29dfb631d8
Add IRQ placement-only and ithread-only API variants. intr_event_bind has been extended with sibling methods, as it has many more callsites in existing code. Reviewed by: kib@, adrian@ (earlier version) Sponsored by: Dell EMC Isilon Differential Revision: https://reviews.freebsd.org/D10586
966 lines
24 KiB
C
966 lines
24 KiB
C
/*-
|
|
* Copyright (c) 2000 Doug Rabson
|
|
* Copyright (c) 2014 Jeff Roberson
|
|
* Copyright (c) 2016 Matthew Macy
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/cpuset.h>
|
|
#include <sys/interrupt.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/kthread.h>
|
|
#include <sys/libkern.h>
|
|
#include <sys/limits.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/sched.h>
|
|
#include <sys/smp.h>
|
|
#include <sys/gtaskqueue.h>
|
|
#include <sys/unistd.h>
|
|
#include <machine/stdarg.h>
|
|
|
|
static MALLOC_DEFINE(M_GTASKQUEUE, "taskqueue", "Task Queues");
|
|
static void gtaskqueue_thread_enqueue(void *);
|
|
static void gtaskqueue_thread_loop(void *arg);
|
|
|
|
TASKQGROUP_DEFINE(softirq, mp_ncpus, 1);
|
|
|
|
struct gtaskqueue_busy {
|
|
struct gtask *tb_running;
|
|
TAILQ_ENTRY(gtaskqueue_busy) tb_link;
|
|
};
|
|
|
|
static struct gtask * const TB_DRAIN_WAITER = (struct gtask *)0x1;
|
|
|
|
struct gtaskqueue {
|
|
STAILQ_HEAD(, gtask) tq_queue;
|
|
gtaskqueue_enqueue_fn tq_enqueue;
|
|
void *tq_context;
|
|
char *tq_name;
|
|
TAILQ_HEAD(, gtaskqueue_busy) tq_active;
|
|
struct mtx tq_mutex;
|
|
struct thread **tq_threads;
|
|
int tq_tcount;
|
|
int tq_spin;
|
|
int tq_flags;
|
|
int tq_callouts;
|
|
taskqueue_callback_fn tq_callbacks[TASKQUEUE_NUM_CALLBACKS];
|
|
void *tq_cb_contexts[TASKQUEUE_NUM_CALLBACKS];
|
|
};
|
|
|
|
#define TQ_FLAGS_ACTIVE (1 << 0)
|
|
#define TQ_FLAGS_BLOCKED (1 << 1)
|
|
#define TQ_FLAGS_UNLOCKED_ENQUEUE (1 << 2)
|
|
|
|
#define DT_CALLOUT_ARMED (1 << 0)
|
|
|
|
#define TQ_LOCK(tq) \
|
|
do { \
|
|
if ((tq)->tq_spin) \
|
|
mtx_lock_spin(&(tq)->tq_mutex); \
|
|
else \
|
|
mtx_lock(&(tq)->tq_mutex); \
|
|
} while (0)
|
|
#define TQ_ASSERT_LOCKED(tq) mtx_assert(&(tq)->tq_mutex, MA_OWNED)
|
|
|
|
#define TQ_UNLOCK(tq) \
|
|
do { \
|
|
if ((tq)->tq_spin) \
|
|
mtx_unlock_spin(&(tq)->tq_mutex); \
|
|
else \
|
|
mtx_unlock(&(tq)->tq_mutex); \
|
|
} while (0)
|
|
#define TQ_ASSERT_UNLOCKED(tq) mtx_assert(&(tq)->tq_mutex, MA_NOTOWNED)
|
|
|
|
#ifdef INVARIANTS
|
|
static void
|
|
gtask_dump(struct gtask *gtask)
|
|
{
|
|
printf("gtask: %p ta_flags=%x ta_priority=%d ta_func=%p ta_context=%p\n",
|
|
gtask, gtask->ta_flags, gtask->ta_priority, gtask->ta_func, gtask->ta_context);
|
|
}
|
|
#endif
|
|
|
|
static __inline int
|
|
TQ_SLEEP(struct gtaskqueue *tq, void *p, struct mtx *m, int pri, const char *wm,
|
|
int t)
|
|
{
|
|
if (tq->tq_spin)
|
|
return (msleep_spin(p, m, wm, t));
|
|
return (msleep(p, m, pri, wm, t));
|
|
}
|
|
|
|
static struct gtaskqueue *
|
|
_gtaskqueue_create(const char *name, int mflags,
|
|
taskqueue_enqueue_fn enqueue, void *context,
|
|
int mtxflags, const char *mtxname __unused)
|
|
{
|
|
struct gtaskqueue *queue;
|
|
char *tq_name;
|
|
|
|
tq_name = malloc(TASKQUEUE_NAMELEN, M_GTASKQUEUE, mflags | M_ZERO);
|
|
if (!tq_name)
|
|
return (NULL);
|
|
|
|
snprintf(tq_name, TASKQUEUE_NAMELEN, "%s", (name) ? name : "taskqueue");
|
|
|
|
queue = malloc(sizeof(struct gtaskqueue), M_GTASKQUEUE, mflags | M_ZERO);
|
|
if (!queue)
|
|
return (NULL);
|
|
|
|
STAILQ_INIT(&queue->tq_queue);
|
|
TAILQ_INIT(&queue->tq_active);
|
|
queue->tq_enqueue = enqueue;
|
|
queue->tq_context = context;
|
|
queue->tq_name = tq_name;
|
|
queue->tq_spin = (mtxflags & MTX_SPIN) != 0;
|
|
queue->tq_flags |= TQ_FLAGS_ACTIVE;
|
|
if (enqueue == gtaskqueue_thread_enqueue)
|
|
queue->tq_flags |= TQ_FLAGS_UNLOCKED_ENQUEUE;
|
|
mtx_init(&queue->tq_mutex, tq_name, NULL, mtxflags);
|
|
|
|
return (queue);
|
|
}
|
|
|
|
|
|
/*
|
|
* Signal a taskqueue thread to terminate.
|
|
*/
|
|
static void
|
|
gtaskqueue_terminate(struct thread **pp, struct gtaskqueue *tq)
|
|
{
|
|
|
|
while (tq->tq_tcount > 0 || tq->tq_callouts > 0) {
|
|
wakeup(tq);
|
|
TQ_SLEEP(tq, pp, &tq->tq_mutex, PWAIT, "taskqueue_destroy", 0);
|
|
}
|
|
}
|
|
|
|
static void
|
|
gtaskqueue_free(struct gtaskqueue *queue)
|
|
{
|
|
|
|
TQ_LOCK(queue);
|
|
queue->tq_flags &= ~TQ_FLAGS_ACTIVE;
|
|
gtaskqueue_terminate(queue->tq_threads, queue);
|
|
KASSERT(TAILQ_EMPTY(&queue->tq_active), ("Tasks still running?"));
|
|
KASSERT(queue->tq_callouts == 0, ("Armed timeout tasks"));
|
|
mtx_destroy(&queue->tq_mutex);
|
|
free(queue->tq_threads, M_GTASKQUEUE);
|
|
free(queue->tq_name, M_GTASKQUEUE);
|
|
free(queue, M_GTASKQUEUE);
|
|
}
|
|
|
|
int
|
|
grouptaskqueue_enqueue(struct gtaskqueue *queue, struct gtask *gtask)
|
|
{
|
|
#ifdef INVARIANTS
|
|
if (queue == NULL) {
|
|
gtask_dump(gtask);
|
|
panic("queue == NULL");
|
|
}
|
|
#endif
|
|
TQ_LOCK(queue);
|
|
if (gtask->ta_flags & TASK_ENQUEUED) {
|
|
TQ_UNLOCK(queue);
|
|
return (0);
|
|
}
|
|
STAILQ_INSERT_TAIL(&queue->tq_queue, gtask, ta_link);
|
|
gtask->ta_flags |= TASK_ENQUEUED;
|
|
TQ_UNLOCK(queue);
|
|
if ((queue->tq_flags & TQ_FLAGS_BLOCKED) == 0)
|
|
queue->tq_enqueue(queue->tq_context);
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
gtaskqueue_task_nop_fn(void *context)
|
|
{
|
|
}
|
|
|
|
/*
|
|
* Block until all currently queued tasks in this taskqueue
|
|
* have begun execution. Tasks queued during execution of
|
|
* this function are ignored.
|
|
*/
|
|
static void
|
|
gtaskqueue_drain_tq_queue(struct gtaskqueue *queue)
|
|
{
|
|
struct gtask t_barrier;
|
|
|
|
if (STAILQ_EMPTY(&queue->tq_queue))
|
|
return;
|
|
|
|
/*
|
|
* Enqueue our barrier after all current tasks, but with
|
|
* the highest priority so that newly queued tasks cannot
|
|
* pass it. Because of the high priority, we can not use
|
|
* taskqueue_enqueue_locked directly (which drops the lock
|
|
* anyway) so just insert it at tail while we have the
|
|
* queue lock.
|
|
*/
|
|
GTASK_INIT(&t_barrier, 0, USHRT_MAX, gtaskqueue_task_nop_fn, &t_barrier);
|
|
STAILQ_INSERT_TAIL(&queue->tq_queue, &t_barrier, ta_link);
|
|
t_barrier.ta_flags |= TASK_ENQUEUED;
|
|
|
|
/*
|
|
* Once the barrier has executed, all previously queued tasks
|
|
* have completed or are currently executing.
|
|
*/
|
|
while (t_barrier.ta_flags & TASK_ENQUEUED)
|
|
TQ_SLEEP(queue, &t_barrier, &queue->tq_mutex, PWAIT, "-", 0);
|
|
}
|
|
|
|
/*
|
|
* Block until all currently executing tasks for this taskqueue
|
|
* complete. Tasks that begin execution during the execution
|
|
* of this function are ignored.
|
|
*/
|
|
static void
|
|
gtaskqueue_drain_tq_active(struct gtaskqueue *queue)
|
|
{
|
|
struct gtaskqueue_busy tb_marker, *tb_first;
|
|
|
|
if (TAILQ_EMPTY(&queue->tq_active))
|
|
return;
|
|
|
|
/* Block taskq_terminate().*/
|
|
queue->tq_callouts++;
|
|
|
|
/*
|
|
* Wait for all currently executing taskqueue threads
|
|
* to go idle.
|
|
*/
|
|
tb_marker.tb_running = TB_DRAIN_WAITER;
|
|
TAILQ_INSERT_TAIL(&queue->tq_active, &tb_marker, tb_link);
|
|
while (TAILQ_FIRST(&queue->tq_active) != &tb_marker)
|
|
TQ_SLEEP(queue, &tb_marker, &queue->tq_mutex, PWAIT, "-", 0);
|
|
TAILQ_REMOVE(&queue->tq_active, &tb_marker, tb_link);
|
|
|
|
/*
|
|
* Wakeup any other drain waiter that happened to queue up
|
|
* without any intervening active thread.
|
|
*/
|
|
tb_first = TAILQ_FIRST(&queue->tq_active);
|
|
if (tb_first != NULL && tb_first->tb_running == TB_DRAIN_WAITER)
|
|
wakeup(tb_first);
|
|
|
|
/* Release taskqueue_terminate(). */
|
|
queue->tq_callouts--;
|
|
if ((queue->tq_flags & TQ_FLAGS_ACTIVE) == 0)
|
|
wakeup_one(queue->tq_threads);
|
|
}
|
|
|
|
void
|
|
gtaskqueue_block(struct gtaskqueue *queue)
|
|
{
|
|
|
|
TQ_LOCK(queue);
|
|
queue->tq_flags |= TQ_FLAGS_BLOCKED;
|
|
TQ_UNLOCK(queue);
|
|
}
|
|
|
|
void
|
|
gtaskqueue_unblock(struct gtaskqueue *queue)
|
|
{
|
|
|
|
TQ_LOCK(queue);
|
|
queue->tq_flags &= ~TQ_FLAGS_BLOCKED;
|
|
if (!STAILQ_EMPTY(&queue->tq_queue))
|
|
queue->tq_enqueue(queue->tq_context);
|
|
TQ_UNLOCK(queue);
|
|
}
|
|
|
|
static void
|
|
gtaskqueue_run_locked(struct gtaskqueue *queue)
|
|
{
|
|
struct gtaskqueue_busy tb;
|
|
struct gtaskqueue_busy *tb_first;
|
|
struct gtask *gtask;
|
|
|
|
KASSERT(queue != NULL, ("tq is NULL"));
|
|
TQ_ASSERT_LOCKED(queue);
|
|
tb.tb_running = NULL;
|
|
|
|
while (STAILQ_FIRST(&queue->tq_queue)) {
|
|
TAILQ_INSERT_TAIL(&queue->tq_active, &tb, tb_link);
|
|
|
|
/*
|
|
* Carefully remove the first task from the queue and
|
|
* clear its TASK_ENQUEUED flag
|
|
*/
|
|
gtask = STAILQ_FIRST(&queue->tq_queue);
|
|
KASSERT(gtask != NULL, ("task is NULL"));
|
|
STAILQ_REMOVE_HEAD(&queue->tq_queue, ta_link);
|
|
gtask->ta_flags &= ~TASK_ENQUEUED;
|
|
tb.tb_running = gtask;
|
|
TQ_UNLOCK(queue);
|
|
|
|
KASSERT(gtask->ta_func != NULL, ("task->ta_func is NULL"));
|
|
gtask->ta_func(gtask->ta_context);
|
|
|
|
TQ_LOCK(queue);
|
|
tb.tb_running = NULL;
|
|
wakeup(gtask);
|
|
|
|
TAILQ_REMOVE(&queue->tq_active, &tb, tb_link);
|
|
tb_first = TAILQ_FIRST(&queue->tq_active);
|
|
if (tb_first != NULL &&
|
|
tb_first->tb_running == TB_DRAIN_WAITER)
|
|
wakeup(tb_first);
|
|
}
|
|
}
|
|
|
|
static int
|
|
task_is_running(struct gtaskqueue *queue, struct gtask *gtask)
|
|
{
|
|
struct gtaskqueue_busy *tb;
|
|
|
|
TQ_ASSERT_LOCKED(queue);
|
|
TAILQ_FOREACH(tb, &queue->tq_active, tb_link) {
|
|
if (tb->tb_running == gtask)
|
|
return (1);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
gtaskqueue_cancel_locked(struct gtaskqueue *queue, struct gtask *gtask)
|
|
{
|
|
|
|
if (gtask->ta_flags & TASK_ENQUEUED)
|
|
STAILQ_REMOVE(&queue->tq_queue, gtask, gtask, ta_link);
|
|
gtask->ta_flags &= ~TASK_ENQUEUED;
|
|
return (task_is_running(queue, gtask) ? EBUSY : 0);
|
|
}
|
|
|
|
int
|
|
gtaskqueue_cancel(struct gtaskqueue *queue, struct gtask *gtask)
|
|
{
|
|
int error;
|
|
|
|
TQ_LOCK(queue);
|
|
error = gtaskqueue_cancel_locked(queue, gtask);
|
|
TQ_UNLOCK(queue);
|
|
|
|
return (error);
|
|
}
|
|
|
|
void
|
|
gtaskqueue_drain(struct gtaskqueue *queue, struct gtask *gtask)
|
|
{
|
|
|
|
if (!queue->tq_spin)
|
|
WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
|
|
|
|
TQ_LOCK(queue);
|
|
while ((gtask->ta_flags & TASK_ENQUEUED) || task_is_running(queue, gtask))
|
|
TQ_SLEEP(queue, gtask, &queue->tq_mutex, PWAIT, "-", 0);
|
|
TQ_UNLOCK(queue);
|
|
}
|
|
|
|
void
|
|
gtaskqueue_drain_all(struct gtaskqueue *queue)
|
|
{
|
|
|
|
if (!queue->tq_spin)
|
|
WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
|
|
|
|
TQ_LOCK(queue);
|
|
gtaskqueue_drain_tq_queue(queue);
|
|
gtaskqueue_drain_tq_active(queue);
|
|
TQ_UNLOCK(queue);
|
|
}
|
|
|
|
static int
|
|
_gtaskqueue_start_threads(struct gtaskqueue **tqp, int count, int pri,
|
|
cpuset_t *mask, const char *name, va_list ap)
|
|
{
|
|
char ktname[MAXCOMLEN + 1];
|
|
struct thread *td;
|
|
struct gtaskqueue *tq;
|
|
int i, error;
|
|
|
|
if (count <= 0)
|
|
return (EINVAL);
|
|
|
|
vsnprintf(ktname, sizeof(ktname), name, ap);
|
|
tq = *tqp;
|
|
|
|
tq->tq_threads = malloc(sizeof(struct thread *) * count, M_GTASKQUEUE,
|
|
M_NOWAIT | M_ZERO);
|
|
if (tq->tq_threads == NULL) {
|
|
printf("%s: no memory for %s threads\n", __func__, ktname);
|
|
return (ENOMEM);
|
|
}
|
|
|
|
for (i = 0; i < count; i++) {
|
|
if (count == 1)
|
|
error = kthread_add(gtaskqueue_thread_loop, tqp, NULL,
|
|
&tq->tq_threads[i], RFSTOPPED, 0, "%s", ktname);
|
|
else
|
|
error = kthread_add(gtaskqueue_thread_loop, tqp, NULL,
|
|
&tq->tq_threads[i], RFSTOPPED, 0,
|
|
"%s_%d", ktname, i);
|
|
if (error) {
|
|
/* should be ok to continue, taskqueue_free will dtrt */
|
|
printf("%s: kthread_add(%s): error %d", __func__,
|
|
ktname, error);
|
|
tq->tq_threads[i] = NULL; /* paranoid */
|
|
} else
|
|
tq->tq_tcount++;
|
|
}
|
|
for (i = 0; i < count; i++) {
|
|
if (tq->tq_threads[i] == NULL)
|
|
continue;
|
|
td = tq->tq_threads[i];
|
|
if (mask) {
|
|
error = cpuset_setthread(td->td_tid, mask);
|
|
/*
|
|
* Failing to pin is rarely an actual fatal error;
|
|
* it'll just affect performance.
|
|
*/
|
|
if (error)
|
|
printf("%s: curthread=%llu: can't pin; "
|
|
"error=%d\n",
|
|
__func__,
|
|
(unsigned long long) td->td_tid,
|
|
error);
|
|
}
|
|
thread_lock(td);
|
|
sched_prio(td, pri);
|
|
sched_add(td, SRQ_BORING);
|
|
thread_unlock(td);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
gtaskqueue_start_threads(struct gtaskqueue **tqp, int count, int pri,
|
|
const char *name, ...)
|
|
{
|
|
va_list ap;
|
|
int error;
|
|
|
|
va_start(ap, name);
|
|
error = _gtaskqueue_start_threads(tqp, count, pri, NULL, name, ap);
|
|
va_end(ap);
|
|
return (error);
|
|
}
|
|
|
|
static inline void
|
|
gtaskqueue_run_callback(struct gtaskqueue *tq,
|
|
enum taskqueue_callback_type cb_type)
|
|
{
|
|
taskqueue_callback_fn tq_callback;
|
|
|
|
TQ_ASSERT_UNLOCKED(tq);
|
|
tq_callback = tq->tq_callbacks[cb_type];
|
|
if (tq_callback != NULL)
|
|
tq_callback(tq->tq_cb_contexts[cb_type]);
|
|
}
|
|
|
|
static void
|
|
gtaskqueue_thread_loop(void *arg)
|
|
{
|
|
struct gtaskqueue **tqp, *tq;
|
|
|
|
tqp = arg;
|
|
tq = *tqp;
|
|
gtaskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_INIT);
|
|
TQ_LOCK(tq);
|
|
while ((tq->tq_flags & TQ_FLAGS_ACTIVE) != 0) {
|
|
/* XXX ? */
|
|
gtaskqueue_run_locked(tq);
|
|
/*
|
|
* Because taskqueue_run() can drop tq_mutex, we need to
|
|
* check if the TQ_FLAGS_ACTIVE flag wasn't removed in the
|
|
* meantime, which means we missed a wakeup.
|
|
*/
|
|
if ((tq->tq_flags & TQ_FLAGS_ACTIVE) == 0)
|
|
break;
|
|
TQ_SLEEP(tq, tq, &tq->tq_mutex, 0, "-", 0);
|
|
}
|
|
gtaskqueue_run_locked(tq);
|
|
/*
|
|
* This thread is on its way out, so just drop the lock temporarily
|
|
* in order to call the shutdown callback. This allows the callback
|
|
* to look at the taskqueue, even just before it dies.
|
|
*/
|
|
TQ_UNLOCK(tq);
|
|
gtaskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_SHUTDOWN);
|
|
TQ_LOCK(tq);
|
|
|
|
/* rendezvous with thread that asked us to terminate */
|
|
tq->tq_tcount--;
|
|
wakeup_one(tq->tq_threads);
|
|
TQ_UNLOCK(tq);
|
|
kthread_exit();
|
|
}
|
|
|
|
static void
|
|
gtaskqueue_thread_enqueue(void *context)
|
|
{
|
|
struct gtaskqueue **tqp, *tq;
|
|
|
|
tqp = context;
|
|
tq = *tqp;
|
|
wakeup_one(tq);
|
|
}
|
|
|
|
|
|
static struct gtaskqueue *
|
|
gtaskqueue_create_fast(const char *name, int mflags,
|
|
taskqueue_enqueue_fn enqueue, void *context)
|
|
{
|
|
return _gtaskqueue_create(name, mflags, enqueue, context,
|
|
MTX_SPIN, "fast_taskqueue");
|
|
}
|
|
|
|
|
|
struct taskqgroup_cpu {
|
|
LIST_HEAD(, grouptask) tgc_tasks;
|
|
struct gtaskqueue *tgc_taskq;
|
|
int tgc_cnt;
|
|
int tgc_cpu;
|
|
};
|
|
|
|
struct taskqgroup {
|
|
struct taskqgroup_cpu tqg_queue[MAXCPU];
|
|
struct mtx tqg_lock;
|
|
char * tqg_name;
|
|
int tqg_adjusting;
|
|
int tqg_stride;
|
|
int tqg_cnt;
|
|
};
|
|
|
|
struct taskq_bind_task {
|
|
struct gtask bt_task;
|
|
int bt_cpuid;
|
|
};
|
|
|
|
static void
|
|
taskqgroup_cpu_create(struct taskqgroup *qgroup, int idx, int cpu)
|
|
{
|
|
struct taskqgroup_cpu *qcpu;
|
|
|
|
qcpu = &qgroup->tqg_queue[idx];
|
|
LIST_INIT(&qcpu->tgc_tasks);
|
|
qcpu->tgc_taskq = gtaskqueue_create_fast(NULL, M_WAITOK,
|
|
taskqueue_thread_enqueue, &qcpu->tgc_taskq);
|
|
gtaskqueue_start_threads(&qcpu->tgc_taskq, 1, PI_SOFT,
|
|
"%s_%d", qgroup->tqg_name, idx);
|
|
qcpu->tgc_cpu = cpu;
|
|
}
|
|
|
|
static void
|
|
taskqgroup_cpu_remove(struct taskqgroup *qgroup, int idx)
|
|
{
|
|
|
|
gtaskqueue_free(qgroup->tqg_queue[idx].tgc_taskq);
|
|
}
|
|
|
|
/*
|
|
* Find the taskq with least # of tasks that doesn't currently have any
|
|
* other queues from the uniq identifier.
|
|
*/
|
|
static int
|
|
taskqgroup_find(struct taskqgroup *qgroup, void *uniq)
|
|
{
|
|
struct grouptask *n;
|
|
int i, idx, mincnt;
|
|
int strict;
|
|
|
|
mtx_assert(&qgroup->tqg_lock, MA_OWNED);
|
|
if (qgroup->tqg_cnt == 0)
|
|
return (0);
|
|
idx = -1;
|
|
mincnt = INT_MAX;
|
|
/*
|
|
* Two passes; First scan for a queue with the least tasks that
|
|
* does not already service this uniq id. If that fails simply find
|
|
* the queue with the least total tasks;
|
|
*/
|
|
for (strict = 1; mincnt == INT_MAX; strict = 0) {
|
|
for (i = 0; i < qgroup->tqg_cnt; i++) {
|
|
if (qgroup->tqg_queue[i].tgc_cnt > mincnt)
|
|
continue;
|
|
if (strict) {
|
|
LIST_FOREACH(n,
|
|
&qgroup->tqg_queue[i].tgc_tasks, gt_list)
|
|
if (n->gt_uniq == uniq)
|
|
break;
|
|
if (n != NULL)
|
|
continue;
|
|
}
|
|
mincnt = qgroup->tqg_queue[i].tgc_cnt;
|
|
idx = i;
|
|
}
|
|
}
|
|
if (idx == -1)
|
|
panic("taskqgroup_find: Failed to pick a qid.");
|
|
|
|
return (idx);
|
|
}
|
|
|
|
/*
|
|
* smp_started is unusable since it is not set for UP kernels or even for
|
|
* SMP kernels when there is 1 CPU. This is usually handled by adding a
|
|
* (mp_ncpus == 1) test, but that would be broken here since we need to
|
|
* to synchronize with the SI_SUB_SMP ordering. Even in the pure SMP case
|
|
* smp_started only gives a fuzzy ordering relative to SI_SUB_SMP.
|
|
*
|
|
* So maintain our own flag. It must be set after all CPUs are started
|
|
* and before SI_SUB_SMP:SI_ORDER_ANY so that the SYSINIT for delayed
|
|
* adjustment is properly delayed. SI_ORDER_FOURTH is clearly before
|
|
* SI_ORDER_ANY and unclearly after the CPUs are started. It would be
|
|
* simpler for adjustment to pass a flag indicating if it is delayed.
|
|
*/
|
|
|
|
static int tqg_smp_started;
|
|
|
|
static void
|
|
tqg_record_smp_started(void *arg)
|
|
{
|
|
tqg_smp_started = 1;
|
|
}
|
|
|
|
SYSINIT(tqg_record_smp_started, SI_SUB_SMP, SI_ORDER_FOURTH,
|
|
tqg_record_smp_started, NULL);
|
|
|
|
void
|
|
taskqgroup_attach(struct taskqgroup *qgroup, struct grouptask *gtask,
|
|
void *uniq, int irq, char *name)
|
|
{
|
|
cpuset_t mask;
|
|
int qid;
|
|
|
|
gtask->gt_uniq = uniq;
|
|
gtask->gt_name = name;
|
|
gtask->gt_irq = irq;
|
|
gtask->gt_cpu = -1;
|
|
mtx_lock(&qgroup->tqg_lock);
|
|
qid = taskqgroup_find(qgroup, uniq);
|
|
qgroup->tqg_queue[qid].tgc_cnt++;
|
|
LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask, gt_list);
|
|
gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq;
|
|
if (irq != -1 && tqg_smp_started) {
|
|
gtask->gt_cpu = qgroup->tqg_queue[qid].tgc_cpu;
|
|
CPU_ZERO(&mask);
|
|
CPU_SET(qgroup->tqg_queue[qid].tgc_cpu, &mask);
|
|
mtx_unlock(&qgroup->tqg_lock);
|
|
intr_setaffinity(irq, CPU_WHICH_IRQ, &mask);
|
|
} else
|
|
mtx_unlock(&qgroup->tqg_lock);
|
|
}
|
|
|
|
static void
|
|
taskqgroup_attach_deferred(struct taskqgroup *qgroup, struct grouptask *gtask)
|
|
{
|
|
cpuset_t mask;
|
|
int qid, cpu;
|
|
|
|
mtx_lock(&qgroup->tqg_lock);
|
|
qid = taskqgroup_find(qgroup, gtask->gt_uniq);
|
|
cpu = qgroup->tqg_queue[qid].tgc_cpu;
|
|
if (gtask->gt_irq != -1) {
|
|
mtx_unlock(&qgroup->tqg_lock);
|
|
|
|
CPU_ZERO(&mask);
|
|
CPU_SET(cpu, &mask);
|
|
intr_setaffinity(gtask->gt_irq, CPU_WHICH_IRQ, &mask);
|
|
|
|
mtx_lock(&qgroup->tqg_lock);
|
|
}
|
|
qgroup->tqg_queue[qid].tgc_cnt++;
|
|
|
|
LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask,
|
|
gt_list);
|
|
MPASS(qgroup->tqg_queue[qid].tgc_taskq != NULL);
|
|
gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq;
|
|
mtx_unlock(&qgroup->tqg_lock);
|
|
}
|
|
|
|
int
|
|
taskqgroup_attach_cpu(struct taskqgroup *qgroup, struct grouptask *gtask,
|
|
void *uniq, int cpu, int irq, char *name)
|
|
{
|
|
cpuset_t mask;
|
|
int i, qid;
|
|
|
|
qid = -1;
|
|
gtask->gt_uniq = uniq;
|
|
gtask->gt_name = name;
|
|
gtask->gt_irq = irq;
|
|
gtask->gt_cpu = cpu;
|
|
mtx_lock(&qgroup->tqg_lock);
|
|
if (tqg_smp_started) {
|
|
for (i = 0; i < qgroup->tqg_cnt; i++)
|
|
if (qgroup->tqg_queue[i].tgc_cpu == cpu) {
|
|
qid = i;
|
|
break;
|
|
}
|
|
if (qid == -1) {
|
|
mtx_unlock(&qgroup->tqg_lock);
|
|
return (EINVAL);
|
|
}
|
|
} else
|
|
qid = 0;
|
|
qgroup->tqg_queue[qid].tgc_cnt++;
|
|
LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask, gt_list);
|
|
gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq;
|
|
cpu = qgroup->tqg_queue[qid].tgc_cpu;
|
|
mtx_unlock(&qgroup->tqg_lock);
|
|
|
|
CPU_ZERO(&mask);
|
|
CPU_SET(cpu, &mask);
|
|
if (irq != -1 && tqg_smp_started)
|
|
intr_setaffinity(irq, CPU_WHICH_IRQ, &mask);
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
taskqgroup_attach_cpu_deferred(struct taskqgroup *qgroup, struct grouptask *gtask)
|
|
{
|
|
cpuset_t mask;
|
|
int i, qid, irq, cpu;
|
|
|
|
qid = -1;
|
|
irq = gtask->gt_irq;
|
|
cpu = gtask->gt_cpu;
|
|
MPASS(tqg_smp_started);
|
|
mtx_lock(&qgroup->tqg_lock);
|
|
for (i = 0; i < qgroup->tqg_cnt; i++)
|
|
if (qgroup->tqg_queue[i].tgc_cpu == cpu) {
|
|
qid = i;
|
|
break;
|
|
}
|
|
if (qid == -1) {
|
|
mtx_unlock(&qgroup->tqg_lock);
|
|
return (EINVAL);
|
|
}
|
|
qgroup->tqg_queue[qid].tgc_cnt++;
|
|
LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask, gt_list);
|
|
MPASS(qgroup->tqg_queue[qid].tgc_taskq != NULL);
|
|
gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq;
|
|
mtx_unlock(&qgroup->tqg_lock);
|
|
|
|
CPU_ZERO(&mask);
|
|
CPU_SET(cpu, &mask);
|
|
|
|
if (irq != -1)
|
|
intr_setaffinity(irq, CPU_WHICH_IRQ, &mask);
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
taskqgroup_detach(struct taskqgroup *qgroup, struct grouptask *gtask)
|
|
{
|
|
int i;
|
|
|
|
mtx_lock(&qgroup->tqg_lock);
|
|
for (i = 0; i < qgroup->tqg_cnt; i++)
|
|
if (qgroup->tqg_queue[i].tgc_taskq == gtask->gt_taskqueue)
|
|
break;
|
|
if (i == qgroup->tqg_cnt)
|
|
panic("taskqgroup_detach: task not in group\n");
|
|
qgroup->tqg_queue[i].tgc_cnt--;
|
|
LIST_REMOVE(gtask, gt_list);
|
|
mtx_unlock(&qgroup->tqg_lock);
|
|
gtask->gt_taskqueue = NULL;
|
|
}
|
|
|
|
static void
|
|
taskqgroup_binder(void *ctx)
|
|
{
|
|
struct taskq_bind_task *gtask = (struct taskq_bind_task *)ctx;
|
|
cpuset_t mask;
|
|
int error;
|
|
|
|
CPU_ZERO(&mask);
|
|
CPU_SET(gtask->bt_cpuid, &mask);
|
|
error = cpuset_setthread(curthread->td_tid, &mask);
|
|
thread_lock(curthread);
|
|
sched_bind(curthread, gtask->bt_cpuid);
|
|
thread_unlock(curthread);
|
|
|
|
if (error)
|
|
printf("taskqgroup_binder: setaffinity failed: %d\n",
|
|
error);
|
|
free(gtask, M_DEVBUF);
|
|
}
|
|
|
|
static void
|
|
taskqgroup_bind(struct taskqgroup *qgroup)
|
|
{
|
|
struct taskq_bind_task *gtask;
|
|
int i;
|
|
|
|
/*
|
|
* Bind taskqueue threads to specific CPUs, if they have been assigned
|
|
* one.
|
|
*/
|
|
if (qgroup->tqg_cnt == 1)
|
|
return;
|
|
|
|
for (i = 0; i < qgroup->tqg_cnt; i++) {
|
|
gtask = malloc(sizeof (*gtask), M_DEVBUF, M_WAITOK);
|
|
GTASK_INIT(>ask->bt_task, 0, 0, taskqgroup_binder, gtask);
|
|
gtask->bt_cpuid = qgroup->tqg_queue[i].tgc_cpu;
|
|
grouptaskqueue_enqueue(qgroup->tqg_queue[i].tgc_taskq,
|
|
>ask->bt_task);
|
|
}
|
|
}
|
|
|
|
static int
|
|
_taskqgroup_adjust(struct taskqgroup *qgroup, int cnt, int stride)
|
|
{
|
|
LIST_HEAD(, grouptask) gtask_head = LIST_HEAD_INITIALIZER(NULL);
|
|
struct grouptask *gtask;
|
|
int i, k, old_cnt, old_cpu, cpu;
|
|
|
|
mtx_assert(&qgroup->tqg_lock, MA_OWNED);
|
|
|
|
if (cnt < 1 || cnt * stride > mp_ncpus || !tqg_smp_started) {
|
|
printf("%s: failed cnt: %d stride: %d "
|
|
"mp_ncpus: %d tqg_smp_started: %d\n",
|
|
__func__, cnt, stride, mp_ncpus, tqg_smp_started);
|
|
return (EINVAL);
|
|
}
|
|
if (qgroup->tqg_adjusting) {
|
|
printf("taskqgroup_adjust failed: adjusting\n");
|
|
return (EBUSY);
|
|
}
|
|
qgroup->tqg_adjusting = 1;
|
|
old_cnt = qgroup->tqg_cnt;
|
|
old_cpu = 0;
|
|
if (old_cnt < cnt)
|
|
old_cpu = qgroup->tqg_queue[old_cnt].tgc_cpu;
|
|
mtx_unlock(&qgroup->tqg_lock);
|
|
/*
|
|
* Set up queue for tasks added before boot.
|
|
*/
|
|
if (old_cnt == 0) {
|
|
LIST_SWAP(>ask_head, &qgroup->tqg_queue[0].tgc_tasks,
|
|
grouptask, gt_list);
|
|
qgroup->tqg_queue[0].tgc_cnt = 0;
|
|
}
|
|
|
|
/*
|
|
* If new taskq threads have been added.
|
|
*/
|
|
cpu = old_cpu;
|
|
for (i = old_cnt; i < cnt; i++) {
|
|
taskqgroup_cpu_create(qgroup, i, cpu);
|
|
|
|
for (k = 0; k < stride; k++)
|
|
cpu = CPU_NEXT(cpu);
|
|
}
|
|
mtx_lock(&qgroup->tqg_lock);
|
|
qgroup->tqg_cnt = cnt;
|
|
qgroup->tqg_stride = stride;
|
|
|
|
/*
|
|
* Adjust drivers to use new taskqs.
|
|
*/
|
|
for (i = 0; i < old_cnt; i++) {
|
|
while ((gtask = LIST_FIRST(&qgroup->tqg_queue[i].tgc_tasks))) {
|
|
LIST_REMOVE(gtask, gt_list);
|
|
qgroup->tqg_queue[i].tgc_cnt--;
|
|
LIST_INSERT_HEAD(>ask_head, gtask, gt_list);
|
|
}
|
|
}
|
|
mtx_unlock(&qgroup->tqg_lock);
|
|
|
|
while ((gtask = LIST_FIRST(>ask_head))) {
|
|
LIST_REMOVE(gtask, gt_list);
|
|
if (gtask->gt_cpu == -1)
|
|
taskqgroup_attach_deferred(qgroup, gtask);
|
|
else if (taskqgroup_attach_cpu_deferred(qgroup, gtask))
|
|
taskqgroup_attach_deferred(qgroup, gtask);
|
|
}
|
|
|
|
#ifdef INVARIANTS
|
|
mtx_lock(&qgroup->tqg_lock);
|
|
for (i = 0; i < qgroup->tqg_cnt; i++) {
|
|
MPASS(qgroup->tqg_queue[i].tgc_taskq != NULL);
|
|
LIST_FOREACH(gtask, &qgroup->tqg_queue[i].tgc_tasks, gt_list)
|
|
MPASS(gtask->gt_taskqueue != NULL);
|
|
}
|
|
mtx_unlock(&qgroup->tqg_lock);
|
|
#endif
|
|
/*
|
|
* If taskq thread count has been reduced.
|
|
*/
|
|
for (i = cnt; i < old_cnt; i++)
|
|
taskqgroup_cpu_remove(qgroup, i);
|
|
|
|
taskqgroup_bind(qgroup);
|
|
|
|
mtx_lock(&qgroup->tqg_lock);
|
|
qgroup->tqg_adjusting = 0;
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
taskqgroup_adjust(struct taskqgroup *qgroup, int cnt, int stride)
|
|
{
|
|
int error;
|
|
|
|
mtx_lock(&qgroup->tqg_lock);
|
|
error = _taskqgroup_adjust(qgroup, cnt, stride);
|
|
mtx_unlock(&qgroup->tqg_lock);
|
|
|
|
return (error);
|
|
}
|
|
|
|
struct taskqgroup *
|
|
taskqgroup_create(char *name)
|
|
{
|
|
struct taskqgroup *qgroup;
|
|
|
|
qgroup = malloc(sizeof(*qgroup), M_GTASKQUEUE, M_WAITOK | M_ZERO);
|
|
mtx_init(&qgroup->tqg_lock, "taskqgroup", NULL, MTX_DEF);
|
|
qgroup->tqg_name = name;
|
|
LIST_INIT(&qgroup->tqg_queue[0].tgc_tasks);
|
|
|
|
return (qgroup);
|
|
}
|
|
|
|
void
|
|
taskqgroup_destroy(struct taskqgroup *qgroup)
|
|
{
|
|
|
|
}
|