA) != hsave_pa) {
panic("VM_HSAVE_PA is wrong on CPU%d\n", curcpu);
}
}
/*
* Check if a processor support SVM.
*/
static int
is_svm_enabled(void)
{
uint64_t msr;
/* Section 15.4 Enabling SVM from APM2. */
if ((amd_feature2 & AMDID2_SVM) == 0) {
printf("SVM is not supported on this processor.\n");
return (ENXIO);
}
msr = rdmsr(MSR_VM_CR);
/* Make sure SVM is not disabled by BIOS. */
if ((msr & VM_CR_SVMDIS) == 0) {
return svm_cpuid_features();
}
printf("SVM disabled by Key, consult TPM/BIOS manual.\n");
return (ENXIO);
}
/*
* Enable SVM on CPU and initialize nested page table h/w.
*/
static int
svm_init(void)
{
int err;
err = is_svm_enabled();
if (err) {
return (err);
}
svm_npt_init();
/* Start SVM on all CPUs */
smp_rendezvous(NULL, svm_enable, NULL, NULL);
return(0);
}
/*
* Get index and bit position for a MSR in MSR permission
* bitmap. Two bits are used for each MSR, lower bit is
* for read and higher bit is for write.
*/
static int
svm_msr_index(uint64_t msr, int *index, int *bit)
{
uint32_t base, off;
/* Pentium compatible MSRs */
#define MSR_PENTIUM_START 0
#define MSR_PENTIUM_END 0x1FFF
/* AMD 6th generation and Intel compatible MSRs */
#define MSR_AMD6TH_START 0xC0000000UL
#define MSR_AMD6TH_END 0xC0001FFFUL
/* AMD 7th and 8th generation compatible MSRs */
#define MSR_AMD7TH_START 0xC0010000UL
#define MSR_AMD7TH_END 0xC0011FFFUL
*index = -1;
*bit = (msr % 4) * 2;
base = 0;
if (msr >= MSR_PENTIUM_START && msr <= MSR_PENTIUM_END) {
*index = msr / 4;
return (0);
}
base += (MSR_PENTIUM_END - MSR_PENTIUM_START + 1);
if (msr >= MSR_AMD6TH_START && msr <= MSR_AMD6TH_END) {
off = (msr - MSR_AMD6TH_START);
*index = (off + base) / 4;
return (0);
}
base += (MSR_AMD6TH_END - MSR_AMD6TH_START + 1);
if (msr >= MSR_AMD7TH_START && msr <= MSR_AMD7TH_END) {
off = (msr - MSR_AMD7TH_START);
*index = (off + base) / 4;
return (0);
}
return (EIO);
}
/*
* Give virtual cpu the complete access to MSR(read & write).
*/
static int
svm_msr_rw_ok(uint8_t *perm_bitmap, uint64_t msr)
{
int index, bit, err;
err = svm_msr_index(msr, &index, &bit);
if (err) {
ERR("MSR 0x%lx is not writeable by guest.\n", msr);
return (err);
}
if (index < 0 || index > (SVM_MSR_BITMAP_SIZE)) {
ERR("MSR 0x%lx index out of range(%d).\n", msr, index);
return (EINVAL);
}
if (bit < 0 || bit > 8) {
ERR("MSR 0x%lx bit out of range(%d).\n", msr, bit);
return (EINVAL);
}
/* Disable intercept for read and write. */
perm_bitmap[index] &= ~(3 << bit);
CTR1(KTR_VMM, "Guest has full control on SVM:MSR(0x%lx).\n", msr);
return (0);
}
/*
* Initialise VCPU.
*/
static int
svm_init_vcpu(struct svm_vcpu *vcpu, vm_paddr_t iopm_pa, vm_paddr_t msrpm_pa,
vm_paddr_t pml4_pa, uint8_t asid)
{
vcpu->lastcpu = NOCPU;
vcpu->vmcb_pa = vtophys(&vcpu->vmcb);
/*
* Initiaise VMCB persistent area of vcpu.
* 1. Permission bitmap for MSR and IO space.
* 2. Nested paging.
* 3. ASID of virtual machine.
*/
if (svm_init_vmcb(&vcpu->vmcb, iopm_pa, msrpm_pa, pml4_pa)) {
return (EIO);
}
return (0);
}
/*
* Initialise a virtual machine.
*/
static void *
svm_vminit(struct vm *vm)
{
struct svm_softc *svm_sc;
vm_paddr_t msrpm_pa, iopm_pa, pml4_pa;
int i;
if (guest_asid >= max_asid) {
ERR("Host support max ASID:%d, can't create more guests.\n",
max_asid);
return (NULL);
}
svm_sc = (struct svm_softc *)malloc(sizeof (struct svm_softc),
M_SVM, M_WAITOK | M_ZERO);
svm_sc->vm = vm;
svm_sc->svm_feature = svm_feature;
svm_sc->vcpu_cnt = VM_MAXCPU;
/*
* Each guest has its own unique ASID.
* ASID(Addres Space Identifier) are used by TLB entries.
*/
svm_sc->asid = guest_asid++;
/*
* Intercept MSR access to all MSRs except GSBASE, FSBASE,... etc.
*/
memset(svm_sc->msr_bitmap, 0xFF, sizeof(svm_sc->msr_bitmap));
/*
* Following MSR can be completely controlled by virtual machines
* since access to following are translated to access to VMCB.
*/
svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_GSBASE);
svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_FSBASE);
svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_KGSBASE);
svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_STAR);
svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_LSTAR);
svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_CSTAR);
svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SF_MASK);
svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_CS_MSR);
svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_ESP_MSR);
svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_EIP_MSR);
/* For Nested Paging/RVI only. */
svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_PAT);
/* Intercept access to all I/O ports. */
memset(svm_sc->iopm_bitmap, 0xFF, sizeof(svm_sc->iopm_bitmap));
/* Cache physical address for multiple vcpus. */
iopm_pa = vtophys(svm_sc->iopm_bitmap);
msrpm_pa = vtophys(svm_sc->msr_bitmap);
pml4_pa = vtophys(svm_sc->np_pml4);
for (i = 0; i < svm_sc->vcpu_cnt; i++) {
if (svm_init_vcpu(svm_get_vcpu(svm_sc, i), iopm_pa, msrpm_pa,
pml4_pa, svm_sc->asid)) {
ERR("SVM couldn't initialise VCPU%d\n", i);
goto cleanup;
}
}
return (svm_sc);
cleanup:
free(svm_sc, M_SVM);
return (NULL);
}
/*
* Handle guest I/O intercept.
*/
static int
svm_handle_io(struct svm_softc *svm_sc, int vcpu, struct vm_exit *vmexit)
{
struct vmcb_ctrl *ctrl;
struct vmcb_state *state;
uint64_t info1;
state = svm_get_vmcb_state(svm_sc, vcpu);
ctrl = svm_get_vmcb_ctrl(svm_sc, vcpu);
info1 = ctrl->exitinfo1;
vmexit->exitcode = VM_EXITCODE_INOUT;
vmexit->u.inout.in = (info1 & BIT(0)) ? 1 : 0;
vmexit->u.inout.string = (info1 & BIT(2)) ? 1 : 0;
vmexit->u. inout.rep = (info1 & BIT(3)) ? 1 : 0;
vmexit->u.inout.bytes = (info1 >> 4) & 0x7;
vmexit->u.inout.port = (uint16_t)(info1 >> 16);
vmexit->u.inout.eax = (uint32_t)(state->rax);
return (1);
}
/*
* SVM Nested Page(RVI) Fault handler.
* Nested page fault handler used by local APIC emulation.
*/
static int
svm_handle_npf(struct vm *vm, int vcpu, uint64_t gpa, uint64_t rip,
uint64_t exitinfo1, uint64_t cr3, struct vie *vie)
{
int err;
if (exitinfo1 & VMCB_NPF_INFO1_ID) {
VMM_CTR0(vm, vcpu, "SVM:NPF for code access.");
return (0);
}
if (exitinfo1 & VMCB_NPF_INFO1_RSV) {
VMM_CTR0(vm, vcpu, "SVM:NPF reserved bits are set.");
return (0);
}
if (exitinfo1 & VMCB_NPF_INFO1_GPT) {
VMM_CTR0(vm, vcpu, "SVM:NPF during guest page table walk.");
return (0);
}
/*
* nRIP is NULL for NPF so we don't have the length of instruction,
* we rely on instruction decode s/w to determine the size of
* instruction.
*
* XXX: DecodeAssist can use instruction from buffer.
*/
if (vmm_fetch_instruction(vm, vcpu, rip, VIE_INST_SIZE,
cr3, vie) != 0) {
ERR("SVM:NPF instruction fetch failed, RIP:0x%lx\n", rip);
return (EINVAL);
}
KASSERT(vie->num_valid, ("No instruction to emulate."));
/*
* SVM doesn't provide GLA unlike Intel VM-x. VIE_INVALID_GLA
* which is a non-cannonical address indicate that GLA is not
* available to instruction emulation.
*
* XXX: Which SVM capability can provided GLA?
*/
if(vmm_decode_instruction(vm, vcpu, VIE_INVALID_GLA, vie)) {
ERR("SVM: Couldn't decode instruction.\n");
return (0);
}
/*
* XXX: Decoding for user space(IOAPIC) should be done in
* user space.
*/
if (gpa < DEFAULT_APIC_BASE || gpa >= (DEFAULT_APIC_BASE + PAGE_SIZE)) {
VMM_CTR2(vm, vcpu, "SVM:NPF GPA(0x%lx) outside of local APIC"
" range(0x%x)\n", gpa, DEFAULT_APIC_BASE);
return (0);
}
err = vmm_emulate_instruction(vm, vcpu, gpa, vie, lapic_mmio_read,
lapic_mmio_write, 0);
return (err ? 0 : 1);
}
/*
* Special handling of EFER MSR.
* SVM guest must have SVM EFER bit set, prohibit guest from cleareing SVM
* enable bit in EFER.
*/
static void
svm_efer(struct svm_softc *svm_sc, int vcpu, boolean_t write)
{
struct svm_regctx *swctx;
struct vmcb_state *state;
state = svm_get_vmcb_state(svm_sc, vcpu);
swctx = svm_get_guest_regctx(svm_sc, vcpu);
if (write) {
state->efer = ((swctx->e.g.sctx_rdx & (uint32_t)~0) << 32) |
((uint32_t)state->rax) | EFER_SVM;
} else {
state->rax = (uint32_t)state->efer;
swctx->e.g.sctx_rdx = (uint32_t)(state->efer >> 32);
}
}
/*
* Determine the cause of virtual cpu exit and return to user space if exit
* demand so.
* Return: 1 - Return to user space.
* 0 - Continue vcpu run.
*/
static int
svm_vmexit(struct svm_softc *svm_sc, int vcpu, struct vm_exit *vmexit)
{
struct vmcb_state *state;
struct vmcb_ctrl *ctrl;
struct svm_regctx *ctx;
uint64_t code, info1, info2, val;
uint32_t eax, ecx, edx;
int user; /* Flag for user mode */
int update_rip; /* Flag for updating RIP */
int inst_len;
KASSERT(vcpu < svm_sc->vcpu_cnt, ("Guest doesn't have VCPU%d", vcpu));
state = svm_get_vmcb_state(svm_sc, vcpu);
ctrl = svm_get_vmcb_ctrl(svm_sc, vcpu);
ctx = svm_get_guest_regctx(svm_sc, vcpu);
update_rip = 1;
user = 0;
vmexit->exitcode = VM_EXITCODE_VMX;
vmexit->u.vmx.error = 0;
code = ctrl->exitcode;
info1 = ctrl->exitinfo1;
info2 = ctrl->exitinfo2;
if (ctrl->nrip) {
inst_len = ctrl->nrip - state->rip;
} else {
inst_len = ctrl->inst_decode_size;
}
switch (code) {
case VMCB_EXIT_MC: /* Machine Check. */
vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_MTRAP, 1);
vmexit->exitcode = VM_EXITCODE_MTRAP;
user = 1;
break;
case VMCB_EXIT_MSR: /* MSR access. */
eax = state->rax;
ecx = ctx->sctx_rcx;
edx = ctx->e.g.sctx_rdx;
if (ecx == MSR_EFER) {
VMM_CTR0(svm_sc->vm, vcpu,"VMEXIT EFER\n");
svm_efer(svm_sc, vcpu, info1);
break;
}
if (info1) {
/* VM exited because of write MSR */
vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_WRMSR, 1);
vmexit->exitcode = VM_EXITCODE_WRMSR;
vmexit->u.msr.code = ecx;
val = (uint64_t)edx << 32 | eax;
if (emulate_wrmsr(svm_sc->vm, vcpu, ecx, val)) {
vmexit->u.msr.wval = val;
user = 1;
}
VMM_CTR3(svm_sc->vm, vcpu,
"VMEXIT WRMSR(%s handling) 0x%lx @0x%x",
user ? "user" : "kernel", val, ecx);
} else {
vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_RDMSR, 1);
vmexit->exitcode = VM_EXITCODE_RDMSR;
vmexit->u.msr.code = ecx;
if (emulate_rdmsr(svm_sc->vm, vcpu, ecx)) {
user = 1;
}
VMM_CTR3(svm_sc->vm, vcpu, "SVM:VMEXIT RDMSR"
" 0x%lx,%lx @0x%x", ctx->e.g.sctx_rdx,
state->rax, ecx);
}
#define MSR_AMDK8_IPM 0xc0010055
/*
* We can't hide AMD C1E idle capability since its
* based on CPU generation, for now ignore access to
* this MSR by vcpus
* XXX: special handling of AMD C1E - Ignore.
*/
if (ecx == MSR_AMDK8_IPM)
user = 0;
break;
case VMCB_EXIT_INTR:
/*
* Exit on External Interrupt.
* Give host interrupt handler to run and if its guest
* interrupt, local APIC will inject event in guest.
*/
user = 0;
update_rip = 0;
VMM_CTR1(svm_sc->vm, vcpu, "SVM:VMEXIT ExtInt"
" RIP:0x%lx.\n", state->rip);
vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_EXTINT, 1);
break;
case VMCB_EXIT_IO:
vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_INOUT, 1);
user = svm_handle_io(svm_sc, vcpu, vmexit);
break;
case VMCB_EXIT_CPUID:
vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_CPUID, 1);
(void)x86_emulate_cpuid(svm_sc->vm, vcpu,
(uint32_t *)&state->rax,
(uint32_t *)&ctx->sctx_rbx,
(uint32_t *)&ctx->sctx_rcx,
(uint32_t *)&ctx->e.g.sctx_rdx);
VMM_CTR0(svm_sc->vm, vcpu, "SVM:VMEXIT CPUID\n");
user = 0;
break;
case VMCB_EXIT_HLT:
vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_HLT, 1);
if (ctrl->v_irq) {
/* Interrupt is pending, can't halt guest. */
user = 0;
vmm_stat_incr(svm_sc->vm, vcpu,
VMEXIT_HLT_IGNORED, 1);
VMM_CTR0(svm_sc->vm, vcpu,
"VMEXIT halt ignored.");
} else {
VMM_CTR0(svm_sc->vm, vcpu,
"VMEXIT halted CPU.");
vmexit->exitcode = VM_EXITCODE_HLT;
user = 1;
}
break;
case VMCB_EXIT_PAUSE:
VMM_CTR0(svm_sc->vm, vcpu, "SVM:VMEXIT pause");
vmexit->exitcode = VM_EXITCODE_PAUSE;
vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_PAUSE, 1);
break;
case VMCB_EXIT_NPF:
/* EXITINFO2 has the physical fault address (GPA). */
if (!svm_handle_npf(svm_sc->vm, vcpu, info2,
state->rip, info1, state->cr3,
&vmexit->u.paging.vie)) {
/* I/O APIC for MSI/X. */
vmexit->exitcode = VM_EXITCODE_PAGING;
user = 1;
vmexit->u.paging.gpa = info2;
} else {
/* Local APIC NPF */
update_rip = 1;
vmm_stat_incr(svm_sc->vm, vcpu,
VMEXIT_NPF_LAPIC, 1);
}
vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_EPT_FAULT, 1);
inst_len = vmexit->u.paging.vie.num_processed;
VMM_CTR3(svm_sc->vm, vcpu, "VMEXIT NPF, GPA:0x%lx "
"user=%d instr len=%d.\n", info2, user,
inst_len);
break;
case VMCB_EXIT_SHUTDOWN:
VMM_CTR0(svm_sc->vm, vcpu, "SVM:VMEXIT guest shutdown.");
user = 1;
vmexit->exitcode = VM_EXITCODE_VMX;
break;
case VMCB_EXIT_INVALID:
VMM_CTR0(svm_sc->vm, vcpu, "SVM:VMEXIT INVALID.");
user = 1;
vmexit->exitcode = VM_EXITCODE_VMX;
break;
default:
/* Return to user space. */
user = 1;
update_rip = 0;
VMM_CTR3(svm_sc->vm, vcpu, "VMEXIT=0x%lx"
" EXITINFO1: 0x%lx EXITINFO2:0x%lx\n",
ctrl->exitcode, info1, info2);
VMM_CTR3(svm_sc->vm, vcpu, "SVM:RIP: 0x%lx nRIP:0x%lx"
" Inst decoder len:%d\n", state->rip,
ctrl->nrip, ctrl->inst_decode_size);
vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_UNKNOWN, 1);
break;
}
if (ctrl->v_irq) {
VMM_CTR2(svm_sc->vm, vcpu, "SVM:SVM intr pending vector:0x%x"
" priority:0x%x", ctrl->v_intr_vector, ctrl->v_intr_prio);
}
vmexit->rip = state->rip;
if (update_rip) {
vmexit->rip += inst_len;
}
/* Return to userland for APs to start. */
if (vmexit->exitcode == VM_EXITCODE_SPINUP_AP) {
VMM_CTR1(svm_sc->vm, vcpu, "SVM:Starting APs, RIP0x%lx.\n",
vmexit->rip);
user = 1;
}
/* XXX: Set next RIP before restarting virtual cpus. */
if (ctrl->nrip == 0) {
ctrl->nrip = state->rip;
}
return (user);
}
/*
* Inject NMI to virtual cpu.
*/
static int
svm_inject_nmi(struct svm_softc *svm_sc, int vcpu)
{
struct vmcb_ctrl *ctrl;
KASSERT(vcpu < svm_sc->vcpu_cnt, ("Guest doesn't have VCPU%d", vcpu));
ctrl = svm_get_vmcb_ctrl(svm_sc, vcpu);
/* Can't inject another NMI if last one is pending.*/
if (!vm_nmi_pending(svm_sc->vm, vcpu))
return (0);
/* Inject NMI, vector number is not used.*/
if (vmcb_eventinject(ctrl, VM_NMI, IDT_NMI, 0, FALSE)) {
VMM_CTR0(svm_sc->vm, vcpu, "SVM:NMI injection failed.\n");
return (EIO);
}
/* Acknowledge the request is accepted.*/
vm_nmi_clear(svm_sc->vm, vcpu);
VMM_CTR0(svm_sc->vm, vcpu, "SVM:Injected NMI.\n");
return (1);
}
/*
* Inject event to virtual cpu.
*/
static void
svm_inj_interrupts(struct svm_softc *svm_sc, int vcpu)
{
struct vmcb_ctrl *ctrl;
struct vmcb_state *state;
int vector;
KASSERT(vcpu < svm_sc->vcpu_cnt, ("Guest doesn't have VCPU%d", vcpu));
state = svm_get_vmcb_state(svm_sc, vcpu);
ctrl = svm_get_vmcb_ctrl(svm_sc, vcpu);
/* Can't inject multiple events at once. */
if (ctrl->eventinj & VMCB_EVENTINJ_VALID) {
VMM_CTR1(svm_sc->vm, vcpu,
"SVM:Last event(0x%lx) is pending.\n", ctrl->eventinj);
return ;
}
/* Wait for guest to come out of interrupt shadow. */
if (ctrl->intr_shadow) {
VMM_CTR0(svm_sc->vm, vcpu, "SVM:Guest in interrupt shadow.\n");
goto inject_failed;
}
/* Make sure no interrupt is pending.*/
if (ctrl->v_irq) {
VMM_CTR0(svm_sc->vm, vcpu,
"SVM:virtual interrupt is pending.\n");
goto inject_failed;
}
/* NMI event has priority over interrupts.*/
if (svm_inject_nmi(svm_sc, vcpu)) {
return;
}
vector = lapic_pending_intr(svm_sc->vm, vcpu);
if (vector < 0) {
return;
}
if (vector < 32 || vector > 255) {
ERR("Invalid vector number:%d\n", vector);
return;
}
if ((state->rflags & PSL_I) == 0) {
VMM_CTR0(svm_sc->vm, vcpu, "SVM:Interrupt is disabled\n");
goto inject_failed;
}
if(vmcb_eventinject(ctrl, VM_HW_INTR, vector, 0, FALSE)) {
VMM_CTR2(svm_sc->vm, vcpu, "SVM:Event injection failed to"
" VCPU%d,vector=%d.\n", vcpu, vector);
return;
}
/* Acknowledge that event is accepted.*/
lapic_intr_accepted(svm_sc->vm, vcpu, vector);
VMM_CTR1(svm_sc->vm, vcpu, "SVM:event injected,vector=%d.\n", vector);
inject_failed:
return;
}
/*
* Restore host Task Register selector type after every vcpu exit.
*/
static void
setup_tss_type(void)
{
struct system_segment_descriptor *desc;
desc = (struct system_segment_descriptor *)&gdt[curcpu * NGDT +
GPROC0_SEL];
/*
* Task selector that should be restored in host is
* 64-bit available(9), not what is read(0xb), see
* APMvol2 Rev3.21 4.8.3 System Descriptors table.
*/
desc->sd_type = 9;
}
/*
* Start vcpu with specified RIP.
*/
static int
svm_vmrun(void *arg, int vcpu, register_t rip)
{
struct svm_regctx *hctx, *gctx;
struct svm_softc *svm_sc;
struct svm_vcpu *vcpustate;
struct vmcb_state *state;
struct vmcb_ctrl *ctrl;
struct vm_exit *vmexit;
int user;
uint64_t vmcb_pa;
static uint64_t host_cr2;
user = 0;
svm_sc = arg;
KASSERT(vcpu < svm_sc->vcpu_cnt, ("Guest doesn't have VCPU%d", vcpu));
vcpustate = svm_get_vcpu(svm_sc, vcpu);
state = svm_get_vmcb_state(svm_sc, vcpu);
ctrl = svm_get_vmcb_ctrl(svm_sc, vcpu);
vmexit = vm_exitinfo(svm_sc->vm , vcpu);
if (vmexit->exitcode == VM_EXITCODE_VMX) {
ERR("vcpu%d shouldn't run again.\n", vcpu);
return(EIO);
}
gctx = svm_get_guest_regctx(svm_sc, vcpu);
hctx = &host_ctx[curcpu];
vmcb_pa = svm_sc->vcpu[vcpu].vmcb_pa;
if (vcpustate->lastcpu != curcpu) {
/* Virtual CPU is running on a diiferent CPU now.*/
vmm_stat_incr(svm_sc->vm, vcpu, VCPU_MIGRATIONS, 1);
/*
* Flush all TLB mapping for this guest on this CPU,
* it might have stale entries.
*/
ctrl->tlb_ctrl = VMCB_TLB_FLUSH_GUEST;
/* Can't use any cached VMCB state by cpu.*/
ctrl->vmcb_clean = VMCB_CACHE_NONE;
} else {
/* Don't flush TLB since guest ASID is unchanged. */
ctrl->tlb_ctrl = VMCB_TLB_FLUSH_NOTHING;
/*
* This is the same cpu on which vcpu last ran so don't
* need to reload all VMCB state.
* ASID is unique for a guest.
* IOPM is unchanged.
* RVI/EPT is unchanged.
*
*/
ctrl->vmcb_clean = VMCB_CACHE_ASID |
VMCB_CACHE_IOPM |
VMCB_CACHE_NP;
}
vcpustate->lastcpu = curcpu;
/* Update Guest RIP */
state->rip = rip;
do {
lapic_timer_tick(svm_sc->vm, vcpu);
(void)svm_set_vmcb(svm_get_vmcb(svm_sc, vcpu), svm_sc->asid);
(void)svm_inj_interrupts(svm_sc, vcpu);
/* Change TSS type to available.*/
setup_tss_type();
/*
* Disable global interrupt to guarantee atomicity
* during loading of guest state.
* See 15.5.1 "Loading guest state" APM2.
*/
disable_gintr();
save_cr2(&host_cr2);
load_cr2(&state->cr2);
/* Launch Virtual Machine. */
svm_launch(vmcb_pa, gctx, hctx);
save_cr2(&state->cr2);
load_cr2(&host_cr2);
/*
* Only GDTR and IDTR of host is saved and restore by SVM,
* LDTR and TR need to be restored by VMM.
* XXX: kernel doesn't use LDT, only user space.
*/
ltr(GSEL(GPROC0_SEL, SEL_KPL));
/*
* Guest FS and GS selector are stashed by vmload and vmsave.
* Host FS and GS selector are stashed by svm_launch().
* Host GS base that holds per-cpu need to be restored before
* enabling global interrupt.
* FS is not used by FreeBSD kernel and kernel does restore
* back FS selector and base of user before returning to
* userland.
*
* Note: You can't use 'curcpu' which uses pcpu.
*/
wrmsr(MSR_GSBASE, (uint64_t)&__pcpu[vcpustate->lastcpu]);
wrmsr(MSR_KGSBASE, (uint64_t)&__pcpu[vcpustate->lastcpu]);
/* vcpu exit with glbal interrupt disabled. */
enable_gintr();
/* Handle #VMEXIT and if required return to user space. */
user = svm_vmexit(svm_sc, vcpu, vmexit);
vcpustate->loop++;
vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_COUNT, 1);
/* We are asked to give the cpud by scheduler.*/
if (curthread->td_flags & (TDF_ASTPENDING | TDF_NEEDRESCHED)) {
vmexit->exitcode = VM_EXITCODE_BOGUS;
vmexit->inst_length = 0;
break;
}
/* Update RIP since we are continuing vcpu execution.*/
state->rip = vmexit->rip;
} while (!user);
return (0);
}
/*
* Cleanup for virtual machine.
*/
static void
svm_vmcleanup(void *arg)
{
struct svm_softc *svm_sc;
svm_sc = arg;
VMM_CTR0(svm_sc->vm, 0, "SVM:cleanup\n");
svm_npt_cleanup(svm_sc);
free(svm_sc, M_SVM);
}
/*
* Return pointer to hypervisor saved register state.
*/
static register_t *
swctx_regptr(struct svm_regctx *regctx, int reg)
{
switch (reg) {
case VM_REG_GUEST_RBX:
return (&regctx->sctx_rbx);
case VM_REG_GUEST_RCX:
return (&regctx->sctx_rcx);
case VM_REG_GUEST_RDX:
return (&regctx->e.g.sctx_rdx);
case VM_REG_GUEST_RDI:
return (&regctx->e.g.sctx_rdi);
case VM_REG_GUEST_RSI:
return (&regctx->e.g.sctx_rsi);
case VM_REG_GUEST_RBP:
return (&regctx->sctx_rbp);
case VM_REG_GUEST_R8:
return (&regctx->sctx_r8);
case VM_REG_GUEST_R9:
return (&regctx->sctx_r9);
case VM_REG_GUEST_R10:
return (&regctx->sctx_r10);
case VM_REG_GUEST_R11:
return (&regctx->sctx_r11);
case VM_REG_GUEST_R12:
return (&regctx->sctx_r12);
case VM_REG_GUEST_R13:
return (&regctx->sctx_r13);
case VM_REG_GUEST_R14:
return (&regctx->sctx_r14);
case VM_REG_GUEST_R15:
return (&regctx->sctx_r15);
default:
ERR("Unknown register requested.\n");
break;
}
return (NULL);
}
/*
* Interface to read guest registers.
* This can be SVM h/w saved or hypervisor saved register.
*/
static int
svm_getreg(void *arg, int vcpu, int ident, uint64_t *val)
{
struct svm_softc *svm_sc;
struct vmcb *vmcb;
register_t *reg;
svm_sc = arg;
KASSERT(vcpu < svm_sc->vcpu_cnt, ("Guest doesn't have VCPU%d", vcpu));
vmcb = svm_get_vmcb(svm_sc, vcpu);
if (vmcb_read(vmcb, ident, val) == 0) {
return (0);
}
reg = swctx_regptr(svm_get_guest_regctx(svm_sc, vcpu), ident);
if (reg != NULL) {
*val = *reg;
return (0);
}
ERR("reg type %x is not saved n VMCB\n", ident);
return (EINVAL);
}
/*
* Interface to write to guest registers.
* This can be SVM h/w saved or hypervisor saved register.
*/
static int
svm_setreg(void *arg, int vcpu, int ident, uint64_t val)
{
struct svm_softc *svm_sc;
struct vmcb *vmcb;
register_t *reg;
svm_sc = arg;
KASSERT(vcpu < svm_sc->vcpu_cnt, ("Guest doesn't have VCPU%d", vcpu));
vmcb = svm_get_vmcb(svm_sc, vcpu);
if (vmcb_write(vmcb, ident, val) == 0) {
return (0);
}
reg = swctx_regptr(svm_get_guest_regctx(svm_sc, vcpu), ident);
if (reg != NULL) {
*reg = val;
return (0);
}
ERR("reg type %x is not saved n VMCB\n", ident);
return (EINVAL);
}
/*
* Inteface to set various descriptors.
*/
static int
svm_setdesc(void *arg, int vcpu, int type, struct seg_desc *desc)
{
struct svm_softc *svm_sc;
struct vmcb *vmcb;
struct vmcb_segment *seg;
uint16_t attrib;
svm_sc = arg;
KASSERT(vcpu < svm_sc->vcpu_cnt, ("Guest doesn't have VCPU%d", vcpu));
vmcb = svm_get_vmcb(svm_sc, vcpu);
VMM_CTR1(svm_sc->vm, vcpu, "SVM:set_desc: Type%d\n", type);
seg = vmcb_seg(vmcb, type);
if (seg == NULL) {
ERR("Unsupported seg type %d\n", type);
return (EINVAL);
}
/* Map seg_desc access to VMCB attribute format.*/
attrib = ((desc->access & 0xF000) >> 4) | (desc->access & 0xFF);
VMM_CTR3(svm_sc->vm, vcpu, "SVM:[sel %d attribute 0x%x limit:0x%x]\n",
type, desc->access, desc->limit);
seg->attrib = attrib;
seg->base = desc->base;
seg->limit = desc->limit;
return (0);
}
/*
* Interface to get guest descriptor.
*/
static int
svm_getdesc(void *arg, int vcpu, int type, struct seg_desc *desc)
{
struct svm_softc *svm_sc;
struct vmcb_segment *seg;
svm_sc = arg;
KASSERT(vcpu < svm_sc->vcpu_cnt, ("Guest doesn't have VCPU%d", vcpu));
VMM_CTR1(svm_sc->vm, vcpu, "SVM:get_desc: Type%d\n", type);
seg = vmcb_seg(svm_get_vmcb(svm_sc, vcpu), type);
if (!seg) {
ERR("Unsupported seg type %d\n", type);
return (EINVAL);
}
/* Map seg_desc access to VMCB attribute format.*/
desc->access = ((seg->attrib & 0xF00) << 4) | (seg->attrib & 0xFF);
desc->base = seg->base;
desc->limit = seg->limit;
return (0);
}
static int
svm_inject_event(void *arg, int vcpu, int type, int vector,
uint32_t error, int ec_valid)
{
struct svm_softc *svm_sc;
struct vmcb_ctrl *ctrl;
svm_sc = arg;
KASSERT(vcpu < svm_sc->vcpu_cnt, ("Guest doesn't have VCPU%d", vcpu));
ctrl = svm_get_vmcb_ctrl(svm_sc, vcpu);
VMM_CTR3(svm_sc->vm, vcpu, "Injecting event type:0x%x vector:0x%x"
"error:0x%x\n", type, vector, error);
return (vmcb_eventinject(ctrl, type, vector, error,
ec_valid ? TRUE : FALSE));
}
static int
svm_setcap(void *arg, int vcpu, int type, int val)
{
struct svm_softc *svm_sc;
struct vmcb_ctrl *ctrl;
int ret = ENOENT;
svm_sc = arg;
KASSERT(vcpu < svm_sc->vcpu_cnt, ("Guest doesn't have VCPU%d", vcpu));
ctrl = svm_get_vmcb_ctrl(svm_sc, vcpu);
switch (type) {
case VM_CAP_HALT_EXIT:
if (val)
ctrl->ctrl1 |= VMCB_INTCPT_HLT;
else
ctrl->ctrl1 &= ~VMCB_INTCPT_HLT;
ret = 0;
VMM_CTR1(svm_sc->vm, vcpu, "SVM:Set_gap:Halt exit %s.\n",
val ? "enabled": "disabled");
break;
case VM_CAP_PAUSE_EXIT:
if (val)
ctrl->ctrl1 |= VMCB_INTCPT_PAUSE;
else
ctrl->ctrl1 &= ~VMCB_INTCPT_PAUSE;
ret = 0;
VMM_CTR1(svm_sc->vm, vcpu, "SVM:Set_gap:Pause exit %s.\n",
val ? "enabled": "disabled");
break;
case VM_CAP_MTRAP_EXIT:
if (val)
ctrl->exception |= BIT(IDT_MC);
else
ctrl->exception &= ~BIT(IDT_MC);
ret = 0;
VMM_CTR1(svm_sc->vm, vcpu, "SVM:Set_gap:MC exit %s.\n",
val ? "enabled": "disabled");
break;
case VM_CAP_UNRESTRICTED_GUEST:
/* SVM doesn't need special capability for SMP.*/
VMM_CTR0(svm_sc->vm, vcpu, "SVM:Set_gap:Unrestricted "
"always enabled.\n");
ret = 0;
break;
default:
break;
}
return (ret);
}
static int
svm_getcap(void *arg, int vcpu, int type, int *retval)
{
struct svm_softc *svm_sc;
struct vmcb_ctrl *ctrl;
svm_sc = arg;
KASSERT(vcpu < svm_sc->vcpu_cnt, ("Guest doesn't have VCPU%d", vcpu));
ctrl = svm_get_vmcb_ctrl(svm_sc, vcpu);
switch (type) {
case VM_CAP_HALT_EXIT:
*retval = (ctrl->ctrl1 & VMCB_INTCPT_HLT) ? 1 : 0;
VMM_CTR1(svm_sc->vm, vcpu, "SVM:get_cap:Halt exit %s.\n",
*retval ? "enabled": "disabled");
break;
case VM_CAP_PAUSE_EXIT:
*retval = (ctrl->ctrl1 & VMCB_INTCPT_PAUSE) ? 1 : 0;
VMM_CTR1(svm_sc->vm, vcpu, "SVM:get_cap:Pause exit %s.\n",
*retval ? "enabled": "disabled");
break;
case VM_CAP_MTRAP_EXIT:
*retval = (ctrl->exception & BIT(IDT_MC)) ? 1 : 0;
VMM_CTR1(svm_sc->vm, vcpu, "SVM:get_cap:MC exit %s.\n",
*retval ? "enabled": "disabled");
break;
case VM_CAP_UNRESTRICTED_GUEST:
VMM_CTR0(svm_sc->vm, vcpu, "SVM:get_cap:Unrestricted.\n");
*retval = 1;
break;
default:
break;
}
return (0);
}
struct vmm_ops vmm_ops_amd = {
svm_init,
svm_cleanup,
svm_vminit,
svm_vmrun,
svm_vmcleanup,
svm_npt_vmmap_set,
svm_npt_vmmap_get,
svm_getreg,
svm_setreg,
svm_getdesc,
svm_setdesc,
svm_inject_event,
svm_getcap,
svm_setcap
};