freebsd-dev/sys/mips/nlm/xlp_pci.c
Jayachandran C. e12ed67f35 XLP PCIe code update.
- XLP supports hardware swap for PCIe IO/MEM accesses. Since we
  are in big-endian mode, enable hardware swap and use the normal
  bus space.
- move some printfs to bootverbose, and remove others.
- fix SoC device resource allocation code
- Do not use '|' while updating PCIE_BRIDGE_MSI_ADDRL
- some style fixes

In collaboration with: Venkatesh J. V. (venkatesh at netlogicmicro com)
2012-03-27 07:57:41 +00:00

696 lines
17 KiB
C

/*-
* Copyright (c) 2003-2009 RMI Corporation
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of RMI Corporation, nor the names of its contributors,
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* NETLOGIC_BSD */
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/types.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/malloc.h>
#include <sys/bus.h>
#include <sys/endian.h>
#include <sys/rman.h>
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/pmap.h>
#include <sys/pciio.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcireg.h>
#include <dev/uart/uart.h>
#include <dev/uart/uart_bus.h>
#include <dev/uart/uart_cpu.h>
#include <machine/bus.h>
#include <machine/md_var.h>
#include <machine/intr_machdep.h>
#include <machine/cpuregs.h>
#include <mips/nlm/hal/haldefs.h>
#include <mips/nlm/interrupt.h>
#include <mips/nlm/hal/iomap.h>
#include <mips/nlm/hal/mips-extns.h>
#include <mips/nlm/hal/pic.h>
#include <mips/nlm/hal/bridge.h>
#include <mips/nlm/hal/pcibus.h>
#include <mips/nlm/hal/uart.h>
#include <mips/nlm/xlp.h>
#include "pcib_if.h"
struct xlp_pcib_softc {
bus_dma_tag_t sc_pci_dmat; /* PCI DMA tag pointer */
};
static devclass_t pcib_devclass;
static struct rman irq_rman, port_rman, mem_rman, emul_rman;
static void
xlp_pci_init_resources(void)
{
irq_rman.rm_start = 0;
irq_rman.rm_end = 255;
irq_rman.rm_type = RMAN_ARRAY;
irq_rman.rm_descr = "PCI Mapped Interrupts";
if (rman_init(&irq_rman)
|| rman_manage_region(&irq_rman, 0, 255))
panic("pci_init_resources irq_rman");
port_rman.rm_start = 0;
port_rman.rm_end = ~0ul;
port_rman.rm_type = RMAN_ARRAY;
port_rman.rm_descr = "I/O ports";
if (rman_init(&port_rman)
|| rman_manage_region(&port_rman, PCIE_IO_BASE, PCIE_IO_LIMIT))
panic("pci_init_resources port_rman");
mem_rman.rm_start = 0;
mem_rman.rm_end = ~0ul;
mem_rman.rm_type = RMAN_ARRAY;
mem_rman.rm_descr = "I/O memory";
if (rman_init(&mem_rman)
|| rman_manage_region(&mem_rman, PCIE_MEM_BASE, PCIE_MEM_LIMIT))
panic("pci_init_resources mem_rman");
/*
* This includes the GBU (nor flash) memory range and the PCIe
* memory area.
*/
emul_rman.rm_start = 0;
emul_rman.rm_end = ~0ul;
emul_rman.rm_type = RMAN_ARRAY;
emul_rman.rm_descr = "Emulated MEMIO";
if (rman_init(&emul_rman)
|| rman_manage_region(&emul_rman, 0x16000000UL, 0x18ffffffUL))
panic("pci_init_resources emul_rman");
}
static int
xlp_pcib_probe(device_t dev)
{
device_set_desc(dev, "XLP PCI bus");
xlp_pci_init_resources();
return (0);
}
static int
xlp_pcib_read_ivar(device_t dev, device_t child, int which, uintptr_t *result)
{
switch (which) {
case PCIB_IVAR_DOMAIN:
*result = 0;
return (0);
case PCIB_IVAR_BUS:
*result = 0;
return (0);
}
return (ENOENT);
}
static int
xlp_pcib_write_ivar(device_t dev, device_t child, int which, uintptr_t result)
{
switch (which) {
case PCIB_IVAR_DOMAIN:
return (EINVAL);
case PCIB_IVAR_BUS:
return (EINVAL);
}
return (ENOENT);
}
static int
xlp_pcib_maxslots(device_t dev)
{
return (PCI_SLOTMAX);
}
static u_int32_t
xlp_pcib_read_config(device_t dev, u_int b, u_int s, u_int f,
u_int reg, int width)
{
uint32_t data = 0;
uint64_t cfgaddr;
int regindex = reg/sizeof(uint32_t);
cfgaddr = nlm_pcicfg_base(XLP_HDR_OFFSET(0, b, s, f));
if ((width == 2) && (reg & 1))
return 0xFFFFFFFF;
else if ((width == 4) && (reg & 3))
return 0xFFFFFFFF;
data = nlm_read_pci_reg(cfgaddr, regindex);
/*
* Fix up read data in some SoC devices
* to emulate complete PCIe header
*/
if (b == 0) {
int dev = s % 8;
/* Fake intpin on config read for UART/I2C, USB, SD/Flash */
if (regindex == 0xf &&
(dev == 6 || dev == 2 || dev == 7))
data |= 0x1 << 8; /* Fake int pin */
}
if (width == 1)
return ((data >> ((reg & 3) << 3)) & 0xff);
else if (width == 2)
return ((data >> ((reg & 3) << 3)) & 0xffff);
else
return (data);
}
static void
xlp_pcib_write_config(device_t dev, u_int b, u_int s, u_int f,
u_int reg, u_int32_t val, int width)
{
uint64_t cfgaddr;
uint32_t data = 0;
int regindex = reg / sizeof(uint32_t);
cfgaddr = nlm_pcicfg_base(XLP_HDR_OFFSET(0, b, s, f));
if ((width == 2) && (reg & 1))
return;
else if ((width == 4) && (reg & 3))
return;
if (width == 1) {
data = nlm_read_pci_reg(cfgaddr, regindex);
data = (data & ~(0xff << ((reg & 3) << 3))) |
(val << ((reg & 3) << 3));
} else if (width == 2) {
data = nlm_read_pci_reg(cfgaddr, regindex);
data = (data & ~(0xffff << ((reg & 3) << 3))) |
(val << ((reg & 3) << 3));
} else {
data = val;
}
nlm_write_pci_reg(cfgaddr, regindex, data);
return;
}
/*
* Enable byte swap in hardware. Program a link's PCIe SWAP regions
* from the link's IO and MEM address ranges.
*/
static void
xlp_pci_hardware_swap_enable(int node, int link)
{
uint64_t bbase, linkpcibase;
uint32_t bar;
int pcieoffset;
pcieoffset = XLP_IO_PCIE_OFFSET(node, link);
if (!nlm_dev_exists(pcieoffset))
return;
bbase = nlm_get_bridge_regbase(node);
linkpcibase = nlm_pcicfg_base(pcieoffset);
bar = nlm_read_bridge_reg(bbase, BRIDGE_PCIEMEM_BASE0 + link);
nlm_write_pci_reg(linkpcibase, PCIE_BYTE_SWAP_MEM_BASE, bar);
bar = nlm_read_bridge_reg(bbase, BRIDGE_PCIEMEM_LIMIT0 + link);
nlm_write_pci_reg(linkpcibase, PCIE_BYTE_SWAP_MEM_LIM, bar);
bar = nlm_read_bridge_reg(bbase, BRIDGE_PCIEIO_BASE0 + link);
nlm_write_pci_reg(linkpcibase, PCIE_BYTE_SWAP_IO_BASE, bar);
bar = nlm_read_bridge_reg(bbase, BRIDGE_PCIEIO_LIMIT0 + link);
nlm_write_pci_reg(linkpcibase, PCIE_BYTE_SWAP_IO_LIM, bar);
}
static int
xlp_pcib_attach(device_t dev)
{
int node, link;
/* enable hardware swap on all nodes/links */
for (node = 0; node < XLP_MAX_NODES; node++)
for (link = 0; link < 4; link++)
xlp_pci_hardware_swap_enable(node, link);
device_add_child(dev, "pci", 0);
bus_generic_attach(dev);
return (0);
}
static void
xlp_pcib_identify(driver_t * driver, device_t parent)
{
BUS_ADD_CHILD(parent, 0, "pcib", 0);
}
/*
* XLS PCIe can have upto 4 links, and each link has its on IRQ
* Find the link on which the device is on
*/
static int
xlp_pcie_link(device_t pcib, device_t dev)
{
device_t parent, tmp;
/* find the lane on which the slot is connected to */
tmp = dev;
while (1) {
parent = device_get_parent(tmp);
if (parent == NULL || parent == pcib) {
device_printf(dev, "Cannot find parent bus\n");
return (-1);
}
if (strcmp(device_get_nameunit(parent), "pci0") == 0)
break;
tmp = parent;
}
return (pci_get_function(tmp));
}
static int
xlp_alloc_msi(device_t pcib, device_t dev, int count, int maxcount, int *irqs)
{
int i, link;
/*
* Each link has 32 MSIs that can be allocated, but for now
* we only support one device per link.
* msi_alloc() equivalent is needed when we start supporting
* bridges on the PCIe link.
*/
link = xlp_pcie_link(pcib, dev);
if (link == -1)
return (ENXIO);
/*
* encode the irq so that we know it is a MSI interrupt when we
* setup interrupts
*/
for (i = 0; i < count; i++)
irqs[i] = 64 + link * 32 + i;
return (0);
}
static int
xlp_release_msi(device_t pcib, device_t dev, int count, int *irqs)
{
return (0);
}
static int
xlp_map_msi(device_t pcib, device_t dev, int irq, uint64_t *addr,
uint32_t *data)
{
int msi, irt;
if (irq >= 64) {
msi = irq - 64;
*addr = MIPS_MSI_ADDR(0);
irt = xlp_pcie_link_irt(msi/32);
if (irt != -1)
*data = MIPS_MSI_DATA(xlp_irt_to_irq(irt));
return (0);
} else {
device_printf(dev, "%s: map_msi for irq %d - ignored",
device_get_nameunit(pcib), irq);
return (ENXIO);
}
}
static void
bridge_pcie_ack(int irq)
{
uint32_t node,reg;
uint64_t base;
node = nlm_nodeid();
reg = PCIE_MSI_STATUS;
switch (irq) {
case PIC_PCIE_0_IRQ:
base = nlm_pcicfg_base(XLP_IO_PCIE0_OFFSET(node));
break;
case PIC_PCIE_1_IRQ:
base = nlm_pcicfg_base(XLP_IO_PCIE1_OFFSET(node));
break;
case PIC_PCIE_2_IRQ:
base = nlm_pcicfg_base(XLP_IO_PCIE2_OFFSET(node));
break;
case PIC_PCIE_3_IRQ:
base = nlm_pcicfg_base(XLP_IO_PCIE3_OFFSET(node));
break;
default:
return;
}
nlm_write_pci_reg(base, reg, 0xFFFFFFFF);
return;
}
static int
mips_platform_pci_setup_intr(device_t dev, device_t child,
struct resource *irq, int flags, driver_filter_t *filt,
driver_intr_t *intr, void *arg, void **cookiep)
{
int error = 0;
int xlpirq;
void *extra_ack;
error = rman_activate_resource(irq);
if (error)
return error;
if (rman_get_start(irq) != rman_get_end(irq)) {
device_printf(dev, "Interrupt allocation %lu != %lu\n",
rman_get_start(irq), rman_get_end(irq));
return (EINVAL);
}
xlpirq = rman_get_start(irq);
if (strcmp(device_get_name(dev), "pcib") != 0) {
device_printf(dev, "ret 0 on dev\n");
return (0);
}
/*
* temporary hack for MSI, we support just one device per
* link, and assign the link interrupt to the device interrupt
*/
if (xlpirq >= 64) {
int node, val, link;
uint64_t base;
xlpirq -= 64;
if (xlpirq % 32 != 0)
return (0);
node = nlm_nodeid();
link = xlpirq / 32;
base = nlm_pcicfg_base(XLP_IO_PCIE_OFFSET(node,link));
/* MSI Interrupt Vector enable at bridge's configuration */
nlm_write_pci_reg(base, PCIE_MSI_EN, PCIE_MSI_VECTOR_INT_EN);
val = nlm_read_pci_reg(base, PCIE_INT_EN0);
/* MSI Interrupt enable at bridge's configuration */
nlm_write_pci_reg(base, PCIE_INT_EN0,
(val | PCIE_MSI_INT_EN));
/* legacy interrupt disable at bridge */
val = nlm_read_pci_reg(base, PCIE_BRIDGE_CMD);
nlm_write_pci_reg(base, PCIE_BRIDGE_CMD,
(val | PCIM_CMD_INTxDIS));
/* MSI address update at bridge */
nlm_write_pci_reg(base, PCIE_BRIDGE_MSI_ADDRL,
MSI_MIPS_ADDR_BASE);
nlm_write_pci_reg(base, PCIE_BRIDGE_MSI_ADDRH, 0);
val = nlm_read_pci_reg(base, PCIE_BRIDGE_MSI_CAP);
/* MSI capability enable at bridge */
nlm_write_pci_reg(base, PCIE_BRIDGE_MSI_CAP,
(val | (PCIM_MSICTRL_MSI_ENABLE << 16) |
(PCIM_MSICTRL_MMC_32 << 16)));
xlpirq = xlp_pcie_link_irt(xlpirq / 32);
if (xlpirq == -1)
return (EINVAL);
xlpirq = xlp_irt_to_irq(xlpirq);
}
/* Set all irqs to CPU 0 for now */
nlm_pic_write_irt_direct(xlp_pic_base, xlp_irq_to_irt(xlpirq), 1, 0,
PIC_LOCAL_SCHEDULING, xlpirq, 0);
extra_ack = NULL;
if (xlpirq >= PIC_PCIE_0_IRQ && xlpirq <= PIC_PCIE_3_IRQ)
extra_ack = bridge_pcie_ack;
xlp_establish_intr(device_get_name(child), filt,
intr, arg, xlpirq, flags, cookiep, extra_ack);
return (0);
}
static int
mips_platform_pci_teardown_intr(device_t dev, device_t child,
struct resource *irq, void *cookie)
{
if (strcmp(device_get_name(child), "pci") == 0) {
/* if needed reprogram the pic to clear pcix related entry */
device_printf(dev, "teardown intr\n");
}
return (bus_generic_teardown_intr(dev, child, irq, cookie));
}
static void
assign_soc_resource(device_t child, int type, u_long *startp, u_long *endp,
u_long *countp, struct rman **rm, bus_space_tag_t *bst, vm_offset_t *va)
{
int devid, inst, node, unit;
devid = pci_get_device(child);
inst = pci_get_function(child);
node = pci_get_slot(child) / 8;
unit = device_get_unit(child);
*rm = NULL;
*va = 0;
*bst = 0;
if (type == SYS_RES_MEMORY) {
switch (devid) {
case PCI_DEVICE_ID_NLM_UART:
*va = nlm_get_uart_regbase(node, inst);
*startp = MIPS_KSEG1_TO_PHYS(*va);
*countp = 0x100;
*rm = &emul_rman;
*bst = uart_bus_space_mem;
break;
}
/* calculate end if allocated */
if (*rm)
*endp = *startp + *countp - 1;
} else if (type != SYS_RES_IRQ) {
/*
* IRQ allocation is done by route_interrupt,
* for any other request print warning.
*/
printf("Unknown type %d in req for [%x%x]\n",
type, devid, inst);
}
}
static struct resource *
xlp_pci_alloc_resource(device_t bus, device_t child, int type, int *rid,
u_long start, u_long end, u_long count, u_int flags)
{
struct rman *rm = NULL;
struct resource *rv;
vm_offset_t va = 0;
int needactivate = flags & RF_ACTIVE;
bus_space_tag_t bst = 0;
/*
* For SoC PCI devices, we have to assign resources correctly
* since the IRQ and MEM resources depend on the block.
* If the address is not from BAR0, then we use emul_rman
*/
if (pci_get_bus(child) == 0 &&
pci_get_vendor(child) == PCI_VENDOR_NETLOGIC)
assign_soc_resource(child, type, &start, &end,
&count, &rm, &bst, &va);
if (rm == NULL) {
switch (type) {
case SYS_RES_IRQ:
rm = &irq_rman;
break;
case SYS_RES_IOPORT:
rm = &port_rman;
break;
case SYS_RES_MEMORY:
rm = &mem_rman;
break;
default:
return (0);
}
}
rv = rman_reserve_resource(rm, start, end, count, flags, child);
if (rv == 0)
return (0);
rman_set_rid(rv, *rid);
if (type == SYS_RES_MEMORY || type == SYS_RES_IOPORT) {
if (va == 0)
va = (vm_offset_t)pmap_mapdev(start, count);
if (bst == 0)
bst = rmi_bus_space;
rman_set_bushandle(rv, va);
rman_set_virtual(rv, (void *)va);
rman_set_bustag(rv, bst);
}
if (needactivate) {
if (bus_activate_resource(child, type, *rid, rv)) {
rman_release_resource(rv);
return (NULL);
}
}
return (rv);
}
static int
xlp_pci_release_resource(device_t bus, device_t child, int type, int rid,
struct resource *r)
{
return (rman_release_resource(r));
}
static bus_dma_tag_t
xlp_pci_get_dma_tag(device_t bus, device_t child)
{
struct xlp_pcib_softc *sc;
sc = device_get_softc(bus);
return (sc->sc_pci_dmat);
}
static int
xlp_pci_activate_resource(device_t bus, device_t child, int type, int rid,
struct resource *r)
{
return (rman_activate_resource(r));
}
static int
xlp_pci_deactivate_resource(device_t bus, device_t child, int type, int rid,
struct resource *r)
{
return (rman_deactivate_resource(r));
}
static int
mips_pci_route_interrupt(device_t bus, device_t dev, int pin)
{
int irt, link;
/*
* Validate requested pin number.
*/
if ((pin < 1) || (pin > 4))
return (255);
if (pci_get_bus(dev) == 0 &&
pci_get_vendor(dev) == PCI_VENDOR_NETLOGIC) {
/* SoC devices */
uint64_t pcibase;
int f, n, d, num;
f = pci_get_function(dev);
n = pci_get_slot(dev) / 8;
d = pci_get_slot(dev) % 8;
/*
* For PCIe links, return link IRT, for other SoC devices
* get the IRT from its PCIe header
*/
if (d == 1) {
irt = xlp_pcie_link_irt(f);
} else {
pcibase = nlm_pcicfg_base(XLP_HDR_OFFSET(n, 0, d, f));
irt = nlm_irtstart(pcibase);
num = nlm_irtnum(pcibase);
if (num != 1)
device_printf(bus, "[%d:%d:%d] Error %d IRQs\n",
n, d, f, num);
}
} else {
/* Regular PCI devices */
link = xlp_pcie_link(bus, dev);
irt = xlp_pcie_link_irt(link);
}
if (irt != -1)
return (xlp_irt_to_irq(irt));
return (255);
}
static device_method_t xlp_pcib_methods[] = {
/* Device interface */
DEVMETHOD(device_identify, xlp_pcib_identify),
DEVMETHOD(device_probe, xlp_pcib_probe),
DEVMETHOD(device_attach, xlp_pcib_attach),
/* Bus interface */
DEVMETHOD(bus_read_ivar, xlp_pcib_read_ivar),
DEVMETHOD(bus_write_ivar, xlp_pcib_write_ivar),
DEVMETHOD(bus_alloc_resource, xlp_pci_alloc_resource),
DEVMETHOD(bus_release_resource, xlp_pci_release_resource),
DEVMETHOD(bus_get_dma_tag, xlp_pci_get_dma_tag),
DEVMETHOD(bus_activate_resource, xlp_pci_activate_resource),
DEVMETHOD(bus_deactivate_resource, xlp_pci_deactivate_resource),
DEVMETHOD(bus_setup_intr, mips_platform_pci_setup_intr),
DEVMETHOD(bus_teardown_intr, mips_platform_pci_teardown_intr),
/* pcib interface */
DEVMETHOD(pcib_maxslots, xlp_pcib_maxslots),
DEVMETHOD(pcib_read_config, xlp_pcib_read_config),
DEVMETHOD(pcib_write_config, xlp_pcib_write_config),
DEVMETHOD(pcib_route_interrupt, mips_pci_route_interrupt),
DEVMETHOD(pcib_alloc_msi, xlp_alloc_msi),
DEVMETHOD(pcib_release_msi, xlp_release_msi),
DEVMETHOD(pcib_map_msi, xlp_map_msi),
DEVMETHOD_END
};
static driver_t xlp_pcib_driver = {
"pcib",
xlp_pcib_methods,
sizeof(struct xlp_pcib_softc),
};
DRIVER_MODULE(pcib, nexus, xlp_pcib_driver, pcib_devclass, 0, 0);