0e358df062
The significant changes and bugs fixed here are: 1. Fixed a bug in the progress display code: When the user's filename is too big, or his terminal width is too small, the progress code could wind up using a negative number for the length of the "stars" that it uses to indicate progress. This negative value was assigned to an unsigned variable, resulting in a very large positive value. The result is that we wound up writing garbage from memory to the user's terminal. With an 80 column terminal, a file name length of more than 35 characters would generate this problem. To address this, we now set a minimum progress bar length, and truncate the user's file name as needed. This has been tested with large filenames and small terminals, and at least produces reasonable results. If the terminal is too narrow, the progress display takes up an additional line with each update, but this is more user friendly than writing garbage to the tty. 2. SATA drives connected via a SATA controller didn't have SCSI Inquiry data populated in struct cam_device. This meant that the code in fw_get_vendor() in fwdownload.c would try to match a zero-length vendor ID, and so return the first entry in the vendor table. (Which used to be HITACHI.) Fixed by grabbing identify data, passing the identify buffer into fw_get_vendor(), and matching against the model name. 3. SATA drives connected via a SAS controller do have Inquiry data populated. The table included a couple of entries -- "ATA ST" and "ATA HDS", intended to handle Seagate and Hitachi SATA drives attached via a SAS controller. SCSI to ATA translation layers use a vendor ID of "ATA" (which is standard), and then the model name from the ATA identify data as the SCSI product name when they are returning data on SATA disks. The cam_strmatch code will match the first part of the string (because the length it is given is the length of the vendor, "ATA"), and return 0 (i.e. a match). So all SATA drives attached to a SAS controller would be programmed using the Seagate method (WRITE BUFFER mode 7) of SCSI firmware downloading. 4. Issue #2 above covered up a bug in fw_download_img() -- if the maximum packet size in the vendor table was 0, it tried to default to a packet size of 32K. But then it didn't actually succeed in doing that, because it set the packet size to the value that was in the vendor table (0). Now that we actually have ATA attached drives fall use the VENDOR_ATA case, we need a reasonable default packet size. So this is fixed to properly set the default packet size. 5. Add support for downloading firmware to IBM LTO drives, and add a firmware file validation method to make sure that the firmware file matches the drive type. IBM tape drives include a Load ID and RU name in their vendor-specific VPD page 0x3. Those should match the IDs in the header of the firmware file to insure that the proper firmware file is loaded. 6. This also adds a new -q option to the camcontrol fwdownload subcommand to suppress informational output. When -q is used in combination with -y, the firmware upgrade will happen without prompting and without output except if an error condition occurs. 7. Re-add support for printing out SCSI inquiry information when asking the user to confirm that they want to download firmware, and add printing of ATA Identify data if it is a SATA disk. This was removed in r237281 when support for flashing ATA disks was added. 8. Add a new camcontrol(8) "opcodes" subcommand, and use the underlying code to get recommended timeout values for drive firmware downloads. Many SCSI devices support the REPORT SUPPORTED OPERATION CODES command, and some support the optional timeout descriptor that specifies nominal and recommended timeouts for the commands supported by the device. The new camcontrol opcodes subcommand allows displaying all opcodes supported by a drive, information about which fields in a SCSI CDB are actually used by a given SCSI device, and the nominal and recommended timeout values for each command. Since firmware downloads can take a long time in some devices, and the time varies greatly between different types of devices, take advantage of the infrastructure used by the camcontrol opcodes subcommand to determine the best timeout to use for the WRITE BUFFER command in SCSI device firmware downloads. If the device recommends a timeout, it is likely to be more accurate than the default 50 second timeout used by the firmware download code. If the user specifies a timeout, it will override the default or device recommended timeout. If the device doesn't support timeout descriptors, we fall back to the default. 9. Instead of downloading firmware to SATA drives behind a SAS controller using WRITE BUFFER, use the SCSI ATA PASS-THROUGH command to compose an ATA DOWNLOAD MICROCODE command and it to the drive. The previous version of this code attempted to send a SCSI WRITE BUFFER command to SATA drives behind a SAS controller. Although that is part of the SAT-3 spec, it doesn't work with the parameters used with LSI controllers at least. 10.Add a new mechanism for making common ATA passthrough and ATA-behind-SCSI passthrough commands. The existing camcontrol(8) ATA command mechanism checks the device type on every command executed. That works fine for individual commands, but is cumbersome for things like a firmware download that send a number of commands. The fwdownload code detects the device type up front, and then sends the appropriate commands. 11.In simulation mode (-s), if the user specifies the -v flag, print out the SCSI CDB or ATA registers that would be sent to the drive. This will aid in debugging any firmware download issues. sbin/camcontrol/fwdownload.c: Add a device type to the fw_vendor structure, so that we can specify different download methods for different devices from the same vendor. In this case, IBM hard drives (from when they still made hard drives) and tape drives. Add a tur_status field to the fw_vendor structure so that we can specify whether the drive to be upgraded should be ready, not ready, or whether it doesn't matter. Add the corresponding capability in fw_download_img(). Add comments describing each of the vendor table fields. Add HGST and SmrtStor to the supported SCSI vendors list. In fw_get_vendor(), look at ATA identify data if we have a SATA device to try to identify what the drive vendor is. Add IBM firmware file validation. This gets VPD page 0x3, and compares the Load ID and RU name in the page to the values included in the header. The validation code will refuse to load a firmware file if the values don't match. This does allow the user to attempt a downgrade; whether or not it succeeds will likely depend on the drive settings. Add a -q option, and disable all informative output (progress bars, etc.) when this is enabled. Re-add the inquiry in the confirmation dialog so the user has a better idea of which device he is talking to. Add support for displaying ATA identify data. Don't automatically disable confirmation in simulation (-s) mode. This allows the user to see the inquiry or identify data in the dialog, and see exactly what they would see when the command actually runs. Also, in simulation mode, if the user specifies the -v flag, print out the SCSI CDB or ATA registers that would be sent to the drive. This will aid in debugging any firmware download issues. Add a timeout field and timeout type to the firmware download vendor table. This allows specifying a default timeout and allows specifying whether we should attempt to probe for a recommended timeout from the drive. Add a new fuction, fw_get_timeout(), that will determine which timeout to use for the WRITE BUFFER command. If the user specifies a timeout, we always use that. Otherwise, we will use the drive recommended timeout, if available, and fall back to the default when a drive recommended timeout isn't available. When we prompt the user, tell him what timeout we're going to use, and the source of the timeout. Revamp the way SATA devices are handled. In fwdownload(), use the new get_device_type() function to determine what kind of device we're talking to. Allow firmware downloads to any SATA device, but restrict SCSI downloads to known devices. (The latter is not a change in behavior.) Break out the "ready" check from fw_download_img() into a new subfunction, fw_check_device_ready(). This sends the appropriate command to the device in question -- a TEST UNIT READY or an IDENTIFY. The IDENTIFY for SATA devices a SAT layer is done using the SCSI ATA PASS-THROUGH command. Use the new build_ata_cmd() function to build either a SCSI or ATA I/O CCB to issue the DOWNLOAD MICROCODE command to SATA devices. build_ata_cmd() figures looks at the devtype argument and fills in the correct CCB type and CDB or ATA registers. Revamp the vendor table to remove the previous vendor-specific ATA entries and use a generic ATA vendor placeholder. We currently use the same method for all ATA drives, although we may have to add vendor-specific behavior once we test this with more drives. sbin/camcontrol/progress.c: In progress_draw(), make barlength a signed value so that we can easily detect a negative value. If barlength (the length of the progress bar) would wind up negative due to a small TTY width or a large filename, set the bar length to the new minimum (10 stars) and truncate the user's filename. We will truncate it down to 0 characters if necessary. Calculate a new prefix_len variable (user's filename length) and use it as the precision when printing the filename. sbin/camcontrol/camcontrol.c: Implement a new camcontrol(8) subcommand, "opcodes". The opcodes subcommand allows displaying the entire list of SCSI commands supported by a device, or details on an individual command. In either case, it can display nominal and recommended timeout values. Add the scsiopcodes() function, which calls the new scsigetopcodes() function to fetch opcode data from a drive. Add two new functions, scsiprintoneopcode() and scsiprintopcodes(), which print information about one opcode or all opcodes, respectively. Remove the get_disk_type() function. It is no longer used. Add a new function, dev_has_vpd_page(), that fetches the supported INQUIRY VPD list from a device and tells the caller whether the requested VPD page is available. Add a new function, get_device_type(), that returns a more precise device type than the old get_disk_type() function. The get_disk_type() function only distinguished between SCSI and ATA devices, and SATA devices behind a SCSI to ATA translation layer were considered to be "SCSI". get_device_type() offers a third type, CC_DT_ATA_BEHIND_SCSI. We need to know this to know whether to attempt to send ATA passthrough commands. If the device has the ATA Information VPD page (0x89), then it is an ATA device behind a SCSI to ATA translation layer. Remove the type argument from the fwdownload() subcommand. Add a new function, build_ata_cmd(), that will take one set of common arguments and build either a SCSI or ATA I/O CCB, depending on the device type passed in. sbin/camcontrol/camcontrol.h: Add a prototype for scsigetopcodes(). Add a new enumeration, camcontrol_devtype. Add prototypes for dev_has_vpd_page(), get_device_type() and build_ata_cmd(). Remove the type argument from the fwdownload() subcommand. sbin/camcontrol/camcontrol.8 Explain that the fwdownload subcommand will use the drive recommended timeout if available, and that the user can override the timeout. Document the new opcodes subcommand. Explain that we will attempt to download firmware to any SATA device. Document supported SCSI vendors, and models tested if known. Explain the commands used to download firmware for the three different drive and controller combinations. Document that the -v flag in simulation mode for the fwdownload subcommand will print out the SCSI CDBs or ATA registers that would be used. sys/cam/scsi/scsi_all.h: Add new bit definitions for the one opcode descriptor for the REPORT SUPPORTED OPCODES command. Add a function prototype for scsi_report_supported_opcodes(). sys/cam/scsi/scsi_all.c: Add a new CDB building function, scsi_report_supported_opcodes(). Sponsored by: Spectra Logic MFC after: 1 week |
||
---|---|---|
.. | ||
ata | ||
ctl | ||
scsi | ||
cam_ccb.h | ||
cam_compat.c | ||
cam_compat.h | ||
cam_debug.h | ||
cam_periph.c | ||
cam_periph.h | ||
cam_queue.c | ||
cam_queue.h | ||
cam_sim.c | ||
cam_sim.h | ||
cam_xpt_internal.h | ||
cam_xpt_periph.h | ||
cam_xpt_sim.h | ||
cam_xpt.c | ||
cam_xpt.h | ||
cam.c | ||
cam.h | ||
README.quirks |
/* $FreeBSD$ */ FreeBSD Quirk Guidelines Nate Lawson - njl at freebsd org 0. Introduction FreeBSD drivers make every attempt possible to support the standards behind hardware. Where possible and not in conflict with the standard, they also attempt to work around hardware which doesn't strictly conform. However, some devices have flaws which can't be worked around while keeping the driver compatible with the standard. For these devices, we have created a quirks mechanism to indicate to the driver that it must avoid certain commands or use them differently with a specific model and/or version of hardware. This document focuses on identifying and committing quirks for storage hardware involving CAM and UMASS but is applicable to other areas. CAM provides a generic transport for SCSI-like devices. Many different transports use SCSI command sets including parallel SCSI, firewire (1394), USB UMASS, fibre channel, and ATAPI. For block devices (i.e. hard drives, flash adapters, cameras) there are two standards, SBC and RBC. SCSI hard drives are usually SBC-compliant and smaller devices like flash drives are usually RBC-compliant. Multimedia devices including CDROMs and DVD-RW are usually MMC-compliant. Please follow these guidelines to get your device working as soon as possible. If you are a committer, please do NOT commit quirks directly but follow this process also. 1. Determing the problem The first step is to determine what's wrong. If the device should be supported but hangs while attaching, it's possible a quirk can help. The types of things a quirk can fix are: ` * cam/cam_xpt.c quirks o CAM_QUIRK_NOLUNS - do not probe luns other than 0 since device responds to all inquiries with "lun present". o CAM_QUIRK_NOSERIAL - do not send an inquiry for serial number. o CAM_QUIRK_HILUNS - probe all luns even if some respond "not present" since device has a sparse lun space. * cam/scsi/scsi_da.c quirks o DA_Q_NO_SYNC_CACHE - The sync cache command is used to force a drive to write out all changes to disk before shutting down. Some drives hang when receiving this command even though it is required by all SBC and RBC standards. Note that a warning message on console is NOT sufficient to add this quirk. The warning messages are harmless and only a device or system hang is cause for adding this quirk. o DA_Q_NO_6_BYTE - The RBC spec (see Links below) does not allow for 6-byte READ/WRITE commands. Some manufacturers took that too literally and crash when receiving 6-byte commands. This quirk causes FreeBSD to only send 10-byte commands. Since the CAM subsystem has been modified to not send 6-byte commands to USB, 1394, and other transports that don't support SBC, this quirk should be very rare. o DA_Q_NO_PREVENT - Don't use the prevent/allow commands to keep a removable medium from being ejected. Some systems can't handle these commands (rare). * cam/scsi/scsi_cd.c quirks o CD_Q_NO_TOUCH - not implemented o CD_Q_BCD_TRACKS - convert start/end track to BCD o CD_Q_NO_CHANGER - never treat as a changer o CD_Q_CHANGER - always treat as a changer * cam/scsi/scsi_ch.c quirks o CH_Q_NO_DBD - disable block descriptors in mode sense * cam/scsi/scsi_sa.c quirks o SA_QUIRK_NOCOMP - Can't deal with compression at all o SA_QUIRK_FIXED - Force fixed mode o SA_QUIRK_VARIABLE - Force variable mode o SA_QUIRK_2FM - Needs Two File Marks at EOD o SA_QUIRK_1FM - No more than 1 File Mark at EOD o SA_QUIRK_NODREAD - Don't try and dummy read density o SA_QUIRK_NO_MODESEL - Don't do mode select at all o SA_QUIRK_NO_CPAGE - Don't use DEVICE COMPRESSION page * dev/usb/umass.c quirks o NO_TEST_UNIT_READY - The drive does not support Test Unit Ready. Convert to Start Unit. This command is a simple no-op for most firmware but some of them hang when this command is sent. o RS_NO_CLEAR_UA - The drive does not reset the Unit Attention state after REQUEST SENSE has been sent. The INQUIRY command does not reset the UA either, and so CAM runs in circles trying to retrieve the initial INQUIRY data. This quirk signifies that after a unit attention condition, don't try to clear the condition with a request sense command. o NO_START_STOP - Like test unit ready, don't send this command if it hangs the device. o FORCE_SHORT_INQUIRY - Don't ask for full inquiry data (256 bytes). Some drives can only handle the shorter inquiry length (36 bytes). o SHUTTLE_INIT - Needs to be initialised the Shuttle way. Haven't looked into what this does but apparently it's mostly Shuttle devices. o ALT_IFACE_1 - Drive needs to be switched to alternate interface 1. Rare. o FLOPPY_SPEED - Drive does not do 1Mb/s, but just floppy speeds (20kb/s). o IGNORE_RESIDUE - The device can't count and gets the residue of transfers wrong. This is sometimes needed for devices where large transfers cause stalls. o NO_GETMAXLUN - Get maximum LUN is a command to identify multiple devices sharing the same ID. For instance, a multislot compact flash reader might be on two LUNS. Some non-standard devices hang when receiving this command so this quirk disables it. o WRONG_CSWSIG - The device uses a weird CSWSIGNATURE. Rare. o NO_INQUIRY - Device cannot handle INQUIRY so fake a generic response. INQUIRY is one of the most basic commands but some drives can't even handle it. (No idea how such devices even work at all on other OS's.) This quirk fakes up a valid but generic response for devices that can't handle INQUIRY. o NO_INQUIRY_EVPD - Device cannot handle an extended INQUIRY asking for vital product data (EVPD) so just return a "no data" response (check condition) without sending the command to the device. 2. Testing a Quirk After you have an idea what you want to try, edit the proper file above, using wildcarding to be sure your device is matched. Here is a list of the common things to try. Note that some devices require multiple quirks or quirks in different drivers. For example, some USB pen drives or flash readers require quirks in both da(4) and umass(4). * umass(4) device (sys/dev/usb/umass.c) -- this quirk matches an Asahi Optical device with any product ID or revision ID. * * { USB_VENDOR_ASAHIOPTICAL, PID_WILDCARD, RID_WILDCARD, * UMASS_PROTO_ATAPI | UMASS_PROTO_CBI_I, * RS_NO_CLEAR_UA * }, * da(4) device (sys/cam/scsi/scsi_da.c) -- this quirk matches a Creative device with a name of "NOMAD_MUVO" and any revision. * * { * /* * * Creative Nomad MUVO mp3 player (USB) * * PR: kern/53094 * */ * {T_DIRECT, SIP_MEDIA_REMOVABLE, "CREATIVE", "NOMAD_MUVO", "*"}, * /*quirks*/ DA_Q_NO_SYNC_CACHE|DA_Q_NO_PREVENT * }, 3. Filing a PR All quirk submissions MUST go through GNATS. For information on how to submit a PR, see this page. Please include the following in your PR: * Subject: QUIRK: FooCo USB DVD-RAM drive * Output of "camcontrol inquiry yourdevice" * Manufacturer name, model number, etc. * Transport type (FC, SCSI, USB, Firewire) * Output from dmesg for failed attach attempts * Output from dmesg for successful attach attempts (after quirk added) * Output of "usbdevs -v" with device attached * Valid email address Here are some examples of well-formed PRs: * kern/43580 * kern/49054 4. What happens next I will review your submission, respond with comments, and once the quirk is deemed necessary and ready for committing, I'll commit it, referencing the PR. (Again, all quirks must be submitted as PRs). Questions? Email njl AT freebsd.org. 5. Note to Committers Please insert quirks in the right section in scsi_da.c, sorted by PR number. Always include the name and PR number for scsi_da.c (see above for an example.) Please sort quirks alphabetically in umass.c. Follow the surrounding style in all drivers. Be sure to correspond with the submitter to be sure the quirk you are adding is the minimum necessary, not quirking other useful features and not overly broad (i.e., too many wildcards).