freebsd-dev/sys/net80211/ieee80211_output.c
Adrian Chadd ba2c1fbc03 Revert the wifi ifnet changes until things are more baked and tested.
* 286410
* 286413
* 286416

The initial commit broke a variety of debug and features that aren't
in the GENERIC kernels but are enabled in other platforms.
2015-08-08 01:10:17 +00:00

3466 lines
102 KiB
C

/*-
* Copyright (c) 2001 Atsushi Onoe
* Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_inet.h"
#include "opt_inet6.h"
#include "opt_wlan.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/mbuf.h>
#include <sys/kernel.h>
#include <sys/endian.h>
#include <sys/socket.h>
#include <net/bpf.h>
#include <net/ethernet.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/if_llc.h>
#include <net/if_media.h>
#include <net/if_vlan_var.h>
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_regdomain.h>
#ifdef IEEE80211_SUPPORT_SUPERG
#include <net80211/ieee80211_superg.h>
#endif
#ifdef IEEE80211_SUPPORT_TDMA
#include <net80211/ieee80211_tdma.h>
#endif
#include <net80211/ieee80211_wds.h>
#include <net80211/ieee80211_mesh.h>
#if defined(INET) || defined(INET6)
#include <netinet/in.h>
#endif
#ifdef INET
#include <netinet/if_ether.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#endif
#ifdef INET6
#include <netinet/ip6.h>
#endif
#include <security/mac/mac_framework.h>
#define ETHER_HEADER_COPY(dst, src) \
memcpy(dst, src, sizeof(struct ether_header))
/* unalligned little endian access */
#define LE_WRITE_2(p, v) do { \
((uint8_t *)(p))[0] = (v) & 0xff; \
((uint8_t *)(p))[1] = ((v) >> 8) & 0xff; \
} while (0)
#define LE_WRITE_4(p, v) do { \
((uint8_t *)(p))[0] = (v) & 0xff; \
((uint8_t *)(p))[1] = ((v) >> 8) & 0xff; \
((uint8_t *)(p))[2] = ((v) >> 16) & 0xff; \
((uint8_t *)(p))[3] = ((v) >> 24) & 0xff; \
} while (0)
static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *,
u_int hdrsize, u_int ciphdrsize, u_int mtu);
static void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int);
#ifdef IEEE80211_DEBUG
/*
* Decide if an outbound management frame should be
* printed when debugging is enabled. This filters some
* of the less interesting frames that come frequently
* (e.g. beacons).
*/
static __inline int
doprint(struct ieee80211vap *vap, int subtype)
{
switch (subtype) {
case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
return (vap->iv_opmode == IEEE80211_M_IBSS);
}
return 1;
}
#endif
/*
* Transmit a frame to the given destination on the given VAP.
*
* It's up to the caller to figure out the details of who this
* is going to and resolving the node.
*
* This routine takes care of queuing it for power save,
* A-MPDU state stuff, fast-frames state stuff, encapsulation
* if required, then passing it up to the driver layer.
*
* This routine (for now) consumes the mbuf and frees the node
* reference; it ideally will return a TX status which reflects
* whether the mbuf was consumed or not, so the caller can
* free the mbuf (if appropriate) and the node reference (again,
* if appropriate.)
*/
int
ieee80211_vap_pkt_send_dest(struct ieee80211vap *vap, struct mbuf *m,
struct ieee80211_node *ni)
{
struct ieee80211com *ic = vap->iv_ic;
struct ifnet *ifp = vap->iv_ifp;
int error, len, mcast;
if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
(m->m_flags & M_PWR_SAV) == 0) {
/*
* Station in power save mode; pass the frame
* to the 802.11 layer and continue. We'll get
* the frame back when the time is right.
* XXX lose WDS vap linkage?
*/
if (ieee80211_pwrsave(ni, m) != 0)
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
ieee80211_free_node(ni);
/*
* We queued it fine, so tell the upper layer
* that we consumed it.
*/
return (0);
}
/* calculate priority so drivers can find the tx queue */
if (ieee80211_classify(ni, m)) {
IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
ni->ni_macaddr, NULL,
"%s", "classification failure");
vap->iv_stats.is_tx_classify++;
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
m_freem(m);
ieee80211_free_node(ni);
/* XXX better status? */
return (0);
}
/*
* Stash the node pointer. Note that we do this after
* any call to ieee80211_dwds_mcast because that code
* uses any existing value for rcvif to identify the
* interface it (might have been) received on.
*/
m->m_pkthdr.rcvif = (void *)ni;
mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1: 0;
len = m->m_pkthdr.len;
BPF_MTAP(ifp, m); /* 802.3 tx */
/*
* Check if A-MPDU tx aggregation is setup or if we
* should try to enable it. The sta must be associated
* with HT and A-MPDU enabled for use. When the policy
* routine decides we should enable A-MPDU we issue an
* ADDBA request and wait for a reply. The frame being
* encapsulated will go out w/o using A-MPDU, or possibly
* it might be collected by the driver and held/retransmit.
* The default ic_ampdu_enable routine handles staggering
* ADDBA requests in case the receiver NAK's us or we are
* otherwise unable to establish a BA stream.
*/
if ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) &&
(vap->iv_flags_ht & IEEE80211_FHT_AMPDU_TX) &&
(m->m_flags & M_EAPOL) == 0) {
int tid = WME_AC_TO_TID(M_WME_GETAC(m));
struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid];
ieee80211_txampdu_count_packet(tap);
if (IEEE80211_AMPDU_RUNNING(tap)) {
/*
* Operational, mark frame for aggregation.
*
* XXX do tx aggregation here
*/
m->m_flags |= M_AMPDU_MPDU;
} else if (!IEEE80211_AMPDU_REQUESTED(tap) &&
ic->ic_ampdu_enable(ni, tap)) {
/*
* Not negotiated yet, request service.
*/
ieee80211_ampdu_request(ni, tap);
/* XXX hold frame for reply? */
}
}
#ifdef IEEE80211_SUPPORT_SUPERG
else if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_NODE_FF)) {
m = ieee80211_ff_check(ni, m);
if (m == NULL) {
/* NB: any ni ref held on stageq */
return (0);
}
}
#endif /* IEEE80211_SUPPORT_SUPERG */
/*
* Grab the TX lock - serialise the TX process from this
* point (where TX state is being checked/modified)
* through to driver queue.
*/
IEEE80211_TX_LOCK(ic);
if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) {
/*
* Encapsulate the packet in prep for transmission.
*/
m = ieee80211_encap(vap, ni, m);
if (m == NULL) {
/* NB: stat+msg handled in ieee80211_encap */
IEEE80211_TX_UNLOCK(ic);
ieee80211_free_node(ni);
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
return (ENOBUFS);
}
}
error = ieee80211_parent_xmitpkt(ic, m);
/*
* Unlock at this point - no need to hold it across
* ieee80211_free_node() (ie, the comlock)
*/
IEEE80211_TX_UNLOCK(ic);
if (error != 0) {
/* NB: IFQ_HANDOFF reclaims mbuf */
ieee80211_free_node(ni);
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
} else {
if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
if_inc_counter(ifp, IFCOUNTER_OMCASTS, mcast);
if_inc_counter(ifp, IFCOUNTER_OBYTES, len);
}
ic->ic_lastdata = ticks;
return (0);
}
/*
* Send the given mbuf through the given vap.
*
* This consumes the mbuf regardless of whether the transmit
* was successful or not.
*
* This does none of the initial checks that ieee80211_start()
* does (eg CAC timeout, interface wakeup) - the caller must
* do this first.
*/
static int
ieee80211_start_pkt(struct ieee80211vap *vap, struct mbuf *m)
{
#define IS_DWDS(vap) \
(vap->iv_opmode == IEEE80211_M_WDS && \
(vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0)
struct ieee80211com *ic = vap->iv_ic;
struct ifnet *ifp = vap->iv_ifp;
struct ieee80211_node *ni;
struct ether_header *eh;
/*
* Cancel any background scan.
*/
if (ic->ic_flags & IEEE80211_F_SCAN)
ieee80211_cancel_anyscan(vap);
/*
* Find the node for the destination so we can do
* things like power save and fast frames aggregation.
*
* NB: past this point various code assumes the first
* mbuf has the 802.3 header present (and contiguous).
*/
ni = NULL;
if (m->m_len < sizeof(struct ether_header) &&
(m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
"discard frame, %s\n", "m_pullup failed");
vap->iv_stats.is_tx_nobuf++; /* XXX */
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
return (ENOBUFS);
}
eh = mtod(m, struct ether_header *);
if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
if (IS_DWDS(vap)) {
/*
* Only unicast frames from the above go out
* DWDS vaps; multicast frames are handled by
* dispatching the frame as it comes through
* the AP vap (see below).
*/
IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS,
eh->ether_dhost, "mcast", "%s", "on DWDS");
vap->iv_stats.is_dwds_mcast++;
m_freem(m);
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
/* XXX better status? */
return (ENOBUFS);
}
if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
/*
* Spam DWDS vap's w/ multicast traffic.
*/
/* XXX only if dwds in use? */
ieee80211_dwds_mcast(vap, m);
}
}
#ifdef IEEE80211_SUPPORT_MESH
if (vap->iv_opmode != IEEE80211_M_MBSS) {
#endif
ni = ieee80211_find_txnode(vap, eh->ether_dhost);
if (ni == NULL) {
/* NB: ieee80211_find_txnode does stat+msg */
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
m_freem(m);
/* XXX better status? */
return (ENOBUFS);
}
if (ni->ni_associd == 0 &&
(ni->ni_flags & IEEE80211_NODE_ASSOCID)) {
IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
eh->ether_dhost, NULL,
"sta not associated (type 0x%04x)",
htons(eh->ether_type));
vap->iv_stats.is_tx_notassoc++;
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
m_freem(m);
ieee80211_free_node(ni);
/* XXX better status? */
return (ENOBUFS);
}
#ifdef IEEE80211_SUPPORT_MESH
} else {
if (!IEEE80211_ADDR_EQ(eh->ether_shost, vap->iv_myaddr)) {
/*
* Proxy station only if configured.
*/
if (!ieee80211_mesh_isproxyena(vap)) {
IEEE80211_DISCARD_MAC(vap,
IEEE80211_MSG_OUTPUT |
IEEE80211_MSG_MESH,
eh->ether_dhost, NULL,
"%s", "proxy not enabled");
vap->iv_stats.is_mesh_notproxy++;
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
m_freem(m);
/* XXX better status? */
return (ENOBUFS);
}
IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
"forward frame from DS SA(%6D), DA(%6D)\n",
eh->ether_shost, ":",
eh->ether_dhost, ":");
ieee80211_mesh_proxy_check(vap, eh->ether_shost);
}
ni = ieee80211_mesh_discover(vap, eh->ether_dhost, m);
if (ni == NULL) {
/*
* NB: ieee80211_mesh_discover holds/disposes
* frame (e.g. queueing on path discovery).
*/
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
/* XXX better status? */
return (ENOBUFS);
}
}
#endif
/*
* We've resolved the sender, so attempt to transmit it.
*/
if (vap->iv_state == IEEE80211_S_SLEEP) {
/*
* In power save; queue frame and then wakeup device
* for transmit.
*/
ic->ic_lastdata = ticks;
if (ieee80211_pwrsave(ni, m) != 0)
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
ieee80211_free_node(ni);
ieee80211_new_state(vap, IEEE80211_S_RUN, 0);
return (0);
}
if (ieee80211_vap_pkt_send_dest(vap, m, ni) != 0)
return (ENOBUFS);
return (0);
#undef IS_DWDS
}
/*
* Start method for vap's. All packets from the stack come
* through here. We handle common processing of the packets
* before dispatching them to the underlying device.
*
* if_transmit() requires that the mbuf be consumed by this call
* regardless of the return condition.
*/
int
ieee80211_vap_transmit(struct ifnet *ifp, struct mbuf *m)
{
struct ieee80211vap *vap = ifp->if_softc;
struct ieee80211com *ic = vap->iv_ic;
struct ifnet *parent = ic->ic_ifp;
/* NB: parent must be up and running */
if (!IFNET_IS_UP_RUNNING(parent)) {
IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
"%s: ignore queue, parent %s not up+running\n",
__func__, parent->if_xname);
m_freem(m);
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
return (ENETDOWN);
}
/*
* No data frames go out unless we're running.
* Note in particular this covers CAC and CSA
* states (though maybe we should check muting
* for CSA).
*/
if (vap->iv_state != IEEE80211_S_RUN &&
vap->iv_state != IEEE80211_S_SLEEP) {
IEEE80211_LOCK(ic);
/* re-check under the com lock to avoid races */
if (vap->iv_state != IEEE80211_S_RUN &&
vap->iv_state != IEEE80211_S_SLEEP) {
IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
"%s: ignore queue, in %s state\n",
__func__, ieee80211_state_name[vap->iv_state]);
vap->iv_stats.is_tx_badstate++;
IEEE80211_UNLOCK(ic);
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
m_freem(m);
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
return (ENETDOWN);
}
IEEE80211_UNLOCK(ic);
}
/*
* Sanitize mbuf flags for net80211 use. We cannot
* clear M_PWR_SAV or M_MORE_DATA because these may
* be set for frames that are re-submitted from the
* power save queue.
*
* NB: This must be done before ieee80211_classify as
* it marks EAPOL in frames with M_EAPOL.
*/
m->m_flags &= ~(M_80211_TX - M_PWR_SAV - M_MORE_DATA);
/*
* Bump to the packet transmission path.
* The mbuf will be consumed here.
*/
return (ieee80211_start_pkt(vap, m));
}
void
ieee80211_vap_qflush(struct ifnet *ifp)
{
/* Empty for now */
}
/*
* 802.11 raw output routine.
*
* XXX TODO: this (and other send routines) should correctly
* XXX keep the pwr mgmt bit set if it decides to call into the
* XXX driver to send a frame whilst the state is SLEEP.
*
* Otherwise the peer may decide that we're awake and flood us
* with traffic we are still too asleep to receive!
*/
int
ieee80211_raw_output(struct ieee80211vap *vap, struct ieee80211_node *ni,
struct mbuf *m, const struct ieee80211_bpf_params *params)
{
struct ieee80211com *ic = vap->iv_ic;
/*
* Set node - the caller has taken a reference, so ensure
* that the mbuf has the same node value that
* it would if it were going via the normal path.
*/
m->m_pkthdr.rcvif = (void *)ni;
/*
* Attempt to add bpf transmit parameters.
*
* For now it's ok to fail; the raw_xmit api still takes
* them as an option.
*
* Later on when ic_raw_xmit() has params removed,
* they'll have to be added - so fail the transmit if
* they can't be.
*/
if (params)
(void) ieee80211_add_xmit_params(m, params);
return (ic->ic_raw_xmit(ni, m, params));
}
/*
* 802.11 output routine. This is (currently) used only to
* connect bpf write calls to the 802.11 layer for injecting
* raw 802.11 frames.
*/
int
ieee80211_output(struct ifnet *ifp, struct mbuf *m,
const struct sockaddr *dst, struct route *ro)
{
#define senderr(e) do { error = (e); goto bad;} while (0)
struct ieee80211_node *ni = NULL;
struct ieee80211vap *vap;
struct ieee80211_frame *wh;
struct ieee80211com *ic = NULL;
int error;
int ret;
if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
/*
* Short-circuit requests if the vap is marked OACTIVE
* as this can happen because a packet came down through
* ieee80211_start before the vap entered RUN state in
* which case it's ok to just drop the frame. This
* should not be necessary but callers of if_output don't
* check OACTIVE.
*/
senderr(ENETDOWN);
}
vap = ifp->if_softc;
ic = vap->iv_ic;
/*
* Hand to the 802.3 code if not tagged as
* a raw 802.11 frame.
*/
if (dst->sa_family != AF_IEEE80211)
return vap->iv_output(ifp, m, dst, ro);
#ifdef MAC
error = mac_ifnet_check_transmit(ifp, m);
if (error)
senderr(error);
#endif
if (ifp->if_flags & IFF_MONITOR)
senderr(ENETDOWN);
if (!IFNET_IS_UP_RUNNING(ifp))
senderr(ENETDOWN);
if (vap->iv_state == IEEE80211_S_CAC) {
IEEE80211_DPRINTF(vap,
IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
"block %s frame in CAC state\n", "raw data");
vap->iv_stats.is_tx_badstate++;
senderr(EIO); /* XXX */
} else if (vap->iv_state == IEEE80211_S_SCAN)
senderr(EIO);
/* XXX bypass bridge, pfil, carp, etc. */
if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack))
senderr(EIO); /* XXX */
wh = mtod(m, struct ieee80211_frame *);
if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) !=
IEEE80211_FC0_VERSION_0)
senderr(EIO); /* XXX */
/* locate destination node */
switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
case IEEE80211_FC1_DIR_NODS:
case IEEE80211_FC1_DIR_FROMDS:
ni = ieee80211_find_txnode(vap, wh->i_addr1);
break;
case IEEE80211_FC1_DIR_TODS:
case IEEE80211_FC1_DIR_DSTODS:
if (m->m_pkthdr.len < sizeof(struct ieee80211_frame))
senderr(EIO); /* XXX */
ni = ieee80211_find_txnode(vap, wh->i_addr3);
break;
default:
senderr(EIO); /* XXX */
}
if (ni == NULL) {
/*
* Permit packets w/ bpf params through regardless
* (see below about sa_len).
*/
if (dst->sa_len == 0)
senderr(EHOSTUNREACH);
ni = ieee80211_ref_node(vap->iv_bss);
}
/*
* Sanitize mbuf for net80211 flags leaked from above.
*
* NB: This must be done before ieee80211_classify as
* it marks EAPOL in frames with M_EAPOL.
*/
m->m_flags &= ~M_80211_TX;
/* calculate priority so drivers can find the tx queue */
/* XXX assumes an 802.3 frame */
if (ieee80211_classify(ni, m))
senderr(EIO); /* XXX */
if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
IEEE80211_NODE_STAT(ni, tx_data);
if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
IEEE80211_NODE_STAT(ni, tx_mcast);
m->m_flags |= M_MCAST;
} else
IEEE80211_NODE_STAT(ni, tx_ucast);
/* NB: ieee80211_encap does not include 802.11 header */
IEEE80211_NODE_STAT_ADD(ni, tx_bytes, m->m_pkthdr.len);
IEEE80211_TX_LOCK(ic);
/*
* NB: DLT_IEEE802_11_RADIO identifies the parameters are
* present by setting the sa_len field of the sockaddr (yes,
* this is a hack).
* NB: we assume sa_data is suitably aligned to cast.
*/
ret = ieee80211_raw_output(vap, ni, m,
(const struct ieee80211_bpf_params *)(dst->sa_len ?
dst->sa_data : NULL));
IEEE80211_TX_UNLOCK(ic);
return (ret);
bad:
if (m != NULL)
m_freem(m);
if (ni != NULL)
ieee80211_free_node(ni);
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
return error;
#undef senderr
}
/*
* Set the direction field and address fields of an outgoing
* frame. Note this should be called early on in constructing
* a frame as it sets i_fc[1]; other bits can then be or'd in.
*/
void
ieee80211_send_setup(
struct ieee80211_node *ni,
struct mbuf *m,
int type, int tid,
const uint8_t sa[IEEE80211_ADDR_LEN],
const uint8_t da[IEEE80211_ADDR_LEN],
const uint8_t bssid[IEEE80211_ADDR_LEN])
{
#define WH4(wh) ((struct ieee80211_frame_addr4 *)wh)
struct ieee80211vap *vap = ni->ni_vap;
struct ieee80211_tx_ampdu *tap;
struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
ieee80211_seq seqno;
IEEE80211_TX_LOCK_ASSERT(ni->ni_ic);
wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type;
if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) {
switch (vap->iv_opmode) {
case IEEE80211_M_STA:
wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
IEEE80211_ADDR_COPY(wh->i_addr1, bssid);
IEEE80211_ADDR_COPY(wh->i_addr2, sa);
IEEE80211_ADDR_COPY(wh->i_addr3, da);
break;
case IEEE80211_M_IBSS:
case IEEE80211_M_AHDEMO:
wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
IEEE80211_ADDR_COPY(wh->i_addr1, da);
IEEE80211_ADDR_COPY(wh->i_addr2, sa);
IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
break;
case IEEE80211_M_HOSTAP:
wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
IEEE80211_ADDR_COPY(wh->i_addr1, da);
IEEE80211_ADDR_COPY(wh->i_addr2, bssid);
IEEE80211_ADDR_COPY(wh->i_addr3, sa);
break;
case IEEE80211_M_WDS:
wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
IEEE80211_ADDR_COPY(wh->i_addr1, da);
IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
IEEE80211_ADDR_COPY(wh->i_addr3, da);
IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
break;
case IEEE80211_M_MBSS:
#ifdef IEEE80211_SUPPORT_MESH
if (IEEE80211_IS_MULTICAST(da)) {
wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
/* XXX next hop */
IEEE80211_ADDR_COPY(wh->i_addr1, da);
IEEE80211_ADDR_COPY(wh->i_addr2,
vap->iv_myaddr);
} else {
wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
IEEE80211_ADDR_COPY(wh->i_addr1, da);
IEEE80211_ADDR_COPY(wh->i_addr2,
vap->iv_myaddr);
IEEE80211_ADDR_COPY(wh->i_addr3, da);
IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
}
#endif
break;
case IEEE80211_M_MONITOR: /* NB: to quiet compiler */
break;
}
} else {
wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
IEEE80211_ADDR_COPY(wh->i_addr1, da);
IEEE80211_ADDR_COPY(wh->i_addr2, sa);
#ifdef IEEE80211_SUPPORT_MESH
if (vap->iv_opmode == IEEE80211_M_MBSS)
IEEE80211_ADDR_COPY(wh->i_addr3, sa);
else
#endif
IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
}
*(uint16_t *)&wh->i_dur[0] = 0;
tap = &ni->ni_tx_ampdu[tid];
if (tid != IEEE80211_NONQOS_TID && IEEE80211_AMPDU_RUNNING(tap))
m->m_flags |= M_AMPDU_MPDU;
else {
if (IEEE80211_HAS_SEQ(type & IEEE80211_FC0_TYPE_MASK,
type & IEEE80211_FC0_SUBTYPE_MASK))
seqno = ni->ni_txseqs[tid]++;
else
seqno = 0;
*(uint16_t *)&wh->i_seq[0] =
htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
M_SEQNO_SET(m, seqno);
}
if (IEEE80211_IS_MULTICAST(wh->i_addr1))
m->m_flags |= M_MCAST;
#undef WH4
}
/*
* Send a management frame to the specified node. The node pointer
* must have a reference as the pointer will be passed to the driver
* and potentially held for a long time. If the frame is successfully
* dispatched to the driver, then it is responsible for freeing the
* reference (and potentially free'ing up any associated storage);
* otherwise deal with reclaiming any reference (on error).
*/
int
ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type,
struct ieee80211_bpf_params *params)
{
struct ieee80211vap *vap = ni->ni_vap;
struct ieee80211com *ic = ni->ni_ic;
struct ieee80211_frame *wh;
int ret;
KASSERT(ni != NULL, ("null node"));
if (vap->iv_state == IEEE80211_S_CAC) {
IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
ni, "block %s frame in CAC state",
ieee80211_mgt_subtype_name[
(type & IEEE80211_FC0_SUBTYPE_MASK) >>
IEEE80211_FC0_SUBTYPE_SHIFT]);
vap->iv_stats.is_tx_badstate++;
ieee80211_free_node(ni);
m_freem(m);
return EIO; /* XXX */
}
M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
if (m == NULL) {
ieee80211_free_node(ni);
return ENOMEM;
}
IEEE80211_TX_LOCK(ic);
wh = mtod(m, struct ieee80211_frame *);
ieee80211_send_setup(ni, m,
IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID,
vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1,
"encrypting frame (%s)", __func__);
wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
}
m->m_flags |= M_ENCAP; /* mark encapsulated */
KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?"));
M_WME_SETAC(m, params->ibp_pri);
#ifdef IEEE80211_DEBUG
/* avoid printing too many frames */
if ((ieee80211_msg_debug(vap) && doprint(vap, type)) ||
ieee80211_msg_dumppkts(vap)) {
printf("[%s] send %s on channel %u\n",
ether_sprintf(wh->i_addr1),
ieee80211_mgt_subtype_name[
(type & IEEE80211_FC0_SUBTYPE_MASK) >>
IEEE80211_FC0_SUBTYPE_SHIFT],
ieee80211_chan2ieee(ic, ic->ic_curchan));
}
#endif
IEEE80211_NODE_STAT(ni, tx_mgmt);
ret = ieee80211_raw_output(vap, ni, m, params);
IEEE80211_TX_UNLOCK(ic);
return (ret);
}
/*
* Send a null data frame to the specified node. If the station
* is setup for QoS then a QoS Null Data frame is constructed.
* If this is a WDS station then a 4-address frame is constructed.
*
* NB: the caller is assumed to have setup a node reference
* for use; this is necessary to deal with a race condition
* when probing for inactive stations. Like ieee80211_mgmt_output
* we must cleanup any node reference on error; however we
* can safely just unref it as we know it will never be the
* last reference to the node.
*/
int
ieee80211_send_nulldata(struct ieee80211_node *ni)
{
struct ieee80211vap *vap = ni->ni_vap;
struct ieee80211com *ic = ni->ni_ic;
struct mbuf *m;
struct ieee80211_frame *wh;
int hdrlen;
uint8_t *frm;
int ret;
if (vap->iv_state == IEEE80211_S_CAC) {
IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
ni, "block %s frame in CAC state", "null data");
ieee80211_unref_node(&ni);
vap->iv_stats.is_tx_badstate++;
return EIO; /* XXX */
}
if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))
hdrlen = sizeof(struct ieee80211_qosframe);
else
hdrlen = sizeof(struct ieee80211_frame);
/* NB: only WDS vap's get 4-address frames */
if (vap->iv_opmode == IEEE80211_M_WDS)
hdrlen += IEEE80211_ADDR_LEN;
if (ic->ic_flags & IEEE80211_F_DATAPAD)
hdrlen = roundup(hdrlen, sizeof(uint32_t));
m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0);
if (m == NULL) {
/* XXX debug msg */
ieee80211_unref_node(&ni);
vap->iv_stats.is_tx_nobuf++;
return ENOMEM;
}
KASSERT(M_LEADINGSPACE(m) >= hdrlen,
("leading space %zd", M_LEADINGSPACE(m)));
M_PREPEND(m, hdrlen, M_NOWAIT);
if (m == NULL) {
/* NB: cannot happen */
ieee80211_free_node(ni);
return ENOMEM;
}
IEEE80211_TX_LOCK(ic);
wh = mtod(m, struct ieee80211_frame *); /* NB: a little lie */
if (ni->ni_flags & IEEE80211_NODE_QOS) {
const int tid = WME_AC_TO_TID(WME_AC_BE);
uint8_t *qos;
ieee80211_send_setup(ni, m,
IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL,
tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
if (vap->iv_opmode == IEEE80211_M_WDS)
qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
else
qos = ((struct ieee80211_qosframe *) wh)->i_qos;
qos[0] = tid & IEEE80211_QOS_TID;
if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy)
qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
qos[1] = 0;
} else {
ieee80211_send_setup(ni, m,
IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA,
IEEE80211_NONQOS_TID,
vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
}
if (vap->iv_opmode != IEEE80211_M_WDS) {
/* NB: power management bit is never sent by an AP */
if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
vap->iv_opmode != IEEE80211_M_HOSTAP)
wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT;
}
m->m_len = m->m_pkthdr.len = hdrlen;
m->m_flags |= M_ENCAP; /* mark encapsulated */
M_WME_SETAC(m, WME_AC_BE);
IEEE80211_NODE_STAT(ni, tx_data);
IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni,
"send %snull data frame on channel %u, pwr mgt %s",
ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "",
ieee80211_chan2ieee(ic, ic->ic_curchan),
wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis");
ret = ieee80211_raw_output(vap, ni, m, NULL);
IEEE80211_TX_UNLOCK(ic);
return (ret);
}
/*
* Assign priority to a frame based on any vlan tag assigned
* to the station and/or any Diffserv setting in an IP header.
* Finally, if an ACM policy is setup (in station mode) it's
* applied.
*/
int
ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m)
{
const struct ether_header *eh = mtod(m, struct ether_header *);
int v_wme_ac, d_wme_ac, ac;
/*
* Always promote PAE/EAPOL frames to high priority.
*/
if (eh->ether_type == htons(ETHERTYPE_PAE)) {
/* NB: mark so others don't need to check header */
m->m_flags |= M_EAPOL;
ac = WME_AC_VO;
goto done;
}
/*
* Non-qos traffic goes to BE.
*/
if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) {
ac = WME_AC_BE;
goto done;
}
/*
* If node has a vlan tag then all traffic
* to it must have a matching tag.
*/
v_wme_ac = 0;
if (ni->ni_vlan != 0) {
if ((m->m_flags & M_VLANTAG) == 0) {
IEEE80211_NODE_STAT(ni, tx_novlantag);
return 1;
}
if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) !=
EVL_VLANOFTAG(ni->ni_vlan)) {
IEEE80211_NODE_STAT(ni, tx_vlanmismatch);
return 1;
}
/* map vlan priority to AC */
v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan));
}
/* XXX m_copydata may be too slow for fast path */
#ifdef INET
if (eh->ether_type == htons(ETHERTYPE_IP)) {
uint8_t tos;
/*
* IP frame, map the DSCP bits from the TOS field.
*/
/* NB: ip header may not be in first mbuf */
m_copydata(m, sizeof(struct ether_header) +
offsetof(struct ip, ip_tos), sizeof(tos), &tos);
tos >>= 5; /* NB: ECN + low 3 bits of DSCP */
d_wme_ac = TID_TO_WME_AC(tos);
} else {
#endif /* INET */
#ifdef INET6
if (eh->ether_type == htons(ETHERTYPE_IPV6)) {
uint32_t flow;
uint8_t tos;
/*
* IPv6 frame, map the DSCP bits from the traffic class field.
*/
m_copydata(m, sizeof(struct ether_header) +
offsetof(struct ip6_hdr, ip6_flow), sizeof(flow),
(caddr_t) &flow);
tos = (uint8_t)(ntohl(flow) >> 20);
tos >>= 5; /* NB: ECN + low 3 bits of DSCP */
d_wme_ac = TID_TO_WME_AC(tos);
} else {
#endif /* INET6 */
d_wme_ac = WME_AC_BE;
#ifdef INET6
}
#endif
#ifdef INET
}
#endif
/*
* Use highest priority AC.
*/
if (v_wme_ac > d_wme_ac)
ac = v_wme_ac;
else
ac = d_wme_ac;
/*
* Apply ACM policy.
*/
if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) {
static const int acmap[4] = {
WME_AC_BK, /* WME_AC_BE */
WME_AC_BK, /* WME_AC_BK */
WME_AC_BE, /* WME_AC_VI */
WME_AC_VI, /* WME_AC_VO */
};
struct ieee80211com *ic = ni->ni_ic;
while (ac != WME_AC_BK &&
ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm)
ac = acmap[ac];
}
done:
M_WME_SETAC(m, ac);
return 0;
}
/*
* Insure there is sufficient contiguous space to encapsulate the
* 802.11 data frame. If room isn't already there, arrange for it.
* Drivers and cipher modules assume we have done the necessary work
* and fail rudely if they don't find the space they need.
*/
struct mbuf *
ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize,
struct ieee80211_key *key, struct mbuf *m)
{
#define TO_BE_RECLAIMED (sizeof(struct ether_header) - sizeof(struct llc))
int needed_space = vap->iv_ic->ic_headroom + hdrsize;
if (key != NULL) {
/* XXX belongs in crypto code? */
needed_space += key->wk_cipher->ic_header;
/* XXX frags */
/*
* When crypto is being done in the host we must insure
* the data are writable for the cipher routines; clone
* a writable mbuf chain.
* XXX handle SWMIC specially
*/
if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) {
m = m_unshare(m, M_NOWAIT);
if (m == NULL) {
IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
"%s: cannot get writable mbuf\n", __func__);
vap->iv_stats.is_tx_nobuf++; /* XXX new stat */
return NULL;
}
}
}
/*
* We know we are called just before stripping an Ethernet
* header and prepending an LLC header. This means we know
* there will be
* sizeof(struct ether_header) - sizeof(struct llc)
* bytes recovered to which we need additional space for the
* 802.11 header and any crypto header.
*/
/* XXX check trailing space and copy instead? */
if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) {
struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type);
if (n == NULL) {
IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
"%s: cannot expand storage\n", __func__);
vap->iv_stats.is_tx_nobuf++;
m_freem(m);
return NULL;
}
KASSERT(needed_space <= MHLEN,
("not enough room, need %u got %d\n", needed_space, MHLEN));
/*
* Setup new mbuf to have leading space to prepend the
* 802.11 header and any crypto header bits that are
* required (the latter are added when the driver calls
* back to ieee80211_crypto_encap to do crypto encapsulation).
*/
/* NB: must be first 'cuz it clobbers m_data */
m_move_pkthdr(n, m);
n->m_len = 0; /* NB: m_gethdr does not set */
n->m_data += needed_space;
/*
* Pull up Ethernet header to create the expected layout.
* We could use m_pullup but that's overkill (i.e. we don't
* need the actual data) and it cannot fail so do it inline
* for speed.
*/
/* NB: struct ether_header is known to be contiguous */
n->m_len += sizeof(struct ether_header);
m->m_len -= sizeof(struct ether_header);
m->m_data += sizeof(struct ether_header);
/*
* Replace the head of the chain.
*/
n->m_next = m;
m = n;
}
return m;
#undef TO_BE_RECLAIMED
}
/*
* Return the transmit key to use in sending a unicast frame.
* If a unicast key is set we use that. When no unicast key is set
* we fall back to the default transmit key.
*/
static __inline struct ieee80211_key *
ieee80211_crypto_getucastkey(struct ieee80211vap *vap,
struct ieee80211_node *ni)
{
if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) {
if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
return NULL;
return &vap->iv_nw_keys[vap->iv_def_txkey];
} else {
return &ni->ni_ucastkey;
}
}
/*
* Return the transmit key to use in sending a multicast frame.
* Multicast traffic always uses the group key which is installed as
* the default tx key.
*/
static __inline struct ieee80211_key *
ieee80211_crypto_getmcastkey(struct ieee80211vap *vap,
struct ieee80211_node *ni)
{
if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
return NULL;
return &vap->iv_nw_keys[vap->iv_def_txkey];
}
/*
* Encapsulate an outbound data frame. The mbuf chain is updated.
* If an error is encountered NULL is returned. The caller is required
* to provide a node reference and pullup the ethernet header in the
* first mbuf.
*
* NB: Packet is assumed to be processed by ieee80211_classify which
* marked EAPOL frames w/ M_EAPOL.
*/
struct mbuf *
ieee80211_encap(struct ieee80211vap *vap, struct ieee80211_node *ni,
struct mbuf *m)
{
#define WH4(wh) ((struct ieee80211_frame_addr4 *)(wh))
#define MC01(mc) ((struct ieee80211_meshcntl_ae01 *)mc)
struct ieee80211com *ic = ni->ni_ic;
#ifdef IEEE80211_SUPPORT_MESH
struct ieee80211_mesh_state *ms = vap->iv_mesh;
struct ieee80211_meshcntl_ae10 *mc;
struct ieee80211_mesh_route *rt = NULL;
int dir = -1;
#endif
struct ether_header eh;
struct ieee80211_frame *wh;
struct ieee80211_key *key;
struct llc *llc;
int hdrsize, hdrspace, datalen, addqos, txfrag, is4addr;
ieee80211_seq seqno;
int meshhdrsize, meshae;
uint8_t *qos;
IEEE80211_TX_LOCK_ASSERT(ic);
/*
* Copy existing Ethernet header to a safe place. The
* rest of the code assumes it's ok to strip it when
* reorganizing state for the final encapsulation.
*/
KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!"));
ETHER_HEADER_COPY(&eh, mtod(m, caddr_t));
/*
* Insure space for additional headers. First identify
* transmit key to use in calculating any buffer adjustments
* required. This is also used below to do privacy
* encapsulation work. Then calculate the 802.11 header
* size and any padding required by the driver.
*
* Note key may be NULL if we fall back to the default
* transmit key and that is not set. In that case the
* buffer may not be expanded as needed by the cipher
* routines, but they will/should discard it.
*/
if (vap->iv_flags & IEEE80211_F_PRIVACY) {
if (vap->iv_opmode == IEEE80211_M_STA ||
!IEEE80211_IS_MULTICAST(eh.ether_dhost) ||
(vap->iv_opmode == IEEE80211_M_WDS &&
(vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY)))
key = ieee80211_crypto_getucastkey(vap, ni);
else
key = ieee80211_crypto_getmcastkey(vap, ni);
if (key == NULL && (m->m_flags & M_EAPOL) == 0) {
IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO,
eh.ether_dhost,
"no default transmit key (%s) deftxkey %u",
__func__, vap->iv_def_txkey);
vap->iv_stats.is_tx_nodefkey++;
goto bad;
}
} else
key = NULL;
/*
* XXX Some ap's don't handle QoS-encapsulated EAPOL
* frames so suppress use. This may be an issue if other
* ap's require all data frames to be QoS-encapsulated
* once negotiated in which case we'll need to make this
* configurable.
* NB: mesh data frames are QoS.
*/
addqos = ((ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) ||
(vap->iv_opmode == IEEE80211_M_MBSS)) &&
(m->m_flags & M_EAPOL) == 0;
if (addqos)
hdrsize = sizeof(struct ieee80211_qosframe);
else
hdrsize = sizeof(struct ieee80211_frame);
#ifdef IEEE80211_SUPPORT_MESH
if (vap->iv_opmode == IEEE80211_M_MBSS) {
/*
* Mesh data frames are encapsulated according to the
* rules of Section 11B.8.5 (p.139 of D3.0 spec).
* o Group Addressed data (aka multicast) originating
* at the local sta are sent w/ 3-address format and
* address extension mode 00
* o Individually Addressed data (aka unicast) originating
* at the local sta are sent w/ 4-address format and
* address extension mode 00
* o Group Addressed data forwarded from a non-mesh sta are
* sent w/ 3-address format and address extension mode 01
* o Individually Address data from another sta are sent
* w/ 4-address format and address extension mode 10
*/
is4addr = 0; /* NB: don't use, disable */
if (!IEEE80211_IS_MULTICAST(eh.ether_dhost)) {
rt = ieee80211_mesh_rt_find(vap, eh.ether_dhost);
KASSERT(rt != NULL, ("route is NULL"));
dir = IEEE80211_FC1_DIR_DSTODS;
hdrsize += IEEE80211_ADDR_LEN;
if (rt->rt_flags & IEEE80211_MESHRT_FLAGS_PROXY) {
if (IEEE80211_ADDR_EQ(rt->rt_mesh_gate,
vap->iv_myaddr)) {
IEEE80211_NOTE_MAC(vap,
IEEE80211_MSG_MESH,
eh.ether_dhost,
"%s", "trying to send to ourself");
goto bad;
}
meshae = IEEE80211_MESH_AE_10;
meshhdrsize =
sizeof(struct ieee80211_meshcntl_ae10);
} else {
meshae = IEEE80211_MESH_AE_00;
meshhdrsize =
sizeof(struct ieee80211_meshcntl);
}
} else {
dir = IEEE80211_FC1_DIR_FROMDS;
if (!IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)) {
/* proxy group */
meshae = IEEE80211_MESH_AE_01;
meshhdrsize =
sizeof(struct ieee80211_meshcntl_ae01);
} else {
/* group */
meshae = IEEE80211_MESH_AE_00;
meshhdrsize = sizeof(struct ieee80211_meshcntl);
}
}
} else {
#endif
/*
* 4-address frames need to be generated for:
* o packets sent through a WDS vap (IEEE80211_M_WDS)
* o packets sent through a vap marked for relaying
* (e.g. a station operating with dynamic WDS)
*/
is4addr = vap->iv_opmode == IEEE80211_M_WDS ||
((vap->iv_flags_ext & IEEE80211_FEXT_4ADDR) &&
!IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr));
if (is4addr)
hdrsize += IEEE80211_ADDR_LEN;
meshhdrsize = meshae = 0;
#ifdef IEEE80211_SUPPORT_MESH
}
#endif
/*
* Honor driver DATAPAD requirement.
*/
if (ic->ic_flags & IEEE80211_F_DATAPAD)
hdrspace = roundup(hdrsize, sizeof(uint32_t));
else
hdrspace = hdrsize;
if (__predict_true((m->m_flags & M_FF) == 0)) {
/*
* Normal frame.
*/
m = ieee80211_mbuf_adjust(vap, hdrspace + meshhdrsize, key, m);
if (m == NULL) {
/* NB: ieee80211_mbuf_adjust handles msgs+statistics */
goto bad;
}
/* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */
m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
llc = mtod(m, struct llc *);
llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
llc->llc_control = LLC_UI;
llc->llc_snap.org_code[0] = 0;
llc->llc_snap.org_code[1] = 0;
llc->llc_snap.org_code[2] = 0;
llc->llc_snap.ether_type = eh.ether_type;
} else {
#ifdef IEEE80211_SUPPORT_SUPERG
/*
* Aggregated frame.
*/
m = ieee80211_ff_encap(vap, m, hdrspace + meshhdrsize, key);
if (m == NULL)
#endif
goto bad;
}
datalen = m->m_pkthdr.len; /* NB: w/o 802.11 header */
M_PREPEND(m, hdrspace + meshhdrsize, M_NOWAIT);
if (m == NULL) {
vap->iv_stats.is_tx_nobuf++;
goto bad;
}
wh = mtod(m, struct ieee80211_frame *);
wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA;
*(uint16_t *)wh->i_dur = 0;
qos = NULL; /* NB: quiet compiler */
if (is4addr) {
wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr);
IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost);
} else switch (vap->iv_opmode) {
case IEEE80211_M_STA:
wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid);
IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
break;
case IEEE80211_M_IBSS:
case IEEE80211_M_AHDEMO:
wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
/*
* NB: always use the bssid from iv_bss as the
* neighbor's may be stale after an ibss merge
*/
IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid);
break;
case IEEE80211_M_HOSTAP:
wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid);
IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost);
break;
#ifdef IEEE80211_SUPPORT_MESH
case IEEE80211_M_MBSS:
/* NB: offset by hdrspace to deal with DATAPAD */
mc = (struct ieee80211_meshcntl_ae10 *)
(mtod(m, uint8_t *) + hdrspace);
wh->i_fc[1] = dir;
switch (meshae) {
case IEEE80211_MESH_AE_00: /* no proxy */
mc->mc_flags = 0;
if (dir == IEEE80211_FC1_DIR_DSTODS) { /* ucast */
IEEE80211_ADDR_COPY(wh->i_addr1,
ni->ni_macaddr);
IEEE80211_ADDR_COPY(wh->i_addr2,
vap->iv_myaddr);
IEEE80211_ADDR_COPY(wh->i_addr3,
eh.ether_dhost);
IEEE80211_ADDR_COPY(WH4(wh)->i_addr4,
eh.ether_shost);
qos =((struct ieee80211_qosframe_addr4 *)
wh)->i_qos;
} else if (dir == IEEE80211_FC1_DIR_FROMDS) {
/* mcast */
IEEE80211_ADDR_COPY(wh->i_addr1,
eh.ether_dhost);
IEEE80211_ADDR_COPY(wh->i_addr2,
vap->iv_myaddr);
IEEE80211_ADDR_COPY(wh->i_addr3,
eh.ether_shost);
qos = ((struct ieee80211_qosframe *)
wh)->i_qos;
}
break;
case IEEE80211_MESH_AE_01: /* mcast, proxy */
wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_myaddr);
mc->mc_flags = 1;
IEEE80211_ADDR_COPY(MC01(mc)->mc_addr4,
eh.ether_shost);
qos = ((struct ieee80211_qosframe *) wh)->i_qos;
break;
case IEEE80211_MESH_AE_10: /* ucast, proxy */
KASSERT(rt != NULL, ("route is NULL"));
IEEE80211_ADDR_COPY(wh->i_addr1, rt->rt_nexthop);
IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
IEEE80211_ADDR_COPY(wh->i_addr3, rt->rt_mesh_gate);
IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, vap->iv_myaddr);
mc->mc_flags = IEEE80211_MESH_AE_10;
IEEE80211_ADDR_COPY(mc->mc_addr5, eh.ether_dhost);
IEEE80211_ADDR_COPY(mc->mc_addr6, eh.ether_shost);
qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
break;
default:
KASSERT(0, ("meshae %d", meshae));
break;
}
mc->mc_ttl = ms->ms_ttl;
ms->ms_seq++;
LE_WRITE_4(mc->mc_seq, ms->ms_seq);
break;
#endif
case IEEE80211_M_WDS: /* NB: is4addr should always be true */
default:
goto bad;
}
if (m->m_flags & M_MORE_DATA)
wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
if (addqos) {
int ac, tid;
if (is4addr) {
qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
/* NB: mesh case handled earlier */
} else if (vap->iv_opmode != IEEE80211_M_MBSS)
qos = ((struct ieee80211_qosframe *) wh)->i_qos;
ac = M_WME_GETAC(m);
/* map from access class/queue to 11e header priorty value */
tid = WME_AC_TO_TID(ac);
qos[0] = tid & IEEE80211_QOS_TID;
if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy)
qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
#ifdef IEEE80211_SUPPORT_MESH
if (vap->iv_opmode == IEEE80211_M_MBSS)
qos[1] = IEEE80211_QOS_MC;
else
#endif
qos[1] = 0;
wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS;
if ((m->m_flags & M_AMPDU_MPDU) == 0) {
/*
* NB: don't assign a sequence # to potential
* aggregates; we expect this happens at the
* point the frame comes off any aggregation q
* as otherwise we may introduce holes in the
* BA sequence space and/or make window accouting
* more difficult.
*
* XXX may want to control this with a driver
* capability; this may also change when we pull
* aggregation up into net80211
*/
seqno = ni->ni_txseqs[tid]++;
*(uint16_t *)wh->i_seq =
htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
M_SEQNO_SET(m, seqno);
}
} else {
seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
*(uint16_t *)wh->i_seq =
htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
M_SEQNO_SET(m, seqno);
}
/* check if xmit fragmentation is required */
txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold &&
!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
(vap->iv_caps & IEEE80211_C_TXFRAG) &&
(m->m_flags & (M_FF | M_AMPDU_MPDU)) == 0);
if (key != NULL) {
/*
* IEEE 802.1X: send EAPOL frames always in the clear.
* WPA/WPA2: encrypt EAPOL keys when pairwise keys are set.
*/
if ((m->m_flags & M_EAPOL) == 0 ||
((vap->iv_flags & IEEE80211_F_WPA) &&
(vap->iv_opmode == IEEE80211_M_STA ?
!IEEE80211_KEY_UNDEFINED(key) :
!IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) {
wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) {
IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT,
eh.ether_dhost,
"%s", "enmic failed, discard frame");
vap->iv_stats.is_crypto_enmicfail++;
goto bad;
}
}
}
if (txfrag && !ieee80211_fragment(vap, m, hdrsize,
key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold))
goto bad;
m->m_flags |= M_ENCAP; /* mark encapsulated */
IEEE80211_NODE_STAT(ni, tx_data);
if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
IEEE80211_NODE_STAT(ni, tx_mcast);
m->m_flags |= M_MCAST;
} else
IEEE80211_NODE_STAT(ni, tx_ucast);
IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen);
return m;
bad:
if (m != NULL)
m_freem(m);
return NULL;
#undef WH4
#undef MC01
}
/*
* Fragment the frame according to the specified mtu.
* The size of the 802.11 header (w/o padding) is provided
* so we don't need to recalculate it. We create a new
* mbuf for each fragment and chain it through m_nextpkt;
* we might be able to optimize this by reusing the original
* packet's mbufs but that is significantly more complicated.
*/
static int
ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0,
u_int hdrsize, u_int ciphdrsize, u_int mtu)
{
struct ieee80211com *ic = vap->iv_ic;
struct ieee80211_frame *wh, *whf;
struct mbuf *m, *prev, *next;
u_int totalhdrsize, fragno, fragsize, off, remainder, payload;
u_int hdrspace;
KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?"));
KASSERT(m0->m_pkthdr.len > mtu,
("pktlen %u mtu %u", m0->m_pkthdr.len, mtu));
/*
* Honor driver DATAPAD requirement.
*/
if (ic->ic_flags & IEEE80211_F_DATAPAD)
hdrspace = roundup(hdrsize, sizeof(uint32_t));
else
hdrspace = hdrsize;
wh = mtod(m0, struct ieee80211_frame *);
/* NB: mark the first frag; it will be propagated below */
wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG;
totalhdrsize = hdrspace + ciphdrsize;
fragno = 1;
off = mtu - ciphdrsize;
remainder = m0->m_pkthdr.len - off;
prev = m0;
do {
fragsize = totalhdrsize + remainder;
if (fragsize > mtu)
fragsize = mtu;
/* XXX fragsize can be >2048! */
KASSERT(fragsize < MCLBYTES,
("fragment size %u too big!", fragsize));
if (fragsize > MHLEN)
m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
else
m = m_gethdr(M_NOWAIT, MT_DATA);
if (m == NULL)
goto bad;
/* leave room to prepend any cipher header */
m_align(m, fragsize - ciphdrsize);
/*
* Form the header in the fragment. Note that since
* we mark the first fragment with the MORE_FRAG bit
* it automatically is propagated to each fragment; we
* need only clear it on the last fragment (done below).
* NB: frag 1+ dont have Mesh Control field present.
*/
whf = mtod(m, struct ieee80211_frame *);
memcpy(whf, wh, hdrsize);
#ifdef IEEE80211_SUPPORT_MESH
if (vap->iv_opmode == IEEE80211_M_MBSS) {
if (IEEE80211_IS_DSTODS(wh))
((struct ieee80211_qosframe_addr4 *)
whf)->i_qos[1] &= ~IEEE80211_QOS_MC;
else
((struct ieee80211_qosframe *)
whf)->i_qos[1] &= ~IEEE80211_QOS_MC;
}
#endif
*(uint16_t *)&whf->i_seq[0] |= htole16(
(fragno & IEEE80211_SEQ_FRAG_MASK) <<
IEEE80211_SEQ_FRAG_SHIFT);
fragno++;
payload = fragsize - totalhdrsize;
/* NB: destination is known to be contiguous */
m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrspace);
m->m_len = hdrspace + payload;
m->m_pkthdr.len = hdrspace + payload;
m->m_flags |= M_FRAG;
/* chain up the fragment */
prev->m_nextpkt = m;
prev = m;
/* deduct fragment just formed */
remainder -= payload;
off += payload;
} while (remainder != 0);
/* set the last fragment */
m->m_flags |= M_LASTFRAG;
whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG;
/* strip first mbuf now that everything has been copied */
m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize)));
m0->m_flags |= M_FIRSTFRAG | M_FRAG;
vap->iv_stats.is_tx_fragframes++;
vap->iv_stats.is_tx_frags += fragno-1;
return 1;
bad:
/* reclaim fragments but leave original frame for caller to free */
for (m = m0->m_nextpkt; m != NULL; m = next) {
next = m->m_nextpkt;
m->m_nextpkt = NULL; /* XXX paranoid */
m_freem(m);
}
m0->m_nextpkt = NULL;
return 0;
}
/*
* Add a supported rates element id to a frame.
*/
uint8_t *
ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs)
{
int nrates;
*frm++ = IEEE80211_ELEMID_RATES;
nrates = rs->rs_nrates;
if (nrates > IEEE80211_RATE_SIZE)
nrates = IEEE80211_RATE_SIZE;
*frm++ = nrates;
memcpy(frm, rs->rs_rates, nrates);
return frm + nrates;
}
/*
* Add an extended supported rates element id to a frame.
*/
uint8_t *
ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs)
{
/*
* Add an extended supported rates element if operating in 11g mode.
*/
if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
*frm++ = IEEE80211_ELEMID_XRATES;
*frm++ = nrates;
memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
frm += nrates;
}
return frm;
}
/*
* Add an ssid element to a frame.
*/
uint8_t *
ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len)
{
*frm++ = IEEE80211_ELEMID_SSID;
*frm++ = len;
memcpy(frm, ssid, len);
return frm + len;
}
/*
* Add an erp element to a frame.
*/
static uint8_t *
ieee80211_add_erp(uint8_t *frm, struct ieee80211com *ic)
{
uint8_t erp;
*frm++ = IEEE80211_ELEMID_ERP;
*frm++ = 1;
erp = 0;
if (ic->ic_nonerpsta != 0)
erp |= IEEE80211_ERP_NON_ERP_PRESENT;
if (ic->ic_flags & IEEE80211_F_USEPROT)
erp |= IEEE80211_ERP_USE_PROTECTION;
if (ic->ic_flags & IEEE80211_F_USEBARKER)
erp |= IEEE80211_ERP_LONG_PREAMBLE;
*frm++ = erp;
return frm;
}
/*
* Add a CFParams element to a frame.
*/
static uint8_t *
ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic)
{
#define ADDSHORT(frm, v) do { \
LE_WRITE_2(frm, v); \
frm += 2; \
} while (0)
*frm++ = IEEE80211_ELEMID_CFPARMS;
*frm++ = 6;
*frm++ = 0; /* CFP count */
*frm++ = 2; /* CFP period */
ADDSHORT(frm, 0); /* CFP MaxDuration (TU) */
ADDSHORT(frm, 0); /* CFP CurRemaining (TU) */
return frm;
#undef ADDSHORT
}
static __inline uint8_t *
add_appie(uint8_t *frm, const struct ieee80211_appie *ie)
{
memcpy(frm, ie->ie_data, ie->ie_len);
return frm + ie->ie_len;
}
static __inline uint8_t *
add_ie(uint8_t *frm, const uint8_t *ie)
{
memcpy(frm, ie, 2 + ie[1]);
return frm + 2 + ie[1];
}
#define WME_OUI_BYTES 0x00, 0x50, 0xf2
/*
* Add a WME information element to a frame.
*/
static uint8_t *
ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme)
{
static const struct ieee80211_wme_info info = {
.wme_id = IEEE80211_ELEMID_VENDOR,
.wme_len = sizeof(struct ieee80211_wme_info) - 2,
.wme_oui = { WME_OUI_BYTES },
.wme_type = WME_OUI_TYPE,
.wme_subtype = WME_INFO_OUI_SUBTYPE,
.wme_version = WME_VERSION,
.wme_info = 0,
};
memcpy(frm, &info, sizeof(info));
return frm + sizeof(info);
}
/*
* Add a WME parameters element to a frame.
*/
static uint8_t *
ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme)
{
#define SM(_v, _f) (((_v) << _f##_S) & _f)
#define ADDSHORT(frm, v) do { \
LE_WRITE_2(frm, v); \
frm += 2; \
} while (0)
/* NB: this works 'cuz a param has an info at the front */
static const struct ieee80211_wme_info param = {
.wme_id = IEEE80211_ELEMID_VENDOR,
.wme_len = sizeof(struct ieee80211_wme_param) - 2,
.wme_oui = { WME_OUI_BYTES },
.wme_type = WME_OUI_TYPE,
.wme_subtype = WME_PARAM_OUI_SUBTYPE,
.wme_version = WME_VERSION,
};
int i;
memcpy(frm, &param, sizeof(param));
frm += __offsetof(struct ieee80211_wme_info, wme_info);
*frm++ = wme->wme_bssChanParams.cap_info; /* AC info */
*frm++ = 0; /* reserved field */
for (i = 0; i < WME_NUM_AC; i++) {
const struct wmeParams *ac =
&wme->wme_bssChanParams.cap_wmeParams[i];
*frm++ = SM(i, WME_PARAM_ACI)
| SM(ac->wmep_acm, WME_PARAM_ACM)
| SM(ac->wmep_aifsn, WME_PARAM_AIFSN)
;
*frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX)
| SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN)
;
ADDSHORT(frm, ac->wmep_txopLimit);
}
return frm;
#undef SM
#undef ADDSHORT
}
#undef WME_OUI_BYTES
/*
* Add an 11h Power Constraint element to a frame.
*/
static uint8_t *
ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap)
{
const struct ieee80211_channel *c = vap->iv_bss->ni_chan;
/* XXX per-vap tx power limit? */
int8_t limit = vap->iv_ic->ic_txpowlimit / 2;
frm[0] = IEEE80211_ELEMID_PWRCNSTR;
frm[1] = 1;
frm[2] = c->ic_maxregpower > limit ? c->ic_maxregpower - limit : 0;
return frm + 3;
}
/*
* Add an 11h Power Capability element to a frame.
*/
static uint8_t *
ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c)
{
frm[0] = IEEE80211_ELEMID_PWRCAP;
frm[1] = 2;
frm[2] = c->ic_minpower;
frm[3] = c->ic_maxpower;
return frm + 4;
}
/*
* Add an 11h Supported Channels element to a frame.
*/
static uint8_t *
ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic)
{
static const int ielen = 26;
frm[0] = IEEE80211_ELEMID_SUPPCHAN;
frm[1] = ielen;
/* XXX not correct */
memcpy(frm+2, ic->ic_chan_avail, ielen);
return frm + 2 + ielen;
}
/*
* Add an 11h Quiet time element to a frame.
*/
static uint8_t *
ieee80211_add_quiet(uint8_t *frm, struct ieee80211vap *vap)
{
struct ieee80211_quiet_ie *quiet = (struct ieee80211_quiet_ie *) frm;
quiet->quiet_ie = IEEE80211_ELEMID_QUIET;
quiet->len = 6;
if (vap->iv_quiet_count_value == 1)
vap->iv_quiet_count_value = vap->iv_quiet_count;
else if (vap->iv_quiet_count_value > 1)
vap->iv_quiet_count_value--;
if (vap->iv_quiet_count_value == 0) {
/* value 0 is reserved as per 802.11h standerd */
vap->iv_quiet_count_value = 1;
}
quiet->tbttcount = vap->iv_quiet_count_value;
quiet->period = vap->iv_quiet_period;
quiet->duration = htole16(vap->iv_quiet_duration);
quiet->offset = htole16(vap->iv_quiet_offset);
return frm + sizeof(*quiet);
}
/*
* Add an 11h Channel Switch Announcement element to a frame.
* Note that we use the per-vap CSA count to adjust the global
* counter so we can use this routine to form probe response
* frames and get the current count.
*/
static uint8_t *
ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap)
{
struct ieee80211com *ic = vap->iv_ic;
struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm;
csa->csa_ie = IEEE80211_ELEMID_CSA;
csa->csa_len = 3;
csa->csa_mode = 1; /* XXX force quiet on channel */
csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan);
csa->csa_count = ic->ic_csa_count - vap->iv_csa_count;
return frm + sizeof(*csa);
}
/*
* Add an 11h country information element to a frame.
*/
static uint8_t *
ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic)
{
if (ic->ic_countryie == NULL ||
ic->ic_countryie_chan != ic->ic_bsschan) {
/*
* Handle lazy construction of ie. This is done on
* first use and after a channel change that requires
* re-calculation.
*/
if (ic->ic_countryie != NULL)
IEEE80211_FREE(ic->ic_countryie, M_80211_NODE_IE);
ic->ic_countryie = ieee80211_alloc_countryie(ic);
if (ic->ic_countryie == NULL)
return frm;
ic->ic_countryie_chan = ic->ic_bsschan;
}
return add_appie(frm, ic->ic_countryie);
}
uint8_t *
ieee80211_add_wpa(uint8_t *frm, const struct ieee80211vap *vap)
{
if (vap->iv_flags & IEEE80211_F_WPA1 && vap->iv_wpa_ie != NULL)
return (add_ie(frm, vap->iv_wpa_ie));
else {
/* XXX else complain? */
return (frm);
}
}
uint8_t *
ieee80211_add_rsn(uint8_t *frm, const struct ieee80211vap *vap)
{
if (vap->iv_flags & IEEE80211_F_WPA2 && vap->iv_rsn_ie != NULL)
return (add_ie(frm, vap->iv_rsn_ie));
else {
/* XXX else complain? */
return (frm);
}
}
uint8_t *
ieee80211_add_qos(uint8_t *frm, const struct ieee80211_node *ni)
{
if (ni->ni_flags & IEEE80211_NODE_QOS) {
*frm++ = IEEE80211_ELEMID_QOS;
*frm++ = 1;
*frm++ = 0;
}
return (frm);
}
/*
* Send a probe request frame with the specified ssid
* and any optional information element data.
*/
int
ieee80211_send_probereq(struct ieee80211_node *ni,
const uint8_t sa[IEEE80211_ADDR_LEN],
const uint8_t da[IEEE80211_ADDR_LEN],
const uint8_t bssid[IEEE80211_ADDR_LEN],
const uint8_t *ssid, size_t ssidlen)
{
struct ieee80211vap *vap = ni->ni_vap;
struct ieee80211com *ic = ni->ni_ic;
const struct ieee80211_txparam *tp;
struct ieee80211_bpf_params params;
struct ieee80211_frame *wh;
const struct ieee80211_rateset *rs;
struct mbuf *m;
uint8_t *frm;
int ret;
if (vap->iv_state == IEEE80211_S_CAC) {
IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni,
"block %s frame in CAC state", "probe request");
vap->iv_stats.is_tx_badstate++;
return EIO; /* XXX */
}
/*
* Hold a reference on the node so it doesn't go away until after
* the xmit is complete all the way in the driver. On error we
* will remove our reference.
*/
IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
__func__, __LINE__,
ni, ether_sprintf(ni->ni_macaddr),
ieee80211_node_refcnt(ni)+1);
ieee80211_ref_node(ni);
/*
* prreq frame format
* [tlv] ssid
* [tlv] supported rates
* [tlv] RSN (optional)
* [tlv] extended supported rates
* [tlv] WPA (optional)
* [tlv] user-specified ie's
*/
m = ieee80211_getmgtframe(&frm,
ic->ic_headroom + sizeof(struct ieee80211_frame),
2 + IEEE80211_NWID_LEN
+ 2 + IEEE80211_RATE_SIZE
+ sizeof(struct ieee80211_ie_wpa)
+ 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
+ sizeof(struct ieee80211_ie_wpa)
+ (vap->iv_appie_probereq != NULL ?
vap->iv_appie_probereq->ie_len : 0)
);
if (m == NULL) {
vap->iv_stats.is_tx_nobuf++;
ieee80211_free_node(ni);
return ENOMEM;
}
frm = ieee80211_add_ssid(frm, ssid, ssidlen);
rs = ieee80211_get_suprates(ic, ic->ic_curchan);
frm = ieee80211_add_rates(frm, rs);
frm = ieee80211_add_rsn(frm, vap);
frm = ieee80211_add_xrates(frm, rs);
frm = ieee80211_add_wpa(frm, vap);
if (vap->iv_appie_probereq != NULL)
frm = add_appie(frm, vap->iv_appie_probereq);
m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ieee80211_frame),
("leading space %zd", M_LEADINGSPACE(m)));
M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
if (m == NULL) {
/* NB: cannot happen */
ieee80211_free_node(ni);
return ENOMEM;
}
IEEE80211_TX_LOCK(ic);
wh = mtod(m, struct ieee80211_frame *);
ieee80211_send_setup(ni, m,
IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ,
IEEE80211_NONQOS_TID, sa, da, bssid);
/* XXX power management? */
m->m_flags |= M_ENCAP; /* mark encapsulated */
M_WME_SETAC(m, WME_AC_BE);
IEEE80211_NODE_STAT(ni, tx_probereq);
IEEE80211_NODE_STAT(ni, tx_mgmt);
IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
"send probe req on channel %u bssid %s ssid \"%.*s\"\n",
ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(bssid),
ssidlen, ssid);
memset(&params, 0, sizeof(params));
params.ibp_pri = M_WME_GETAC(m);
tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
params.ibp_rate0 = tp->mgmtrate;
if (IEEE80211_IS_MULTICAST(da)) {
params.ibp_flags |= IEEE80211_BPF_NOACK;
params.ibp_try0 = 1;
} else
params.ibp_try0 = tp->maxretry;
params.ibp_power = ni->ni_txpower;
ret = ieee80211_raw_output(vap, ni, m, &params);
IEEE80211_TX_UNLOCK(ic);
return (ret);
}
/*
* Calculate capability information for mgt frames.
*/
uint16_t
ieee80211_getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan)
{
struct ieee80211com *ic = vap->iv_ic;
uint16_t capinfo;
KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode"));
if (vap->iv_opmode == IEEE80211_M_HOSTAP)
capinfo = IEEE80211_CAPINFO_ESS;
else if (vap->iv_opmode == IEEE80211_M_IBSS)
capinfo = IEEE80211_CAPINFO_IBSS;
else
capinfo = 0;
if (vap->iv_flags & IEEE80211_F_PRIVACY)
capinfo |= IEEE80211_CAPINFO_PRIVACY;
if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
IEEE80211_IS_CHAN_2GHZ(chan))
capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
if (ic->ic_flags & IEEE80211_F_SHSLOT)
capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH))
capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
return capinfo;
}
/*
* Send a management frame. The node is for the destination (or ic_bss
* when in station mode). Nodes other than ic_bss have their reference
* count bumped to reflect our use for an indeterminant time.
*/
int
ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg)
{
#define HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT)
#define senderr(_x, _v) do { vap->iv_stats._v++; ret = _x; goto bad; } while (0)
struct ieee80211vap *vap = ni->ni_vap;
struct ieee80211com *ic = ni->ni_ic;
struct ieee80211_node *bss = vap->iv_bss;
struct ieee80211_bpf_params params;
struct mbuf *m;
uint8_t *frm;
uint16_t capinfo;
int has_challenge, is_shared_key, ret, status;
KASSERT(ni != NULL, ("null node"));
/*
* Hold a reference on the node so it doesn't go away until after
* the xmit is complete all the way in the driver. On error we
* will remove our reference.
*/
IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
__func__, __LINE__,
ni, ether_sprintf(ni->ni_macaddr),
ieee80211_node_refcnt(ni)+1);
ieee80211_ref_node(ni);
memset(&params, 0, sizeof(params));
switch (type) {
case IEEE80211_FC0_SUBTYPE_AUTH:
status = arg >> 16;
arg &= 0xffff;
has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE ||
arg == IEEE80211_AUTH_SHARED_RESPONSE) &&
ni->ni_challenge != NULL);
/*
* Deduce whether we're doing open authentication or
* shared key authentication. We do the latter if
* we're in the middle of a shared key authentication
* handshake or if we're initiating an authentication
* request and configured to use shared key.
*/
is_shared_key = has_challenge ||
arg >= IEEE80211_AUTH_SHARED_RESPONSE ||
(arg == IEEE80211_AUTH_SHARED_REQUEST &&
bss->ni_authmode == IEEE80211_AUTH_SHARED);
m = ieee80211_getmgtframe(&frm,
ic->ic_headroom + sizeof(struct ieee80211_frame),
3 * sizeof(uint16_t)
+ (has_challenge && status == IEEE80211_STATUS_SUCCESS ?
sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0)
);
if (m == NULL)
senderr(ENOMEM, is_tx_nobuf);
((uint16_t *)frm)[0] =
(is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED)
: htole16(IEEE80211_AUTH_ALG_OPEN);
((uint16_t *)frm)[1] = htole16(arg); /* sequence number */
((uint16_t *)frm)[2] = htole16(status);/* status */
if (has_challenge && status == IEEE80211_STATUS_SUCCESS) {
((uint16_t *)frm)[3] =
htole16((IEEE80211_CHALLENGE_LEN << 8) |
IEEE80211_ELEMID_CHALLENGE);
memcpy(&((uint16_t *)frm)[4], ni->ni_challenge,
IEEE80211_CHALLENGE_LEN);
m->m_pkthdr.len = m->m_len =
4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN;
if (arg == IEEE80211_AUTH_SHARED_RESPONSE) {
IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
"request encrypt frame (%s)", __func__);
/* mark frame for encryption */
params.ibp_flags |= IEEE80211_BPF_CRYPTO;
}
} else
m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t);
/* XXX not right for shared key */
if (status == IEEE80211_STATUS_SUCCESS)
IEEE80211_NODE_STAT(ni, tx_auth);
else
IEEE80211_NODE_STAT(ni, tx_auth_fail);
if (vap->iv_opmode == IEEE80211_M_STA)
ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
(void *) vap->iv_state);
break;
case IEEE80211_FC0_SUBTYPE_DEAUTH:
IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
"send station deauthenticate (reason %d)", arg);
m = ieee80211_getmgtframe(&frm,
ic->ic_headroom + sizeof(struct ieee80211_frame),
sizeof(uint16_t));
if (m == NULL)
senderr(ENOMEM, is_tx_nobuf);
*(uint16_t *)frm = htole16(arg); /* reason */
m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
IEEE80211_NODE_STAT(ni, tx_deauth);
IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg);
ieee80211_node_unauthorize(ni); /* port closed */
break;
case IEEE80211_FC0_SUBTYPE_ASSOC_REQ:
case IEEE80211_FC0_SUBTYPE_REASSOC_REQ:
/*
* asreq frame format
* [2] capability information
* [2] listen interval
* [6*] current AP address (reassoc only)
* [tlv] ssid
* [tlv] supported rates
* [tlv] extended supported rates
* [4] power capability (optional)
* [28] supported channels (optional)
* [tlv] HT capabilities
* [tlv] WME (optional)
* [tlv] Vendor OUI HT capabilities (optional)
* [tlv] Atheros capabilities (if negotiated)
* [tlv] AppIE's (optional)
*/
m = ieee80211_getmgtframe(&frm,
ic->ic_headroom + sizeof(struct ieee80211_frame),
sizeof(uint16_t)
+ sizeof(uint16_t)
+ IEEE80211_ADDR_LEN
+ 2 + IEEE80211_NWID_LEN
+ 2 + IEEE80211_RATE_SIZE
+ 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
+ 4
+ 2 + 26
+ sizeof(struct ieee80211_wme_info)
+ sizeof(struct ieee80211_ie_htcap)
+ 4 + sizeof(struct ieee80211_ie_htcap)
#ifdef IEEE80211_SUPPORT_SUPERG
+ sizeof(struct ieee80211_ath_ie)
#endif
+ (vap->iv_appie_wpa != NULL ?
vap->iv_appie_wpa->ie_len : 0)
+ (vap->iv_appie_assocreq != NULL ?
vap->iv_appie_assocreq->ie_len : 0)
);
if (m == NULL)
senderr(ENOMEM, is_tx_nobuf);
KASSERT(vap->iv_opmode == IEEE80211_M_STA,
("wrong mode %u", vap->iv_opmode));
capinfo = IEEE80211_CAPINFO_ESS;
if (vap->iv_flags & IEEE80211_F_PRIVACY)
capinfo |= IEEE80211_CAPINFO_PRIVACY;
/*
* NB: Some 11a AP's reject the request when
* short premable is set.
*/
if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
(ic->ic_caps & IEEE80211_C_SHSLOT))
capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) &&
(vap->iv_flags & IEEE80211_F_DOTH))
capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
*(uint16_t *)frm = htole16(capinfo);
frm += 2;
KASSERT(bss->ni_intval != 0, ("beacon interval is zero!"));
*(uint16_t *)frm = htole16(howmany(ic->ic_lintval,
bss->ni_intval));
frm += 2;
if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) {
IEEE80211_ADDR_COPY(frm, bss->ni_bssid);
frm += IEEE80211_ADDR_LEN;
}
frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen);
frm = ieee80211_add_rates(frm, &ni->ni_rates);
frm = ieee80211_add_rsn(frm, vap);
frm = ieee80211_add_xrates(frm, &ni->ni_rates);
if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) {
frm = ieee80211_add_powercapability(frm,
ic->ic_curchan);
frm = ieee80211_add_supportedchannels(frm, ic);
}
/*
* Check the channel - we may be using an 11n NIC with an
* 11n capable station, but we're configured to be an 11b
* channel.
*/
if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
ni->ni_ies.htcap_ie != NULL &&
ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP) {
frm = ieee80211_add_htcap(frm, ni);
}
frm = ieee80211_add_wpa(frm, vap);
if ((ic->ic_flags & IEEE80211_F_WME) &&
ni->ni_ies.wme_ie != NULL)
frm = ieee80211_add_wme_info(frm, &ic->ic_wme);
/*
* Same deal - only send HT info if we're on an 11n
* capable channel.
*/
if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
ni->ni_ies.htcap_ie != NULL &&
ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR) {
frm = ieee80211_add_htcap_vendor(frm, ni);
}
#ifdef IEEE80211_SUPPORT_SUPERG
if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) {
frm = ieee80211_add_ath(frm,
IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
ni->ni_authmode != IEEE80211_AUTH_8021X) ?
vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
}
#endif /* IEEE80211_SUPPORT_SUPERG */
if (vap->iv_appie_assocreq != NULL)
frm = add_appie(frm, vap->iv_appie_assocreq);
m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
(void *) vap->iv_state);
break;
case IEEE80211_FC0_SUBTYPE_ASSOC_RESP:
case IEEE80211_FC0_SUBTYPE_REASSOC_RESP:
/*
* asresp frame format
* [2] capability information
* [2] status
* [2] association ID
* [tlv] supported rates
* [tlv] extended supported rates
* [tlv] HT capabilities (standard, if STA enabled)
* [tlv] HT information (standard, if STA enabled)
* [tlv] WME (if configured and STA enabled)
* [tlv] HT capabilities (vendor OUI, if STA enabled)
* [tlv] HT information (vendor OUI, if STA enabled)
* [tlv] Atheros capabilities (if STA enabled)
* [tlv] AppIE's (optional)
*/
m = ieee80211_getmgtframe(&frm,
ic->ic_headroom + sizeof(struct ieee80211_frame),
sizeof(uint16_t)
+ sizeof(uint16_t)
+ sizeof(uint16_t)
+ 2 + IEEE80211_RATE_SIZE
+ 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
+ sizeof(struct ieee80211_ie_htcap) + 4
+ sizeof(struct ieee80211_ie_htinfo) + 4
+ sizeof(struct ieee80211_wme_param)
#ifdef IEEE80211_SUPPORT_SUPERG
+ sizeof(struct ieee80211_ath_ie)
#endif
+ (vap->iv_appie_assocresp != NULL ?
vap->iv_appie_assocresp->ie_len : 0)
);
if (m == NULL)
senderr(ENOMEM, is_tx_nobuf);
capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
*(uint16_t *)frm = htole16(capinfo);
frm += 2;
*(uint16_t *)frm = htole16(arg); /* status */
frm += 2;
if (arg == IEEE80211_STATUS_SUCCESS) {
*(uint16_t *)frm = htole16(ni->ni_associd);
IEEE80211_NODE_STAT(ni, tx_assoc);
} else
IEEE80211_NODE_STAT(ni, tx_assoc_fail);
frm += 2;
frm = ieee80211_add_rates(frm, &ni->ni_rates);
frm = ieee80211_add_xrates(frm, &ni->ni_rates);
/* NB: respond according to what we received */
if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) {
frm = ieee80211_add_htcap(frm, ni);
frm = ieee80211_add_htinfo(frm, ni);
}
if ((vap->iv_flags & IEEE80211_F_WME) &&
ni->ni_ies.wme_ie != NULL)
frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
if ((ni->ni_flags & HTFLAGS) == HTFLAGS) {
frm = ieee80211_add_htcap_vendor(frm, ni);
frm = ieee80211_add_htinfo_vendor(frm, ni);
}
#ifdef IEEE80211_SUPPORT_SUPERG
if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS))
frm = ieee80211_add_ath(frm,
IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
ni->ni_authmode != IEEE80211_AUTH_8021X) ?
vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
#endif /* IEEE80211_SUPPORT_SUPERG */
if (vap->iv_appie_assocresp != NULL)
frm = add_appie(frm, vap->iv_appie_assocresp);
m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
break;
case IEEE80211_FC0_SUBTYPE_DISASSOC:
IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni,
"send station disassociate (reason %d)", arg);
m = ieee80211_getmgtframe(&frm,
ic->ic_headroom + sizeof(struct ieee80211_frame),
sizeof(uint16_t));
if (m == NULL)
senderr(ENOMEM, is_tx_nobuf);
*(uint16_t *)frm = htole16(arg); /* reason */
m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
IEEE80211_NODE_STAT(ni, tx_disassoc);
IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg);
break;
default:
IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni,
"invalid mgmt frame type %u", type);
senderr(EINVAL, is_tx_unknownmgt);
/* NOTREACHED */
}
/* NB: force non-ProbeResp frames to the highest queue */
params.ibp_pri = WME_AC_VO;
params.ibp_rate0 = bss->ni_txparms->mgmtrate;
/* NB: we know all frames are unicast */
params.ibp_try0 = bss->ni_txparms->maxretry;
params.ibp_power = bss->ni_txpower;
return ieee80211_mgmt_output(ni, m, type, &params);
bad:
ieee80211_free_node(ni);
return ret;
#undef senderr
#undef HTFLAGS
}
/*
* Return an mbuf with a probe response frame in it.
* Space is left to prepend and 802.11 header at the
* front but it's left to the caller to fill in.
*/
struct mbuf *
ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy)
{
struct ieee80211vap *vap = bss->ni_vap;
struct ieee80211com *ic = bss->ni_ic;
const struct ieee80211_rateset *rs;
struct mbuf *m;
uint16_t capinfo;
uint8_t *frm;
/*
* probe response frame format
* [8] time stamp
* [2] beacon interval
* [2] cabability information
* [tlv] ssid
* [tlv] supported rates
* [tlv] parameter set (FH/DS)
* [tlv] parameter set (IBSS)
* [tlv] country (optional)
* [3] power control (optional)
* [5] channel switch announcement (CSA) (optional)
* [tlv] extended rate phy (ERP)
* [tlv] extended supported rates
* [tlv] RSN (optional)
* [tlv] HT capabilities
* [tlv] HT information
* [tlv] WPA (optional)
* [tlv] WME (optional)
* [tlv] Vendor OUI HT capabilities (optional)
* [tlv] Vendor OUI HT information (optional)
* [tlv] Atheros capabilities
* [tlv] AppIE's (optional)
* [tlv] Mesh ID (MBSS)
* [tlv] Mesh Conf (MBSS)
*/
m = ieee80211_getmgtframe(&frm,
ic->ic_headroom + sizeof(struct ieee80211_frame),
8
+ sizeof(uint16_t)
+ sizeof(uint16_t)
+ 2 + IEEE80211_NWID_LEN
+ 2 + IEEE80211_RATE_SIZE
+ 7 /* max(7,3) */
+ IEEE80211_COUNTRY_MAX_SIZE
+ 3
+ sizeof(struct ieee80211_csa_ie)
+ sizeof(struct ieee80211_quiet_ie)
+ 3
+ 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
+ sizeof(struct ieee80211_ie_wpa)
+ sizeof(struct ieee80211_ie_htcap)
+ sizeof(struct ieee80211_ie_htinfo)
+ sizeof(struct ieee80211_ie_wpa)
+ sizeof(struct ieee80211_wme_param)
+ 4 + sizeof(struct ieee80211_ie_htcap)
+ 4 + sizeof(struct ieee80211_ie_htinfo)
#ifdef IEEE80211_SUPPORT_SUPERG
+ sizeof(struct ieee80211_ath_ie)
#endif
#ifdef IEEE80211_SUPPORT_MESH
+ 2 + IEEE80211_MESHID_LEN
+ sizeof(struct ieee80211_meshconf_ie)
#endif
+ (vap->iv_appie_proberesp != NULL ?
vap->iv_appie_proberesp->ie_len : 0)
);
if (m == NULL) {
vap->iv_stats.is_tx_nobuf++;
return NULL;
}
memset(frm, 0, 8); /* timestamp should be filled later */
frm += 8;
*(uint16_t *)frm = htole16(bss->ni_intval);
frm += 2;
capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
*(uint16_t *)frm = htole16(capinfo);
frm += 2;
frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen);
rs = ieee80211_get_suprates(ic, bss->ni_chan);
frm = ieee80211_add_rates(frm, rs);
if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) {
*frm++ = IEEE80211_ELEMID_FHPARMS;
*frm++ = 5;
*frm++ = bss->ni_fhdwell & 0x00ff;
*frm++ = (bss->ni_fhdwell >> 8) & 0x00ff;
*frm++ = IEEE80211_FH_CHANSET(
ieee80211_chan2ieee(ic, bss->ni_chan));
*frm++ = IEEE80211_FH_CHANPAT(
ieee80211_chan2ieee(ic, bss->ni_chan));
*frm++ = bss->ni_fhindex;
} else {
*frm++ = IEEE80211_ELEMID_DSPARMS;
*frm++ = 1;
*frm++ = ieee80211_chan2ieee(ic, bss->ni_chan);
}
if (vap->iv_opmode == IEEE80211_M_IBSS) {
*frm++ = IEEE80211_ELEMID_IBSSPARMS;
*frm++ = 2;
*frm++ = 0; *frm++ = 0; /* TODO: ATIM window */
}
if ((vap->iv_flags & IEEE80211_F_DOTH) ||
(vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
frm = ieee80211_add_countryie(frm, ic);
if (vap->iv_flags & IEEE80211_F_DOTH) {
if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan))
frm = ieee80211_add_powerconstraint(frm, vap);
if (ic->ic_flags & IEEE80211_F_CSAPENDING)
frm = ieee80211_add_csa(frm, vap);
}
if (vap->iv_flags & IEEE80211_F_DOTH) {
if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
(vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
if (vap->iv_quiet)
frm = ieee80211_add_quiet(frm, vap);
}
}
if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan))
frm = ieee80211_add_erp(frm, ic);
frm = ieee80211_add_xrates(frm, rs);
frm = ieee80211_add_rsn(frm, vap);
/*
* NB: legacy 11b clients do not get certain ie's.
* The caller identifies such clients by passing
* a token in legacy to us. Could expand this to be
* any legacy client for stuff like HT ie's.
*/
if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
legacy != IEEE80211_SEND_LEGACY_11B) {
frm = ieee80211_add_htcap(frm, bss);
frm = ieee80211_add_htinfo(frm, bss);
}
frm = ieee80211_add_wpa(frm, vap);
if (vap->iv_flags & IEEE80211_F_WME)
frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
(vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT) &&
legacy != IEEE80211_SEND_LEGACY_11B) {
frm = ieee80211_add_htcap_vendor(frm, bss);
frm = ieee80211_add_htinfo_vendor(frm, bss);
}
#ifdef IEEE80211_SUPPORT_SUPERG
if ((vap->iv_flags & IEEE80211_F_ATHEROS) &&
legacy != IEEE80211_SEND_LEGACY_11B)
frm = ieee80211_add_athcaps(frm, bss);
#endif
if (vap->iv_appie_proberesp != NULL)
frm = add_appie(frm, vap->iv_appie_proberesp);
#ifdef IEEE80211_SUPPORT_MESH
if (vap->iv_opmode == IEEE80211_M_MBSS) {
frm = ieee80211_add_meshid(frm, vap);
frm = ieee80211_add_meshconf(frm, vap);
}
#endif
m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
return m;
}
/*
* Send a probe response frame to the specified mac address.
* This does not go through the normal mgt frame api so we
* can specify the destination address and re-use the bss node
* for the sta reference.
*/
int
ieee80211_send_proberesp(struct ieee80211vap *vap,
const uint8_t da[IEEE80211_ADDR_LEN], int legacy)
{
struct ieee80211_node *bss = vap->iv_bss;
struct ieee80211com *ic = vap->iv_ic;
struct ieee80211_frame *wh;
struct mbuf *m;
int ret;
if (vap->iv_state == IEEE80211_S_CAC) {
IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss,
"block %s frame in CAC state", "probe response");
vap->iv_stats.is_tx_badstate++;
return EIO; /* XXX */
}
/*
* Hold a reference on the node so it doesn't go away until after
* the xmit is complete all the way in the driver. On error we
* will remove our reference.
*/
IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
__func__, __LINE__, bss, ether_sprintf(bss->ni_macaddr),
ieee80211_node_refcnt(bss)+1);
ieee80211_ref_node(bss);
m = ieee80211_alloc_proberesp(bss, legacy);
if (m == NULL) {
ieee80211_free_node(bss);
return ENOMEM;
}
M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
KASSERT(m != NULL, ("no room for header"));
IEEE80211_TX_LOCK(ic);
wh = mtod(m, struct ieee80211_frame *);
ieee80211_send_setup(bss, m,
IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP,
IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid);
/* XXX power management? */
m->m_flags |= M_ENCAP; /* mark encapsulated */
M_WME_SETAC(m, WME_AC_BE);
IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
"send probe resp on channel %u to %s%s\n",
ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(da),
legacy ? " <legacy>" : "");
IEEE80211_NODE_STAT(bss, tx_mgmt);
ret = ieee80211_raw_output(vap, bss, m, NULL);
IEEE80211_TX_UNLOCK(ic);
return (ret);
}
/*
* Allocate and build a RTS (Request To Send) control frame.
*/
struct mbuf *
ieee80211_alloc_rts(struct ieee80211com *ic,
const uint8_t ra[IEEE80211_ADDR_LEN],
const uint8_t ta[IEEE80211_ADDR_LEN],
uint16_t dur)
{
struct ieee80211_frame_rts *rts;
struct mbuf *m;
/* XXX honor ic_headroom */
m = m_gethdr(M_NOWAIT, MT_DATA);
if (m != NULL) {
rts = mtod(m, struct ieee80211_frame_rts *);
rts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS;
rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
*(u_int16_t *)rts->i_dur = htole16(dur);
IEEE80211_ADDR_COPY(rts->i_ra, ra);
IEEE80211_ADDR_COPY(rts->i_ta, ta);
m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts);
}
return m;
}
/*
* Allocate and build a CTS (Clear To Send) control frame.
*/
struct mbuf *
ieee80211_alloc_cts(struct ieee80211com *ic,
const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur)
{
struct ieee80211_frame_cts *cts;
struct mbuf *m;
/* XXX honor ic_headroom */
m = m_gethdr(M_NOWAIT, MT_DATA);
if (m != NULL) {
cts = mtod(m, struct ieee80211_frame_cts *);
cts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS;
cts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
*(u_int16_t *)cts->i_dur = htole16(dur);
IEEE80211_ADDR_COPY(cts->i_ra, ra);
m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts);
}
return m;
}
static void
ieee80211_tx_mgt_timeout(void *arg)
{
struct ieee80211vap *vap = arg;
IEEE80211_LOCK(vap->iv_ic);
if (vap->iv_state != IEEE80211_S_INIT &&
(vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) {
/*
* NB: it's safe to specify a timeout as the reason here;
* it'll only be used in the right state.
*/
ieee80211_new_state_locked(vap, IEEE80211_S_SCAN,
IEEE80211_SCAN_FAIL_TIMEOUT);
}
IEEE80211_UNLOCK(vap->iv_ic);
}
/*
* This is the callback set on net80211-sourced transmitted
* authentication request frames.
*
* This does a couple of things:
*
* + If the frame transmitted was a success, it schedules a future
* event which will transition the interface to scan.
* If a state transition _then_ occurs before that event occurs,
* said state transition will cancel this callout.
*
* + If the frame transmit was a failure, it immediately schedules
* the transition back to scan.
*/
static void
ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status)
{
struct ieee80211vap *vap = ni->ni_vap;
enum ieee80211_state ostate = (enum ieee80211_state) arg;
/*
* Frame transmit completed; arrange timer callback. If
* transmit was successfuly we wait for response. Otherwise
* we arrange an immediate callback instead of doing the
* callback directly since we don't know what state the driver
* is in (e.g. what locks it is holding). This work should
* not be too time-critical and not happen too often so the
* added overhead is acceptable.
*
* XXX what happens if !acked but response shows up before callback?
*/
if (vap->iv_state == ostate) {
callout_reset(&vap->iv_mgtsend,
status == 0 ? IEEE80211_TRANS_WAIT*hz : 0,
ieee80211_tx_mgt_timeout, vap);
}
}
static void
ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm,
struct ieee80211_beacon_offsets *bo, struct ieee80211_node *ni)
{
struct ieee80211vap *vap = ni->ni_vap;
struct ieee80211com *ic = ni->ni_ic;
struct ieee80211_rateset *rs = &ni->ni_rates;
uint16_t capinfo;
/*
* beacon frame format
* [8] time stamp
* [2] beacon interval
* [2] cabability information
* [tlv] ssid
* [tlv] supported rates
* [3] parameter set (DS)
* [8] CF parameter set (optional)
* [tlv] parameter set (IBSS/TIM)
* [tlv] country (optional)
* [3] power control (optional)
* [5] channel switch announcement (CSA) (optional)
* [tlv] extended rate phy (ERP)
* [tlv] extended supported rates
* [tlv] RSN parameters
* [tlv] HT capabilities
* [tlv] HT information
* XXX Vendor-specific OIDs (e.g. Atheros)
* [tlv] WPA parameters
* [tlv] WME parameters
* [tlv] Vendor OUI HT capabilities (optional)
* [tlv] Vendor OUI HT information (optional)
* [tlv] Atheros capabilities (optional)
* [tlv] TDMA parameters (optional)
* [tlv] Mesh ID (MBSS)
* [tlv] Mesh Conf (MBSS)
* [tlv] application data (optional)
*/
memset(bo, 0, sizeof(*bo));
memset(frm, 0, 8); /* XXX timestamp is set by hardware/driver */
frm += 8;
*(uint16_t *)frm = htole16(ni->ni_intval);
frm += 2;
capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
bo->bo_caps = (uint16_t *)frm;
*(uint16_t *)frm = htole16(capinfo);
frm += 2;
*frm++ = IEEE80211_ELEMID_SSID;
if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) {
*frm++ = ni->ni_esslen;
memcpy(frm, ni->ni_essid, ni->ni_esslen);
frm += ni->ni_esslen;
} else
*frm++ = 0;
frm = ieee80211_add_rates(frm, rs);
if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) {
*frm++ = IEEE80211_ELEMID_DSPARMS;
*frm++ = 1;
*frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
}
if (ic->ic_flags & IEEE80211_F_PCF) {
bo->bo_cfp = frm;
frm = ieee80211_add_cfparms(frm, ic);
}
bo->bo_tim = frm;
if (vap->iv_opmode == IEEE80211_M_IBSS) {
*frm++ = IEEE80211_ELEMID_IBSSPARMS;
*frm++ = 2;
*frm++ = 0; *frm++ = 0; /* TODO: ATIM window */
bo->bo_tim_len = 0;
} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
vap->iv_opmode == IEEE80211_M_MBSS) {
/* TIM IE is the same for Mesh and Hostap */
struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm;
tie->tim_ie = IEEE80211_ELEMID_TIM;
tie->tim_len = 4; /* length */
tie->tim_count = 0; /* DTIM count */
tie->tim_period = vap->iv_dtim_period; /* DTIM period */
tie->tim_bitctl = 0; /* bitmap control */
tie->tim_bitmap[0] = 0; /* Partial Virtual Bitmap */
frm += sizeof(struct ieee80211_tim_ie);
bo->bo_tim_len = 1;
}
bo->bo_tim_trailer = frm;
if ((vap->iv_flags & IEEE80211_F_DOTH) ||
(vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
frm = ieee80211_add_countryie(frm, ic);
if (vap->iv_flags & IEEE80211_F_DOTH) {
if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan))
frm = ieee80211_add_powerconstraint(frm, vap);
bo->bo_csa = frm;
if (ic->ic_flags & IEEE80211_F_CSAPENDING)
frm = ieee80211_add_csa(frm, vap);
} else
bo->bo_csa = frm;
if (vap->iv_flags & IEEE80211_F_DOTH) {
bo->bo_quiet = frm;
if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
(vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
if (vap->iv_quiet)
frm = ieee80211_add_quiet(frm,vap);
}
} else
bo->bo_quiet = frm;
if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) {
bo->bo_erp = frm;
frm = ieee80211_add_erp(frm, ic);
}
frm = ieee80211_add_xrates(frm, rs);
frm = ieee80211_add_rsn(frm, vap);
if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
frm = ieee80211_add_htcap(frm, ni);
bo->bo_htinfo = frm;
frm = ieee80211_add_htinfo(frm, ni);
}
frm = ieee80211_add_wpa(frm, vap);
if (vap->iv_flags & IEEE80211_F_WME) {
bo->bo_wme = frm;
frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
}
if (IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
(vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT)) {
frm = ieee80211_add_htcap_vendor(frm, ni);
frm = ieee80211_add_htinfo_vendor(frm, ni);
}
#ifdef IEEE80211_SUPPORT_SUPERG
if (vap->iv_flags & IEEE80211_F_ATHEROS) {
bo->bo_ath = frm;
frm = ieee80211_add_athcaps(frm, ni);
}
#endif
#ifdef IEEE80211_SUPPORT_TDMA
if (vap->iv_caps & IEEE80211_C_TDMA) {
bo->bo_tdma = frm;
frm = ieee80211_add_tdma(frm, vap);
}
#endif
if (vap->iv_appie_beacon != NULL) {
bo->bo_appie = frm;
bo->bo_appie_len = vap->iv_appie_beacon->ie_len;
frm = add_appie(frm, vap->iv_appie_beacon);
}
#ifdef IEEE80211_SUPPORT_MESH
if (vap->iv_opmode == IEEE80211_M_MBSS) {
frm = ieee80211_add_meshid(frm, vap);
bo->bo_meshconf = frm;
frm = ieee80211_add_meshconf(frm, vap);
}
#endif
bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer;
bo->bo_csa_trailer_len = frm - bo->bo_csa;
m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
}
/*
* Allocate a beacon frame and fillin the appropriate bits.
*/
struct mbuf *
ieee80211_beacon_alloc(struct ieee80211_node *ni,
struct ieee80211_beacon_offsets *bo)
{
struct ieee80211vap *vap = ni->ni_vap;
struct ieee80211com *ic = ni->ni_ic;
struct ifnet *ifp = vap->iv_ifp;
struct ieee80211_frame *wh;
struct mbuf *m;
int pktlen;
uint8_t *frm;
/*
* beacon frame format
* [8] time stamp
* [2] beacon interval
* [2] cabability information
* [tlv] ssid
* [tlv] supported rates
* [3] parameter set (DS)
* [8] CF parameter set (optional)
* [tlv] parameter set (IBSS/TIM)
* [tlv] country (optional)
* [3] power control (optional)
* [5] channel switch announcement (CSA) (optional)
* [tlv] extended rate phy (ERP)
* [tlv] extended supported rates
* [tlv] RSN parameters
* [tlv] HT capabilities
* [tlv] HT information
* [tlv] Vendor OUI HT capabilities (optional)
* [tlv] Vendor OUI HT information (optional)
* XXX Vendor-specific OIDs (e.g. Atheros)
* [tlv] WPA parameters
* [tlv] WME parameters
* [tlv] TDMA parameters (optional)
* [tlv] Mesh ID (MBSS)
* [tlv] Mesh Conf (MBSS)
* [tlv] application data (optional)
* NB: we allocate the max space required for the TIM bitmap.
* XXX how big is this?
*/
pktlen = 8 /* time stamp */
+ sizeof(uint16_t) /* beacon interval */
+ sizeof(uint16_t) /* capabilities */
+ 2 + ni->ni_esslen /* ssid */
+ 2 + IEEE80211_RATE_SIZE /* supported rates */
+ 2 + 1 /* DS parameters */
+ 2 + 6 /* CF parameters */
+ 2 + 4 + vap->iv_tim_len /* DTIM/IBSSPARMS */
+ IEEE80211_COUNTRY_MAX_SIZE /* country */
+ 2 + 1 /* power control */
+ sizeof(struct ieee80211_csa_ie) /* CSA */
+ sizeof(struct ieee80211_quiet_ie) /* Quiet */
+ 2 + 1 /* ERP */
+ 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
+ (vap->iv_caps & IEEE80211_C_WPA ? /* WPA 1+2 */
2*sizeof(struct ieee80211_ie_wpa) : 0)
/* XXX conditional? */
+ 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */
+ 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */
+ (vap->iv_caps & IEEE80211_C_WME ? /* WME */
sizeof(struct ieee80211_wme_param) : 0)
#ifdef IEEE80211_SUPPORT_SUPERG
+ sizeof(struct ieee80211_ath_ie) /* ATH */
#endif
#ifdef IEEE80211_SUPPORT_TDMA
+ (vap->iv_caps & IEEE80211_C_TDMA ? /* TDMA */
sizeof(struct ieee80211_tdma_param) : 0)
#endif
#ifdef IEEE80211_SUPPORT_MESH
+ 2 + ni->ni_meshidlen
+ sizeof(struct ieee80211_meshconf_ie)
#endif
+ IEEE80211_MAX_APPIE
;
m = ieee80211_getmgtframe(&frm,
ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen);
if (m == NULL) {
IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY,
"%s: cannot get buf; size %u\n", __func__, pktlen);
vap->iv_stats.is_tx_nobuf++;
return NULL;
}
ieee80211_beacon_construct(m, frm, bo, ni);
M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
KASSERT(m != NULL, ("no space for 802.11 header?"));
wh = mtod(m, struct ieee80211_frame *);
wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
IEEE80211_FC0_SUBTYPE_BEACON;
wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
*(uint16_t *)wh->i_dur = 0;
IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid);
*(uint16_t *)wh->i_seq = 0;
return m;
}
/*
* Update the dynamic parts of a beacon frame based on the current state.
*/
int
ieee80211_beacon_update(struct ieee80211_node *ni,
struct ieee80211_beacon_offsets *bo, struct mbuf *m, int mcast)
{
struct ieee80211vap *vap = ni->ni_vap;
struct ieee80211com *ic = ni->ni_ic;
int len_changed = 0;
uint16_t capinfo;
struct ieee80211_frame *wh;
ieee80211_seq seqno;
IEEE80211_LOCK(ic);
/*
* Handle 11h channel change when we've reached the count.
* We must recalculate the beacon frame contents to account
* for the new channel. Note we do this only for the first
* vap that reaches this point; subsequent vaps just update
* their beacon state to reflect the recalculated channel.
*/
if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) &&
vap->iv_csa_count == ic->ic_csa_count) {
vap->iv_csa_count = 0;
/*
* Effect channel change before reconstructing the beacon
* frame contents as many places reference ni_chan.
*/
if (ic->ic_csa_newchan != NULL)
ieee80211_csa_completeswitch(ic);
/*
* NB: ieee80211_beacon_construct clears all pending
* updates in bo_flags so we don't need to explicitly
* clear IEEE80211_BEACON_CSA.
*/
ieee80211_beacon_construct(m,
mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), bo, ni);
/* XXX do WME aggressive mode processing? */
IEEE80211_UNLOCK(ic);
return 1; /* just assume length changed */
}
wh = mtod(m, struct ieee80211_frame *);
seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
*(uint16_t *)&wh->i_seq[0] =
htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
M_SEQNO_SET(m, seqno);
/* XXX faster to recalculate entirely or just changes? */
capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
*bo->bo_caps = htole16(capinfo);
if (vap->iv_flags & IEEE80211_F_WME) {
struct ieee80211_wme_state *wme = &ic->ic_wme;
/*
* Check for agressive mode change. When there is
* significant high priority traffic in the BSS
* throttle back BE traffic by using conservative
* parameters. Otherwise BE uses agressive params
* to optimize performance of legacy/non-QoS traffic.
*/
if (wme->wme_flags & WME_F_AGGRMODE) {
if (wme->wme_hipri_traffic >
wme->wme_hipri_switch_thresh) {
IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
"%s: traffic %u, disable aggressive mode\n",
__func__, wme->wme_hipri_traffic);
wme->wme_flags &= ~WME_F_AGGRMODE;
ieee80211_wme_updateparams_locked(vap);
wme->wme_hipri_traffic =
wme->wme_hipri_switch_hysteresis;
} else
wme->wme_hipri_traffic = 0;
} else {
if (wme->wme_hipri_traffic <=
wme->wme_hipri_switch_thresh) {
IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
"%s: traffic %u, enable aggressive mode\n",
__func__, wme->wme_hipri_traffic);
wme->wme_flags |= WME_F_AGGRMODE;
ieee80211_wme_updateparams_locked(vap);
wme->wme_hipri_traffic = 0;
} else
wme->wme_hipri_traffic =
wme->wme_hipri_switch_hysteresis;
}
if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) {
(void) ieee80211_add_wme_param(bo->bo_wme, wme);
clrbit(bo->bo_flags, IEEE80211_BEACON_WME);
}
}
if (isset(bo->bo_flags, IEEE80211_BEACON_HTINFO)) {
ieee80211_ht_update_beacon(vap, bo);
clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO);
}
#ifdef IEEE80211_SUPPORT_TDMA
if (vap->iv_caps & IEEE80211_C_TDMA) {
/*
* NB: the beacon is potentially updated every TBTT.
*/
ieee80211_tdma_update_beacon(vap, bo);
}
#endif
#ifdef IEEE80211_SUPPORT_MESH
if (vap->iv_opmode == IEEE80211_M_MBSS)
ieee80211_mesh_update_beacon(vap, bo);
#endif
if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
vap->iv_opmode == IEEE80211_M_MBSS) { /* NB: no IBSS support*/
struct ieee80211_tim_ie *tie =
(struct ieee80211_tim_ie *) bo->bo_tim;
if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) {
u_int timlen, timoff, i;
/*
* ATIM/DTIM needs updating. If it fits in the
* current space allocated then just copy in the
* new bits. Otherwise we need to move any trailing
* data to make room. Note that we know there is
* contiguous space because ieee80211_beacon_allocate
* insures there is space in the mbuf to write a
* maximal-size virtual bitmap (based on iv_max_aid).
*/
/*
* Calculate the bitmap size and offset, copy any
* trailer out of the way, and then copy in the
* new bitmap and update the information element.
* Note that the tim bitmap must contain at least
* one byte and any offset must be even.
*/
if (vap->iv_ps_pending != 0) {
timoff = 128; /* impossibly large */
for (i = 0; i < vap->iv_tim_len; i++)
if (vap->iv_tim_bitmap[i]) {
timoff = i &~ 1;
break;
}
KASSERT(timoff != 128, ("tim bitmap empty!"));
for (i = vap->iv_tim_len-1; i >= timoff; i--)
if (vap->iv_tim_bitmap[i])
break;
timlen = 1 + (i - timoff);
} else {
timoff = 0;
timlen = 1;
}
if (timlen != bo->bo_tim_len) {
/* copy up/down trailer */
int adjust = tie->tim_bitmap+timlen
- bo->bo_tim_trailer;
ovbcopy(bo->bo_tim_trailer,
bo->bo_tim_trailer+adjust,
bo->bo_tim_trailer_len);
bo->bo_tim_trailer += adjust;
bo->bo_erp += adjust;
bo->bo_htinfo += adjust;
#ifdef IEEE80211_SUPPORT_SUPERG
bo->bo_ath += adjust;
#endif
#ifdef IEEE80211_SUPPORT_TDMA
bo->bo_tdma += adjust;
#endif
#ifdef IEEE80211_SUPPORT_MESH
bo->bo_meshconf += adjust;
#endif
bo->bo_appie += adjust;
bo->bo_wme += adjust;
bo->bo_csa += adjust;
bo->bo_quiet += adjust;
bo->bo_tim_len = timlen;
/* update information element */
tie->tim_len = 3 + timlen;
tie->tim_bitctl = timoff;
len_changed = 1;
}
memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff,
bo->bo_tim_len);
clrbit(bo->bo_flags, IEEE80211_BEACON_TIM);
IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER,
"%s: TIM updated, pending %u, off %u, len %u\n",
__func__, vap->iv_ps_pending, timoff, timlen);
}
/* count down DTIM period */
if (tie->tim_count == 0)
tie->tim_count = tie->tim_period - 1;
else
tie->tim_count--;
/* update state for buffered multicast frames on DTIM */
if (mcast && tie->tim_count == 0)
tie->tim_bitctl |= 1;
else
tie->tim_bitctl &= ~1;
if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) {
struct ieee80211_csa_ie *csa =
(struct ieee80211_csa_ie *) bo->bo_csa;
/*
* Insert or update CSA ie. If we're just starting
* to count down to the channel switch then we need
* to insert the CSA ie. Otherwise we just need to
* drop the count. The actual change happens above
* when the vap's count reaches the target count.
*/
if (vap->iv_csa_count == 0) {
memmove(&csa[1], csa, bo->bo_csa_trailer_len);
bo->bo_erp += sizeof(*csa);
bo->bo_htinfo += sizeof(*csa);
bo->bo_wme += sizeof(*csa);
#ifdef IEEE80211_SUPPORT_SUPERG
bo->bo_ath += sizeof(*csa);
#endif
#ifdef IEEE80211_SUPPORT_TDMA
bo->bo_tdma += sizeof(*csa);
#endif
#ifdef IEEE80211_SUPPORT_MESH
bo->bo_meshconf += sizeof(*csa);
#endif
bo->bo_appie += sizeof(*csa);
bo->bo_csa_trailer_len += sizeof(*csa);
bo->bo_quiet += sizeof(*csa);
bo->bo_tim_trailer_len += sizeof(*csa);
m->m_len += sizeof(*csa);
m->m_pkthdr.len += sizeof(*csa);
ieee80211_add_csa(bo->bo_csa, vap);
} else
csa->csa_count--;
vap->iv_csa_count++;
/* NB: don't clear IEEE80211_BEACON_CSA */
}
if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
(vap->iv_flags_ext & IEEE80211_FEXT_DFS) ){
if (vap->iv_quiet)
ieee80211_add_quiet(bo->bo_quiet, vap);
}
if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) {
/*
* ERP element needs updating.
*/
(void) ieee80211_add_erp(bo->bo_erp, ic);
clrbit(bo->bo_flags, IEEE80211_BEACON_ERP);
}
#ifdef IEEE80211_SUPPORT_SUPERG
if (isset(bo->bo_flags, IEEE80211_BEACON_ATH)) {
ieee80211_add_athcaps(bo->bo_ath, ni);
clrbit(bo->bo_flags, IEEE80211_BEACON_ATH);
}
#endif
}
if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) {
const struct ieee80211_appie *aie = vap->iv_appie_beacon;
int aielen;
uint8_t *frm;
aielen = 0;
if (aie != NULL)
aielen += aie->ie_len;
if (aielen != bo->bo_appie_len) {
/* copy up/down trailer */
int adjust = aielen - bo->bo_appie_len;
ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust,
bo->bo_tim_trailer_len);
bo->bo_tim_trailer += adjust;
bo->bo_appie += adjust;
bo->bo_appie_len = aielen;
len_changed = 1;
}
frm = bo->bo_appie;
if (aie != NULL)
frm = add_appie(frm, aie);
clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE);
}
IEEE80211_UNLOCK(ic);
return len_changed;
}
/*
* Do Ethernet-LLC encapsulation for each payload in a fast frame
* tunnel encapsulation. The frame is assumed to have an Ethernet
* header at the front that must be stripped before prepending the
* LLC followed by the Ethernet header passed in (with an Ethernet
* type that specifies the payload size).
*/
struct mbuf *
ieee80211_ff_encap1(struct ieee80211vap *vap, struct mbuf *m,
const struct ether_header *eh)
{
struct llc *llc;
uint16_t payload;
/* XXX optimize by combining m_adj+M_PREPEND */
m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
llc = mtod(m, struct llc *);
llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
llc->llc_control = LLC_UI;
llc->llc_snap.org_code[0] = 0;
llc->llc_snap.org_code[1] = 0;
llc->llc_snap.org_code[2] = 0;
llc->llc_snap.ether_type = eh->ether_type;
payload = m->m_pkthdr.len; /* NB: w/o Ethernet header */
M_PREPEND(m, sizeof(struct ether_header), M_NOWAIT);
if (m == NULL) { /* XXX cannot happen */
IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
"%s: no space for ether_header\n", __func__);
vap->iv_stats.is_tx_nobuf++;
return NULL;
}
ETHER_HEADER_COPY(mtod(m, void *), eh);
mtod(m, struct ether_header *)->ether_type = htons(payload);
return m;
}
/*
* Complete an mbuf transmission.
*
* For now, this simply processes a completed frame after the
* driver has completed it's transmission and/or retransmission.
* It assumes the frame is an 802.11 encapsulated frame.
*
* Later on it will grow to become the exit path for a given frame
* from the driver and, depending upon how it's been encapsulated
* and already transmitted, it may end up doing A-MPDU retransmission,
* power save requeuing, etc.
*
* In order for the above to work, the driver entry point to this
* must not hold any driver locks. Thus, the driver needs to delay
* any actual mbuf completion until it can release said locks.
*
* This frees the mbuf and if the mbuf has a node reference,
* the node reference will be freed.
*/
void
ieee80211_tx_complete(struct ieee80211_node *ni, struct mbuf *m, int status)
{
if (ni != NULL) {
if (m->m_flags & M_TXCB)
ieee80211_process_callback(ni, m, status);
ieee80211_free_node(ni);
}
m_freem(m);
}