freebsd-dev/sys/compat/linuxkpi/common/include/linux/io.h
Hans Petter Selasky 4d83500fda Use DEVICE memory instead of UNCACHEABLE on aarch64 in ioremap() in the LinuxKPI.
This fixes system hangs on reading device registers on aarch64.

Tested with:	Marvell MACCHIATObin (Armada8k) + mlx4en, amdgpu
Submitted by:	Greg V <greg@unrelenting.technology>
Differential Revision:	https://reviews.freebsd.org/D20789
MFC after:	1 week
Sponsored by:	Mellanox Technologies
2019-09-02 08:34:45 +00:00

482 lines
10 KiB
C

/*-
* Copyright (c) 2010 Isilon Systems, Inc.
* Copyright (c) 2010 iX Systems, Inc.
* Copyright (c) 2010 Panasas, Inc.
* Copyright (c) 2013-2015 Mellanox Technologies, Ltd.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice unmodified, this list of conditions, and the following
* disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* $FreeBSD$
*/
#ifndef _LINUX_IO_H_
#define _LINUX_IO_H_
#include <machine/vm.h>
#include <sys/endian.h>
#include <sys/types.h>
#include <linux/compiler.h>
#include <linux/types.h>
/*
* XXX This is all x86 specific. It should be bus space access.
*/
/* rmb and wmb are declared in machine/atomic.h, so should be included first. */
#ifndef __io_br
#define __io_br() __compiler_membar()
#endif
#ifndef __io_ar
#ifdef rmb
#define __io_ar() rmb()
#else
#define __io_ar() __compiler_membar()
#endif
#endif
#ifndef __io_bw
#ifdef wmb
#define __io_bw() wmb()
#else
#define __io_bw() __compiler_membar()
#endif
#endif
#ifndef __io_aw
#define __io_aw() __compiler_membar()
#endif
/* Access MMIO registers atomically without barriers and byte swapping. */
static inline uint8_t
__raw_readb(const volatile void *addr)
{
return (*(const volatile uint8_t *)addr);
}
#define __raw_readb(addr) __raw_readb(addr)
static inline void
__raw_writeb(uint8_t v, volatile void *addr)
{
*(volatile uint8_t *)addr = v;
}
#define __raw_writeb(v, addr) __raw_writeb(v, addr)
static inline uint16_t
__raw_readw(const volatile void *addr)
{
return (*(const volatile uint16_t *)addr);
}
#define __raw_readw(addr) __raw_readw(addr)
static inline void
__raw_writew(uint16_t v, volatile void *addr)
{
*(volatile uint16_t *)addr = v;
}
#define __raw_writew(v, addr) __raw_writew(v, addr)
static inline uint32_t
__raw_readl(const volatile void *addr)
{
return (*(const volatile uint32_t *)addr);
}
#define __raw_readl(addr) __raw_readl(addr)
static inline void
__raw_writel(uint32_t v, volatile void *addr)
{
*(volatile uint32_t *)addr = v;
}
#define __raw_writel(v, addr) __raw_writel(v, addr)
#ifdef __LP64__
static inline uint64_t
__raw_readq(const volatile void *addr)
{
return (*(const volatile uint64_t *)addr);
}
#define __raw_readq(addr) __raw_readq(addr)
static inline void
__raw_writeq(uint64_t v, volatile void *addr)
{
*(volatile uint64_t *)addr = v;
}
#define __raw_writeq(v, addr) __raw_writeq(v, addr)
#endif
#define mmiowb() barrier()
/* Access little-endian MMIO registers atomically with memory barriers. */
#undef readb
static inline uint8_t
readb(const volatile void *addr)
{
uint8_t v;
__io_br();
v = *(const volatile uint8_t *)addr;
__io_ar();
return (v);
}
#define readb(addr) readb(addr)
#undef writeb
static inline void
writeb(uint8_t v, volatile void *addr)
{
__io_bw();
*(volatile uint8_t *)addr = v;
__io_aw();
}
#define writeb(v, addr) writeb(v, addr)
#undef readw
static inline uint16_t
readw(const volatile void *addr)
{
uint16_t v;
__io_br();
v = le16toh(__raw_readw(addr));
__io_ar();
return (v);
}
#define readw(addr) readw(addr)
#undef writew
static inline void
writew(uint16_t v, volatile void *addr)
{
__io_bw();
__raw_writew(htole16(v), addr);
__io_aw();
}
#define writew(v, addr) writew(v, addr)
#undef readl
static inline uint32_t
readl(const volatile void *addr)
{
uint32_t v;
__io_br();
v = le32toh(__raw_readl(addr));
__io_ar();
return (v);
}
#define readl(addr) readl(addr)
#undef writel
static inline void
writel(uint32_t v, volatile void *addr)
{
__io_bw();
__raw_writel(htole32(v), addr);
__io_aw();
}
#define writel(v, addr) writel(v, addr)
#undef readq
#undef writeq
#ifdef __LP64__
static inline uint64_t
readq(const volatile void *addr)
{
uint64_t v;
__io_br();
v = le64toh(__raw_readq(addr));
__io_ar();
return (v);
}
#define readq(addr) readq(addr)
static inline void
writeq(uint64_t v, volatile void *addr)
{
__io_bw();
__raw_writeq(htole64(v), addr);
__io_aw();
}
#define writeq(v, addr) writeq(v, addr)
#endif
/* Access little-endian MMIO registers atomically without memory barriers. */
#undef readb_relaxed
static inline uint8_t
readb_relaxed(const volatile void *addr)
{
return (__raw_readb(addr));
}
#define readb_relaxed(addr) readb_relaxed(addr)
#undef writeb_relaxed
static inline void
writeb_relaxed(uint8_t v, volatile void *addr)
{
__raw_writeb(v, addr);
}
#define writeb_relaxed(v, addr) writeb_relaxed(v, addr)
#undef readw_relaxed
static inline uint16_t
readw_relaxed(const volatile void *addr)
{
return (le16toh(__raw_readw(addr)));
}
#define readw_relaxed(addr) readw_relaxed(addr)
#undef writew_relaxed
static inline void
writew_relaxed(uint16_t v, volatile void *addr)
{
__raw_writew(htole16(v), addr);
}
#define writew_relaxed(v, addr) writew_relaxed(v, addr)
#undef readl_relaxed
static inline uint32_t
readl_relaxed(const volatile void *addr)
{
return (le32toh(__raw_readl(addr)));
}
#define readl_relaxed(addr) readl_relaxed(addr)
#undef writel_relaxed
static inline void
writel_relaxed(uint32_t v, volatile void *addr)
{
__raw_writel(htole32(v), addr);
}
#define writel_relaxed(v, addr) writel_relaxed(v, addr)
#undef readq_relaxed
#undef writeq_relaxed
#ifdef __LP64__
static inline uint64_t
readq_relaxed(const volatile void *addr)
{
return (le64toh(__raw_readq(addr)));
}
#define readq_relaxed(addr) readq_relaxed(addr)
static inline void
writeq_relaxed(uint64_t v, volatile void *addr)
{
__raw_writeq(htole64(v), addr);
}
#define writeq_relaxed(v, addr) writeq_relaxed(v, addr)
#endif
/* XXX On Linux ioread and iowrite handle both MMIO and port IO. */
#undef ioread8
static inline uint8_t
ioread8(const volatile void *addr)
{
return (readb(addr));
}
#define ioread8(addr) ioread8(addr)
#undef ioread16
static inline uint16_t
ioread16(const volatile void *addr)
{
return (readw(addr));
}
#define ioread16(addr) ioread16(addr)
#undef ioread16be
static inline uint16_t
ioread16be(const volatile void *addr)
{
uint16_t v;
__io_br();
v = (be16toh(__raw_readw(addr)));
__io_ar();
return (v);
}
#define ioread16be(addr) ioread16be(addr)
#undef ioread32
static inline uint32_t
ioread32(const volatile void *addr)
{
return (readl(addr));
}
#define ioread32(addr) ioread32(addr)
#undef ioread32be
static inline uint32_t
ioread32be(const volatile void *addr)
{
uint32_t v;
__io_br();
v = (be32toh(__raw_readl(addr)));
__io_ar();
return (v);
}
#define ioread32be(addr) ioread32be(addr)
#undef iowrite8
static inline void
iowrite8(uint8_t v, volatile void *addr)
{
writeb(v, addr);
}
#define iowrite8(v, addr) iowrite8(v, addr)
#undef iowrite16
static inline void
iowrite16(uint16_t v, volatile void *addr)
{
writew(v, addr);
}
#define iowrite16 iowrite16
#undef iowrite32
static inline void
iowrite32(uint32_t v, volatile void *addr)
{
writel(v, addr);
}
#define iowrite32(v, addr) iowrite32(v, addr)
#undef iowrite32be
static inline void
iowrite32be(uint32_t v, volatile void *addr)
{
__io_bw();
__raw_writel(htobe32(v), addr);
__io_aw();
}
#define iowrite32be(v, addr) iowrite32be(v, addr)
#if defined(__i386__) || defined(__amd64__)
static inline void
_outb(u_char data, u_int port)
{
__asm __volatile("outb %0, %w1" : : "a" (data), "Nd" (port));
}
#endif
#if defined(__i386__) || defined(__amd64__) || defined(__powerpc__) || defined(__aarch64__)
void *_ioremap_attr(vm_paddr_t phys_addr, unsigned long size, int attr);
#else
#define _ioremap_attr(...) NULL
#endif
#ifdef VM_MEMATTR_DEVICE
#define ioremap_nocache(addr, size) \
_ioremap_attr((addr), (size), VM_MEMATTR_DEVICE)
#define ioremap_wt(addr, size) \
_ioremap_attr((addr), (size), VM_MEMATTR_DEVICE)
#define ioremap(addr, size) \
_ioremap_attr((addr), (size), VM_MEMATTR_DEVICE)
#else
#define ioremap_nocache(addr, size) \
_ioremap_attr((addr), (size), VM_MEMATTR_UNCACHEABLE)
#define ioremap_wt(addr, size) \
_ioremap_attr((addr), (size), VM_MEMATTR_WRITE_THROUGH)
#define ioremap(addr, size) \
_ioremap_attr((addr), (size), VM_MEMATTR_UNCACHEABLE)
#endif
#define ioremap_wc(addr, size) \
_ioremap_attr((addr), (size), VM_MEMATTR_WRITE_COMBINING)
#define ioremap_wb(addr, size) \
_ioremap_attr((addr), (size), VM_MEMATTR_WRITE_BACK)
void iounmap(void *addr);
#define memset_io(a, b, c) memset((a), (b), (c))
#define memcpy_fromio(a, b, c) memcpy((a), (b), (c))
#define memcpy_toio(a, b, c) memcpy((a), (b), (c))
static inline void
__iowrite32_copy(void *to, void *from, size_t count)
{
uint32_t *src;
uint32_t *dst;
int i;
for (i = 0, src = from, dst = to; i < count; i++, src++, dst++)
__raw_writel(*src, dst);
}
static inline void
__iowrite64_copy(void *to, void *from, size_t count)
{
#ifdef __LP64__
uint64_t *src;
uint64_t *dst;
int i;
for (i = 0, src = from, dst = to; i < count; i++, src++, dst++)
__raw_writeq(*src, dst);
#else
__iowrite32_copy(to, from, count * 2);
#endif
}
enum {
MEMREMAP_WB = 1 << 0,
MEMREMAP_WT = 1 << 1,
MEMREMAP_WC = 1 << 2,
};
static inline void *
memremap(resource_size_t offset, size_t size, unsigned long flags)
{
void *addr = NULL;
if ((flags & MEMREMAP_WB) &&
(addr = ioremap_wb(offset, size)) != NULL)
goto done;
if ((flags & MEMREMAP_WT) &&
(addr = ioremap_wt(offset, size)) != NULL)
goto done;
if ((flags & MEMREMAP_WC) &&
(addr = ioremap_wc(offset, size)) != NULL)
goto done;
done:
return (addr);
}
static inline void
memunmap(void *addr)
{
/* XXX May need to check if this is RAM */
iounmap(addr);
}
#endif /* _LINUX_IO_H_ */