freebsd-dev/stand/common/gfx_fb.c
Elliott Mitchell 798ea06f07 stand: Nuke double-semicolons
A distinct number of double-semicolons have ended up in FreeBSD.  Take a
pass at getting rid of many of these harmless typos.

Reviewed by: emaste, imp
Pull Request: https://github.com/freebsd/freebsd-src/pull/609
Differential Revision: https://reviews.freebsd.org/D31717
2022-11-02 09:34:54 -06:00

2923 lines
69 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause
*
* Copyright 2020 Toomas Soome
* Copyright 2019 OmniOS Community Edition (OmniOSce) Association.
* Copyright 2020 RackTop Systems, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
/*
* The workhorse here is gfxfb_blt(). It is implemented to mimic UEFI
* GOP Blt, and allows us to fill the rectangle on screen, copy
* rectangle from video to buffer and buffer to video and video to video.
* Such implementation does allow us to have almost identical implementation
* for both BIOS VBE and UEFI.
*
* ALL pixel data is assumed to be 32-bit BGRA (byte order Blue, Green, Red,
* Alpha) format, this allows us to only handle RGB data and not to worry
* about mixing RGB with indexed colors.
* Data exchange between memory buffer and video will translate BGRA
* and native format as following:
*
* 32-bit to/from 32-bit is trivial case.
* 32-bit to/from 24-bit is also simple - we just drop the alpha channel.
* 32-bit to/from 16-bit is more complicated, because we nee to handle
* data loss from 32-bit to 16-bit. While reading/writing from/to video, we
* need to apply masks of 16-bit color components. This will preserve
* colors for terminal text. For 32-bit truecolor PMG images, we need to
* translate 32-bit colors to 15/16 bit colors and this means data loss.
* There are different algorithms how to perform such color space reduction,
* we are currently using bitwise right shift to reduce color space and so far
* this technique seems to be sufficient (see also gfx_fb_putimage(), the
* end of for loop).
* 32-bit to/from 8-bit is the most troublesome because 8-bit colors are
* indexed. From video, we do get color indexes, and we do translate
* color index values to RGB. To write to video, we again need to translate
* RGB to color index. Additionally, we need to translate between VGA and
* console colors.
*
* Our internal color data is represented using BGRA format. But the hardware
* used indexed colors for 8-bit colors (0-255) and for this mode we do
* need to perform translation to/from BGRA and index values.
*
* - paletteentry RGB <-> index -
* BGRA BUFFER <----/ \ - VIDEO
* \ /
* - RGB (16/24/32) -
*
* To perform index to RGB translation, we use palette table generated
* from when we set up 8-bit mode video. We cannot read palette data from
* the hardware, because not all hardware supports reading it.
*
* BGRA to index is implemented in rgb_to_color_index() by searching
* palette array for closest match of RBG values.
*
* Note: In 8-bit mode, We do store first 16 colors to palette registers
* in VGA color order, this serves two purposes; firstly,
* if palette update is not supported, we still have correct 16 colors.
* Secondly, the kernel does get correct 16 colors when some other boot
* loader is used. However, the palette map for 8-bit colors is using
* console color ordering - this does allow us to skip translation
* from VGA colors to console colors, while we are reading RGB data.
*/
#include <sys/cdefs.h>
#include <sys/param.h>
#include <stand.h>
#include <teken.h>
#include <gfx_fb.h>
#include <sys/font.h>
#include <sys/stdint.h>
#include <sys/endian.h>
#include <pnglite.h>
#include <bootstrap.h>
#include <lz4.h>
#if defined(EFI)
#include <efi.h>
#include <efilib.h>
#else
#include <vbe.h>
#endif
/* VGA text mode does use bold font. */
#if !defined(VGA_8X16_FONT)
#define VGA_8X16_FONT "/boot/fonts/8x16b.fnt"
#endif
#if !defined(DEFAULT_8X16_FONT)
#define DEFAULT_8X16_FONT "/boot/fonts/8x16.fnt"
#endif
/*
* Must be sorted by font size in descending order
*/
font_list_t fonts = STAILQ_HEAD_INITIALIZER(fonts);
#define DEFAULT_FONT_DATA font_data_8x16
extern vt_font_bitmap_data_t font_data_8x16;
teken_gfx_t gfx_state = { 0 };
static struct {
unsigned char r; /* Red percentage value. */
unsigned char g; /* Green percentage value. */
unsigned char b; /* Blue percentage value. */
} color_def[NCOLORS] = {
{0, 0, 0}, /* black */
{50, 0, 0}, /* dark red */
{0, 50, 0}, /* dark green */
{77, 63, 0}, /* dark yellow */
{20, 40, 64}, /* dark blue */
{50, 0, 50}, /* dark magenta */
{0, 50, 50}, /* dark cyan */
{75, 75, 75}, /* light gray */
{18, 20, 21}, /* dark gray */
{100, 0, 0}, /* light red */
{0, 100, 0}, /* light green */
{100, 100, 0}, /* light yellow */
{45, 62, 81}, /* light blue */
{100, 0, 100}, /* light magenta */
{0, 100, 100}, /* light cyan */
{100, 100, 100}, /* white */
};
uint32_t cmap[NCMAP];
/*
* Between console's palette and VGA's one:
* - blue and red are swapped (1 <-> 4)
* - yellow and cyan are swapped (3 <-> 6)
*/
const int cons_to_vga_colors[NCOLORS] = {
0, 4, 2, 6, 1, 5, 3, 7,
8, 12, 10, 14, 9, 13, 11, 15
};
static const int vga_to_cons_colors[NCOLORS] = {
0, 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13, 14, 15
};
struct text_pixel *screen_buffer;
#if defined(EFI)
static EFI_GRAPHICS_OUTPUT_BLT_PIXEL *GlyphBuffer;
#else
static struct paletteentry *GlyphBuffer;
#endif
static size_t GlyphBufferSize;
static bool insert_font(char *, FONT_FLAGS);
static int font_set(struct env_var *, int, const void *);
static void * allocate_glyphbuffer(uint32_t, uint32_t);
static void gfx_fb_cursor_draw(teken_gfx_t *, const teken_pos_t *, bool);
/*
* Initialize gfx framework.
*/
void
gfx_framework_init(void)
{
/*
* Setup font list to have builtin font.
*/
(void) insert_font(NULL, FONT_BUILTIN);
}
static uint8_t *
gfx_get_fb_address(void)
{
return (ptov((uint32_t)gfx_state.tg_fb.fb_addr));
}
/*
* Utility function to parse gfx mode line strings.
*/
bool
gfx_parse_mode_str(char *str, int *x, int *y, int *depth)
{
char *p, *end;
errno = 0;
p = str;
*x = strtoul(p, &end, 0);
if (*x == 0 || errno != 0)
return (false);
if (*end != 'x')
return (false);
p = end + 1;
*y = strtoul(p, &end, 0);
if (*y == 0 || errno != 0)
return (false);
if (*end != 'x') {
*depth = -1; /* auto select */
} else {
p = end + 1;
*depth = strtoul(p, &end, 0);
if (*depth == 0 || errno != 0 || *end != '\0')
return (false);
}
return (true);
}
static uint32_t
rgb_color_map(uint8_t index, uint32_t rmax, int roffset,
uint32_t gmax, int goffset, uint32_t bmax, int boffset)
{
uint32_t color, code, gray, level;
if (index < NCOLORS) {
#define CF(_f, _i) ((_f ## max * color_def[(_i)]._f / 100) << _f ## offset)
return (CF(r, index) | CF(g, index) | CF(b, index));
#undef CF
}
#define CF(_f, _c) ((_f ## max & _c) << _f ## offset)
/* 6x6x6 color cube */
if (index > 15 && index < 232) {
uint32_t red, green, blue;
for (red = 0; red < 6; red++) {
for (green = 0; green < 6; green++) {
for (blue = 0; blue < 6; blue++) {
code = 16 + (red * 36) +
(green * 6) + blue;
if (code != index)
continue;
red = red ? (red * 40 + 55) : 0;
green = green ? (green * 40 + 55) : 0;
blue = blue ? (blue * 40 + 55) : 0;
color = CF(r, red);
color |= CF(g, green);
color |= CF(b, blue);
return (color);
}
}
}
}
/* colors 232-255 are a grayscale ramp */
for (gray = 0; gray < 24; gray++) {
level = (gray * 10) + 8;
code = 232 + gray;
if (code == index)
break;
}
return (CF(r, level) | CF(g, level) | CF(b, level));
#undef CF
}
/*
* Support for color mapping.
* For 8, 24 and 32 bit depth, use mask size 8.
* 15/16 bit depth needs to use mask size from mode,
* or we will lose color information from 32-bit to 15/16 bit translation.
*/
uint32_t
gfx_fb_color_map(uint8_t index)
{
int rmask, gmask, bmask;
int roff, goff, boff, bpp;
roff = ffs(gfx_state.tg_fb.fb_mask_red) - 1;
goff = ffs(gfx_state.tg_fb.fb_mask_green) - 1;
boff = ffs(gfx_state.tg_fb.fb_mask_blue) - 1;
bpp = roundup2(gfx_state.tg_fb.fb_bpp, 8) >> 3;
if (bpp == 2)
rmask = gfx_state.tg_fb.fb_mask_red >> roff;
else
rmask = 0xff;
if (bpp == 2)
gmask = gfx_state.tg_fb.fb_mask_green >> goff;
else
gmask = 0xff;
if (bpp == 2)
bmask = gfx_state.tg_fb.fb_mask_blue >> boff;
else
bmask = 0xff;
return (rgb_color_map(index, rmask, 16, gmask, 8, bmask, 0));
}
/*
* Get indexed color from RGB. This function is used to write data to video
* memory when the adapter is set to use indexed colors.
* Since UEFI does only support 32-bit colors, we do not implement it for
* UEFI because there is no need for it and we do not have palette array
* for UEFI.
*/
static uint8_t
rgb_to_color_index(uint8_t r, uint8_t g, uint8_t b)
{
#if !defined(EFI)
uint32_t color, best, dist, k;
int diff;
color = 0;
best = 255 * 255 * 255;
for (k = 0; k < NCMAP; k++) {
diff = r - pe8[k].Red;
dist = diff * diff;
diff = g - pe8[k].Green;
dist += diff * diff;
diff = b - pe8[k].Blue;
dist += diff * diff;
/* Exact match, exit the loop */
if (dist == 0)
break;
if (dist < best) {
color = k;
best = dist;
}
}
if (k == NCMAP)
k = color;
return (k);
#else
(void) r;
(void) g;
(void) b;
return (0);
#endif
}
int
generate_cons_palette(uint32_t *palette, int format,
uint32_t rmax, int roffset, uint32_t gmax, int goffset,
uint32_t bmax, int boffset)
{
int i;
switch (format) {
case COLOR_FORMAT_VGA:
for (i = 0; i < NCOLORS; i++)
palette[i] = cons_to_vga_colors[i];
for (; i < NCMAP; i++)
palette[i] = i;
break;
case COLOR_FORMAT_RGB:
for (i = 0; i < NCMAP; i++)
palette[i] = rgb_color_map(i, rmax, roffset,
gmax, goffset, bmax, boffset);
break;
default:
return (ENODEV);
}
return (0);
}
static void
gfx_mem_wr1(uint8_t *base, size_t size, uint32_t o, uint8_t v)
{
if (o >= size)
return;
*(uint8_t *)(base + o) = v;
}
static void
gfx_mem_wr2(uint8_t *base, size_t size, uint32_t o, uint16_t v)
{
if (o >= size)
return;
*(uint16_t *)(base + o) = v;
}
static void
gfx_mem_wr4(uint8_t *base, size_t size, uint32_t o, uint32_t v)
{
if (o >= size)
return;
*(uint32_t *)(base + o) = v;
}
static int gfxfb_blt_fill(void *BltBuffer,
uint32_t DestinationX, uint32_t DestinationY,
uint32_t Width, uint32_t Height)
{
#if defined(EFI)
EFI_GRAPHICS_OUTPUT_BLT_PIXEL *p;
#else
struct paletteentry *p;
#endif
uint32_t data, bpp, pitch, y, x;
int roff, goff, boff;
size_t size;
off_t off;
uint8_t *destination;
if (BltBuffer == NULL)
return (EINVAL);
if (DestinationY + Height > gfx_state.tg_fb.fb_height)
return (EINVAL);
if (DestinationX + Width > gfx_state.tg_fb.fb_width)
return (EINVAL);
if (Width == 0 || Height == 0)
return (EINVAL);
p = BltBuffer;
roff = ffs(gfx_state.tg_fb.fb_mask_red) - 1;
goff = ffs(gfx_state.tg_fb.fb_mask_green) - 1;
boff = ffs(gfx_state.tg_fb.fb_mask_blue) - 1;
if (gfx_state.tg_fb.fb_bpp == 8) {
data = rgb_to_color_index(p->Red, p->Green, p->Blue);
} else {
data = (p->Red &
(gfx_state.tg_fb.fb_mask_red >> roff)) << roff;
data |= (p->Green &
(gfx_state.tg_fb.fb_mask_green >> goff)) << goff;
data |= (p->Blue &
(gfx_state.tg_fb.fb_mask_blue >> boff)) << boff;
}
bpp = roundup2(gfx_state.tg_fb.fb_bpp, 8) >> 3;
pitch = gfx_state.tg_fb.fb_stride * bpp;
destination = gfx_get_fb_address();
size = gfx_state.tg_fb.fb_size;
for (y = DestinationY; y < Height + DestinationY; y++) {
off = y * pitch + DestinationX * bpp;
for (x = 0; x < Width; x++) {
switch (bpp) {
case 1:
gfx_mem_wr1(destination, size, off,
(data < NCOLORS) ?
cons_to_vga_colors[data] : data);
break;
case 2:
gfx_mem_wr2(destination, size, off, data);
break;
case 3:
gfx_mem_wr1(destination, size, off,
(data >> 16) & 0xff);
gfx_mem_wr1(destination, size, off + 1,
(data >> 8) & 0xff);
gfx_mem_wr1(destination, size, off + 2,
data & 0xff);
break;
case 4:
gfx_mem_wr4(destination, size, off, data);
break;
default:
return (EINVAL);
}
off += bpp;
}
}
return (0);
}
static int
gfxfb_blt_video_to_buffer(void *BltBuffer, uint32_t SourceX, uint32_t SourceY,
uint32_t DestinationX, uint32_t DestinationY,
uint32_t Width, uint32_t Height, uint32_t Delta)
{
#if defined(EFI)
EFI_GRAPHICS_OUTPUT_BLT_PIXEL *p;
#else
struct paletteentry *p;
#endif
uint32_t x, sy, dy;
uint32_t bpp, pitch, copybytes;
off_t off;
uint8_t *source, *destination, *sb;
uint8_t rm, rp, gm, gp, bm, bp;
bool bgra;
if (BltBuffer == NULL)
return (EINVAL);
if (SourceY + Height >
gfx_state.tg_fb.fb_height)
return (EINVAL);
if (SourceX + Width > gfx_state.tg_fb.fb_width)
return (EINVAL);
if (Width == 0 || Height == 0)
return (EINVAL);
if (Delta == 0)
Delta = Width * sizeof (*p);
bpp = roundup2(gfx_state.tg_fb.fb_bpp, 8) >> 3;
pitch = gfx_state.tg_fb.fb_stride * bpp;
copybytes = Width * bpp;
rp = ffs(gfx_state.tg_fb.fb_mask_red) - 1;
gp = ffs(gfx_state.tg_fb.fb_mask_green) - 1;
bp = ffs(gfx_state.tg_fb.fb_mask_blue) - 1;
rm = gfx_state.tg_fb.fb_mask_red >> rp;
gm = gfx_state.tg_fb.fb_mask_green >> gp;
bm = gfx_state.tg_fb.fb_mask_blue >> bp;
/* If FB pixel format is BGRA, we can use direct copy. */
bgra = bpp == 4 &&
ffs(rm) - 1 == 8 && rp == 16 &&
ffs(gm) - 1 == 8 && gp == 8 &&
ffs(bm) - 1 == 8 && bp == 0;
for (sy = SourceY, dy = DestinationY; dy < Height + DestinationY;
sy++, dy++) {
off = sy * pitch + SourceX * bpp;
source = gfx_get_fb_address() + off;
destination = (uint8_t *)BltBuffer + dy * Delta +
DestinationX * sizeof (*p);
if (bgra) {
bcopy(source, destination, copybytes);
} else {
for (x = 0; x < Width; x++) {
uint32_t c = 0;
p = (void *)(destination + x * sizeof (*p));
sb = source + x * bpp;
switch (bpp) {
case 1:
c = *sb;
break;
case 2:
c = *(uint16_t *)sb;
break;
case 3:
c = sb[0] << 16 | sb[1] << 8 | sb[2];
break;
case 4:
c = *(uint32_t *)sb;
break;
default:
return (EINVAL);
}
if (bpp == 1) {
*(uint32_t *)p = gfx_fb_color_map(
(c < 16) ?
vga_to_cons_colors[c] : c);
} else {
p->Red = (c >> rp) & rm;
p->Green = (c >> gp) & gm;
p->Blue = (c >> bp) & bm;
p->Reserved = 0;
}
}
}
}
return (0);
}
static int
gfxfb_blt_buffer_to_video(void *BltBuffer, uint32_t SourceX, uint32_t SourceY,
uint32_t DestinationX, uint32_t DestinationY,
uint32_t Width, uint32_t Height, uint32_t Delta)
{
#if defined(EFI)
EFI_GRAPHICS_OUTPUT_BLT_PIXEL *p;
#else
struct paletteentry *p;
#endif
uint32_t x, sy, dy;
uint32_t bpp, pitch, copybytes;
off_t off;
uint8_t *source, *destination;
uint8_t rm, rp, gm, gp, bm, bp;
bool bgra;
if (BltBuffer == NULL)
return (EINVAL);
if (DestinationY + Height >
gfx_state.tg_fb.fb_height)
return (EINVAL);
if (DestinationX + Width > gfx_state.tg_fb.fb_width)
return (EINVAL);
if (Width == 0 || Height == 0)
return (EINVAL);
if (Delta == 0)
Delta = Width * sizeof (*p);
bpp = roundup2(gfx_state.tg_fb.fb_bpp, 8) >> 3;
pitch = gfx_state.tg_fb.fb_stride * bpp;
copybytes = Width * bpp;
rp = ffs(gfx_state.tg_fb.fb_mask_red) - 1;
gp = ffs(gfx_state.tg_fb.fb_mask_green) - 1;
bp = ffs(gfx_state.tg_fb.fb_mask_blue) - 1;
rm = gfx_state.tg_fb.fb_mask_red >> rp;
gm = gfx_state.tg_fb.fb_mask_green >> gp;
bm = gfx_state.tg_fb.fb_mask_blue >> bp;
/* If FB pixel format is BGRA, we can use direct copy. */
bgra = bpp == 4 &&
ffs(rm) - 1 == 8 && rp == 16 &&
ffs(gm) - 1 == 8 && gp == 8 &&
ffs(bm) - 1 == 8 && bp == 0;
for (sy = SourceY, dy = DestinationY; sy < Height + SourceY;
sy++, dy++) {
off = dy * pitch + DestinationX * bpp;
destination = gfx_get_fb_address() + off;
if (bgra) {
source = (uint8_t *)BltBuffer + sy * Delta +
SourceX * sizeof (*p);
bcopy(source, destination, copybytes);
} else {
for (x = 0; x < Width; x++) {
uint32_t c;
p = (void *)((uint8_t *)BltBuffer +
sy * Delta +
(SourceX + x) * sizeof (*p));
if (bpp == 1) {
c = rgb_to_color_index(p->Red,
p->Green, p->Blue);
} else {
c = (p->Red & rm) << rp |
(p->Green & gm) << gp |
(p->Blue & bm) << bp;
}
off = x * bpp;
switch (bpp) {
case 1:
gfx_mem_wr1(destination, copybytes,
off, (c < 16) ?
cons_to_vga_colors[c] : c);
break;
case 2:
gfx_mem_wr2(destination, copybytes,
off, c);
break;
case 3:
gfx_mem_wr1(destination, copybytes,
off, (c >> 16) & 0xff);
gfx_mem_wr1(destination, copybytes,
off + 1, (c >> 8) & 0xff);
gfx_mem_wr1(destination, copybytes,
off + 2, c & 0xff);
break;
case 4:
gfx_mem_wr4(destination, copybytes,
x * bpp, c);
break;
default:
return (EINVAL);
}
}
}
}
return (0);
}
static int
gfxfb_blt_video_to_video(uint32_t SourceX, uint32_t SourceY,
uint32_t DestinationX, uint32_t DestinationY,
uint32_t Width, uint32_t Height)
{
uint32_t bpp, copybytes;
int pitch;
uint8_t *source, *destination;
off_t off;
if (SourceY + Height >
gfx_state.tg_fb.fb_height)
return (EINVAL);
if (SourceX + Width > gfx_state.tg_fb.fb_width)
return (EINVAL);
if (DestinationY + Height >
gfx_state.tg_fb.fb_height)
return (EINVAL);
if (DestinationX + Width > gfx_state.tg_fb.fb_width)
return (EINVAL);
if (Width == 0 || Height == 0)
return (EINVAL);
bpp = roundup2(gfx_state.tg_fb.fb_bpp, 8) >> 3;
pitch = gfx_state.tg_fb.fb_stride * bpp;
copybytes = Width * bpp;
off = SourceY * pitch + SourceX * bpp;
source = gfx_get_fb_address() + off;
off = DestinationY * pitch + DestinationX * bpp;
destination = gfx_get_fb_address() + off;
if ((uintptr_t)destination > (uintptr_t)source) {
source += Height * pitch;
destination += Height * pitch;
pitch = -pitch;
}
while (Height-- > 0) {
bcopy(source, destination, copybytes);
source += pitch;
destination += pitch;
}
return (0);
}
static void
gfxfb_shadow_fill(uint32_t *BltBuffer,
uint32_t DestinationX, uint32_t DestinationY,
uint32_t Width, uint32_t Height)
{
uint32_t fbX, fbY;
if (gfx_state.tg_shadow_fb == NULL)
return;
fbX = gfx_state.tg_fb.fb_width;
fbY = gfx_state.tg_fb.fb_height;
if (BltBuffer == NULL)
return;
if (DestinationX + Width > fbX)
Width = fbX - DestinationX;
if (DestinationY + Height > fbY)
Height = fbY - DestinationY;
uint32_t y2 = Height + DestinationY;
for (uint32_t y1 = DestinationY; y1 < y2; y1++) {
uint32_t off = y1 * fbX + DestinationX;
for (uint32_t x = 0; x < Width; x++) {
gfx_state.tg_shadow_fb[off + x] = *BltBuffer;
}
}
}
int
gfxfb_blt(void *BltBuffer, GFXFB_BLT_OPERATION BltOperation,
uint32_t SourceX, uint32_t SourceY,
uint32_t DestinationX, uint32_t DestinationY,
uint32_t Width, uint32_t Height, uint32_t Delta)
{
int rv;
#if defined(EFI)
EFI_STATUS status;
EFI_GRAPHICS_OUTPUT *gop = gfx_state.tg_private;
EFI_TPL tpl;
/*
* We assume Blt() does work, if not, we will need to build exception
* list case by case. We only have boot services during part of our
* exectution. Once terminate boot services, these operations cannot be
* done as they are provided by protocols that disappear when exit
* boot services.
*/
if (gop != NULL && boot_services_active) {
tpl = BS->RaiseTPL(TPL_NOTIFY);
switch (BltOperation) {
case GfxFbBltVideoFill:
gfxfb_shadow_fill(BltBuffer, DestinationX,
DestinationY, Width, Height);
status = gop->Blt(gop, BltBuffer, EfiBltVideoFill,
SourceX, SourceY, DestinationX, DestinationY,
Width, Height, Delta);
break;
case GfxFbBltVideoToBltBuffer:
status = gop->Blt(gop, BltBuffer,
EfiBltVideoToBltBuffer,
SourceX, SourceY, DestinationX, DestinationY,
Width, Height, Delta);
break;
case GfxFbBltBufferToVideo:
status = gop->Blt(gop, BltBuffer, EfiBltBufferToVideo,
SourceX, SourceY, DestinationX, DestinationY,
Width, Height, Delta);
break;
case GfxFbBltVideoToVideo:
status = gop->Blt(gop, BltBuffer, EfiBltVideoToVideo,
SourceX, SourceY, DestinationX, DestinationY,
Width, Height, Delta);
break;
default:
status = EFI_INVALID_PARAMETER;
break;
}
switch (status) {
case EFI_SUCCESS:
rv = 0;
break;
case EFI_INVALID_PARAMETER:
rv = EINVAL;
break;
case EFI_DEVICE_ERROR:
default:
rv = EIO;
break;
}
BS->RestoreTPL(tpl);
return (rv);
}
#endif
switch (BltOperation) {
case GfxFbBltVideoFill:
gfxfb_shadow_fill(BltBuffer, DestinationX, DestinationY,
Width, Height);
rv = gfxfb_blt_fill(BltBuffer, DestinationX, DestinationY,
Width, Height);
break;
case GfxFbBltVideoToBltBuffer:
rv = gfxfb_blt_video_to_buffer(BltBuffer, SourceX, SourceY,
DestinationX, DestinationY, Width, Height, Delta);
break;
case GfxFbBltBufferToVideo:
rv = gfxfb_blt_buffer_to_video(BltBuffer, SourceX, SourceY,
DestinationX, DestinationY, Width, Height, Delta);
break;
case GfxFbBltVideoToVideo:
rv = gfxfb_blt_video_to_video(SourceX, SourceY,
DestinationX, DestinationY, Width, Height);
break;
default:
rv = EINVAL;
break;
}
return (rv);
}
void
gfx_bitblt_bitmap(teken_gfx_t *state, const uint8_t *glyph,
const teken_attr_t *a, uint32_t alpha, bool cursor)
{
uint32_t width, height;
uint32_t fgc, bgc, bpl, cc, o;
int bpp, bit, byte;
bool invert = false;
bpp = 4; /* We only generate BGRA */
width = state->tg_font.vf_width;
height = state->tg_font.vf_height;
bpl = (width + 7) / 8; /* Bytes per source line. */
fgc = a->ta_fgcolor;
bgc = a->ta_bgcolor;
if (a->ta_format & TF_BOLD)
fgc |= TC_LIGHT;
if (a->ta_format & TF_BLINK)
bgc |= TC_LIGHT;
fgc = gfx_fb_color_map(fgc);
bgc = gfx_fb_color_map(bgc);
if (a->ta_format & TF_REVERSE)
invert = !invert;
if (cursor)
invert = !invert;
if (invert) {
uint32_t tmp;
tmp = fgc;
fgc = bgc;
bgc = tmp;
}
alpha = alpha << 24;
fgc |= alpha;
bgc |= alpha;
for (uint32_t y = 0; y < height; y++) {
for (uint32_t x = 0; x < width; x++) {
byte = y * bpl + x / 8;
bit = 0x80 >> (x % 8);
o = y * width * bpp + x * bpp;
cc = glyph[byte] & bit ? fgc : bgc;
gfx_mem_wr4(state->tg_glyph,
state->tg_glyph_size, o, cc);
}
}
}
/*
* Draw prepared glyph on terminal point p.
*/
static void
gfx_fb_printchar(teken_gfx_t *state, const teken_pos_t *p)
{
unsigned x, y, width, height;
width = state->tg_font.vf_width;
height = state->tg_font.vf_height;
x = state->tg_origin.tp_col + p->tp_col * width;
y = state->tg_origin.tp_row + p->tp_row * height;
gfx_fb_cons_display(x, y, width, height, state->tg_glyph);
}
/*
* Store char with its attribute to buffer and put it on screen.
*/
void
gfx_fb_putchar(void *arg, const teken_pos_t *p, teken_char_t c,
const teken_attr_t *a)
{
teken_gfx_t *state = arg;
const uint8_t *glyph;
int idx;
idx = p->tp_col + p->tp_row * state->tg_tp.tp_col;
if (idx >= state->tg_tp.tp_col * state->tg_tp.tp_row)
return;
/* remove the cursor */
if (state->tg_cursor_visible)
gfx_fb_cursor_draw(state, &state->tg_cursor, false);
screen_buffer[idx].c = c;
screen_buffer[idx].a = *a;
glyph = font_lookup(&state->tg_font, c, a);
gfx_bitblt_bitmap(state, glyph, a, 0xff, false);
gfx_fb_printchar(state, p);
/* display the cursor */
if (state->tg_cursor_visible) {
const teken_pos_t *c;
c = teken_get_cursor(&state->tg_teken);
gfx_fb_cursor_draw(state, c, true);
}
}
void
gfx_fb_fill(void *arg, const teken_rect_t *r, teken_char_t c,
const teken_attr_t *a)
{
teken_gfx_t *state = arg;
const uint8_t *glyph;
teken_pos_t p;
struct text_pixel *row;
/* remove the cursor */
if (state->tg_cursor_visible)
gfx_fb_cursor_draw(state, &state->tg_cursor, false);
glyph = font_lookup(&state->tg_font, c, a);
gfx_bitblt_bitmap(state, glyph, a, 0xff, false);
for (p.tp_row = r->tr_begin.tp_row; p.tp_row < r->tr_end.tp_row;
p.tp_row++) {
row = &screen_buffer[p.tp_row * state->tg_tp.tp_col];
for (p.tp_col = r->tr_begin.tp_col;
p.tp_col < r->tr_end.tp_col; p.tp_col++) {
row[p.tp_col].c = c;
row[p.tp_col].a = *a;
gfx_fb_printchar(state, &p);
}
}
/* display the cursor */
if (state->tg_cursor_visible) {
const teken_pos_t *c;
c = teken_get_cursor(&state->tg_teken);
gfx_fb_cursor_draw(state, c, true);
}
}
static void
gfx_fb_cursor_draw(teken_gfx_t *state, const teken_pos_t *pos, bool on)
{
const uint8_t *glyph;
teken_pos_t p;
int idx;
p = *pos;
if (p.tp_col >= state->tg_tp.tp_col)
p.tp_col = state->tg_tp.tp_col - 1;
if (p.tp_row >= state->tg_tp.tp_row)
p.tp_row = state->tg_tp.tp_row - 1;
idx = p.tp_col + p.tp_row * state->tg_tp.tp_col;
if (idx >= state->tg_tp.tp_col * state->tg_tp.tp_row)
return;
glyph = font_lookup(&state->tg_font, screen_buffer[idx].c,
&screen_buffer[idx].a);
gfx_bitblt_bitmap(state, glyph, &screen_buffer[idx].a, 0xff, on);
gfx_fb_printchar(state, &p);
state->tg_cursor = p;
}
void
gfx_fb_cursor(void *arg, const teken_pos_t *p)
{
teken_gfx_t *state = arg;
/* Switch cursor off in old location and back on in new. */
if (state->tg_cursor_visible) {
gfx_fb_cursor_draw(state, &state->tg_cursor, false);
gfx_fb_cursor_draw(state, p, true);
}
}
void
gfx_fb_param(void *arg, int cmd, unsigned int value)
{
teken_gfx_t *state = arg;
const teken_pos_t *c;
switch (cmd) {
case TP_SETLOCALCURSOR:
/*
* 0 means normal (usually block), 1 means hidden, and
* 2 means blinking (always block) for compatibility with
* syscons. We don't support any changes except hiding,
* so must map 2 to 0.
*/
value = (value == 1) ? 0 : 1;
/* FALLTHROUGH */
case TP_SHOWCURSOR:
c = teken_get_cursor(&state->tg_teken);
gfx_fb_cursor_draw(state, c, true);
if (value != 0)
state->tg_cursor_visible = true;
else
state->tg_cursor_visible = false;
break;
default:
/* Not yet implemented */
break;
}
}
bool
is_same_pixel(struct text_pixel *px1, struct text_pixel *px2)
{
if (px1->c != px2->c)
return (false);
/* Is there image stored? */
if ((px1->a.ta_format & TF_IMAGE) ||
(px2->a.ta_format & TF_IMAGE))
return (false);
if (px1->a.ta_format != px2->a.ta_format)
return (false);
if (px1->a.ta_fgcolor != px2->a.ta_fgcolor)
return (false);
if (px1->a.ta_bgcolor != px2->a.ta_bgcolor)
return (false);
return (true);
}
static void
gfx_fb_copy_area(teken_gfx_t *state, const teken_rect_t *s,
const teken_pos_t *d)
{
uint32_t sx, sy, dx, dy, width, height;
uint32_t pitch, bytes;
int step;
width = state->tg_font.vf_width;
height = state->tg_font.vf_height;
sx = s->tr_begin.tp_col * width;
sy = s->tr_begin.tp_row * height;
dx = d->tp_col * width;
dy = d->tp_row * height;
width *= (s->tr_end.tp_col - s->tr_begin.tp_col + 1);
/*
* With no shadow fb, use video to video copy.
*/
if (state->tg_shadow_fb == NULL) {
(void) gfxfb_blt(NULL, GfxFbBltVideoToVideo,
sx + state->tg_origin.tp_col,
sy + state->tg_origin.tp_row,
dx + state->tg_origin.tp_col,
dy + state->tg_origin.tp_row,
width, height, 0);
return;
}
/*
* With shadow fb, we need to copy data on both shadow and video,
* to preserve the consistency. We only read data from shadow fb.
*/
step = 1;
pitch = state->tg_fb.fb_width;
bytes = width * sizeof (*state->tg_shadow_fb);
/*
* To handle overlapping areas, set up reverse copy here.
*/
if (dy * pitch + dx > sy * pitch + sx) {
sy += height;
dy += height;
step = -step;
}
while (height-- > 0) {
uint32_t *source = &state->tg_shadow_fb[sy * pitch + sx];
uint32_t *destination = &state->tg_shadow_fb[dy * pitch + dx];
bcopy(source, destination, bytes);
(void) gfxfb_blt(destination, GfxFbBltBufferToVideo,
0, 0, dx + state->tg_origin.tp_col,
dy + state->tg_origin.tp_row, width, 1, 0);
sy += step;
dy += step;
}
}
static void
gfx_fb_copy_line(teken_gfx_t *state, int ncol, teken_pos_t *s, teken_pos_t *d)
{
teken_rect_t sr;
teken_pos_t dp;
unsigned soffset, doffset;
bool mark = false;
int x;
soffset = s->tp_col + s->tp_row * state->tg_tp.tp_col;
doffset = d->tp_col + d->tp_row * state->tg_tp.tp_col;
for (x = 0; x < ncol; x++) {
if (is_same_pixel(&screen_buffer[soffset + x],
&screen_buffer[doffset + x])) {
if (mark) {
gfx_fb_copy_area(state, &sr, &dp);
mark = false;
}
} else {
screen_buffer[doffset + x] = screen_buffer[soffset + x];
if (mark) {
/* update end point */
sr.tr_end.tp_col = s->tp_col + x;
} else {
/* set up new rectangle */
mark = true;
sr.tr_begin.tp_col = s->tp_col + x;
sr.tr_begin.tp_row = s->tp_row;
sr.tr_end.tp_col = s->tp_col + x;
sr.tr_end.tp_row = s->tp_row;
dp.tp_col = d->tp_col + x;
dp.tp_row = d->tp_row;
}
}
}
if (mark) {
gfx_fb_copy_area(state, &sr, &dp);
}
}
void
gfx_fb_copy(void *arg, const teken_rect_t *r, const teken_pos_t *p)
{
teken_gfx_t *state = arg;
unsigned doffset, soffset;
teken_pos_t d, s;
int nrow, ncol, y; /* Has to be signed - >= 0 comparison */
/*
* Copying is a little tricky. We must make sure we do it in
* correct order, to make sure we don't overwrite our own data.
*/
nrow = r->tr_end.tp_row - r->tr_begin.tp_row;
ncol = r->tr_end.tp_col - r->tr_begin.tp_col;
if (p->tp_row + nrow > state->tg_tp.tp_row ||
p->tp_col + ncol > state->tg_tp.tp_col)
return;
soffset = r->tr_begin.tp_col + r->tr_begin.tp_row * state->tg_tp.tp_col;
doffset = p->tp_col + p->tp_row * state->tg_tp.tp_col;
/* remove the cursor */
if (state->tg_cursor_visible)
gfx_fb_cursor_draw(state, &state->tg_cursor, false);
/*
* Copy line by line.
*/
if (doffset <= soffset) {
s = r->tr_begin;
d = *p;
for (y = 0; y < nrow; y++) {
s.tp_row = r->tr_begin.tp_row + y;
d.tp_row = p->tp_row + y;
gfx_fb_copy_line(state, ncol, &s, &d);
}
} else {
for (y = nrow - 1; y >= 0; y--) {
s.tp_row = r->tr_begin.tp_row + y;
d.tp_row = p->tp_row + y;
gfx_fb_copy_line(state, ncol, &s, &d);
}
}
/* display the cursor */
if (state->tg_cursor_visible) {
const teken_pos_t *c;
c = teken_get_cursor(&state->tg_teken);
gfx_fb_cursor_draw(state, c, true);
}
}
/*
* Implements alpha blending for RGBA data, could use pixels for arguments,
* but byte stream seems more generic.
* The generic alpha blending is:
* blend = alpha * fg + (1.0 - alpha) * bg.
* Since our alpha is not from range [0..1], we scale appropriately.
*/
static uint8_t
alpha_blend(uint8_t fg, uint8_t bg, uint8_t alpha)
{
uint16_t blend, h, l;
/* trivial corner cases */
if (alpha == 0)
return (bg);
if (alpha == 0xFF)
return (fg);
blend = (alpha * fg + (0xFF - alpha) * bg);
/* Division by 0xFF */
h = blend >> 8;
l = blend & 0xFF;
if (h + l >= 0xFF)
h++;
return (h);
}
/*
* Implements alpha blending for RGBA data, could use pixels for arguments,
* but byte stream seems more generic.
* The generic alpha blending is:
* blend = alpha * fg + (1.0 - alpha) * bg.
* Since our alpha is not from range [0..1], we scale appropriately.
*/
static void
bitmap_cpy(void *dst, void *src, uint32_t size)
{
#if defined(EFI)
EFI_GRAPHICS_OUTPUT_BLT_PIXEL *ps, *pd;
#else
struct paletteentry *ps, *pd;
#endif
uint32_t i;
uint8_t a;
ps = src;
pd = dst;
/*
* we only implement alpha blending for depth 32.
*/
for (i = 0; i < size; i ++) {
a = ps[i].Reserved;
pd[i].Red = alpha_blend(ps[i].Red, pd[i].Red, a);
pd[i].Green = alpha_blend(ps[i].Green, pd[i].Green, a);
pd[i].Blue = alpha_blend(ps[i].Blue, pd[i].Blue, a);
pd[i].Reserved = a;
}
}
static void *
allocate_glyphbuffer(uint32_t width, uint32_t height)
{
size_t size;
size = sizeof (*GlyphBuffer) * width * height;
if (size != GlyphBufferSize) {
free(GlyphBuffer);
GlyphBuffer = malloc(size);
if (GlyphBuffer == NULL)
return (NULL);
GlyphBufferSize = size;
}
return (GlyphBuffer);
}
void
gfx_fb_cons_display(uint32_t x, uint32_t y, uint32_t width, uint32_t height,
void *data)
{
#if defined(EFI)
EFI_GRAPHICS_OUTPUT_BLT_PIXEL *buf, *p;
#else
struct paletteentry *buf, *p;
#endif
size_t size;
/*
* If we do have shadow fb, we will use shadow to render data,
* and copy shadow to video.
*/
if (gfx_state.tg_shadow_fb != NULL) {
uint32_t pitch = gfx_state.tg_fb.fb_width;
/* Copy rectangle line by line. */
p = data;
for (uint32_t sy = 0; sy < height; sy++) {
buf = (void *)(gfx_state.tg_shadow_fb +
(y - gfx_state.tg_origin.tp_row) * pitch +
x - gfx_state.tg_origin.tp_col);
bitmap_cpy(buf, &p[sy * width], width);
(void) gfxfb_blt(buf, GfxFbBltBufferToVideo,
0, 0, x, y, width, 1, 0);
y++;
}
return;
}
/*
* Common data to display is glyph, use preallocated
* glyph buffer.
*/
if (gfx_state.tg_glyph_size != GlyphBufferSize)
(void) allocate_glyphbuffer(width, height);
size = width * height * sizeof(*buf);
if (size == GlyphBufferSize)
buf = GlyphBuffer;
else
buf = malloc(size);
if (buf == NULL)
return;
if (gfxfb_blt(buf, GfxFbBltVideoToBltBuffer, x, y, 0, 0,
width, height, 0) == 0) {
bitmap_cpy(buf, data, width * height);
(void) gfxfb_blt(buf, GfxFbBltBufferToVideo, 0, 0, x, y,
width, height, 0);
}
if (buf != GlyphBuffer)
free(buf);
}
/*
* Public graphics primitives.
*/
static int
isqrt(int num)
{
int res = 0;
int bit = 1 << 30;
/* "bit" starts at the highest power of four <= the argument. */
while (bit > num)
bit >>= 2;
while (bit != 0) {
if (num >= res + bit) {
num -= res + bit;
res = (res >> 1) + bit;
} else {
res >>= 1;
}
bit >>= 2;
}
return (res);
}
static uint32_t
gfx_fb_getcolor(void)
{
uint32_t c;
const teken_attr_t *ap;
ap = teken_get_curattr(&gfx_state.tg_teken);
if (ap->ta_format & TF_REVERSE) {
c = ap->ta_bgcolor;
if (ap->ta_format & TF_BLINK)
c |= TC_LIGHT;
} else {
c = ap->ta_fgcolor;
if (ap->ta_format & TF_BOLD)
c |= TC_LIGHT;
}
return (gfx_fb_color_map(c));
}
/* set pixel in framebuffer using gfx coordinates */
void
gfx_fb_setpixel(uint32_t x, uint32_t y)
{
uint32_t c;
if (gfx_state.tg_fb_type == FB_TEXT)
return;
c = gfx_fb_getcolor();
if (x >= gfx_state.tg_fb.fb_width ||
y >= gfx_state.tg_fb.fb_height)
return;
gfxfb_blt(&c, GfxFbBltVideoFill, 0, 0, x, y, 1, 1, 0);
}
/*
* draw rectangle in framebuffer using gfx coordinates.
*/
void
gfx_fb_drawrect(uint32_t x1, uint32_t y1, uint32_t x2, uint32_t y2,
uint32_t fill)
{
uint32_t c;
if (gfx_state.tg_fb_type == FB_TEXT)
return;
c = gfx_fb_getcolor();
if (fill != 0) {
gfxfb_blt(&c, GfxFbBltVideoFill, 0, 0, x1, y1, x2 - x1,
y2 - y1, 0);
} else {
gfxfb_blt(&c, GfxFbBltVideoFill, 0, 0, x1, y1, x2 - x1, 1, 0);
gfxfb_blt(&c, GfxFbBltVideoFill, 0, 0, x1, y2, x2 - x1, 1, 0);
gfxfb_blt(&c, GfxFbBltVideoFill, 0, 0, x1, y1, 1, y2 - y1, 0);
gfxfb_blt(&c, GfxFbBltVideoFill, 0, 0, x2, y1, 1, y2 - y1, 0);
}
}
void
gfx_fb_line(uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1, uint32_t wd)
{
int dx, sx, dy, sy;
int err, e2, x2, y2, ed, width;
if (gfx_state.tg_fb_type == FB_TEXT)
return;
width = wd;
sx = x0 < x1? 1 : -1;
sy = y0 < y1? 1 : -1;
dx = x1 > x0? x1 - x0 : x0 - x1;
dy = y1 > y0? y1 - y0 : y0 - y1;
err = dx + dy;
ed = dx + dy == 0 ? 1: isqrt(dx * dx + dy * dy);
for (;;) {
gfx_fb_setpixel(x0, y0);
e2 = err;
x2 = x0;
if ((e2 << 1) >= -dx) { /* x step */
e2 += dy;
y2 = y0;
while (e2 < ed * width &&
(y1 != (uint32_t)y2 || dx > dy)) {
y2 += sy;
gfx_fb_setpixel(x0, y2);
e2 += dx;
}
if (x0 == x1)
break;
e2 = err;
err -= dy;
x0 += sx;
}
if ((e2 << 1) <= dy) { /* y step */
e2 = dx-e2;
while (e2 < ed * width &&
(x1 != (uint32_t)x2 || dx < dy)) {
x2 += sx;
gfx_fb_setpixel(x2, y0);
e2 += dy;
}
if (y0 == y1)
break;
err += dx;
y0 += sy;
}
}
}
/*
* quadratic Bézier curve limited to gradients without sign change.
*/
void
gfx_fb_bezier(uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1, uint32_t x2,
uint32_t y2, uint32_t wd)
{
int sx, sy, xx, yy, xy, width;
int dx, dy, err, curvature;
int i;
if (gfx_state.tg_fb_type == FB_TEXT)
return;
width = wd;
sx = x2 - x1;
sy = y2 - y1;
xx = x0 - x1;
yy = y0 - y1;
curvature = xx*sy - yy*sx;
if (sx*sx + sy*sy > xx*xx+yy*yy) {
x2 = x0;
x0 = sx + x1;
y2 = y0;
y0 = sy + y1;
curvature = -curvature;
}
if (curvature != 0) {
xx += sx;
sx = x0 < x2? 1 : -1;
xx *= sx;
yy += sy;
sy = y0 < y2? 1 : -1;
yy *= sy;
xy = (xx*yy) << 1;
xx *= xx;
yy *= yy;
if (curvature * sx * sy < 0) {
xx = -xx;
yy = -yy;
xy = -xy;
curvature = -curvature;
}
dx = 4 * sy * curvature * (x1 - x0) + xx - xy;
dy = 4 * sx * curvature * (y0 - y1) + yy - xy;
xx += xx;
yy += yy;
err = dx + dy + xy;
do {
for (i = 0; i <= width; i++)
gfx_fb_setpixel(x0 + i, y0);
if (x0 == x2 && y0 == y2)
return; /* last pixel -> curve finished */
y1 = 2 * err < dx;
if (2 * err > dy) {
x0 += sx;
dx -= xy;
dy += yy;
err += dy;
}
if (y1 != 0) {
y0 += sy;
dy -= xy;
dx += xx;
err += dx;
}
} while (dy < dx); /* gradient negates -> algorithm fails */
}
gfx_fb_line(x0, y0, x2, y2, width);
}
/*
* draw rectangle using terminal coordinates and current foreground color.
*/
void
gfx_term_drawrect(uint32_t ux1, uint32_t uy1, uint32_t ux2, uint32_t uy2)
{
int x1, y1, x2, y2;
int xshift, yshift;
int width, i;
uint32_t vf_width, vf_height;
teken_rect_t r;
if (gfx_state.tg_fb_type == FB_TEXT)
return;
vf_width = gfx_state.tg_font.vf_width;
vf_height = gfx_state.tg_font.vf_height;
width = vf_width / 4; /* line width */
xshift = (vf_width - width) / 2;
yshift = (vf_height - width) / 2;
/* Shift coordinates */
if (ux1 != 0)
ux1--;
if (uy1 != 0)
uy1--;
ux2--;
uy2--;
/* mark area used in terminal */
r.tr_begin.tp_col = ux1;
r.tr_begin.tp_row = uy1;
r.tr_end.tp_col = ux2 + 1;
r.tr_end.tp_row = uy2 + 1;
term_image_display(&gfx_state, &r);
/*
* Draw horizontal lines width points thick, shifted from outer edge.
*/
x1 = (ux1 + 1) * vf_width + gfx_state.tg_origin.tp_col;
y1 = uy1 * vf_height + gfx_state.tg_origin.tp_row + yshift;
x2 = ux2 * vf_width + gfx_state.tg_origin.tp_col;
gfx_fb_drawrect(x1, y1, x2, y1 + width, 1);
y2 = uy2 * vf_height + gfx_state.tg_origin.tp_row;
y2 += vf_height - yshift - width;
gfx_fb_drawrect(x1, y2, x2, y2 + width, 1);
/*
* Draw vertical lines width points thick, shifted from outer edge.
*/
x1 = ux1 * vf_width + gfx_state.tg_origin.tp_col + xshift;
y1 = uy1 * vf_height + gfx_state.tg_origin.tp_row;
y1 += vf_height;
y2 = uy2 * vf_height + gfx_state.tg_origin.tp_row;
gfx_fb_drawrect(x1, y1, x1 + width, y2, 1);
x1 = ux2 * vf_width + gfx_state.tg_origin.tp_col;
x1 += vf_width - xshift - width;
gfx_fb_drawrect(x1, y1, x1 + width, y2, 1);
/* Draw upper left corner. */
x1 = ux1 * vf_width + gfx_state.tg_origin.tp_col + xshift;
y1 = uy1 * vf_height + gfx_state.tg_origin.tp_row;
y1 += vf_height;
x2 = ux1 * vf_width + gfx_state.tg_origin.tp_col;
x2 += vf_width;
y2 = uy1 * vf_height + gfx_state.tg_origin.tp_row + yshift;
for (i = 0; i <= width; i++)
gfx_fb_bezier(x1 + i, y1, x1 + i, y2 + i, x2, y2 + i, width-i);
/* Draw lower left corner. */
x1 = ux1 * vf_width + gfx_state.tg_origin.tp_col;
x1 += vf_width;
y1 = uy2 * vf_height + gfx_state.tg_origin.tp_row;
y1 += vf_height - yshift;
x2 = ux1 * vf_width + gfx_state.tg_origin.tp_col + xshift;
y2 = uy2 * vf_height + gfx_state.tg_origin.tp_row;
for (i = 0; i <= width; i++)
gfx_fb_bezier(x1, y1 - i, x2 + i, y1 - i, x2 + i, y2, width-i);
/* Draw upper right corner. */
x1 = ux2 * vf_width + gfx_state.tg_origin.tp_col;
y1 = uy1 * vf_height + gfx_state.tg_origin.tp_row + yshift;
x2 = ux2 * vf_width + gfx_state.tg_origin.tp_col;
x2 += vf_width - xshift - width;
y2 = uy1 * vf_height + gfx_state.tg_origin.tp_row;
y2 += vf_height;
for (i = 0; i <= width; i++)
gfx_fb_bezier(x1, y1 + i, x2 + i, y1 + i, x2 + i, y2, width-i);
/* Draw lower right corner. */
x1 = ux2 * vf_width + gfx_state.tg_origin.tp_col;
y1 = uy2 * vf_height + gfx_state.tg_origin.tp_row;
y1 += vf_height - yshift;
x2 = ux2 * vf_width + gfx_state.tg_origin.tp_col;
x2 += vf_width - xshift - width;
y2 = uy2 * vf_height + gfx_state.tg_origin.tp_row;
for (i = 0; i <= width; i++)
gfx_fb_bezier(x1, y1 - i, x2 + i, y1 - i, x2 + i, y2, width-i);
}
int
gfx_fb_putimage(png_t *png, uint32_t ux1, uint32_t uy1, uint32_t ux2,
uint32_t uy2, uint32_t flags)
{
#if defined(EFI)
EFI_GRAPHICS_OUTPUT_BLT_PIXEL *p;
#else
struct paletteentry *p;
#endif
uint8_t *data;
uint32_t i, j, x, y, fheight, fwidth;
int rs, gs, bs;
uint8_t r, g, b, a;
bool scale = false;
bool trace = false;
teken_rect_t rect;
trace = (flags & FL_PUTIMAGE_DEBUG) != 0;
if (gfx_state.tg_fb_type == FB_TEXT) {
if (trace)
printf("Framebuffer not active.\n");
return (1);
}
if (png->color_type != PNG_TRUECOLOR_ALPHA) {
if (trace)
printf("Not truecolor image.\n");
return (1);
}
if (ux1 > gfx_state.tg_fb.fb_width ||
uy1 > gfx_state.tg_fb.fb_height) {
if (trace)
printf("Top left coordinate off screen.\n");
return (1);
}
if (png->width > UINT16_MAX || png->height > UINT16_MAX) {
if (trace)
printf("Image too large.\n");
return (1);
}
if (png->width < 1 || png->height < 1) {
if (trace)
printf("Image too small.\n");
return (1);
}
/*
* If 0 was passed for either ux2 or uy2, then calculate the missing
* part of the bottom right coordinate.
*/
scale = true;
if (ux2 == 0 && uy2 == 0) {
/* Both 0, use the native resolution of the image */
ux2 = ux1 + png->width;
uy2 = uy1 + png->height;
scale = false;
} else if (ux2 == 0) {
/* Set ux2 from uy2/uy1 to maintain aspect ratio */
ux2 = ux1 + (png->width * (uy2 - uy1)) / png->height;
} else if (uy2 == 0) {
/* Set uy2 from ux2/ux1 to maintain aspect ratio */
uy2 = uy1 + (png->height * (ux2 - ux1)) / png->width;
}
if (ux2 > gfx_state.tg_fb.fb_width ||
uy2 > gfx_state.tg_fb.fb_height) {
if (trace)
printf("Bottom right coordinate off screen.\n");
return (1);
}
fwidth = ux2 - ux1;
fheight = uy2 - uy1;
/*
* If the original image dimensions have been passed explicitly,
* disable scaling.
*/
if (fwidth == png->width && fheight == png->height)
scale = false;
if (ux1 == 0) {
/*
* No top left X co-ordinate (real coordinates start at 1),
* place as far right as it will fit.
*/
ux2 = gfx_state.tg_fb.fb_width - gfx_state.tg_origin.tp_col;
ux1 = ux2 - fwidth;
}
if (uy1 == 0) {
/*
* No top left Y co-ordinate (real coordinates start at 1),
* place as far down as it will fit.
*/
uy2 = gfx_state.tg_fb.fb_height - gfx_state.tg_origin.tp_row;
uy1 = uy2 - fheight;
}
if (ux1 >= ux2 || uy1 >= uy2) {
if (trace)
printf("Image dimensions reversed.\n");
return (1);
}
if (fwidth < 2 || fheight < 2) {
if (trace)
printf("Target area too small\n");
return (1);
}
if (trace)
printf("Image %ux%u -> %ux%u @%ux%u\n",
png->width, png->height, fwidth, fheight, ux1, uy1);
rect.tr_begin.tp_col = ux1 / gfx_state.tg_font.vf_width;
rect.tr_begin.tp_row = uy1 / gfx_state.tg_font.vf_height;
rect.tr_end.tp_col = (ux1 + fwidth) / gfx_state.tg_font.vf_width;
rect.tr_end.tp_row = (uy1 + fheight) / gfx_state.tg_font.vf_height;
/*
* mark area used in terminal
*/
if (!(flags & FL_PUTIMAGE_NOSCROLL))
term_image_display(&gfx_state, &rect);
if ((flags & FL_PUTIMAGE_BORDER))
gfx_fb_drawrect(ux1, uy1, ux2, uy2, 0);
data = malloc(fwidth * fheight * sizeof(*p));
p = (void *)data;
if (data == NULL) {
if (trace)
printf("Out of memory.\n");
return (1);
}
/*
* Build image for our framebuffer.
*/
/* Helper to calculate the pixel index from the source png */
#define GETPIXEL(xx, yy) (((yy) * png->width + (xx)) * png->bpp)
/*
* For each of the x and y directions, calculate the number of pixels
* in the source image that correspond to a single pixel in the target.
* Use fixed-point arithmetic with 16-bits for each of the integer and
* fractional parts.
*/
const uint32_t wcstep = ((png->width - 1) << 16) / (fwidth - 1);
const uint32_t hcstep = ((png->height - 1) << 16) / (fheight - 1);
rs = 8 - (fls(gfx_state.tg_fb.fb_mask_red) -
ffs(gfx_state.tg_fb.fb_mask_red) + 1);
gs = 8 - (fls(gfx_state.tg_fb.fb_mask_green) -
ffs(gfx_state.tg_fb.fb_mask_green) + 1);
bs = 8 - (fls(gfx_state.tg_fb.fb_mask_blue) -
ffs(gfx_state.tg_fb.fb_mask_blue) + 1);
uint32_t hc = 0;
for (y = 0; y < fheight; y++) {
uint32_t hc2 = (hc >> 9) & 0x7f;
uint32_t hc1 = 0x80 - hc2;
uint32_t offset_y = hc >> 16;
uint32_t offset_y1 = offset_y + 1;
uint32_t wc = 0;
for (x = 0; x < fwidth; x++) {
uint32_t wc2 = (wc >> 9) & 0x7f;
uint32_t wc1 = 0x80 - wc2;
uint32_t offset_x = wc >> 16;
uint32_t offset_x1 = offset_x + 1;
/* Target pixel index */
j = y * fwidth + x;
if (!scale) {
i = GETPIXEL(x, y);
r = png->image[i];
g = png->image[i + 1];
b = png->image[i + 2];
a = png->image[i + 3];
} else {
uint8_t pixel[4];
uint32_t p00 = GETPIXEL(offset_x, offset_y);
uint32_t p01 = GETPIXEL(offset_x, offset_y1);
uint32_t p10 = GETPIXEL(offset_x1, offset_y);
uint32_t p11 = GETPIXEL(offset_x1, offset_y1);
/*
* Given a 2x2 array of pixels in the source
* image, combine them to produce a single
* value for the pixel in the target image.
* Each column of pixels is combined using
* a weighted average where the top and bottom
* pixels contribute hc1 and hc2 respectively.
* The calculation for bottom pixel pB and
* top pixel pT is:
* (pT * hc1 + pB * hc2) / (hc1 + hc2)
* Once the values are determined for the two
* columns of pixels, then the columns are
* averaged together in the same way but using
* wc1 and wc2 for the weightings.
*
* Since hc1 and hc2 are chosen so that
* hc1 + hc2 == 128 (and same for wc1 + wc2),
* the >> 14 below is a quick way to divide by
* (hc1 + hc2) * (wc1 + wc2)
*/
for (i = 0; i < 4; i++)
pixel[i] = (
(png->image[p00 + i] * hc1 +
png->image[p01 + i] * hc2) * wc1 +
(png->image[p10 + i] * hc1 +
png->image[p11 + i] * hc2) * wc2)
>> 14;
r = pixel[0];
g = pixel[1];
b = pixel[2];
a = pixel[3];
}
if (trace)
printf("r/g/b: %x/%x/%x\n", r, g, b);
/*
* Rough colorspace reduction for 15/16 bit colors.
*/
p[j].Red = r >> rs;
p[j].Green = g >> gs;
p[j].Blue = b >> bs;
p[j].Reserved = a;
wc += wcstep;
}
hc += hcstep;
}
gfx_fb_cons_display(ux1, uy1, fwidth, fheight, data);
free(data);
return (0);
}
/*
* Reset font flags to FONT_AUTO.
*/
void
reset_font_flags(void)
{
struct fontlist *fl;
STAILQ_FOREACH(fl, &fonts, font_next) {
fl->font_flags = FONT_AUTO;
}
}
/* Return w^2 + h^2 or 0, if the dimensions are unknown */
static unsigned
edid_diagonal_squared(void)
{
unsigned w, h;
if (edid_info == NULL)
return (0);
w = edid_info->display.max_horizontal_image_size;
h = edid_info->display.max_vertical_image_size;
/* If either one is 0, we have aspect ratio, not size */
if (w == 0 || h == 0)
return (0);
/*
* some monitors encode the aspect ratio instead of the physical size.
*/
if ((w == 16 && h == 9) || (w == 16 && h == 10) ||
(w == 4 && h == 3) || (w == 5 && h == 4))
return (0);
/*
* translate cm to inch, note we scale by 100 here.
*/
w = w * 100 / 254;
h = h * 100 / 254;
/* Return w^2 + h^2 */
return (w * w + h * h);
}
/*
* calculate pixels per inch.
*/
static unsigned
gfx_get_ppi(void)
{
unsigned dp, di;
di = edid_diagonal_squared();
if (di == 0)
return (0);
dp = gfx_state.tg_fb.fb_width *
gfx_state.tg_fb.fb_width +
gfx_state.tg_fb.fb_height *
gfx_state.tg_fb.fb_height;
return (isqrt(dp / di));
}
/*
* Calculate font size from density independent pixels (dp):
* ((16dp * ppi) / 160) * display_factor.
* Here we are using fixed constants: 1dp == 160 ppi and
* display_factor 2.
*
* We are rounding font size up and are searching for font which is
* not smaller than calculated size value.
*/
static vt_font_bitmap_data_t *
gfx_get_font(void)
{
unsigned ppi, size;
vt_font_bitmap_data_t *font = NULL;
struct fontlist *fl, *next;
/* Text mode is not supported here. */
if (gfx_state.tg_fb_type == FB_TEXT)
return (NULL);
ppi = gfx_get_ppi();
if (ppi == 0)
return (NULL);
/*
* We will search for 16dp font.
* We are using scale up by 10 for roundup.
*/
size = (16 * ppi * 10) / 160;
/* Apply display factor 2. */
size = roundup(size * 2, 10) / 10;
STAILQ_FOREACH(fl, &fonts, font_next) {
next = STAILQ_NEXT(fl, font_next);
/*
* If this is last font or, if next font is smaller,
* we have our font. Make sure, it actually is loaded.
*/
if (next == NULL || next->font_data->vfbd_height < size) {
font = fl->font_data;
if (font->vfbd_font == NULL ||
fl->font_flags == FONT_RELOAD) {
if (fl->font_load != NULL &&
fl->font_name != NULL)
font = fl->font_load(fl->font_name);
}
break;
}
}
return (font);
}
static vt_font_bitmap_data_t *
set_font(teken_unit_t *rows, teken_unit_t *cols, teken_unit_t h, teken_unit_t w)
{
vt_font_bitmap_data_t *font = NULL;
struct fontlist *fl;
unsigned height = h;
unsigned width = w;
/*
* First check for manually loaded font.
*/
STAILQ_FOREACH(fl, &fonts, font_next) {
if (fl->font_flags == FONT_MANUAL) {
font = fl->font_data;
if (font->vfbd_font == NULL && fl->font_load != NULL &&
fl->font_name != NULL) {
font = fl->font_load(fl->font_name);
}
if (font == NULL || font->vfbd_font == NULL)
font = NULL;
break;
}
}
if (font == NULL)
font = gfx_get_font();
if (font != NULL) {
*rows = height / font->vfbd_height;
*cols = width / font->vfbd_width;
return (font);
}
/*
* Find best font for these dimensions, or use default.
* If height >= VT_FB_MAX_HEIGHT and width >= VT_FB_MAX_WIDTH,
* do not use smaller font than our DEFAULT_FONT_DATA.
*/
STAILQ_FOREACH(fl, &fonts, font_next) {
font = fl->font_data;
if ((*rows * font->vfbd_height <= height &&
*cols * font->vfbd_width <= width) ||
(height >= VT_FB_MAX_HEIGHT &&
width >= VT_FB_MAX_WIDTH &&
font->vfbd_height == DEFAULT_FONT_DATA.vfbd_height &&
font->vfbd_width == DEFAULT_FONT_DATA.vfbd_width)) {
if (font->vfbd_font == NULL ||
fl->font_flags == FONT_RELOAD) {
if (fl->font_load != NULL &&
fl->font_name != NULL) {
font = fl->font_load(fl->font_name);
}
if (font == NULL)
continue;
}
*rows = height / font->vfbd_height;
*cols = width / font->vfbd_width;
break;
}
font = NULL;
}
if (font == NULL) {
/*
* We have fonts sorted smallest last, try it before
* falling back to builtin.
*/
fl = STAILQ_LAST(&fonts, fontlist, font_next);
if (fl != NULL && fl->font_load != NULL &&
fl->font_name != NULL) {
font = fl->font_load(fl->font_name);
}
if (font == NULL)
font = &DEFAULT_FONT_DATA;
*rows = height / font->vfbd_height;
*cols = width / font->vfbd_width;
}
return (font);
}
static void
cons_clear(void)
{
char clear[] = { '\033', 'c' };
/* Reset terminal */
teken_input(&gfx_state.tg_teken, clear, sizeof(clear));
gfx_state.tg_functions->tf_param(&gfx_state, TP_SHOWCURSOR, 0);
}
void
setup_font(teken_gfx_t *state, teken_unit_t height, teken_unit_t width)
{
vt_font_bitmap_data_t *font_data;
teken_pos_t *tp = &state->tg_tp;
char env[8];
int i;
/*
* set_font() will select a appropriate sized font for
* the number of rows and columns selected. If we don't
* have a font that will fit, then it will use the
* default builtin font and adjust the rows and columns
* to fit on the screen.
*/
font_data = set_font(&tp->tp_row, &tp->tp_col, height, width);
if (font_data == NULL)
panic("out of memory");
for (i = 0; i < VFNT_MAPS; i++) {
state->tg_font.vf_map[i] =
font_data->vfbd_font->vf_map[i];
state->tg_font.vf_map_count[i] =
font_data->vfbd_font->vf_map_count[i];
}
state->tg_font.vf_bytes = font_data->vfbd_font->vf_bytes;
state->tg_font.vf_height = font_data->vfbd_font->vf_height;
state->tg_font.vf_width = font_data->vfbd_font->vf_width;
snprintf(env, sizeof (env), "%ux%u",
state->tg_font.vf_width, state->tg_font.vf_height);
env_setenv("screen.font", EV_VOLATILE | EV_NOHOOK,
env, font_set, env_nounset);
}
/* Binary search for the glyph. Return 0 if not found. */
static uint16_t
font_bisearch(const vfnt_map_t *map, uint32_t len, teken_char_t src)
{
unsigned min, mid, max;
min = 0;
max = len - 1;
/* Empty font map. */
if (len == 0)
return (0);
/* Character below minimal entry. */
if (src < map[0].vfm_src)
return (0);
/* Optimization: ASCII characters occur very often. */
if (src <= map[0].vfm_src + map[0].vfm_len)
return (src - map[0].vfm_src + map[0].vfm_dst);
/* Character above maximum entry. */
if (src > map[max].vfm_src + map[max].vfm_len)
return (0);
/* Binary search. */
while (max >= min) {
mid = (min + max) / 2;
if (src < map[mid].vfm_src)
max = mid - 1;
else if (src > map[mid].vfm_src + map[mid].vfm_len)
min = mid + 1;
else
return (src - map[mid].vfm_src + map[mid].vfm_dst);
}
return (0);
}
/*
* Return glyph bitmap. If glyph is not found, we will return bitmap
* for the first (offset 0) glyph.
*/
uint8_t *
font_lookup(const struct vt_font *vf, teken_char_t c, const teken_attr_t *a)
{
uint16_t dst;
size_t stride;
/* Substitute bold with normal if not found. */
if (a->ta_format & TF_BOLD) {
dst = font_bisearch(vf->vf_map[VFNT_MAP_BOLD],
vf->vf_map_count[VFNT_MAP_BOLD], c);
if (dst != 0)
goto found;
}
dst = font_bisearch(vf->vf_map[VFNT_MAP_NORMAL],
vf->vf_map_count[VFNT_MAP_NORMAL], c);
found:
stride = howmany(vf->vf_width, 8) * vf->vf_height;
return (&vf->vf_bytes[dst * stride]);
}
static int
load_mapping(int fd, struct vt_font *fp, int n)
{
size_t i, size;
ssize_t rv;
vfnt_map_t *mp;
if (fp->vf_map_count[n] == 0)
return (0);
size = fp->vf_map_count[n] * sizeof(*mp);
mp = malloc(size);
if (mp == NULL)
return (ENOMEM);
fp->vf_map[n] = mp;
rv = read(fd, mp, size);
if (rv < 0 || (size_t)rv != size) {
free(fp->vf_map[n]);
fp->vf_map[n] = NULL;
return (EIO);
}
for (i = 0; i < fp->vf_map_count[n]; i++) {
mp[i].vfm_src = be32toh(mp[i].vfm_src);
mp[i].vfm_dst = be16toh(mp[i].vfm_dst);
mp[i].vfm_len = be16toh(mp[i].vfm_len);
}
return (0);
}
static int
builtin_mapping(struct vt_font *fp, int n)
{
size_t size;
struct vfnt_map *mp;
if (n >= VFNT_MAPS)
return (EINVAL);
if (fp->vf_map_count[n] == 0)
return (0);
size = fp->vf_map_count[n] * sizeof(*mp);
mp = malloc(size);
if (mp == NULL)
return (ENOMEM);
fp->vf_map[n] = mp;
memcpy(mp, DEFAULT_FONT_DATA.vfbd_font->vf_map[n], size);
return (0);
}
/*
* Load font from builtin or from file.
* We do need special case for builtin because the builtin font glyphs
* are compressed and we do need to uncompress them.
* Having single load_font() for both cases will help us to simplify
* font switch handling.
*/
static vt_font_bitmap_data_t *
load_font(char *path)
{
int fd, i;
uint32_t glyphs;
struct font_header fh;
struct fontlist *fl;
vt_font_bitmap_data_t *bp;
struct vt_font *fp;
size_t size;
ssize_t rv;
/* Get our entry from the font list. */
STAILQ_FOREACH(fl, &fonts, font_next) {
if (strcmp(fl->font_name, path) == 0)
break;
}
if (fl == NULL)
return (NULL); /* Should not happen. */
bp = fl->font_data;
if (bp->vfbd_font != NULL && fl->font_flags != FONT_RELOAD)
return (bp);
fd = -1;
/*
* Special case for builtin font.
* Builtin font is the very first font we load, we do not have
* previous loads to be released.
*/
if (fl->font_flags == FONT_BUILTIN) {
if ((fp = calloc(1, sizeof(struct vt_font))) == NULL)
return (NULL);
fp->vf_width = DEFAULT_FONT_DATA.vfbd_width;
fp->vf_height = DEFAULT_FONT_DATA.vfbd_height;
fp->vf_bytes = malloc(DEFAULT_FONT_DATA.vfbd_uncompressed_size);
if (fp->vf_bytes == NULL) {
free(fp);
return (NULL);
}
bp->vfbd_uncompressed_size =
DEFAULT_FONT_DATA.vfbd_uncompressed_size;
bp->vfbd_compressed_size =
DEFAULT_FONT_DATA.vfbd_compressed_size;
if (lz4_decompress(DEFAULT_FONT_DATA.vfbd_compressed_data,
fp->vf_bytes,
DEFAULT_FONT_DATA.vfbd_compressed_size,
DEFAULT_FONT_DATA.vfbd_uncompressed_size, 0) != 0) {
free(fp->vf_bytes);
free(fp);
return (NULL);
}
for (i = 0; i < VFNT_MAPS; i++) {
fp->vf_map_count[i] =
DEFAULT_FONT_DATA.vfbd_font->vf_map_count[i];
if (builtin_mapping(fp, i) != 0)
goto free_done;
}
bp->vfbd_font = fp;
return (bp);
}
fd = open(path, O_RDONLY);
if (fd < 0)
return (NULL);
size = sizeof(fh);
rv = read(fd, &fh, size);
if (rv < 0 || (size_t)rv != size) {
bp = NULL;
goto done;
}
if (memcmp(fh.fh_magic, FONT_HEADER_MAGIC, sizeof(fh.fh_magic)) != 0) {
bp = NULL;
goto done;
}
if ((fp = calloc(1, sizeof(struct vt_font))) == NULL) {
bp = NULL;
goto done;
}
for (i = 0; i < VFNT_MAPS; i++)
fp->vf_map_count[i] = be32toh(fh.fh_map_count[i]);
glyphs = be32toh(fh.fh_glyph_count);
fp->vf_width = fh.fh_width;
fp->vf_height = fh.fh_height;
size = howmany(fp->vf_width, 8) * fp->vf_height * glyphs;
bp->vfbd_uncompressed_size = size;
if ((fp->vf_bytes = malloc(size)) == NULL)
goto free_done;
rv = read(fd, fp->vf_bytes, size);
if (rv < 0 || (size_t)rv != size)
goto free_done;
for (i = 0; i < VFNT_MAPS; i++) {
if (load_mapping(fd, fp, i) != 0)
goto free_done;
}
/*
* Reset builtin flag now as we have full font loaded.
*/
if (fl->font_flags == FONT_BUILTIN)
fl->font_flags = FONT_AUTO;
/*
* Release previously loaded entries. We can do this now, as
* the new font is loaded. Note, there can be no console
* output till the new font is in place and teken is notified.
* We do need to keep fl->font_data for glyph dimensions.
*/
STAILQ_FOREACH(fl, &fonts, font_next) {
if (fl->font_data->vfbd_font == NULL)
continue;
for (i = 0; i < VFNT_MAPS; i++)
free(fl->font_data->vfbd_font->vf_map[i]);
free(fl->font_data->vfbd_font->vf_bytes);
free(fl->font_data->vfbd_font);
fl->font_data->vfbd_font = NULL;
}
bp->vfbd_font = fp;
bp->vfbd_compressed_size = 0;
done:
if (fd != -1)
close(fd);
return (bp);
free_done:
for (i = 0; i < VFNT_MAPS; i++)
free(fp->vf_map[i]);
free(fp->vf_bytes);
free(fp);
bp = NULL;
goto done;
}
struct name_entry {
char *n_name;
SLIST_ENTRY(name_entry) n_entry;
};
SLIST_HEAD(name_list, name_entry);
/* Read font names from index file. */
static struct name_list *
read_list(char *fonts)
{
struct name_list *nl;
struct name_entry *np;
char *dir, *ptr;
char buf[PATH_MAX];
int fd, len;
TSENTER();
dir = strdup(fonts);
if (dir == NULL)
return (NULL);
ptr = strrchr(dir, '/');
*ptr = '\0';
fd = open(fonts, O_RDONLY);
if (fd < 0)
return (NULL);
nl = malloc(sizeof(*nl));
if (nl == NULL) {
close(fd);
return (nl);
}
SLIST_INIT(nl);
while ((len = fgetstr(buf, sizeof (buf), fd)) >= 0) {
if (*buf == '#' || *buf == '\0')
continue;
if (bcmp(buf, "MENU", 4) == 0)
continue;
if (bcmp(buf, "FONT", 4) == 0)
continue;
ptr = strchr(buf, ':');
if (ptr == NULL)
continue;
else
*ptr = '\0';
np = malloc(sizeof(*np));
if (np == NULL) {
close(fd);
return (nl); /* return what we have */
}
if (asprintf(&np->n_name, "%s/%s", dir, buf) < 0) {
free(np);
close(fd);
return (nl); /* return what we have */
}
SLIST_INSERT_HEAD(nl, np, n_entry);
}
close(fd);
TSEXIT();
return (nl);
}
/*
* Read the font properties and insert new entry into the list.
* The font list is built in descending order.
*/
static bool
insert_font(char *name, FONT_FLAGS flags)
{
struct font_header fh;
struct fontlist *fp, *previous, *entry, *next;
size_t size;
ssize_t rv;
int fd;
char *font_name;
TSENTER();
font_name = NULL;
if (flags == FONT_BUILTIN) {
/*
* We only install builtin font once, while setting up
* initial console. Since this will happen very early,
* we assume asprintf will not fail. Once we have access to
* files, the builtin font will be replaced by font loaded
* from file.
*/
if (!STAILQ_EMPTY(&fonts))
return (false);
fh.fh_width = DEFAULT_FONT_DATA.vfbd_width;
fh.fh_height = DEFAULT_FONT_DATA.vfbd_height;
(void) asprintf(&font_name, "%dx%d",
DEFAULT_FONT_DATA.vfbd_width,
DEFAULT_FONT_DATA.vfbd_height);
} else {
fd = open(name, O_RDONLY);
if (fd < 0)
return (false);
rv = read(fd, &fh, sizeof(fh));
close(fd);
if (rv < 0 || (size_t)rv != sizeof(fh))
return (false);
if (memcmp(fh.fh_magic, FONT_HEADER_MAGIC,
sizeof(fh.fh_magic)) != 0)
return (false);
font_name = strdup(name);
}
if (font_name == NULL)
return (false);
/*
* If we have an entry with the same glyph dimensions, replace
* the file name and mark us. We only support unique dimensions.
*/
STAILQ_FOREACH(entry, &fonts, font_next) {
if (fh.fh_width == entry->font_data->vfbd_width &&
fh.fh_height == entry->font_data->vfbd_height) {
free(entry->font_name);
entry->font_name = font_name;
entry->font_flags = FONT_RELOAD;
TSEXIT();
return (true);
}
}
fp = calloc(sizeof(*fp), 1);
if (fp == NULL) {
free(font_name);
return (false);
}
fp->font_data = calloc(sizeof(*fp->font_data), 1);
if (fp->font_data == NULL) {
free(font_name);
free(fp);
return (false);
}
fp->font_name = font_name;
fp->font_flags = flags;
fp->font_load = load_font;
fp->font_data->vfbd_width = fh.fh_width;
fp->font_data->vfbd_height = fh.fh_height;
if (STAILQ_EMPTY(&fonts)) {
STAILQ_INSERT_HEAD(&fonts, fp, font_next);
TSEXIT();
return (true);
}
previous = NULL;
size = fp->font_data->vfbd_width * fp->font_data->vfbd_height;
STAILQ_FOREACH(entry, &fonts, font_next) {
vt_font_bitmap_data_t *bd;
bd = entry->font_data;
/* Should fp be inserted before the entry? */
if (size > bd->vfbd_width * bd->vfbd_height) {
if (previous == NULL) {
STAILQ_INSERT_HEAD(&fonts, fp, font_next);
} else {
STAILQ_INSERT_AFTER(&fonts, previous, fp,
font_next);
}
TSEXIT();
return (true);
}
next = STAILQ_NEXT(entry, font_next);
if (next == NULL ||
size > next->font_data->vfbd_width *
next->font_data->vfbd_height) {
STAILQ_INSERT_AFTER(&fonts, entry, fp, font_next);
TSEXIT();
return (true);
}
previous = entry;
}
TSEXIT();
return (true);
}
static int
font_set(struct env_var *ev __unused, int flags __unused, const void *value)
{
struct fontlist *fl;
char *eptr;
unsigned long x = 0, y = 0;
/*
* Attempt to extract values from "XxY" string. In case of error,
* we have unmaching glyph dimensions and will just output the
* available values.
*/
if (value != NULL) {
x = strtoul(value, &eptr, 10);
if (*eptr == 'x')
y = strtoul(eptr + 1, &eptr, 10);
}
STAILQ_FOREACH(fl, &fonts, font_next) {
if (fl->font_data->vfbd_width == x &&
fl->font_data->vfbd_height == y)
break;
}
if (fl != NULL) {
/* Reset any FONT_MANUAL flag. */
reset_font_flags();
/* Mark this font manually loaded */
fl->font_flags = FONT_MANUAL;
cons_update_mode(gfx_state.tg_fb_type != FB_TEXT);
return (CMD_OK);
}
printf("Available fonts:\n");
STAILQ_FOREACH(fl, &fonts, font_next) {
printf(" %dx%d\n", fl->font_data->vfbd_width,
fl->font_data->vfbd_height);
}
return (CMD_OK);
}
void
bios_text_font(bool use_vga_font)
{
if (use_vga_font)
(void) insert_font(VGA_8X16_FONT, FONT_MANUAL);
else
(void) insert_font(DEFAULT_8X16_FONT, FONT_MANUAL);
}
void
autoload_font(bool bios)
{
struct name_list *nl;
struct name_entry *np;
TSENTER();
nl = read_list("/boot/fonts/INDEX.fonts");
if (nl == NULL)
return;
while (!SLIST_EMPTY(nl)) {
np = SLIST_FIRST(nl);
SLIST_REMOVE_HEAD(nl, n_entry);
if (insert_font(np->n_name, FONT_AUTO) == false)
printf("failed to add font: %s\n", np->n_name);
free(np->n_name);
free(np);
}
/*
* If vga text mode was requested, load vga.font (8x16 bold) font.
*/
if (bios) {
bios_text_font(true);
}
(void) cons_update_mode(gfx_state.tg_fb_type != FB_TEXT);
TSEXIT();
}
COMMAND_SET(load_font, "loadfont", "load console font from file", command_font);
static int
command_font(int argc, char *argv[])
{
int i, c, rc;
struct fontlist *fl;
vt_font_bitmap_data_t *bd;
bool list;
list = false;
optind = 1;
optreset = 1;
rc = CMD_OK;
while ((c = getopt(argc, argv, "l")) != -1) {
switch (c) {
case 'l':
list = true;
break;
case '?':
default:
return (CMD_ERROR);
}
}
argc -= optind;
argv += optind;
if (argc > 1 || (list && argc != 0)) {
printf("Usage: loadfont [-l] | [file.fnt]\n");
return (CMD_ERROR);
}
if (list) {
STAILQ_FOREACH(fl, &fonts, font_next) {
printf("font %s: %dx%d%s\n", fl->font_name,
fl->font_data->vfbd_width,
fl->font_data->vfbd_height,
fl->font_data->vfbd_font == NULL? "" : " loaded");
}
return (CMD_OK);
}
/* Clear scren */
cons_clear();
if (argc == 1) {
char *name = argv[0];
if (insert_font(name, FONT_MANUAL) == false) {
printf("loadfont error: failed to load: %s\n", name);
return (CMD_ERROR);
}
(void) cons_update_mode(gfx_state.tg_fb_type != FB_TEXT);
return (CMD_OK);
}
if (argc == 0) {
/*
* Walk entire font list, release any loaded font, and set
* autoload flag. The font list does have at least the builtin
* default font.
*/
STAILQ_FOREACH(fl, &fonts, font_next) {
if (fl->font_data->vfbd_font != NULL) {
bd = fl->font_data;
/*
* Note the setup_font() is releasing
* font bytes.
*/
for (i = 0; i < VFNT_MAPS; i++)
free(bd->vfbd_font->vf_map[i]);
free(fl->font_data->vfbd_font);
fl->font_data->vfbd_font = NULL;
fl->font_data->vfbd_uncompressed_size = 0;
fl->font_flags = FONT_AUTO;
}
}
(void) cons_update_mode(gfx_state.tg_fb_type != FB_TEXT);
}
return (rc);
}
bool
gfx_get_edid_resolution(struct vesa_edid_info *edid, edid_res_list_t *res)
{
struct resolution *rp, *p;
/*
* Walk detailed timings tables (4).
*/
if ((edid->display.supported_features
& EDID_FEATURE_PREFERRED_TIMING_MODE) != 0) {
/* Walk detailed timing descriptors (4) */
for (int i = 0; i < DET_TIMINGS; i++) {
/*
* Reserved value 0 is not used for display descriptor.
*/
if (edid->detailed_timings[i].pixel_clock == 0)
continue;
if ((rp = malloc(sizeof(*rp))) == NULL)
continue;
rp->width = GET_EDID_INFO_WIDTH(edid, i);
rp->height = GET_EDID_INFO_HEIGHT(edid, i);
if (rp->width > 0 && rp->width <= EDID_MAX_PIXELS &&
rp->height > 0 && rp->height <= EDID_MAX_LINES)
TAILQ_INSERT_TAIL(res, rp, next);
else
free(rp);
}
}
/*
* Walk standard timings list (8).
*/
for (int i = 0; i < STD_TIMINGS; i++) {
/* Is this field unused? */
if (edid->standard_timings[i] == 0x0101)
continue;
if ((rp = malloc(sizeof(*rp))) == NULL)
continue;
rp->width = HSIZE(edid->standard_timings[i]);
switch (RATIO(edid->standard_timings[i])) {
case RATIO1_1:
rp->height = HSIZE(edid->standard_timings[i]);
if (edid->header.version > 1 ||
edid->header.revision > 2) {
rp->height = rp->height * 10 / 16;
}
break;
case RATIO4_3:
rp->height = HSIZE(edid->standard_timings[i]) * 3 / 4;
break;
case RATIO5_4:
rp->height = HSIZE(edid->standard_timings[i]) * 4 / 5;
break;
case RATIO16_9:
rp->height = HSIZE(edid->standard_timings[i]) * 9 / 16;
break;
}
/*
* Create resolution list in decreasing order, except keep
* first entry (preferred timing mode).
*/
TAILQ_FOREACH(p, res, next) {
if (p->width * p->height < rp->width * rp->height) {
/* Keep preferred mode first */
if (TAILQ_FIRST(res) == p)
TAILQ_INSERT_AFTER(res, p, rp, next);
else
TAILQ_INSERT_BEFORE(p, rp, next);
break;
}
if (TAILQ_NEXT(p, next) == NULL) {
TAILQ_INSERT_TAIL(res, rp, next);
break;
}
}
}
return (!TAILQ_EMPTY(res));
}