freebsd-dev/module/zfs/vdev_raidz_math.c
Romain Dolbeau 62a65a654e Add parity generation/rebuild using 128-bits NEON for Aarch64
This re-use the framework established for SSE2, SSSE3 and
AVX2. However, GCC is using FP registers on Aarch64, so
unlike SSE/AVX2 we can't rely on the registers being left alone
between ASM statements. So instead, the NEON code uses
C variables and GCC extended ASM syntax. Note that since
the kernel explicitly disable vector registers, they
have to be locally re-enabled explicitly.

As we use the variable's number to define the symbolic
name, and GCC won't allow duplicate symbolic names,
numbers have to be unique. Even when the code is not
going to be used (e.g. the case for 4 registers when
using the macro with only 2). Only the actually used
variables should be declared, otherwise the build
will fails in debug mode.

This requires the replacement of the XOR(X,X) syntax
by a new ZERO(X) macro, which does the same thing but
without repeating the argument. And perhaps someday
there will be a machine where there is a more efficient
way to zero a register than XOR with itself. This affects
scalar, SSE2, SSSE3 and AVX2 as they need the new macro.

It's possible to write faster implementations (different
scheduling, different unrolling, interleaving NEON and
scalar, ...) for various cores, but this one has the
advantage of fitting in the current state of the code,
and thus is likely easier to review/check/merge.

The only difference between aarch64-neon and aarch64-neonx2
is that aarch64-neonx2 unroll some functions some more.

Reviewed-by: Gvozden Neskovic <neskovic@gmail.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Romain Dolbeau <romain.dolbeau@atos.net>
Closes #4801
2016-10-03 09:44:00 -07:00

648 lines
16 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (C) 2016 Gvozden Nešković. All rights reserved.
*/
#include <sys/zfs_context.h>
#include <sys/types.h>
#include <sys/zio.h>
#include <sys/debug.h>
#include <sys/zfs_debug.h>
#include <sys/vdev_raidz.h>
#include <sys/vdev_raidz_impl.h>
extern boolean_t raidz_will_scalar_work(void);
/* Opaque implementation with NULL methods to represent original methods */
static const raidz_impl_ops_t vdev_raidz_original_impl = {
.name = "original",
.is_supported = raidz_will_scalar_work,
};
/* RAIDZ parity op that contain the fastest methods */
static raidz_impl_ops_t vdev_raidz_fastest_impl = {
.name = "fastest"
};
/* All compiled in implementations */
const raidz_impl_ops_t *raidz_all_maths[] = {
&vdev_raidz_original_impl,
&vdev_raidz_scalar_impl,
#if defined(__x86_64) && defined(HAVE_SSE2) /* only x86_64 for now */
&vdev_raidz_sse2_impl,
#endif
#if defined(__x86_64) && defined(HAVE_SSSE3) /* only x86_64 for now */
&vdev_raidz_ssse3_impl,
#endif
#if defined(__x86_64) && defined(HAVE_AVX2) /* only x86_64 for now */
&vdev_raidz_avx2_impl,
#endif
#if defined(__aarch64__)
&vdev_raidz_aarch64_neon_impl,
&vdev_raidz_aarch64_neonx2_impl,
#endif
};
/* Indicate that benchmark has been completed */
static boolean_t raidz_math_initialized = B_FALSE;
/* Select raidz implementation */
#define IMPL_FASTEST (UINT32_MAX)
#define IMPL_CYCLE (UINT32_MAX - 1)
#define IMPL_ORIGINAL (0)
#define IMPL_SCALAR (1)
#define RAIDZ_IMPL_READ(i) (*(volatile uint32_t *) &(i))
static uint32_t zfs_vdev_raidz_impl = IMPL_SCALAR;
static uint32_t user_sel_impl = IMPL_FASTEST;
/* Hold all supported implementations */
static size_t raidz_supp_impl_cnt = 0;
static raidz_impl_ops_t *raidz_supp_impl[ARRAY_SIZE(raidz_all_maths)];
/*
* kstats values for supported implementations
* Values represent per disk throughput of 8 disk+parity raidz vdev [B/s]
*/
static raidz_impl_kstat_t raidz_impl_kstats[ARRAY_SIZE(raidz_all_maths) + 1];
/* kstat for benchmarked implementations */
static kstat_t *raidz_math_kstat = NULL;
/*
* Selects the raidz operation for raidz_map
* If rm_ops is set to NULL original raidz implementation will be used
*/
raidz_impl_ops_t *
vdev_raidz_math_get_ops()
{
raidz_impl_ops_t *ops = NULL;
const uint32_t impl = RAIDZ_IMPL_READ(zfs_vdev_raidz_impl);
switch (impl) {
case IMPL_FASTEST:
ASSERT(raidz_math_initialized);
ops = &vdev_raidz_fastest_impl;
break;
#if !defined(_KERNEL)
case IMPL_CYCLE:
{
ASSERT(raidz_math_initialized);
ASSERT3U(raidz_supp_impl_cnt, >, 0);
/* Cycle through all supported implementations */
static size_t cycle_impl_idx = 0;
size_t idx = (++cycle_impl_idx) % raidz_supp_impl_cnt;
ops = raidz_supp_impl[idx];
}
break;
#endif
case IMPL_ORIGINAL:
ops = (raidz_impl_ops_t *) &vdev_raidz_original_impl;
break;
case IMPL_SCALAR:
ops = (raidz_impl_ops_t *) &vdev_raidz_scalar_impl;
break;
default:
ASSERT3U(impl, <, raidz_supp_impl_cnt);
ASSERT3U(raidz_supp_impl_cnt, >, 0);
ops = raidz_supp_impl[impl];
break;
}
ASSERT3P(ops, !=, NULL);
return (ops);
}
/*
* Select parity generation method for raidz_map
*/
int
vdev_raidz_math_generate(raidz_map_t *rm)
{
raidz_gen_f gen_parity = NULL;
switch (raidz_parity(rm)) {
case 1:
gen_parity = rm->rm_ops->gen[RAIDZ_GEN_P];
break;
case 2:
gen_parity = rm->rm_ops->gen[RAIDZ_GEN_PQ];
break;
case 3:
gen_parity = rm->rm_ops->gen[RAIDZ_GEN_PQR];
break;
default:
gen_parity = NULL;
cmn_err(CE_PANIC, "invalid RAID-Z configuration %d",
raidz_parity(rm));
break;
}
/* if method is NULL execute the original implementation */
if (gen_parity == NULL)
return (RAIDZ_ORIGINAL_IMPL);
gen_parity(rm);
return (0);
}
static raidz_rec_f
reconstruct_fun_p_sel(raidz_map_t *rm, const int *parity_valid,
const int nbaddata)
{
if (nbaddata == 1 && parity_valid[CODE_P]) {
return (rm->rm_ops->rec[RAIDZ_REC_P]);
}
return ((raidz_rec_f) NULL);
}
static raidz_rec_f
reconstruct_fun_pq_sel(raidz_map_t *rm, const int *parity_valid,
const int nbaddata)
{
if (nbaddata == 1) {
if (parity_valid[CODE_P]) {
return (rm->rm_ops->rec[RAIDZ_REC_P]);
} else if (parity_valid[CODE_Q]) {
return (rm->rm_ops->rec[RAIDZ_REC_Q]);
}
} else if (nbaddata == 2 &&
parity_valid[CODE_P] && parity_valid[CODE_Q]) {
return (rm->rm_ops->rec[RAIDZ_REC_PQ]);
}
return ((raidz_rec_f) NULL);
}
static raidz_rec_f
reconstruct_fun_pqr_sel(raidz_map_t *rm, const int *parity_valid,
const int nbaddata)
{
if (nbaddata == 1) {
if (parity_valid[CODE_P]) {
return (rm->rm_ops->rec[RAIDZ_REC_P]);
} else if (parity_valid[CODE_Q]) {
return (rm->rm_ops->rec[RAIDZ_REC_Q]);
} else if (parity_valid[CODE_R]) {
return (rm->rm_ops->rec[RAIDZ_REC_R]);
}
} else if (nbaddata == 2) {
if (parity_valid[CODE_P] && parity_valid[CODE_Q]) {
return (rm->rm_ops->rec[RAIDZ_REC_PQ]);
} else if (parity_valid[CODE_P] && parity_valid[CODE_R]) {
return (rm->rm_ops->rec[RAIDZ_REC_PR]);
} else if (parity_valid[CODE_Q] && parity_valid[CODE_R]) {
return (rm->rm_ops->rec[RAIDZ_REC_QR]);
}
} else if (nbaddata == 3 &&
parity_valid[CODE_P] && parity_valid[CODE_Q] &&
parity_valid[CODE_R]) {
return (rm->rm_ops->rec[RAIDZ_REC_PQR]);
}
return ((raidz_rec_f) NULL);
}
/*
* Select data reconstruction method for raidz_map
* @parity_valid - Parity validity flag
* @dt - Failed data index array
* @nbaddata - Number of failed data columns
*/
int
vdev_raidz_math_reconstruct(raidz_map_t *rm, const int *parity_valid,
const int *dt, const int nbaddata)
{
raidz_rec_f rec_data = NULL;
switch (raidz_parity(rm)) {
case PARITY_P:
rec_data = reconstruct_fun_p_sel(rm, parity_valid, nbaddata);
break;
case PARITY_PQ:
rec_data = reconstruct_fun_pq_sel(rm, parity_valid, nbaddata);
break;
case PARITY_PQR:
rec_data = reconstruct_fun_pqr_sel(rm, parity_valid, nbaddata);
break;
default:
cmn_err(CE_PANIC, "invalid RAID-Z configuration %d",
raidz_parity(rm));
break;
}
if (rec_data == NULL)
return (RAIDZ_ORIGINAL_IMPL);
else
return (rec_data(rm, dt));
}
const char *raidz_gen_name[] = {
"gen_p", "gen_pq", "gen_pqr"
};
const char *raidz_rec_name[] = {
"rec_p", "rec_q", "rec_r",
"rec_pq", "rec_pr", "rec_qr", "rec_pqr"
};
#define RAIDZ_KSTAT_LINE_LEN (17 + 10*12 + 1)
static int
raidz_math_kstat_headers(char *buf, size_t size)
{
int i;
ssize_t off;
ASSERT3U(size, >=, RAIDZ_KSTAT_LINE_LEN);
off = snprintf(buf, size, "%-17s", "implementation");
for (i = 0; i < ARRAY_SIZE(raidz_gen_name); i++)
off += snprintf(buf + off, size - off, "%-16s",
raidz_gen_name[i]);
for (i = 0; i < ARRAY_SIZE(raidz_rec_name); i++)
off += snprintf(buf + off, size - off, "%-16s",
raidz_rec_name[i]);
(void) snprintf(buf + off, size - off, "\n");
return (0);
}
static int
raidz_math_kstat_data(char *buf, size_t size, void *data)
{
raidz_impl_kstat_t * fstat = &raidz_impl_kstats[raidz_supp_impl_cnt];
raidz_impl_kstat_t * cstat = (raidz_impl_kstat_t *) data;
ssize_t off = 0;
int i;
ASSERT3U(size, >=, RAIDZ_KSTAT_LINE_LEN);
if (cstat == fstat) {
off += snprintf(buf + off, size - off, "%-17s", "fastest");
for (i = 0; i < ARRAY_SIZE(raidz_gen_name); i++) {
int id = fstat->gen[i];
off += snprintf(buf + off, size - off, "%-16s",
raidz_supp_impl[id]->name);
}
for (i = 0; i < ARRAY_SIZE(raidz_rec_name); i++) {
int id = fstat->rec[i];
off += snprintf(buf + off, size - off, "%-16s",
raidz_supp_impl[id]->name);
}
} else {
ptrdiff_t id = cstat - raidz_impl_kstats;
off += snprintf(buf + off, size - off, "%-17s",
raidz_supp_impl[id]->name);
for (i = 0; i < ARRAY_SIZE(raidz_gen_name); i++)
off += snprintf(buf + off, size - off, "%-16llu",
(u_longlong_t) cstat->gen[i]);
for (i = 0; i < ARRAY_SIZE(raidz_rec_name); i++)
off += snprintf(buf + off, size - off, "%-16llu",
(u_longlong_t) cstat->rec[i]);
}
(void) snprintf(buf + off, size - off, "\n");
return (0);
}
static void *
raidz_math_kstat_addr(kstat_t *ksp, loff_t n)
{
if (n <= raidz_supp_impl_cnt)
ksp->ks_private = (void *) (raidz_impl_kstats + n);
else
ksp->ks_private = NULL;
return (ksp->ks_private);
}
#define BENCH_D_COLS (8ULL)
#define BENCH_COLS (BENCH_D_COLS + PARITY_PQR)
#define BENCH_ZIO_SIZE (1ULL << SPA_OLD_MAXBLOCKSHIFT) /* 128 kiB */
#define BENCH_NS MSEC2NSEC(25) /* 25ms */
typedef void (*benchmark_fn)(raidz_map_t *rm, const int fn);
static void
benchmark_gen_impl(raidz_map_t *rm, const int fn)
{
(void) fn;
vdev_raidz_generate_parity(rm);
}
static void
benchmark_rec_impl(raidz_map_t *rm, const int fn)
{
static const int rec_tgt[7][3] = {
{1, 2, 3}, /* rec_p: bad QR & D[0] */
{0, 2, 3}, /* rec_q: bad PR & D[0] */
{0, 1, 3}, /* rec_r: bad PQ & D[0] */
{2, 3, 4}, /* rec_pq: bad R & D[0][1] */
{1, 3, 4}, /* rec_pr: bad Q & D[0][1] */
{0, 3, 4}, /* rec_qr: bad P & D[0][1] */
{3, 4, 5} /* rec_pqr: bad & D[0][1][2] */
};
vdev_raidz_reconstruct(rm, rec_tgt[fn], 3);
}
/*
* Benchmarking of all supported implementations (raidz_supp_impl_cnt)
* is performed by setting the rm_ops pointer and calling the top level
* generate/reconstruct methods of bench_rm.
*/
static void
benchmark_raidz_impl(raidz_map_t *bench_rm, const int fn, benchmark_fn bench_fn)
{
uint64_t run_cnt, speed, best_speed = 0;
hrtime_t t_start, t_diff;
raidz_impl_ops_t *curr_impl;
raidz_impl_kstat_t * fstat = &raidz_impl_kstats[raidz_supp_impl_cnt];
int impl, i;
for (impl = 0; impl < raidz_supp_impl_cnt; impl++) {
/* set an implementation to benchmark */
curr_impl = raidz_supp_impl[impl];
bench_rm->rm_ops = curr_impl;
run_cnt = 0;
t_start = gethrtime();
do {
for (i = 0; i < 25; i++, run_cnt++)
bench_fn(bench_rm, fn);
t_diff = gethrtime() - t_start;
} while (t_diff < BENCH_NS);
speed = run_cnt * BENCH_ZIO_SIZE * NANOSEC;
speed /= (t_diff * BENCH_COLS);
if (bench_fn == benchmark_gen_impl)
raidz_impl_kstats[impl].gen[fn] = speed;
else
raidz_impl_kstats[impl].rec[fn] = speed;
/* Update fastest implementation method */
if (speed > best_speed) {
best_speed = speed;
if (bench_fn == benchmark_gen_impl) {
fstat->gen[fn] = impl;
vdev_raidz_fastest_impl.gen[fn] =
curr_impl->gen[fn];
} else {
fstat->rec[fn] = impl;
vdev_raidz_fastest_impl.rec[fn] =
curr_impl->rec[fn];
}
}
}
}
void
vdev_raidz_math_init(void)
{
raidz_impl_ops_t *curr_impl;
zio_t *bench_zio = NULL;
raidz_map_t *bench_rm = NULL;
uint64_t bench_parity;
int i, c, fn;
/* move supported impl into raidz_supp_impl */
for (i = 0, c = 0; i < ARRAY_SIZE(raidz_all_maths); i++) {
curr_impl = (raidz_impl_ops_t *) raidz_all_maths[i];
/* initialize impl */
if (curr_impl->init)
curr_impl->init();
if (curr_impl->is_supported())
raidz_supp_impl[c++] = (raidz_impl_ops_t *) curr_impl;
}
membar_producer(); /* complete raidz_supp_impl[] init */
raidz_supp_impl_cnt = c; /* number of supported impl */
#if !defined(_KERNEL)
/* Skip benchmarking and use last implementation as fastest */
memcpy(&vdev_raidz_fastest_impl, raidz_supp_impl[raidz_supp_impl_cnt-1],
sizeof (vdev_raidz_fastest_impl));
strcpy(vdev_raidz_fastest_impl.name, "fastest");
raidz_math_initialized = B_TRUE;
/* Use 'cycle' math selection method for userspace */
VERIFY0(vdev_raidz_impl_set("cycle"));
return;
#endif
/* Fake an zio and run the benchmark on it */
bench_zio = kmem_zalloc(sizeof (zio_t), KM_SLEEP);
bench_zio->io_offset = 0;
bench_zio->io_size = BENCH_ZIO_SIZE; /* only data columns */
bench_zio->io_data = zio_data_buf_alloc(BENCH_ZIO_SIZE);
VERIFY(bench_zio->io_data);
memset(bench_zio->io_data, 0xAA, BENCH_ZIO_SIZE); /* warm up */
/* Benchmark parity generation methods */
for (fn = 0; fn < RAIDZ_GEN_NUM; fn++) {
bench_parity = fn + 1;
/* New raidz_map is needed for each generate_p/q/r */
bench_rm = vdev_raidz_map_alloc(bench_zio, SPA_MINBLOCKSHIFT,
BENCH_D_COLS + bench_parity, bench_parity);
benchmark_raidz_impl(bench_rm, fn, benchmark_gen_impl);
vdev_raidz_map_free(bench_rm);
}
/* Benchmark data reconstruction methods */
bench_rm = vdev_raidz_map_alloc(bench_zio, SPA_MINBLOCKSHIFT,
BENCH_COLS, PARITY_PQR);
for (fn = 0; fn < RAIDZ_REC_NUM; fn++)
benchmark_raidz_impl(bench_rm, fn, benchmark_rec_impl);
vdev_raidz_map_free(bench_rm);
/* cleanup the bench zio */
zio_data_buf_free(bench_zio->io_data, BENCH_ZIO_SIZE);
kmem_free(bench_zio, sizeof (zio_t));
/* install kstats for all impl */
raidz_math_kstat = kstat_create("zfs", 0, "vdev_raidz_bench", "misc",
KSTAT_TYPE_RAW, 0, KSTAT_FLAG_VIRTUAL);
if (raidz_math_kstat != NULL) {
raidz_math_kstat->ks_data = NULL;
raidz_math_kstat->ks_ndata = UINT32_MAX;
kstat_set_raw_ops(raidz_math_kstat,
raidz_math_kstat_headers,
raidz_math_kstat_data,
raidz_math_kstat_addr);
kstat_install(raidz_math_kstat);
}
/* Finish initialization */
atomic_swap_32(&zfs_vdev_raidz_impl, user_sel_impl);
raidz_math_initialized = B_TRUE;
}
void
vdev_raidz_math_fini(void)
{
raidz_impl_ops_t const *curr_impl;
int i;
if (raidz_math_kstat != NULL) {
kstat_delete(raidz_math_kstat);
raidz_math_kstat = NULL;
}
/* fini impl */
for (i = 0; i < ARRAY_SIZE(raidz_all_maths); i++) {
curr_impl = raidz_all_maths[i];
if (curr_impl->fini)
curr_impl->fini();
}
}
static const struct {
char *name;
uint32_t sel;
} math_impl_opts[] = {
#if !defined(_KERNEL)
{ "cycle", IMPL_CYCLE },
#endif
{ "fastest", IMPL_FASTEST },
{ "original", IMPL_ORIGINAL },
{ "scalar", IMPL_SCALAR }
};
/*
* Function sets desired raidz implementation.
*
* If we are called before init(), user preference will be saved in
* user_sel_impl, and applied in later init() call. This occurs when module
* parameter is specified on module load. Otherwise, directly update
* zfs_vdev_raidz_impl.
*
* @val Name of raidz implementation to use
* @param Unused.
*/
int
vdev_raidz_impl_set(const char *val)
{
int err = -EINVAL;
char req_name[RAIDZ_IMPL_NAME_MAX];
uint32_t impl = RAIDZ_IMPL_READ(user_sel_impl);
size_t i;
/* sanitize input */
i = strnlen(val, RAIDZ_IMPL_NAME_MAX);
if (i == 0 || i == RAIDZ_IMPL_NAME_MAX)
return (err);
strlcpy(req_name, val, RAIDZ_IMPL_NAME_MAX);
while (i > 0 && !!isspace(req_name[i-1]))
i--;
req_name[i] = '\0';
/* Check mandatory options */
for (i = 0; i < ARRAY_SIZE(math_impl_opts); i++) {
if (strcmp(req_name, math_impl_opts[i].name) == 0) {
impl = math_impl_opts[i].sel;
err = 0;
break;
}
}
/* check all supported impl if init() was already called */
if (err != 0 && raidz_math_initialized) {
/* check all supported implementations */
for (i = 0; i < raidz_supp_impl_cnt; i++) {
if (strcmp(req_name, raidz_supp_impl[i]->name) == 0) {
impl = i;
err = 0;
break;
}
}
}
if (err == 0) {
if (raidz_math_initialized)
atomic_swap_32(&zfs_vdev_raidz_impl, impl);
else
atomic_swap_32(&user_sel_impl, impl);
}
return (err);
}
#if defined(_KERNEL) && defined(HAVE_SPL)
#include <linux/mod_compat.h>
static int
zfs_vdev_raidz_impl_set(const char *val, zfs_kernel_param_t *kp)
{
return (vdev_raidz_impl_set(val));
}
static int
zfs_vdev_raidz_impl_get(char *buffer, zfs_kernel_param_t *kp)
{
int i, cnt = 0;
char *fmt;
const uint32_t impl = RAIDZ_IMPL_READ(zfs_vdev_raidz_impl);
ASSERT(raidz_math_initialized);
/* list mandatory options */
for (i = 0; i < ARRAY_SIZE(math_impl_opts) - 2; i++) {
fmt = (impl == math_impl_opts[i].sel) ? "[%s] " : "%s ";
cnt += sprintf(buffer + cnt, fmt, math_impl_opts[i].name);
}
/* list all supported implementations */
for (i = 0; i < raidz_supp_impl_cnt; i++) {
fmt = (i == impl) ? "[%s] " : "%s ";
cnt += sprintf(buffer + cnt, fmt, raidz_supp_impl[i]->name);
}
return (cnt);
}
module_param_call(zfs_vdev_raidz_impl, zfs_vdev_raidz_impl_set,
zfs_vdev_raidz_impl_get, NULL, 0644);
MODULE_PARM_DESC(zfs_vdev_raidz_impl, "Select raidz implementation.");
#endif