freebsd-dev/sys/mips/cavium/octeon_pcmap_regs.h
Warner Losh 6b06709221 Merge from projects/mips to head by hand:
Copy the support files for the Octeon 1 CPU from sys/mips/octeon1 on
the projects/mips side to sys/mips/cavium on the head side to conform
to the other vendor code.  This code was contributed by Cavium to the
project and forward ported by Warner Losh, with some additional code
from Randal Stewart.

# I'll fix the building problems the move creates in a future commit.
2010-01-09 18:59:03 +00:00

1081 lines
30 KiB
C

/*
* This product includes software developed by the University of
* California, Berkeley and its contributors."
*/
#ifndef __OCTEON_PCMAP_REGS_H__
#define __OCTEON_PCMAP_REGS_H__
#include "opt_cputype.h"
#define OCTEON_CACHE_LINE_SIZE 0x80 /* 128 bytes cache line size */
#define IS_OCTEON_ALIGNED(p) (!((u_long)(p) & 0x7f))
#define OCTEON_ALIGN(p) (((u_long)(p) + ((OCTEON_CACHE_LINE_SIZE) - 1)) & ~((OCTEON_CACHE_LINE_SIZE) - 1))
#ifndef LOCORE
/* XXXimp: From Cavium's include/pcpu.h, need to port that over */
#ifndef OCTEON_SMP
#define OCTEON_CORE_ID 0
#else
extern struct pcpu *cpuid_to_pcpu[];
#define OCTEON_CORE_ID (mips_rd_coreid())
#endif
/*
* Utility inlines & macros
*/
/* turn the variable name into a string */
#define OCTEON_TMP_STR(x) OCTEON_TMP_STR2(x)
#define OCTEON_TMP_STR2(x) #x
#define OCTEON_PREFETCH_PREF0(address, offset) \
__asm __volatile ( ".set mips64\n" \
".set noreorder\n" \
"pref 0, " OCTEON_TMP_STR(offset) "(%0)\n" \
".set reorder\n" \
".set mips0\n" \
: \
: "r" (address) );
#define OCTEON_PREFETCH(address, offset) OCTEON_PREFETCH_PREF0(address,offset)
#define OCTEON_PREFETCH0(address) OCTEON_PREFETCH(address, 0)
#define OCTEON_PREFETCH128(address) OCTEON_PREFETCH(address, 128)
#define OCTEON_SYNCIOBDMA __asm __volatile (".word 0x8f" : : :"memory")
#define OCTEON_SYNCW __asm __volatile (".word 0x10f" : : )
#define OCTEON_SYNCW __asm __volatile (".word 0x10f" : : )
#define OCTEON_SYNCWS __asm __volatile (".word 0x14f" : : )
//#if defined(__mips_n32) || defined(__mips_n64)
#if defined(__not_used)
static inline void oct_write64 (uint64_t csr_addr, uint64_t val64)
{
uint64_t *ptr = (uint64_t *) csr_addr;
*ptr = val64;
}
static inline void oct_write64_int64 (uint64_t csr_addr, int64_t val64i)
{
int64_t *ptr = (int64_t *) csr_addr;
*ptr = val64i;
}
static inline void oct_write8_x8 (uint64_t csr_addr, uint8_t val8)
{
uint64_t *ptr = (uint64_t *) csr_addr;
*ptr = (uint64_t) val8;
}
static inline void oct_write8 (uint64_t csr_addr, uint8_t val8)
{
oct_write64(csr_addr, (uint64_t) val8);
}
static inline void oct_write16 (uint64_t csr_addr, uint16_t val16)
{
oct_write64(csr_addr, (uint64_t) val16);
}
static inline void oct_write32 (uint64_t csr_addr, uint32_t val32)
{
oct_write64(csr_addr, (uint64_t) val32);
}
static inline uint8_t oct_read8 (uint64_t csr_addr)
{
uint8_t *ptr = (uint8_t *) csr_addr;
return (*ptr);
}
static inline uint8_t oct_read16 (uint64_t csr_addr)
{
uint16_t *ptr = (uint16_t *) csr_addr;
return (*ptr);
}
static inline uint32_t oct_read32 (uint64_t csr_addr)
{
uint32_t *ptr = (uint32_t *) csr_addr;
return (*ptr);
}
static inline uint64_t oct_read64 (uint64_t csr_addr)
{
uint64_t *ptr = (uint64_t *) csr_addr;
return (*ptr);
}
static inline int32_t oct_readint32 (uint64_t csr_addr)
{
int32_t *ptr = (int32_t *) csr_addr;
return (*ptr);
}
#else
/* ABI o32 */
/*
* Read/write functions
*/
static inline void oct_write64 (uint64_t csr_addr, uint64_t val64)
{
uint32_t csr_addrh = csr_addr >> 32;
uint32_t csr_addrl = csr_addr;
uint32_t valh = (uint64_t)val64 >> 32;
uint32_t vall = val64;
uint32_t tmp1;
uint32_t tmp2;
uint32_t tmp3;
__asm __volatile (
".set mips64\n"
"dsll %0, %3, 32\n"
"dsll %1, %5, 32\n"
"dsll %2, %4, 32\n"
"dsrl %2, %2, 32\n"
"or %0, %0, %2\n"
"dsll %2, %6, 32\n"
"dsrl %2, %2, 32\n"
"or %1, %1, %2\n"
"sd %0, 0(%1)\n"
".set mips0\n"
: "=&r" (tmp1), "=&r" (tmp2), "=&r" (tmp3)
: "r" (valh), "r" (vall),
"r" (csr_addrh), "r" (csr_addrl)
);
}
static inline void oct_write64_int64 (uint64_t csr_addr, int64_t val64i)
{
uint32_t csr_addrh = csr_addr >> 32;
uint32_t csr_addrl = csr_addr;
int32_t valh = (uint64_t)val64i >> 32;
int32_t vall = val64i;
uint32_t tmp1;
uint32_t tmp2;
uint32_t tmp3;
__asm __volatile (
".set mips64\n"
"dsll %0, %3, 32\n"
"dsll %1, %5, 32\n"
"dsll %2, %4, 32\n"
"dsrl %2, %2, 32\n"
"or %0, %0, %2\n"
"dsll %2, %6, 32\n"
"dsrl %2, %2, 32\n"
"or %1, %1, %2\n"
"sd %0, 0(%1)\n"
".set mips0\n"
: "=&r" (tmp1), "=&r" (tmp2), "=&r" (tmp3)
: "r" (valh), "r" (vall),
"r" (csr_addrh), "r" (csr_addrl)
);
}
/*
* oct_write8_x8
*
* 8 bit data write into IO Space. Written using an 8 bit bus io transaction
*/
static inline void oct_write8_x8 (uint64_t csr_addr, uint8_t val8)
{
uint32_t csr_addrh = csr_addr>>32;
uint32_t csr_addrl = csr_addr;
uint32_t tmp1;
uint32_t tmp2;
__asm __volatile (
".set mips64\n"
"dsll %0, %3, 32\n"
"dsll %1, %4, 32\n"
"dsrl %1, %1, 32\n"
"or %0, %0, %1\n"
"sb %2, 0(%0)\n"
".set mips0\n"
: "=&r" (tmp1), "=&r" (tmp2)
: "r" (val8), "r" (csr_addrh), "r" (csr_addrl) );
}
/*
* oct_write8
*
* 8 bit data write into IO Space. Written using a 64 bit bus io transaction
*/
static inline void oct_write8 (uint64_t csr_addr, uint8_t val8)
{
#if 1
oct_write64(csr_addr, (uint64_t) val8);
#else
uint32_t csr_addrh = csr_addr>>32;
uint32_t csr_addrl = csr_addr;
uint32_t tmp1;
uint32_t tmp2;
__asm __volatile (
".set mips64\n"
"dsll %0, %3, 32\n"
"dsll %1, %4, 32\n"
"dsrl %1, %1, 32\n"
"or %0, %0, %1\n"
"sb %2, 0(%0)\n"
".set mips0\n"
: "=&r" (tmp1), "=&r" (tmp2)
: "r" (val8), "r" (csr_addrh), "r" (csr_addrl) );
#endif
}
static inline void oct_write16 (uint64_t csr_addr, uint16_t val16)
{
#if 1
oct_write64(csr_addr, (uint64_t) val16);
#else
uint32_t csr_addrh = csr_addr>>32;
uint32_t csr_addrl = csr_addr;
uint32_t tmp1;
uint32_t tmp2;
__asm __volatile (
".set mips64\n"
"dsll %0, %3, 32\n"
"dsll %1, %4, 32\n"
"dsrl %1, %1, 32\n"
"or %0, %0, %1\n"
"sh %2, 0(%0)\n"
".set mips0\n"
: "=&r" (tmp1), "=&r" (tmp2)
: "r" (val16), "r" (csr_addrh), "r" (csr_addrl) );
#endif
}
static inline void oct_write32 (uint64_t csr_addr, uint32_t val32)
{
#if 1
oct_write64(csr_addr, (uint64_t) val32);
#else
uint32_t csr_addrh = csr_addr>>32;
uint32_t csr_addrl = csr_addr;
uint32_t tmp1;
uint32_t tmp2;
__asm __volatile (
".set mips64\n"
"dsll %0, %3, 32\n"
"dsll %1, %4, 32\n"
"dsrl %1, %1, 32\n"
"or %0, %0, %1\n"
"sw %2, 0(%0)\n"
".set mips0\n"
: "=&r" (tmp1), "=&r" (tmp2)
: "r" (val32), "r" (csr_addrh), "r" (csr_addrl) );
#endif
}
static inline uint8_t oct_read8 (uint64_t csr_addr)
{
uint32_t csr_addrh = csr_addr>>32;
uint32_t csr_addrl = csr_addr;
uint32_t tmp1, tmp2;
__asm __volatile (
".set mips64\n"
"dsll %1, %2, 32\n"
"dsll %0, %3, 32\n"
"dsrl %0, %0, 32\n"
"or %1, %1, %0\n"
"lb %1, 0(%1)\n"
".set mips0\n"
: "=&r" (tmp1), "=&r" (tmp2)
: "r" (csr_addrh), "r" (csr_addrl) );
return ((uint8_t) tmp2);
}
static inline uint8_t oct_read16 (uint64_t csr_addr)
{
uint32_t csr_addrh = csr_addr>>32;
uint32_t csr_addrl = csr_addr;
uint32_t tmp1, tmp2;
__asm __volatile (
".set mips64\n"
"dsll %1, %2, 32\n"
"dsll %0, %3, 32\n"
"dsrl %0, %0, 32\n"
"or %1, %1, %0\n"
"lh %1, 0(%1)\n"
".set mips0\n"
: "=&r" (tmp1), "=&r" (tmp2)
: "r" (csr_addrh), "r" (csr_addrl) );
return ((uint16_t) tmp2);
}
static inline uint32_t oct_read32 (uint64_t csr_addr)
{
uint32_t csr_addrh = csr_addr>>32;
uint32_t csr_addrl = csr_addr;
uint32_t val32;
uint32_t tmp;
__asm __volatile (
".set mips64\n"
"dsll %0, %2, 32\n"
"dsll %1, %3, 32\n"
"dsrl %1, %1, 32\n"
"or %0, %0, %1\n"
"lw %0, 0(%0)\n"
".set mips0\n"
: "=&r" (val32), "=&r" (tmp)
: "r" (csr_addrh), "r" (csr_addrl) );
return (val32);
}
static inline uint64_t oct_read64 (uint64_t csr_addr)
{
uint32_t csr_addrh = csr_addr >> 32;
uint32_t csr_addrl = csr_addr;
uint32_t valh;
uint32_t vall;
__asm __volatile (
".set mips64\n"
"dsll %0, %2, 32\n"
"dsll %1, %3, 32\n"
"dsrl %1, %1, 32\n"
"or %0, %0, %1\n"
"ld %1, 0(%0)\n"
"dsrl %0, %1, 32\n"
"dsll %1, %1, 32\n"
"dsrl %1, %1, 32\n"
".set mips0\n"
: "=&r" (valh), "=&r" (vall)
: "r" (csr_addrh), "r" (csr_addrl)
);
return ((uint64_t)valh << 32) | vall;
}
static inline int32_t oct_readint32 (uint64_t csr_addr)
{
uint32_t csr_addrh = csr_addr>>32;
uint32_t csr_addrl = csr_addr;
int32_t val32;
uint32_t tmp;
__asm __volatile (
".set mips64\n"
"dsll %0, %2, 32\n"
"dsll %1, %3, 32\n"
"dsrl %1, %1, 32\n"
"or %0, %0, %1\n"
"lw %0, 0(%0)\n"
: "=&r" (val32), "=&r" (tmp)
: "r" (csr_addrh), "r" (csr_addrl) );
return (val32);
}
#endif
#define OCTEON_HW_BASE ((volatile uint64_t *) 0L)
#define OCTEON_REG_OFFSET (-4 * 1024ll) /* local scratchpad reg base */
#define OCTEON_SCRATCH_BASE ((volatile uint8_t *)(OCTEON_HW_BASE + \
OCTEON_REG_OFFSET))
#define OCTEON_SCR_SCRATCH 8
#define OCTEON_SCRATCH_0 16
#define OCTEON_SCRATCH_1 24
#define OCTEON_SCRATCH_2 32
static inline uint64_t oct_mf_chord (void)
{
uint64_t dest;
__asm __volatile ( ".set push\n"
".set noreorder\n"
".set noat\n"
".set mips64\n"
"dmfc2 $1, 0x400\n"
"move %0, $1\n"
".set pop\n"
: "=r" (dest) : : "$1");
return dest;
}
#define MIPS64_DMFCz(cop,regnum,cp0reg,select) \
.word (0x40200000 | (cop << 25) | (regnum << 16) | (cp0reg << 11) | select)
#define mips64_getcpz_xstr(s) mips64_getcpz_str(s)
#define mips64_getcpz_str(s) #s
#define mips64_dgetcpz(cop,cpzreg,sel,val_ptr) \
({ __asm __volatile( \
".set push\n" \
".set mips3\n" \
".set noreorder\n" \
".set noat\n" \
mips64_getcpz_xstr(MIPS64_DMFCz(cop,1,cpzreg,sel)) "\n" \
"nop\n" \
"nop\n" \
"nop\n" \
"nop\n" \
"sd $1,0(%0)\n" \
".set pop" \
: /* no outputs */ : "r" (val_ptr) : "$1"); \
})
#define mips64_dgetcp2(cp2reg,sel,retval_ptr) \
mips64_dgetcpz(2,cp2reg,sel,retval_ptr)
#define OCTEON_MF_CHORD(dest) mips64_dgetcp2(0x400, 0, &dest)
#define OCTEON_RDHWR(result, regstr) \
__asm __volatile ( \
".set mips3\n" \
"rdhwr %0,$" OCTEON_TMP_STR(regstr) "\n" \
".set mips\n" \
: "=d" (result));
#define CVMX_MF_CHORD(dest) OCTEON_RDHWR(dest, 30)
#define OCTEON_CHORD_HEX(dest_ptr) \
({ __asm __volatile( \
".set push\n" \
".set mips3\n" \
".set noreorder\n" \
".set noat\n" \
".word 0x7c02f03b \n"\
"nop\n" \
"nop\n" \
"nop\n" \
"nop\n" \
"sd $2,0(%0)\n" \
".set pop" \
: /* no outputs */ : "r" (dest_ptr) : "$2"); \
})
#define OCTEON_MF_CHORD_BAD(dest) \
__asm __volatile ( \
".set mips3\n" \
"dmfc2 %0, 0x400\n" \
".set mips0\n" \
: "=&r" (dest) : )
static inline uint64_t oct_scratch_read64 (uint64_t address)
{
return(*((volatile uint64_t *)(OCTEON_SCRATCH_BASE + address)));
}
static inline void oct_scratch_write64 (uint64_t address, uint64_t value)
{
*((volatile uint64_t *)(OCTEON_SCRATCH_BASE + address)) = value;
}
#define OCTEON_READ_CSR32(addr, val) \
addr_ptr = addr; \
oct_read_32_ptr(&addr_ptr, &val);
#define OCTEON_WRITE_CSR32(addr, val, val_dummy) \
addr_ptr = addr; \
oct_write_32_ptr(&addr_ptr, &val); \
oct_read64(OCTEON_MIO_BOOT_BIST_STAT);
/*
* Octeon Address Space Definitions
*/
typedef enum {
OCTEON_MIPS_SPACE_XKSEG = 3LL,
OCTEON_MIPS_SPACE_XKPHYS = 2LL,
OCTEON_MIPS_SPACE_XSSEG = 1LL,
OCTEON_MIPS_SPACE_XUSEG = 0LL
} octeon_mips_space_t;
typedef enum {
OCTEON_MIPS_XKSEG_SPACE_KSEG0 = 0LL,
OCTEON_MIPS_XKSEG_SPACE_KSEG1 = 1LL,
OCTEON_MIPS_XKSEG_SPACE_SSEG = 2LL,
OCTEON_MIPS_XKSEG_SPACE_KSEG3 = 3LL
} octeon_mips_xkseg_space_t;
/*
***********************************************************************
* 32 bit mode alert
* The kseg0 calc below might fail in xkphys.
*/
/*
* We limit the allocated device physical blocks to low mem. So use Kseg0
*/
/*
* Need to go back to kernel to find v->p mappings & vice-versa
* We are getting non 1-1 mappings.
* #define OCTEON_PTR2PHYS(addr) ((unsigned long) addr & 0x7fffffff)
*/
#define OCTEON_PTR2PHYS(addr) octeon_ptr_to_phys(addr)
/* PTR_SIZE == sizeof(uint32_t) */
#ifdef ISA_MIPS32
#define mipsx_addr_size uint32_t // u_int64
#define MIPSX_ADDR_SIZE_KSEGX_BIT_SHIFT 30 // 62
#define MIPSX_ADDR_SIZE_KSEGX_MASK_REMOVED 0x1fffffff // 0x1fffffff
#else
#define mipsx_addr_size uint64_t
#define MIPSX_ADDR_SIZE_KSEGX_BIT_SHIFT 62
#define MIPSX_ADDR_SIZE_KSEGX_MASK_REMOVED 0x1fffffffffffffff
#endif
#define octeon_ptr_to_phys(ptr) \
((((mipsx_addr_size) ptr) >> MIPSX_ADDR_SIZE_KSEGX_BIT_SHIFT) == 2) ? \
((mipsx_addr_size) ptr & MIPSX_ADDR_SIZE_KSEGX_MASK_REMOVED) : \
(vtophys(ptr))
#ifdef CODE_FOR_64_BIT_NEEDED
static inline mipsx_addr_size octeon_ptr_to_phys (void *ptr)
{
if ((((mipsx_addr_size) ptr) >> MIPSX_ADDR_SIZE_KSEGX_BIT_SHIFT) == 2) {
/*
* KSEG0 based address ?
*/
return ((mipsx_addr_size) ptr & MIPSX_ADDR_SIZE_KSEGX_MASK_REMOVED);
} else {
/*
* Ask kernel/vm to give us the phys translation.
*/
return (vtophys(ptr));
}
}
#endif
#define OCTEON_IO_SEG OCTEON_MIPS_SPACE_XKPHYS
#define OCTEON_ADD_SEG(segment, add) ((((uint64_t)segment) << 62) | (add))
#define OCTEON_ADD_IO_SEG(add) OCTEON_ADD_SEG(OCTEON_IO_SEG, (add))
#define OCTEON_ADDR_DID(did) (OCTEON_ADDR_DIDSPACE(did) << 40)
#define OCTEON_ADDR_DIDSPACE(did) (((OCTEON_IO_SEG) << 22) | ((1ULL) << 8) | (did))
#define OCTEON_ADDR_FULL_DID(did,subdid) (((did) << 3) | (subdid))
#define OCTEON_CIU_PP_RST OCTEON_ADD_IO_SEG(0x0001070000000700ull)
#define OCTEON_OCTEON_DID_TAG 12ULL
/*
* octeon_addr_t
*/
typedef union {
uint64_t word64;
struct {
octeon_mips_space_t R : 2;
uint64_t offset :62;
} sva; // mapped or unmapped virtual address
struct {
uint64_t zeroes :33;
uint64_t offset :31;
} suseg; // mapped USEG virtual addresses (typically)
struct {
uint64_t ones :33;
octeon_mips_xkseg_space_t sp : 2;
uint64_t offset :29;
} sxkseg; // mapped or unmapped virtual address
struct {
octeon_mips_space_t R :2; // CVMX_MIPS_SPACE_XKPHYS in this case
uint64_t cca : 3; // ignored by octeon
uint64_t mbz :10;
uint64_t pa :49; // physical address
} sxkphys; // physical address accessed through xkphys unmapped virtual address
struct {
uint64_t mbz :15;
uint64_t is_io : 1; // if set, the address is uncached and resides on MCB bus
uint64_t did : 8; // the hardware ignores this field when is_io==0, else device ID
uint64_t unaddr: 4; // the hardware ignores <39:36> in Octeon I
uint64_t offset :36;
} sphys; // physical address
struct {
uint64_t zeroes :24; // techically, <47:40> are dont-cares
uint64_t unaddr: 4; // the hardware ignores <39:36> in Octeon I
uint64_t offset :36;
} smem; // physical mem address
struct {
uint64_t mem_region :2;
uint64_t mbz :13;
uint64_t is_io : 1; // 1 in this case
uint64_t did : 8; // the hardware ignores this field when is_io==0, else device ID
uint64_t unaddr: 4; // the hardware ignores <39:36> in Octeon I
uint64_t offset :36;
} sio; // physical IO address
struct {
uint64_t didspace : 24;
uint64_t unused : 40;
} sfilldidspace;
} octeon_addr_t;
typedef union {
uint64_t word64;
struct {
uint32_t word32hi;
uint32_t word32lo;
} bits;
} octeon_word_t;
/*
* octeon_build_io_address
*
* Builds a memory address for I/O based on the Major 5bits and Sub DID 3bits
*/
static inline uint64_t octeon_build_io_address (uint64_t major_did,
uint64_t sub_did)
{
return ((0x1ull << 48) | (major_did << 43) | (sub_did << 40));
}
/*
* octeon_build_mask
*
* Builds a bit mask given the required size in bits.
*
* @param bits Number of bits in the mask
* @return The mask
*/
static inline uint64_t octeon_build_mask (uint64_t bits)
{
return ~((~0x0ull) << bits);
}
/*
* octeon_build_bits
*
* Perform mask and shift to place the supplied value into
* the supplied bit rage.
*
* Example: octeon_build_bits(39,24,value)
* <pre>
* 6 5 4 3 3 2 1
* 3 5 7 9 1 3 5 7 0
* +-------+-------+-------+-------+-------+-------+-------+------+
* 000000000000000000000000___________value000000000000000000000000
* </pre>
*
* @param high_bit Highest bit value can occupy (inclusive) 0-63
* @param low_bit Lowest bit value can occupy inclusive 0-high_bit
* @param value Value to use
* @return Value masked and shifted
*/
static inline uint64_t octeon_build_bits (uint64_t high_bit, uint64_t low_bit,
uint64_t value)
{
return ((value & octeon_build_mask(high_bit - low_bit + 1)) << low_bit);
}
/********************** simple spinlocks ***************/
typedef struct {
volatile uint32_t value;
} octeon_spinlock_t;
// note - macros not expanded in inline ASM, so values hardcoded
#define OCTEON_SPINLOCK_UNLOCKED_VAL 0
#define OCTEON_SPINLOCK_LOCKED_VAL 1
/**
* Initialize a spinlock
*
* @param lock Lock to initialize
*/
static inline void octeon_spinlock_init(octeon_spinlock_t *lock)
{
lock->value = OCTEON_SPINLOCK_UNLOCKED_VAL;
}
/**
* Releases lock
*
* @param lock pointer to lock structure
*/
static inline void octeon_spinlock_unlock(octeon_spinlock_t *lock)
{
OCTEON_SYNCWS;
lock->value = 0;
OCTEON_SYNCWS;
}
/**
* Gets lock, spins until lock is taken
*
* @param lock pointer to lock structure
*/
static inline void octeon_spinlock_lock(octeon_spinlock_t *lock)
{
unsigned int tmp;
__asm __volatile(
".set noreorder \n"
"1: ll %1, %0 \n"
" bnez %1, 1b \n"
" li %1, 1 \n"
" sc %1, %0 \n"
" beqz %1, 1b \n"
" nop \n"
".set reorder \n"
: "+m" (lock->value), "=&r" (tmp )
:
: "memory");
}
/********************** end simple spinlocks ***************/
/* ------------------------------------------------------------------- *
* octeon_get_chipid() *
* ------------------------------------------------------------------- */
#define OCTEON_CN31XX_CHIP 0x000d0100
#define OCTEON_CN30XX_CHIP 0x000d0200
#define OCTEON_CN3020_CHIP 0x000d0112
#define OCTEON_CN5020_CHIP 0x000d0601
static inline uint32_t octeon_get_chipid(void)
{
uint32_t id;
__asm __volatile ("mfc0 %0, $15,0" : "=r" (id));
return (id);
}
static inline uint32_t octeon_get_except_base_reg (void)
{
uint32_t tmp;
__asm volatile (
" .set mips64r2 \n"
" .set noreorder \n"
" mfc0 %0, $15, 1 \n"
" .set reorder \n"
: "=&r" (tmp) : );
return(tmp);
}
static inline unsigned int get_coremask (void)
{
return(~(oct_read64(OCTEON_CIU_PP_RST)) & 0xffff);
}
static inline uint32_t octeon_get_core_num (void)
{
return (0x3FF & octeon_get_except_base_reg());
}
static inline uint64_t octeon_get_cycle(void)
{
/* ABI == 32 */
uint32_t tmp_low, tmp_hi;
__asm __volatile (
" .set push \n"
" .set mips64r2 \n"
" .set noreorder \n"
" rdhwr %[tmpl], $31 \n"
" dadd %[tmph], %[tmpl], $0 \n"
" dsrl %[tmph], 32 \n"
" dsll %[tmpl], 32 \n"
" dsrl %[tmpl], 32 \n"
" .set pop \n"
: [tmpl] "=&r" (tmp_low), [tmph] "=&r" (tmp_hi) : );
return(((uint64_t)tmp_hi << 32) + tmp_low);
}
/**
* Wait for the specified number of cycle
*
* @param cycles
*/
static inline void octeon_wait (uint64_t cycles)
{
uint64_t done = octeon_get_cycle() + cycles;
while (octeon_get_cycle() < done)
{
/* Spin */
}
}
/*
* octeon_machdep.c
*
* Direct to Board Support level.
*/
extern void octeon_led_write_char(int char_position, char val);
extern void octeon_led_write_hexchar(int char_position, char hexval);
extern void octeon_led_write_hex(uint32_t wl);
extern void octeon_led_write_string(const char *str);
extern void octeon_reset(void);
extern void octeon_uart_write_byte(int uart_index, uint8_t ch);
extern void octeon_uart_write_string(int uart_index, const char *str);
extern void octeon_uart_write_hex(uint32_t wl);
extern void octeon_uart_write_hex2(uint32_t wl, uint32_t wh);
extern void octeon_wait_uart_flush(int uart_index, uint8_t ch);
extern void octeon_uart_write_byte0(uint8_t ch);
extern void octeon_led_write_char0(char val);
extern void octeon_led_run_wheel(int *pos, int led_position);
extern void octeon_debug_symbol(void);
extern void mips_disable_interrupt_controls(void);
extern uint32_t octeon_cpu_clock;
extern uint64_t octeon_dram;
extern uint32_t octeon_bd_ver, octeon_board_rev_major, octeon_board_rev_minor, octeon_board_type;
extern uint8_t octeon_mac_addr[6];
extern int octeon_core_mask, octeon_mac_addr_count, octeon_chip_rev_major, octeon_chip_rev_minor, octeon_chip_type;
extern void bzero_64(void *str, size_t len);
extern void bzero_32(void *str, size_t len);
extern void bzero_16(void *str, size_t len);
extern void bzero_old(void *str, size_t len);
extern void octeon_ciu_reset(void);
extern void ciu_disable_intr(int core_num, int intx, int enx);
extern void ciu_enable_interrupts (int core_num, int intx, int enx, uint64_t set_these_interrupt_bits, int ciu_ip);
extern void ciu_clear_int_summary(int core_num, int intx, int enx, uint64_t write_bits);
extern uint64_t ciu_get_int_summary(int core_num, int intx, int enx);
extern void octeon_ciu_start_gtimer(int timer, u_int one_shot, uint64_t time_cycles);
extern void octeon_ciu_stop_gtimer(int timer);
extern int octeon_board_real(void);
typedef union {
uint64_t word64;
struct {
uint64_t reserved : 27; /* Not used */
uint64_t one_shot : 1; /* Oneshot ? */
uint64_t len : 36; /* len of timer in clock cycles - 1 */
} bits;
} octeon_ciu_gentimer;
#endif /* LOCORE */
/*
* R4K Address space definitions
*/
#define ADRSPC_K0BASE (0x80000000)
#define ADRSPC_K0SIZE (0x20000000)
#define ADRSPC_K1BASE (0xA0000000)
#define ADRSPC_K1SIZE (0x20000000)
#define ADRSPC_KSBASE (0xC0000000)
#define ADRSPC_KSSIZE (0x20000000)
#define ADRSPC_K3BASE (0xE0000000)
#define ADRSPC_K3SIZE (0x20000000)
#define ADRSPC_KUBASE (0x00000000)
#define ADRSPC_KUSIZE (0x80000000)
#define KSEG_MSB_ADDR 0xFFFFFFFF
#define OCTEON_CLOCK_DEFAULT (500 * 1000 * 1000)
/*
* Octeon Boot Bus BIST Status
* Mostly used for dummy read to ensure all prev I/Os are write-complete.
*/
#define OCTEON_MIO_BOOT_BIST_STAT 0x80011800000000F8ull
/*
* Octeon UART unit
*/
#define OCTEON_MIO_UART0_THR 0x8001180000000840ull
#define OCTEON_MIO_UART1_THR 0x8001180000000C40ull
#define OCTEON_MIO_UART0_LSR 0x8001180000000828ull
#define OCTEON_MIO_UART1_LSR 0x8001180000000C28ull
#define OCTEON_MIO_UART0_RBR 0x8001180000000800ull
#define OCTEON_MIO_UART1_RBR 0x8001180000000C00ull
#define OCTEON_MIO_UART0_USR 0x8001180000000938ull
#define OCTEON_MIO_UART1_USR 0x8001180000000D38ull
#define OCTEON_MIO_ADDR_HI24 0x800118
/*
* EBT3000 LED Unit
*/
#define OCTEON_CHAR_LED_BASE_ADDR (0x1d020000 | (0x1ffffffffull << 31))
#define OCTEON_FPA_QUEUES 8
/*
* Octeon FPA I/O Registers
*/
#define OCTEON_FPA_CTL_STATUS 0x8001180028000050ull
#define OCTEON_FPA_FPF_SIZE 0x8001180028000058ull
#define OCTEON_FPA_FPF_MARKS 0x8001180028000000ull
#define OCTEON_FPA_INT_SUMMARY 0x8001180028000040ull
#define OCTEON_FPA_INT_ENABLE 0x8001180028000048ull
#define OCTEON_FPA_QUEUE_AVAILABLE 0x8001180028000098ull
#define OCTEON_FPA_PAGE_INDEX 0x80011800280000f0ull
/*
* Octeon PKO Unit
*/
#define OCTEON_PKO_REG_FLAGS 0x8001180050000000ull
#define OCTEON_PKO_REG_READ_IDX 0x8001180050000008ull
#define OCTEON_PKO_CMD_BUF 0x8001180050000010ull
#define OCTEON_PKO_GMX_PORT_MODE 0x8001180050000018ull
#define OCTEON_PKO_REG_CRC_ENABLE 0x8001180050000020ull
#define OCTEON_PKO_QUEUE_MODE 0x8001180050000048ull
#define OCTEON_PKO_MEM_QUEUE_PTRS 0x8001180050001000ull
#define OCTEON_PKO_MEM_COUNT0 0x8001180050001080ull
#define OCTEON_PKO_MEM_COUNT1 0x8001180050001088ull
#define OCTEON_PKO_MEM_DEBUG0 0x8001180050001100ull
#define OCTEON_PKO_MEM_DEBUG1 0x8001180050001108ull
#define OCTEON_PKO_MEM_DEBUG2 0x8001180050001110ull
#define OCTEON_PKO_MEM_DEBUG3 0x8001180050001118ull
#define OCTEON_PKO_MEM_DEBUG4 0x8001180050001120ull
#define OCTEON_PKO_MEM_DEBUG5 0x8001180050001128ull
#define OCTEON_PKO_MEM_DEBUG6 0x8001180050001130ull
#define OCTEON_PKO_MEM_DEBUG7 0x8001180050001138ull
#define OCTEON_PKO_MEM_DEBUG8 0x8001180050001140ull
#define OCTEON_PKO_MEM_DEBUG9 0x8001180050001148ull
/*
* Octeon IPD Unit
*/
#define OCTEON_IPD_1ST_MBUFF_SKIP 0x80014F0000000000ull
#define OCTEON_IPD_NOT_1ST_MBUFF_SKIP 0x80014F0000000008ull
#define OCTEON_IPD_PACKET_MBUFF_SIZE 0x80014F0000000010ull
#define OCTEON_IPD_1ST_NEXT_PTR_BACK 0x80014F0000000150ull
#define OCTEON_IPD_2ND_NEXT_PTR_BACK 0x80014F0000000158ull
#define OCTEON_IPD_WQE_FPA_QUEUE 0x80014F0000000020ull
#define OCTEON_IPD_CTL_STATUS 0x80014F0000000018ull
#define OCTEON_IPD_QOSX_RED_MARKS(queue) (0x80014F0000000178ull + ((queue) * 8))
#define OCTEON_IPD_RED_Q_PARAM(queue) (0x80014F00000002E0ull + ((queue) * 8))
#define OCTEON_IPD_PORT_BP_PAGE_COUNT(port) (0x80014F0000000028ull + ((port) * 8))
#define OCTEON_IPD_BP_PORT_RED_END 0x80014F0000000328ull
#define OCTEON_IPD_RED_PORT_ENABLE 0x80014F00000002D8ull
/*
* Octeon CIU Unit
*/
#define OCTEON_CIU_ENABLE_BASE_ADDR 0x8001070000000200ull
#define OCTEON_CIU_SUMMARY_BASE_ADDR 0x8001070000000000ull
#define OCTEON_CIU_SUMMARY_INT1_ADDR 0x8001070000000108ull
#define OCTEON_CIU_MBOX_SETX(offset) (0x8001070000000600ull+((offset)*8))
#define OCTEON_CIU_MBOX_CLRX(offset) (0x8001070000000680ull+((offset)*8))
#define OCTEON_CIU_ENABLE_MBOX_INTR 0x0000000300000000ull /* bits 32, 33 */
#define CIU_MIPS_IP2 0
#define CIU_MIPS_IP3 1
#define CIU_INT_0 CIU_MIPS_IP2
#define CIU_INT_1 CIU_MIPS_IP3
#define CIU_EN_0 0
#define CIU_EN_1 1
#define CIU_THIS_CORE -1
#define CIU_UART_BITS_UART0 (0x1ull << 34) // Bit 34
#define CIU_UART_BITS_UART1 (0x1ull << 35) // Bit 35
#define CIU_GENTIMER_BITS_ENABLE(timer) (0x1ull << (52 + (timer))) // Bit 52..55
#define CIU_GENTIMER_NUM_0 0
#define CIU_GENTIMER_NUM_1 1
#define CIU_GENTIMER_NUM_2 2
#define CIU_GENTIMER_NUM_3 3
#define OCTEON_GENTIMER_ONESHOT 1
#define OCTEON_GENTIMER_PERIODIC 0
#define OCTEON_CIU_GENTIMER_ADDR(timer) (0x8001070000000480ull + ((timer) * 0x8))
#define OCTEON_GENTIMER_LEN_1MS (0x7a120ull) /* Back of envelope. 500Mhz Octeon */ // FIXME IF WRONG
#define OCTEON_GENTIMER_LEN_1SEC ((OCTEON_GENTIMER_LEN_1MS) * 1000)
/*
* Physical Memory Banks
*/
/* 1st BANK */
#define OCTEON_DRAM_FIRST_256_START 0x00000000ull
#define OCTEON_DRAM_FIRST_256_END (0x10000000ull - 1ull)
#define OCTEON_DRAM_RESERVED_END 0X1FFF000ULL /* 32 Meg Reserved for Mips Kernel MD Ops */
#define OCTEON_DRAM_FIRST_BANK_SIZE (OCTEON_DRAM_FIRST_256_END - OCTEON_DRAM_FIRST_256_START + 1)
/* 2nd BANK */
#define OCTEON_DRAM_SECOND_256_START (0x0000000410000000ull)
#define OCTEON_DRAM_SECOND_256_END (0x0000000420000000ull - 1ull) /* Requires 64 bit paddr */
#define OCTEON_DRAM_SECOND_BANK_SIZE (OCTEON_DRAM_SECOND_256_END - OCTEON_DRAM_SECOND_256_START + 1ull)
/* 3rd BANK */
#define OCTEON_DRAM_ABOVE_512_START 0x20000000ull
#define OCTEON_DRAM_ABOVE_512_END (0x0000000300000000ull - 1ull) /* To be calculated as remaining */
#define OCTEON_DRAM_THIRD_BANK_SIZE (OCTEON_DRAM_ABOVE_512_END - OCTEON_DRAM_ABOVE_512_START + 1ull)
#endif /* !OCTEON_PCMAP_REGS_H__ */