freebsd-dev/sys/dev/advansys/adwcam.c
Mark Murray ed34d0ade2 Turn on interrupt-entropy harvesting for all/any mass storage devices
I could find. I have no doubt missed a couple.

Interrupt entropy harvesting is still conditional on the
kern.random.sys.harvest_interrupt sysctl.
2001-03-01 17:09:09 +00:00

1541 lines
39 KiB
C

/*
* CAM SCSI interface for the the Advanced Systems Inc.
* Second Generation SCSI controllers.
*
* Product specific probe and attach routines can be found in:
*
* adw_pci.c ABP[3]940UW, ABP950UW, ABP3940U2W
*
* Copyright (c) 1998, 1999, 2000 Justin Gibbs.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification.
* 2. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
/*
* Ported from:
* advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
*
* Copyright (c) 1995-1998 Advanced System Products, Inc.
* All Rights Reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that redistributions of source
* code retain the above copyright notice and this comment without
* modification.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/bus.h>
#include <machine/bus_pio.h>
#include <machine/bus_memio.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/rman.h>
#include <cam/cam.h>
#include <cam/cam_ccb.h>
#include <cam/cam_sim.h>
#include <cam/cam_xpt_sim.h>
#include <cam/cam_debug.h>
#include <cam/scsi/scsi_message.h>
#include <dev/advansys/adwvar.h>
/* Definitions for our use of the SIM private CCB area */
#define ccb_acb_ptr spriv_ptr0
#define ccb_adw_ptr spriv_ptr1
#define MIN(a, b) (((a) < (b)) ? (a) : (b))
u_long adw_unit;
static __inline cam_status adwccbstatus(union ccb*);
static __inline struct acb* adwgetacb(struct adw_softc *adw);
static __inline void adwfreeacb(struct adw_softc *adw,
struct acb *acb);
static void adwmapmem(void *arg, bus_dma_segment_t *segs,
int nseg, int error);
static struct sg_map_node*
adwallocsgmap(struct adw_softc *adw);
static int adwallocacbs(struct adw_softc *adw);
static void adwexecuteacb(void *arg, bus_dma_segment_t *dm_segs,
int nseg, int error);
static void adw_action(struct cam_sim *sim, union ccb *ccb);
static void adw_poll(struct cam_sim *sim);
static void adw_async(void *callback_arg, u_int32_t code,
struct cam_path *path, void *arg);
static void adwprocesserror(struct adw_softc *adw, struct acb *acb);
static void adwtimeout(void *arg);
static void adw_handle_device_reset(struct adw_softc *adw,
u_int target);
static void adw_handle_bus_reset(struct adw_softc *adw,
int initiated);
static __inline cam_status
adwccbstatus(union ccb* ccb)
{
return (ccb->ccb_h.status & CAM_STATUS_MASK);
}
static __inline struct acb*
adwgetacb(struct adw_softc *adw)
{
struct acb* acb;
int s;
s = splcam();
if ((acb = SLIST_FIRST(&adw->free_acb_list)) != NULL) {
SLIST_REMOVE_HEAD(&adw->free_acb_list, links);
} else if (adw->num_acbs < adw->max_acbs) {
adwallocacbs(adw);
acb = SLIST_FIRST(&adw->free_acb_list);
if (acb == NULL)
printf("%s: Can't malloc ACB\n", adw_name(adw));
else {
SLIST_REMOVE_HEAD(&adw->free_acb_list, links);
}
}
splx(s);
return (acb);
}
static __inline void
adwfreeacb(struct adw_softc *adw, struct acb *acb)
{
int s;
s = splcam();
if ((acb->state & ACB_ACTIVE) != 0)
LIST_REMOVE(&acb->ccb->ccb_h, sim_links.le);
if ((acb->state & ACB_RELEASE_SIMQ) != 0)
acb->ccb->ccb_h.status |= CAM_RELEASE_SIMQ;
else if ((adw->state & ADW_RESOURCE_SHORTAGE) != 0
&& (acb->ccb->ccb_h.status & CAM_RELEASE_SIMQ) == 0) {
acb->ccb->ccb_h.status |= CAM_RELEASE_SIMQ;
adw->state &= ~ADW_RESOURCE_SHORTAGE;
}
acb->state = ACB_FREE;
SLIST_INSERT_HEAD(&adw->free_acb_list, acb, links);
splx(s);
}
static void
adwmapmem(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
bus_addr_t *busaddrp;
busaddrp = (bus_addr_t *)arg;
*busaddrp = segs->ds_addr;
}
static struct sg_map_node *
adwallocsgmap(struct adw_softc *adw)
{
struct sg_map_node *sg_map;
sg_map = malloc(sizeof(*sg_map), M_DEVBUF, M_NOWAIT);
if (sg_map == NULL)
return (NULL);
/* Allocate S/G space for the next batch of ACBS */
if (bus_dmamem_alloc(adw->sg_dmat, (void **)&sg_map->sg_vaddr,
BUS_DMA_NOWAIT, &sg_map->sg_dmamap) != 0) {
free(sg_map, M_DEVBUF);
return (NULL);
}
SLIST_INSERT_HEAD(&adw->sg_maps, sg_map, links);
bus_dmamap_load(adw->sg_dmat, sg_map->sg_dmamap, sg_map->sg_vaddr,
PAGE_SIZE, adwmapmem, &sg_map->sg_physaddr, /*flags*/0);
bzero(sg_map->sg_vaddr, PAGE_SIZE);
return (sg_map);
}
/*
* Allocate another chunk of CCB's. Return count of entries added.
* Assumed to be called at splcam().
*/
static int
adwallocacbs(struct adw_softc *adw)
{
struct acb *next_acb;
struct sg_map_node *sg_map;
bus_addr_t busaddr;
struct adw_sg_block *blocks;
int newcount;
int i;
next_acb = &adw->acbs[adw->num_acbs];
sg_map = adwallocsgmap(adw);
if (sg_map == NULL)
return (0);
blocks = sg_map->sg_vaddr;
busaddr = sg_map->sg_physaddr;
newcount = (PAGE_SIZE / (ADW_SG_BLOCKCNT * sizeof(*blocks)));
for (i = 0; adw->num_acbs < adw->max_acbs && i < newcount; i++) {
int error;
error = bus_dmamap_create(adw->buffer_dmat, /*flags*/0,
&next_acb->dmamap);
if (error != 0)
break;
next_acb->queue.scsi_req_baddr = acbvtob(adw, next_acb);
next_acb->queue.scsi_req_bo = acbvtobo(adw, next_acb);
next_acb->queue.sense_baddr =
acbvtob(adw, next_acb) + offsetof(struct acb, sense_data);
next_acb->sg_blocks = blocks;
next_acb->sg_busaddr = busaddr;
next_acb->state = ACB_FREE;
SLIST_INSERT_HEAD(&adw->free_acb_list, next_acb, links);
blocks += ADW_SG_BLOCKCNT;
busaddr += ADW_SG_BLOCKCNT * sizeof(*blocks);
next_acb++;
adw->num_acbs++;
}
return (i);
}
static void
adwexecuteacb(void *arg, bus_dma_segment_t *dm_segs, int nseg, int error)
{
struct acb *acb;
union ccb *ccb;
struct adw_softc *adw;
int s;
acb = (struct acb *)arg;
ccb = acb->ccb;
adw = (struct adw_softc *)ccb->ccb_h.ccb_adw_ptr;
if (error != 0) {
if (error != EFBIG)
printf("%s: Unexepected error 0x%x returned from "
"bus_dmamap_load\n", adw_name(adw), error);
if (ccb->ccb_h.status == CAM_REQ_INPROG) {
xpt_freeze_devq(ccb->ccb_h.path, /*count*/1);
ccb->ccb_h.status = CAM_REQ_TOO_BIG|CAM_DEV_QFRZN;
}
adwfreeacb(adw, acb);
xpt_done(ccb);
return;
}
if (nseg != 0) {
bus_dmasync_op_t op;
acb->queue.data_addr = dm_segs[0].ds_addr;
acb->queue.data_cnt = ccb->csio.dxfer_len;
if (nseg > 1) {
struct adw_sg_block *sg_block;
struct adw_sg_elm *sg;
bus_addr_t sg_busaddr;
u_int sg_index;
bus_dma_segment_t *end_seg;
end_seg = dm_segs + nseg;
sg_busaddr = acb->sg_busaddr;
sg_index = 0;
/* Copy the segments into our SG list */
for (sg_block = acb->sg_blocks;; sg_block++) {
u_int i;
sg = sg_block->sg_list;
for (i = 0; i < ADW_NO_OF_SG_PER_BLOCK; i++) {
if (dm_segs >= end_seg)
break;
sg->sg_addr = dm_segs->ds_addr;
sg->sg_count = dm_segs->ds_len;
sg++;
dm_segs++;
}
sg_block->sg_cnt = i;
sg_index += i;
if (dm_segs == end_seg) {
sg_block->sg_busaddr_next = 0;
break;
} else {
sg_busaddr +=
sizeof(struct adw_sg_block);
sg_block->sg_busaddr_next = sg_busaddr;
}
}
acb->queue.sg_real_addr = acb->sg_busaddr;
} else {
acb->queue.sg_real_addr = 0;
}
if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN)
op = BUS_DMASYNC_PREREAD;
else
op = BUS_DMASYNC_PREWRITE;
bus_dmamap_sync(adw->buffer_dmat, acb->dmamap, op);
} else {
acb->queue.data_addr = 0;
acb->queue.data_cnt = 0;
acb->queue.sg_real_addr = 0;
}
s = splcam();
/*
* Last time we need to check if this CCB needs to
* be aborted.
*/
if (ccb->ccb_h.status != CAM_REQ_INPROG) {
if (nseg != 0)
bus_dmamap_unload(adw->buffer_dmat, acb->dmamap);
adwfreeacb(adw, acb);
xpt_done(ccb);
splx(s);
return;
}
acb->state |= ACB_ACTIVE;
ccb->ccb_h.status |= CAM_SIM_QUEUED;
LIST_INSERT_HEAD(&adw->pending_ccbs, &ccb->ccb_h, sim_links.le);
ccb->ccb_h.timeout_ch =
timeout(adwtimeout, (caddr_t)acb,
(ccb->ccb_h.timeout * hz) / 1000);
adw_send_acb(adw, acb, acbvtob(adw, acb));
splx(s);
}
static void
adw_action(struct cam_sim *sim, union ccb *ccb)
{
struct adw_softc *adw;
CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("adw_action\n"));
adw = (struct adw_softc *)cam_sim_softc(sim);
switch (ccb->ccb_h.func_code) {
/* Common cases first */
case XPT_SCSI_IO: /* Execute the requested I/O operation */
{
struct ccb_scsiio *csio;
struct ccb_hdr *ccbh;
struct acb *acb;
csio = &ccb->csio;
ccbh = &ccb->ccb_h;
/* Max supported CDB length is 12 bytes */
if (csio->cdb_len > 12) {
ccb->ccb_h.status = CAM_REQ_INVALID;
xpt_done(ccb);
return;
}
if ((acb = adwgetacb(adw)) == NULL) {
int s;
s = splcam();
adw->state |= ADW_RESOURCE_SHORTAGE;
splx(s);
xpt_freeze_simq(sim, /*count*/1);
ccb->ccb_h.status = CAM_REQUEUE_REQ;
xpt_done(ccb);
return;
}
/* Link acb and ccb so we can find one from the other */
acb->ccb = ccb;
ccb->ccb_h.ccb_acb_ptr = acb;
ccb->ccb_h.ccb_adw_ptr = adw;
acb->queue.cntl = 0;
acb->queue.target_cmd = 0;
acb->queue.target_id = ccb->ccb_h.target_id;
acb->queue.target_lun = ccb->ccb_h.target_lun;
acb->queue.mflag = 0;
acb->queue.sense_len =
MIN(csio->sense_len, sizeof(acb->sense_data));
acb->queue.cdb_len = csio->cdb_len;
if ((ccb->ccb_h.flags & CAM_TAG_ACTION_VALID) != 0) {
switch (csio->tag_action) {
case MSG_SIMPLE_Q_TAG:
acb->queue.scsi_cntl = ADW_QSC_SIMPLE_Q_TAG;
break;
case MSG_HEAD_OF_Q_TAG:
acb->queue.scsi_cntl = ADW_QSC_HEAD_OF_Q_TAG;
break;
case MSG_ORDERED_Q_TAG:
acb->queue.scsi_cntl = ADW_QSC_ORDERED_Q_TAG;
break;
default:
acb->queue.scsi_cntl = ADW_QSC_NO_TAGMSG;
break;
}
} else
acb->queue.scsi_cntl = ADW_QSC_NO_TAGMSG;
if ((ccb->ccb_h.flags & CAM_DIS_DISCONNECT) != 0)
acb->queue.scsi_cntl |= ADW_QSC_NO_DISC;
acb->queue.done_status = 0;
acb->queue.scsi_status = 0;
acb->queue.host_status = 0;
acb->queue.sg_wk_ix = 0;
if ((ccb->ccb_h.flags & CAM_CDB_POINTER) != 0) {
if ((ccb->ccb_h.flags & CAM_CDB_PHYS) == 0) {
bcopy(csio->cdb_io.cdb_ptr,
acb->queue.cdb, csio->cdb_len);
} else {
/* I guess I could map it in... */
ccb->ccb_h.status = CAM_REQ_INVALID;
adwfreeacb(adw, acb);
xpt_done(ccb);
return;
}
} else {
bcopy(csio->cdb_io.cdb_bytes,
acb->queue.cdb, csio->cdb_len);
}
/*
* If we have any data to send with this command,
* map it into bus space.
*/
if ((ccbh->flags & CAM_DIR_MASK) != CAM_DIR_NONE) {
if ((ccbh->flags & CAM_SCATTER_VALID) == 0) {
/*
* We've been given a pointer
* to a single buffer.
*/
if ((ccbh->flags & CAM_DATA_PHYS) == 0) {
int s;
int error;
s = splsoftvm();
error =
bus_dmamap_load(adw->buffer_dmat,
acb->dmamap,
csio->data_ptr,
csio->dxfer_len,
adwexecuteacb,
acb, /*flags*/0);
if (error == EINPROGRESS) {
/*
* So as to maintain ordering,
* freeze the controller queue
* until our mapping is
* returned.
*/
xpt_freeze_simq(sim, 1);
acb->state |= CAM_RELEASE_SIMQ;
}
splx(s);
} else {
struct bus_dma_segment seg;
/* Pointer to physical buffer */
seg.ds_addr =
(bus_addr_t)csio->data_ptr;
seg.ds_len = csio->dxfer_len;
adwexecuteacb(acb, &seg, 1, 0);
}
} else {
struct bus_dma_segment *segs;
if ((ccbh->flags & CAM_DATA_PHYS) != 0)
panic("adw_action - Physical "
"segment pointers "
"unsupported");
if ((ccbh->flags&CAM_SG_LIST_PHYS)==0)
panic("adw_action - Virtual "
"segment addresses "
"unsupported");
/* Just use the segments provided */
segs = (struct bus_dma_segment *)csio->data_ptr;
adwexecuteacb(acb, segs, csio->sglist_cnt,
(csio->sglist_cnt < ADW_SGSIZE)
? 0 : EFBIG);
}
} else {
adwexecuteacb(acb, NULL, 0, 0);
}
break;
}
case XPT_RESET_DEV: /* Bus Device Reset the specified SCSI device */
{
adw_idle_cmd_status_t status;
status = adw_idle_cmd_send(adw, ADW_IDLE_CMD_DEVICE_RESET,
ccb->ccb_h.target_id);
if (status == ADW_IDLE_CMD_SUCCESS) {
ccb->ccb_h.status = CAM_REQ_CMP;
if (bootverbose) {
xpt_print_path(ccb->ccb_h.path);
printf("BDR Delivered\n");
}
} else
ccb->ccb_h.status = CAM_REQ_CMP_ERR;
xpt_done(ccb);
break;
}
case XPT_ABORT: /* Abort the specified CCB */
/* XXX Implement */
ccb->ccb_h.status = CAM_REQ_INVALID;
xpt_done(ccb);
break;
case XPT_SET_TRAN_SETTINGS:
{
struct ccb_trans_settings *cts;
u_int target_mask;
int s;
cts = &ccb->cts;
target_mask = 0x01 << ccb->ccb_h.target_id;
s = splcam();
if ((cts->flags & CCB_TRANS_CURRENT_SETTINGS) != 0) {
u_int sdtrdone;
sdtrdone = adw_lram_read_16(adw, ADW_MC_SDTR_DONE);
if ((cts->valid & CCB_TRANS_DISC_VALID) != 0) {
u_int discenb;
discenb =
adw_lram_read_16(adw, ADW_MC_DISC_ENABLE);
if ((cts->flags & CCB_TRANS_DISC_ENB) != 0)
discenb |= target_mask;
else
discenb &= ~target_mask;
adw_lram_write_16(adw, ADW_MC_DISC_ENABLE,
discenb);
}
if ((cts->valid & CCB_TRANS_TQ_VALID) != 0) {
if ((cts->flags & CCB_TRANS_TAG_ENB) != 0)
adw->tagenb |= target_mask;
else
adw->tagenb &= ~target_mask;
}
if ((cts->valid & CCB_TRANS_BUS_WIDTH_VALID) != 0) {
u_int wdtrenb_orig;
u_int wdtrenb;
u_int wdtrdone;
wdtrenb_orig =
adw_lram_read_16(adw, ADW_MC_WDTR_ABLE);
wdtrenb = wdtrenb_orig;
wdtrdone = adw_lram_read_16(adw,
ADW_MC_WDTR_DONE);
switch (cts->bus_width) {
case MSG_EXT_WDTR_BUS_32_BIT:
case MSG_EXT_WDTR_BUS_16_BIT:
wdtrenb |= target_mask;
break;
case MSG_EXT_WDTR_BUS_8_BIT:
default:
wdtrenb &= ~target_mask;
break;
}
if (wdtrenb != wdtrenb_orig) {
adw_lram_write_16(adw,
ADW_MC_WDTR_ABLE,
wdtrenb);
wdtrdone &= ~target_mask;
adw_lram_write_16(adw,
ADW_MC_WDTR_DONE,
wdtrdone);
/* Wide negotiation forces async */
sdtrdone &= ~target_mask;
adw_lram_write_16(adw,
ADW_MC_SDTR_DONE,
sdtrdone);
}
}
if (((cts->valid & CCB_TRANS_SYNC_RATE_VALID) != 0)
|| ((cts->valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0)) {
u_int sdtr_orig;
u_int sdtr;
u_int sdtrable_orig;
u_int sdtrable;
sdtr = adw_get_chip_sdtr(adw,
ccb->ccb_h.target_id);
sdtr_orig = sdtr;
sdtrable = adw_lram_read_16(adw,
ADW_MC_SDTR_ABLE);
sdtrable_orig = sdtrable;
if ((cts->valid
& CCB_TRANS_SYNC_RATE_VALID) != 0) {
sdtr =
adw_find_sdtr(adw,
cts->sync_period);
}
if ((cts->valid
& CCB_TRANS_SYNC_OFFSET_VALID) != 0) {
if (cts->sync_offset == 0)
sdtr = ADW_MC_SDTR_ASYNC;
}
if (sdtr == ADW_MC_SDTR_ASYNC)
sdtrable &= ~target_mask;
else
sdtrable |= target_mask;
if (sdtr != sdtr_orig
|| sdtrable != sdtrable_orig) {
adw_set_chip_sdtr(adw,
ccb->ccb_h.target_id,
sdtr);
sdtrdone &= ~target_mask;
adw_lram_write_16(adw, ADW_MC_SDTR_ABLE,
sdtrable);
adw_lram_write_16(adw, ADW_MC_SDTR_DONE,
sdtrdone);
}
}
}
splx(s);
ccb->ccb_h.status = CAM_REQ_CMP;
xpt_done(ccb);
break;
}
case XPT_GET_TRAN_SETTINGS:
/* Get default/user set transfer settings for the target */
{
struct ccb_trans_settings *cts;
u_int target_mask;
cts = &ccb->cts;
target_mask = 0x01 << ccb->ccb_h.target_id;
if ((cts->flags & CCB_TRANS_USER_SETTINGS) != 0) {
u_int mc_sdtr;
cts->flags = 0;
if ((adw->user_discenb & target_mask) != 0)
cts->flags |= CCB_TRANS_DISC_ENB;
if ((adw->user_tagenb & target_mask) != 0)
cts->flags |= CCB_TRANS_TAG_ENB;
if ((adw->user_wdtr & target_mask) != 0)
cts->bus_width = MSG_EXT_WDTR_BUS_16_BIT;
else
cts->bus_width = MSG_EXT_WDTR_BUS_8_BIT;
mc_sdtr = adw_get_user_sdtr(adw, ccb->ccb_h.target_id);
cts->sync_period = adw_find_period(adw, mc_sdtr);
if (cts->sync_period != 0)
cts->sync_offset = 15; /* XXX ??? */
else
cts->sync_offset = 0;
cts->valid = CCB_TRANS_SYNC_RATE_VALID
| CCB_TRANS_SYNC_OFFSET_VALID
| CCB_TRANS_BUS_WIDTH_VALID
| CCB_TRANS_DISC_VALID
| CCB_TRANS_TQ_VALID;
ccb->ccb_h.status = CAM_REQ_CMP;
} else {
u_int targ_tinfo;
cts->flags = 0;
if ((adw_lram_read_16(adw, ADW_MC_DISC_ENABLE)
& target_mask) != 0)
cts->flags |= CCB_TRANS_DISC_ENB;
if ((adw->tagenb & target_mask) != 0)
cts->flags |= CCB_TRANS_TAG_ENB;
targ_tinfo =
adw_lram_read_16(adw,
ADW_MC_DEVICE_HSHK_CFG_TABLE
+ (2 * ccb->ccb_h.target_id));
if ((targ_tinfo & ADW_HSHK_CFG_WIDE_XFR) != 0)
cts->bus_width = MSG_EXT_WDTR_BUS_16_BIT;
else
cts->bus_width = MSG_EXT_WDTR_BUS_8_BIT;
cts->sync_period =
adw_hshk_cfg_period_factor(targ_tinfo);
cts->sync_offset = targ_tinfo & ADW_HSHK_CFG_OFFSET;
if (cts->sync_period == 0)
cts->sync_offset = 0;
if (cts->sync_offset == 0)
cts->sync_period = 0;
}
cts->valid = CCB_TRANS_SYNC_RATE_VALID
| CCB_TRANS_SYNC_OFFSET_VALID
| CCB_TRANS_BUS_WIDTH_VALID
| CCB_TRANS_DISC_VALID
| CCB_TRANS_TQ_VALID;
ccb->ccb_h.status = CAM_REQ_CMP;
xpt_done(ccb);
break;
}
case XPT_CALC_GEOMETRY:
{
struct ccb_calc_geometry *ccg;
u_int32_t size_mb;
u_int32_t secs_per_cylinder;
int extended;
/*
* XXX Use Adaptec translation until I find out how to
* get this information from the card.
*/
ccg = &ccb->ccg;
size_mb = ccg->volume_size
/ ((1024L * 1024L) / ccg->block_size);
extended = 1;
if (size_mb > 1024 && extended) {
ccg->heads = 255;
ccg->secs_per_track = 63;
} else {
ccg->heads = 64;
ccg->secs_per_track = 32;
}
secs_per_cylinder = ccg->heads * ccg->secs_per_track;
ccg->cylinders = ccg->volume_size / secs_per_cylinder;
ccb->ccb_h.status = CAM_REQ_CMP;
xpt_done(ccb);
break;
}
case XPT_RESET_BUS: /* Reset the specified SCSI bus */
{
int failure;
failure = adw_reset_bus(adw);
if (failure != 0) {
ccb->ccb_h.status = CAM_REQ_CMP_ERR;
} else {
if (bootverbose) {
xpt_print_path(adw->path);
printf("Bus Reset Delivered\n");
}
ccb->ccb_h.status = CAM_REQ_CMP;
}
xpt_done(ccb);
break;
}
case XPT_TERM_IO: /* Terminate the I/O process */
/* XXX Implement */
ccb->ccb_h.status = CAM_REQ_INVALID;
xpt_done(ccb);
break;
case XPT_PATH_INQ: /* Path routing inquiry */
{
struct ccb_pathinq *cpi = &ccb->cpi;
cpi->version_num = 1;
cpi->hba_inquiry = PI_WIDE_16|PI_SDTR_ABLE|PI_TAG_ABLE;
cpi->target_sprt = 0;
cpi->hba_misc = 0;
cpi->hba_eng_cnt = 0;
cpi->max_target = ADW_MAX_TID;
cpi->max_lun = ADW_MAX_LUN;
cpi->initiator_id = adw->initiator_id;
cpi->bus_id = cam_sim_bus(sim);
cpi->base_transfer_speed = 3300;
strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
strncpy(cpi->hba_vid, "AdvanSys", HBA_IDLEN);
strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
cpi->unit_number = cam_sim_unit(sim);
cpi->ccb_h.status = CAM_REQ_CMP;
xpt_done(ccb);
break;
}
default:
ccb->ccb_h.status = CAM_REQ_INVALID;
xpt_done(ccb);
break;
}
}
static void
adw_poll(struct cam_sim *sim)
{
adw_intr(cam_sim_softc(sim));
}
static void
adw_async(void *callback_arg, u_int32_t code, struct cam_path *path, void *arg)
{
}
struct adw_softc *
adw_alloc(device_t dev, struct resource *regs, int regs_type, int regs_id)
{
struct adw_softc *adw;
int i;
/*
* Allocate a storage area for us
*/
adw = malloc(sizeof(struct adw_softc), M_DEVBUF, M_NOWAIT | M_ZERO);
if (adw == NULL) {
printf("adw%d: cannot malloc!\n", device_get_unit(dev));
return NULL;
}
LIST_INIT(&adw->pending_ccbs);
SLIST_INIT(&adw->sg_maps);
adw->device = dev;
adw->unit = device_get_unit(dev);
adw->regs_res_type = regs_type;
adw->regs_res_id = regs_id;
adw->regs = regs;
adw->tag = rman_get_bustag(regs);
adw->bsh = rman_get_bushandle(regs);
i = adw->unit / 10;
adw->name = malloc(sizeof("adw") + i + 1, M_DEVBUF, M_NOWAIT);
if (adw->name == NULL) {
printf("adw%d: cannot malloc name!\n", adw->unit);
free(adw, M_DEVBUF);
return NULL;
}
sprintf(adw->name, "adw%d", adw->unit);
return(adw);
}
void
adw_free(struct adw_softc *adw)
{
switch (adw->init_level) {
case 9:
{
struct sg_map_node *sg_map;
while ((sg_map = SLIST_FIRST(&adw->sg_maps)) != NULL) {
SLIST_REMOVE_HEAD(&adw->sg_maps, links);
bus_dmamap_unload(adw->sg_dmat,
sg_map->sg_dmamap);
bus_dmamem_free(adw->sg_dmat, sg_map->sg_vaddr,
sg_map->sg_dmamap);
free(sg_map, M_DEVBUF);
}
bus_dma_tag_destroy(adw->sg_dmat);
}
case 8:
bus_dmamap_unload(adw->acb_dmat, adw->acb_dmamap);
case 7:
bus_dmamem_free(adw->acb_dmat, adw->acbs,
adw->acb_dmamap);
bus_dmamap_destroy(adw->acb_dmat, adw->acb_dmamap);
case 6:
bus_dma_tag_destroy(adw->acb_dmat);
case 5:
bus_dmamap_unload(adw->carrier_dmat, adw->carrier_dmamap);
case 4:
bus_dmamem_free(adw->carrier_dmat, adw->carriers,
adw->carrier_dmamap);
bus_dmamap_destroy(adw->carrier_dmat, adw->carrier_dmamap);
case 3:
bus_dma_tag_destroy(adw->carrier_dmat);
case 2:
bus_dma_tag_destroy(adw->buffer_dmat);
case 1:
bus_dma_tag_destroy(adw->parent_dmat);
case 0:
break;
}
free(adw->name, M_DEVBUF);
free(adw, M_DEVBUF);
}
int
adw_init(struct adw_softc *adw)
{
struct adw_eeprom eep_config;
u_int tid;
u_int i;
u_int16_t checksum;
u_int16_t scsicfg1;
checksum = adw_eeprom_read(adw, &eep_config);
bcopy(eep_config.serial_number, adw->serial_number,
sizeof(adw->serial_number));
if (checksum != eep_config.checksum) {
u_int16_t serial_number[3];
adw->flags |= ADW_EEPROM_FAILED;
printf("%s: EEPROM checksum failed. Restoring Defaults\n",
adw_name(adw));
/*
* Restore the default EEPROM settings.
* Assume the 6 byte board serial number that was read
* from EEPROM is correct even if the EEPROM checksum
* failed.
*/
bcopy(adw->default_eeprom, &eep_config, sizeof(eep_config));
bcopy(adw->serial_number, eep_config.serial_number,
sizeof(serial_number));
adw_eeprom_write(adw, &eep_config);
}
/* Pull eeprom information into our softc. */
adw->bios_ctrl = eep_config.bios_ctrl;
adw->user_wdtr = eep_config.wdtr_able;
for (tid = 0; tid < ADW_MAX_TID; tid++) {
u_int mc_sdtr;
u_int16_t tid_mask;
tid_mask = 0x1 << tid;
if ((adw->features & ADW_ULTRA) != 0) {
/*
* Ultra chips store sdtr and ultraenb
* bits in their seeprom, so we must
* construct valid mc_sdtr entries for
* indirectly.
*/
if (eep_config.sync1.sync_enable & tid_mask) {
if (eep_config.sync2.ultra_enable & tid_mask)
mc_sdtr = ADW_MC_SDTR_20;
else
mc_sdtr = ADW_MC_SDTR_10;
} else
mc_sdtr = ADW_MC_SDTR_ASYNC;
} else {
switch (ADW_TARGET_GROUP(tid)) {
case 3:
mc_sdtr = eep_config.sync4.sdtr4;
break;
case 2:
mc_sdtr = eep_config.sync3.sdtr3;
break;
case 1:
mc_sdtr = eep_config.sync2.sdtr2;
break;
default: /* Shut up compiler */
case 0:
mc_sdtr = eep_config.sync1.sdtr1;
break;
}
mc_sdtr >>= ADW_TARGET_GROUP_SHIFT(tid);
mc_sdtr &= 0xFF;
}
adw_set_user_sdtr(adw, tid, mc_sdtr);
}
adw->user_tagenb = eep_config.tagqng_able;
adw->user_discenb = eep_config.disc_enable;
adw->max_acbs = eep_config.max_host_qng;
adw->initiator_id = (eep_config.adapter_scsi_id & ADW_MAX_TID);
/*
* Sanity check the number of host openings.
*/
if (adw->max_acbs > ADW_DEF_MAX_HOST_QNG)
adw->max_acbs = ADW_DEF_MAX_HOST_QNG;
else if (adw->max_acbs < ADW_DEF_MIN_HOST_QNG) {
/* If the value is zero, assume it is uninitialized. */
if (adw->max_acbs == 0)
adw->max_acbs = ADW_DEF_MAX_HOST_QNG;
else
adw->max_acbs = ADW_DEF_MIN_HOST_QNG;
}
scsicfg1 = 0;
if ((adw->features & ADW_ULTRA2) != 0) {
switch (eep_config.termination_lvd) {
default:
printf("%s: Invalid EEPROM LVD Termination Settings.\n",
adw_name(adw));
printf("%s: Reverting to Automatic LVD Termination\n",
adw_name(adw));
/* FALLTHROUGH */
case ADW_EEPROM_TERM_AUTO:
break;
case ADW_EEPROM_TERM_BOTH_ON:
scsicfg1 |= ADW2_SCSI_CFG1_TERM_LVD_LO;
/* FALLTHROUGH */
case ADW_EEPROM_TERM_HIGH_ON:
scsicfg1 |= ADW2_SCSI_CFG1_TERM_LVD_HI;
/* FALLTHROUGH */
case ADW_EEPROM_TERM_OFF:
scsicfg1 |= ADW2_SCSI_CFG1_DIS_TERM_DRV;
break;
}
}
switch (eep_config.termination_se) {
default:
printf("%s: Invalid SE EEPROM Termination Settings.\n",
adw_name(adw));
printf("%s: Reverting to Automatic SE Termination\n",
adw_name(adw));
/* FALLTHROUGH */
case ADW_EEPROM_TERM_AUTO:
break;
case ADW_EEPROM_TERM_BOTH_ON:
scsicfg1 |= ADW_SCSI_CFG1_TERM_CTL_L;
/* FALLTHROUGH */
case ADW_EEPROM_TERM_HIGH_ON:
scsicfg1 |= ADW_SCSI_CFG1_TERM_CTL_H;
/* FALLTHROUGH */
case ADW_EEPROM_TERM_OFF:
scsicfg1 |= ADW_SCSI_CFG1_TERM_CTL_MANUAL;
break;
}
printf("%s: SCSI ID %d, ", adw_name(adw), adw->initiator_id);
/* DMA tag for mapping buffers into device visible space. */
if (bus_dma_tag_create(adw->parent_dmat, /*alignment*/1, /*boundary*/0,
/*lowaddr*/BUS_SPACE_MAXADDR_32BIT,
/*highaddr*/BUS_SPACE_MAXADDR,
/*filter*/NULL, /*filterarg*/NULL,
/*maxsize*/MAXBSIZE, /*nsegments*/ADW_SGSIZE,
/*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT,
/*flags*/BUS_DMA_ALLOCNOW,
&adw->buffer_dmat) != 0) {
return (ENOMEM);
}
adw->init_level++;
/* DMA tag for our ccb carrier structures */
if (bus_dma_tag_create(adw->parent_dmat, /*alignment*/0x10,
/*boundary*/0,
/*lowaddr*/BUS_SPACE_MAXADDR_32BIT,
/*highaddr*/BUS_SPACE_MAXADDR,
/*filter*/NULL, /*filterarg*/NULL,
(adw->max_acbs + ADW_NUM_CARRIER_QUEUES + 1)
* sizeof(struct adw_carrier),
/*nsegments*/1,
/*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT,
/*flags*/0, &adw->carrier_dmat) != 0) {
return (ENOMEM);
}
adw->init_level++;
/* Allocation for our ccb carrier structures */
if (bus_dmamem_alloc(adw->carrier_dmat, (void **)&adw->carriers,
BUS_DMA_NOWAIT, &adw->carrier_dmamap) != 0) {
return (ENOMEM);
}
adw->init_level++;
/* And permanently map them */
bus_dmamap_load(adw->carrier_dmat, adw->carrier_dmamap,
adw->carriers,
(adw->max_acbs + ADW_NUM_CARRIER_QUEUES + 1)
* sizeof(struct adw_carrier),
adwmapmem, &adw->carrier_busbase, /*flags*/0);
/* Clear them out. */
bzero(adw->carriers, (adw->max_acbs + ADW_NUM_CARRIER_QUEUES + 1)
* sizeof(struct adw_carrier));
/* Setup our free carrier list */
adw->free_carriers = adw->carriers;
for (i = 0; i < adw->max_acbs + ADW_NUM_CARRIER_QUEUES; i++) {
adw->carriers[i].carr_offset =
carriervtobo(adw, &adw->carriers[i]);
adw->carriers[i].carr_ba =
carriervtob(adw, &adw->carriers[i]);
adw->carriers[i].areq_ba = 0;
adw->carriers[i].next_ba =
carriervtobo(adw, &adw->carriers[i+1]);
}
/* Terminal carrier. Never leaves the freelist */
adw->carriers[i].carr_offset =
carriervtobo(adw, &adw->carriers[i]);
adw->carriers[i].carr_ba =
carriervtob(adw, &adw->carriers[i]);
adw->carriers[i].areq_ba = 0;
adw->carriers[i].next_ba = ~0;
adw->init_level++;
/* DMA tag for our acb structures */
if (bus_dma_tag_create(adw->parent_dmat, /*alignment*/1, /*boundary*/0,
/*lowaddr*/BUS_SPACE_MAXADDR,
/*highaddr*/BUS_SPACE_MAXADDR,
/*filter*/NULL, /*filterarg*/NULL,
adw->max_acbs * sizeof(struct acb),
/*nsegments*/1,
/*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT,
/*flags*/0, &adw->acb_dmat) != 0) {
return (ENOMEM);
}
adw->init_level++;
/* Allocation for our ccbs */
if (bus_dmamem_alloc(adw->acb_dmat, (void **)&adw->acbs,
BUS_DMA_NOWAIT, &adw->acb_dmamap) != 0)
return (ENOMEM);
adw->init_level++;
/* And permanently map them */
bus_dmamap_load(adw->acb_dmat, adw->acb_dmamap,
adw->acbs,
adw->max_acbs * sizeof(struct acb),
adwmapmem, &adw->acb_busbase, /*flags*/0);
/* Clear them out. */
bzero(adw->acbs, adw->max_acbs * sizeof(struct acb));
/* DMA tag for our S/G structures. We allocate in page sized chunks */
if (bus_dma_tag_create(adw->parent_dmat, /*alignment*/1, /*boundary*/0,
/*lowaddr*/BUS_SPACE_MAXADDR,
/*highaddr*/BUS_SPACE_MAXADDR,
/*filter*/NULL, /*filterarg*/NULL,
PAGE_SIZE, /*nsegments*/1,
/*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT,
/*flags*/0, &adw->sg_dmat) != 0) {
return (ENOMEM);
}
adw->init_level++;
/* Allocate our first batch of ccbs */
if (adwallocacbs(adw) == 0)
return (ENOMEM);
if (adw_init_chip(adw, scsicfg1) != 0)
return (ENXIO);
printf("Queue Depth %d\n", adw->max_acbs);
return (0);
}
/*
* Attach all the sub-devices we can find
*/
int
adw_attach(struct adw_softc *adw)
{
struct ccb_setasync csa;
struct cam_devq *devq;
int s;
int error;
error = 0;
s = splcam();
/* Hook up our interrupt handler */
if ((error = bus_setup_intr(adw->device, adw->irq,
INTR_TYPE_CAM | INTR_ENTROPY, adw_intr,
adw, &adw->ih)) != 0) {
device_printf(adw->device, "bus_setup_intr() failed: %d\n",
error);
goto fail;
}
/* Start the Risc processor now that we are fully configured. */
adw_outw(adw, ADW_RISC_CSR, ADW_RISC_CSR_RUN);
/*
* Create the device queue for our SIM.
*/
devq = cam_simq_alloc(adw->max_acbs);
if (devq == NULL)
return (ENOMEM);
/*
* Construct our SIM entry.
*/
adw->sim = cam_sim_alloc(adw_action, adw_poll, "adw", adw, adw->unit,
1, adw->max_acbs, devq);
if (adw->sim == NULL) {
error = ENOMEM;
goto fail;
}
/*
* Register the bus.
*/
if (xpt_bus_register(adw->sim, 0) != CAM_SUCCESS) {
cam_sim_free(adw->sim, /*free devq*/TRUE);
error = ENOMEM;
goto fail;
}
if (xpt_create_path(&adw->path, /*periph*/NULL, cam_sim_path(adw->sim),
CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD)
== CAM_REQ_CMP) {
xpt_setup_ccb(&csa.ccb_h, adw->path, /*priority*/5);
csa.ccb_h.func_code = XPT_SASYNC_CB;
csa.event_enable = AC_LOST_DEVICE;
csa.callback = adw_async;
csa.callback_arg = adw;
xpt_action((union ccb *)&csa);
}
fail:
splx(s);
return (error);
}
void
adw_intr(void *arg)
{
struct adw_softc *adw;
u_int int_stat;
adw = (struct adw_softc *)arg;
if ((adw_inw(adw, ADW_CTRL_REG) & ADW_CTRL_REG_HOST_INTR) == 0)
return;
/* Reading the register clears the interrupt. */
int_stat = adw_inb(adw, ADW_INTR_STATUS_REG);
if ((int_stat & ADW_INTR_STATUS_INTRB) != 0) {
u_int intrb_code;
/* Async Microcode Event */
intrb_code = adw_lram_read_8(adw, ADW_MC_INTRB_CODE);
switch (intrb_code) {
case ADW_ASYNC_CARRIER_READY_FAILURE:
/*
* The RISC missed our update of
* the commandq.
*/
if (LIST_FIRST(&adw->pending_ccbs) != NULL)
adw_tickle_risc(adw, ADW_TICKLE_A);
break;
case ADW_ASYNC_SCSI_BUS_RESET_DET:
/*
* The firmware detected a SCSI Bus reset.
*/
printf("Someone Reset the Bus\n");
adw_handle_bus_reset(adw, /*initiated*/FALSE);
break;
case ADW_ASYNC_RDMA_FAILURE:
/*
* Handle RDMA failure by resetting the
* SCSI Bus and chip.
*/
#if XXX
AdvResetChipAndSB(adv_dvc_varp);
#endif
break;
case ADW_ASYNC_HOST_SCSI_BUS_RESET:
/*
* Host generated SCSI bus reset occurred.
*/
adw_handle_bus_reset(adw, /*initiated*/TRUE);
break;
default:
printf("adw_intr: unknown async code 0x%x\n",
intrb_code);
break;
}
}
/*
* Run down the RequestQ.
*/
while ((adw->responseq->next_ba & ADW_RQ_DONE) != 0) {
struct adw_carrier *free_carrier;
struct acb *acb;
union ccb *ccb;
#if 0
printf("0x%x, 0x%x, 0x%x, 0x%x\n",
adw->responseq->carr_offset,
adw->responseq->carr_ba,
adw->responseq->areq_ba,
adw->responseq->next_ba);
#endif
/*
* The firmware copies the adw_scsi_req_q.acb_baddr
* field into the areq_ba field of the carrier.
*/
acb = acbbotov(adw, adw->responseq->areq_ba);
/*
* The least significant four bits of the next_ba
* field are used as flags. Mask them out and then
* advance through the list.
*/
free_carrier = adw->responseq;
adw->responseq =
carrierbotov(adw, free_carrier->next_ba & ADW_NEXT_BA_MASK);
free_carrier->next_ba = adw->free_carriers->carr_offset;
adw->free_carriers = free_carrier;
/* Process CCB */
ccb = acb->ccb;
untimeout(adwtimeout, acb, ccb->ccb_h.timeout_ch);
if ((ccb->ccb_h.flags & CAM_DIR_MASK) != CAM_DIR_NONE) {
bus_dmasync_op_t op;
if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN)
op = BUS_DMASYNC_POSTREAD;
else
op = BUS_DMASYNC_POSTWRITE;
bus_dmamap_sync(adw->buffer_dmat, acb->dmamap, op);
bus_dmamap_unload(adw->buffer_dmat, acb->dmamap);
ccb->csio.resid = acb->queue.data_cnt;
} else
ccb->csio.resid = 0;
/* Common Cases inline... */
if (acb->queue.host_status == QHSTA_NO_ERROR
&& (acb->queue.done_status == QD_NO_ERROR
|| acb->queue.done_status == QD_WITH_ERROR)) {
ccb->csio.scsi_status = acb->queue.scsi_status;
ccb->ccb_h.status = 0;
switch (ccb->csio.scsi_status) {
case SCSI_STATUS_OK:
ccb->ccb_h.status |= CAM_REQ_CMP;
break;
case SCSI_STATUS_CHECK_COND:
case SCSI_STATUS_CMD_TERMINATED:
bcopy(&acb->sense_data, &ccb->csio.sense_data,
ccb->csio.sense_len);
ccb->ccb_h.status |= CAM_AUTOSNS_VALID;
ccb->csio.sense_resid = acb->queue.sense_len;
/* FALLTHROUGH */
default:
ccb->ccb_h.status |= CAM_SCSI_STATUS_ERROR
| CAM_DEV_QFRZN;
xpt_freeze_devq(ccb->ccb_h.path, /*count*/1);
break;
}
adwfreeacb(adw, acb);
xpt_done(ccb);
} else {
adwprocesserror(adw, acb);
}
}
}
static void
adwprocesserror(struct adw_softc *adw, struct acb *acb)
{
union ccb *ccb;
ccb = acb->ccb;
if (acb->queue.done_status == QD_ABORTED_BY_HOST) {
ccb->ccb_h.status = CAM_REQ_ABORTED;
} else {
switch (acb->queue.host_status) {
case QHSTA_M_SEL_TIMEOUT:
ccb->ccb_h.status = CAM_SEL_TIMEOUT;
break;
case QHSTA_M_SXFR_OFF_UFLW:
case QHSTA_M_SXFR_OFF_OFLW:
case QHSTA_M_DATA_OVER_RUN:
ccb->ccb_h.status = CAM_DATA_RUN_ERR;
break;
case QHSTA_M_SXFR_DESELECTED:
case QHSTA_M_UNEXPECTED_BUS_FREE:
ccb->ccb_h.status = CAM_UNEXP_BUSFREE;
break;
case QHSTA_M_SCSI_BUS_RESET:
case QHSTA_M_SCSI_BUS_RESET_UNSOL:
ccb->ccb_h.status = CAM_SCSI_BUS_RESET;
break;
case QHSTA_M_BUS_DEVICE_RESET:
ccb->ccb_h.status = CAM_BDR_SENT;
break;
case QHSTA_M_QUEUE_ABORTED:
/* BDR or Bus Reset */
printf("Saw Queue Aborted\n");
ccb->ccb_h.status = adw->last_reset;
break;
case QHSTA_M_SXFR_SDMA_ERR:
case QHSTA_M_SXFR_SXFR_PERR:
case QHSTA_M_RDMA_PERR:
ccb->ccb_h.status = CAM_UNCOR_PARITY;
break;
case QHSTA_M_WTM_TIMEOUT:
case QHSTA_M_SXFR_WD_TMO:
{
/* The SCSI bus hung in a phase */
xpt_print_path(adw->path);
printf("Watch Dog timer expired. Reseting bus\n");
adw_reset_bus(adw);
break;
}
case QHSTA_M_SXFR_XFR_PH_ERR:
ccb->ccb_h.status = CAM_SEQUENCE_FAIL;
break;
case QHSTA_M_SXFR_UNKNOWN_ERROR:
break;
case QHSTA_M_BAD_CMPL_STATUS_IN:
/* No command complete after a status message */
ccb->ccb_h.status = CAM_SEQUENCE_FAIL;
break;
case QHSTA_M_AUTO_REQ_SENSE_FAIL:
ccb->ccb_h.status = CAM_AUTOSENSE_FAIL;
break;
case QHSTA_M_INVALID_DEVICE:
ccb->ccb_h.status = CAM_PATH_INVALID;
break;
case QHSTA_M_NO_AUTO_REQ_SENSE:
/*
* User didn't request sense, but we got a
* check condition.
*/
ccb->csio.scsi_status = acb->queue.scsi_status;
ccb->ccb_h.status = CAM_SCSI_STATUS_ERROR;
break;
default:
panic("%s: Unhandled Host status error %x",
adw_name(adw), acb->queue.host_status);
/* NOTREACHED */
}
}
if ((acb->state & ACB_RECOVERY_ACB) != 0) {
if (ccb->ccb_h.status == CAM_SCSI_BUS_RESET
|| ccb->ccb_h.status == CAM_BDR_SENT)
ccb->ccb_h.status = CAM_CMD_TIMEOUT;
}
if (ccb->ccb_h.status != CAM_REQ_CMP) {
xpt_freeze_devq(ccb->ccb_h.path, /*count*/1);
ccb->ccb_h.status |= CAM_DEV_QFRZN;
}
adwfreeacb(adw, acb);
xpt_done(ccb);
}
static void
adwtimeout(void *arg)
{
struct acb *acb;
union ccb *ccb;
struct adw_softc *adw;
adw_idle_cmd_status_t status;
int target_id;
int s;
acb = (struct acb *)arg;
ccb = acb->ccb;
adw = (struct adw_softc *)ccb->ccb_h.ccb_adw_ptr;
xpt_print_path(ccb->ccb_h.path);
printf("ACB %p - timed out\n", (void *)acb);
s = splcam();
if ((acb->state & ACB_ACTIVE) == 0) {
xpt_print_path(ccb->ccb_h.path);
printf("ACB %p - timed out CCB already completed\n",
(void *)acb);
splx(s);
return;
}
acb->state |= ACB_RECOVERY_ACB;
target_id = ccb->ccb_h.target_id;
/* Attempt a BDR first */
status = adw_idle_cmd_send(adw, ADW_IDLE_CMD_DEVICE_RESET,
ccb->ccb_h.target_id);
splx(s);
if (status == ADW_IDLE_CMD_SUCCESS) {
printf("%s: BDR Delivered. No longer in timeout\n",
adw_name(adw));
adw_handle_device_reset(adw, target_id);
} else {
adw_reset_bus(adw);
xpt_print_path(adw->path);
printf("Bus Reset Delivered. No longer in timeout\n");
}
}
static void
adw_handle_device_reset(struct adw_softc *adw, u_int target)
{
struct cam_path *path;
cam_status error;
error = xpt_create_path(&path, /*periph*/NULL, cam_sim_path(adw->sim),
target, CAM_LUN_WILDCARD);
if (error == CAM_REQ_CMP) {
xpt_async(AC_SENT_BDR, path, NULL);
xpt_free_path(path);
}
adw->last_reset = CAM_BDR_SENT;
}
static void
adw_handle_bus_reset(struct adw_softc *adw, int initiated)
{
if (initiated) {
/*
* The microcode currently sets the SCSI Bus Reset signal
* while handling the AscSendIdleCmd() IDLE_CMD_SCSI_RESET
* command above. But the SCSI Bus Reset Hold Time in the
* microcode is not deterministic (it may in fact be for less
* than the SCSI Spec. minimum of 25 us). Therefore on return
* the Adv Library sets the SCSI Bus Reset signal for
* ADW_SCSI_RESET_HOLD_TIME_US, which is defined to be greater
* than 25 us.
*/
u_int scsi_ctrl;
scsi_ctrl = adw_inw(adw, ADW_SCSI_CTRL) & ~ADW_SCSI_CTRL_RSTOUT;
adw_outw(adw, ADW_SCSI_CTRL, scsi_ctrl | ADW_SCSI_CTRL_RSTOUT);
DELAY(ADW_SCSI_RESET_HOLD_TIME_US);
adw_outw(adw, ADW_SCSI_CTRL, scsi_ctrl);
/*
* We will perform the async notification when the
* SCSI Reset interrupt occurs.
*/
} else
xpt_async(AC_BUS_RESET, adw->path, NULL);
adw->last_reset = CAM_SCSI_BUS_RESET;
}