f5c30c4e8d
fixes and beacon programming / debugging into the ath(4) driver. The basic power save tracking: * Add some new code to track the current desired powersave state; and * Add some reference count tracking so we know when the NIC is awake; then * Add code in all the points where we're about to touch the hardware and push it to force-wake. Then, how things are moved into power save: * Only move into network-sleep during a RUN->SLEEP transition; * Force wake the hardware up everywhere that we're about to touch the hardware. The net80211 stack takes care of doing RUN<->SLEEP<->(other) state transitions so we don't have to do it in the driver. Next, when to wake things up: * In short - everywhere we touch the hardware. * The hardware will take care of staying awake if things are queued in the transmit queue(s); it'll then transit down to sleep if there's nothing left. This way we don't have to track the software / hardware transmit queue(s) and keep the hardware awake for those. Then, some transmit path fixes that aren't related but useful: * Force EAPOL frames to go out at the lowest rate. This improves reliability during the encryption handshake after 802.11 negotiation. Next, some reset path fixes! * Fix the overlap between reset and transmit pause so we don't transmit frames during a reset. * Some noisy environments will end up taking a lot longer to reset than normal, so extend the reset period and drop the raise the reset interval to be more realistic and give the hardware some time to finish calibration. * Skip calibration during the reset path. Tsk! Then, beacon fixes in station mode! * Add a _lot_ more debugging in the station beacon reset path. This is all quite fluid right now. * Modify the STA beacon programming code to try and take the TU gap between desired TSF and the target TU into account. (Lifted from QCA.) Tested: * AR5210 * AR5211 * AR5212 * AR5413 * AR5416 * AR9280 * AR9285 TODO: * More AP, IBSS, mesh, TDMA testing * Thorough AR9380 and later testing! * AR9160 and AR9287 testing Obtained from: QCA
545 lines
15 KiB
C
545 lines
15 KiB
C
/*-
|
|
* Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer,
|
|
* without modification.
|
|
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
|
|
* similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
|
|
* redistribution must be conditioned upon including a substantially
|
|
* similar Disclaimer requirement for further binary redistribution.
|
|
*
|
|
* NO WARRANTY
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
|
|
* AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
|
|
* THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
|
|
* OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
|
|
* IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
|
|
* THE POSSIBILITY OF SUCH DAMAGES.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
/*
|
|
* Driver for the Atheros Wireless LAN controller.
|
|
*
|
|
* This software is derived from work of Atsushi Onoe; his contribution
|
|
* is greatly appreciated.
|
|
*/
|
|
|
|
#include "opt_inet.h"
|
|
#include "opt_ath.h"
|
|
#include "opt_wlan.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/sockio.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/callout.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/endian.h>
|
|
#include <sys/kthread.h>
|
|
#include <sys/taskqueue.h>
|
|
#include <sys/priv.h>
|
|
|
|
#include <machine/bus.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/if_var.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_media.h>
|
|
#include <net/if_types.h>
|
|
#include <net/if_arp.h>
|
|
#include <net/ethernet.h>
|
|
#include <net/if_llc.h>
|
|
|
|
#include <net80211/ieee80211_var.h>
|
|
|
|
#include <net/bpf.h>
|
|
|
|
#include <dev/ath/if_athvar.h>
|
|
|
|
#include <dev/ath/if_ath_debug.h>
|
|
#include <dev/ath/if_ath_keycache.h>
|
|
#include <dev/ath/if_ath_misc.h>
|
|
|
|
#ifdef ATH_DEBUG
|
|
static void
|
|
ath_keyprint(struct ath_softc *sc, const char *tag, u_int ix,
|
|
const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
|
|
{
|
|
static const char *ciphers[] = {
|
|
"WEP",
|
|
"AES-OCB",
|
|
"AES-CCM",
|
|
"CKIP",
|
|
"TKIP",
|
|
"CLR",
|
|
};
|
|
int i, n;
|
|
|
|
printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
|
|
for (i = 0, n = hk->kv_len; i < n; i++)
|
|
printf("%02x", hk->kv_val[i]);
|
|
printf(" mac %s", ether_sprintf(mac));
|
|
if (hk->kv_type == HAL_CIPHER_TKIP) {
|
|
printf(" %s ", sc->sc_splitmic ? "mic" : "rxmic");
|
|
for (i = 0; i < sizeof(hk->kv_mic); i++)
|
|
printf("%02x", hk->kv_mic[i]);
|
|
if (!sc->sc_splitmic) {
|
|
printf(" txmic ");
|
|
for (i = 0; i < sizeof(hk->kv_txmic); i++)
|
|
printf("%02x", hk->kv_txmic[i]);
|
|
}
|
|
}
|
|
printf("\n");
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Set a TKIP key into the hardware. This handles the
|
|
* potential distribution of key state to multiple key
|
|
* cache slots for TKIP.
|
|
*/
|
|
static int
|
|
ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
|
|
HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
|
|
{
|
|
#define IEEE80211_KEY_XR (IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
|
|
static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
|
|
KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
|
|
("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
|
|
if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
|
|
if (sc->sc_splitmic) {
|
|
/*
|
|
* TX key goes at first index, RX key at the rx index.
|
|
* The hal handles the MIC keys at index+64.
|
|
*/
|
|
memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
|
|
KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
|
|
if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid))
|
|
return 0;
|
|
|
|
memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
|
|
KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
|
|
/* XXX delete tx key on failure? */
|
|
return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac);
|
|
} else {
|
|
/*
|
|
* Room for both TX+RX MIC keys in one key cache
|
|
* slot, just set key at the first index; the hal
|
|
* will handle the rest.
|
|
*/
|
|
memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
|
|
memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
|
|
KEYPRINTF(sc, k->wk_keyix, hk, mac);
|
|
return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
|
|
}
|
|
} else if (k->wk_flags & IEEE80211_KEY_XMIT) {
|
|
if (sc->sc_splitmic) {
|
|
/*
|
|
* NB: must pass MIC key in expected location when
|
|
* the keycache only holds one MIC key per entry.
|
|
*/
|
|
memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_txmic));
|
|
} else
|
|
memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
|
|
KEYPRINTF(sc, k->wk_keyix, hk, mac);
|
|
return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
|
|
} else if (k->wk_flags & IEEE80211_KEY_RECV) {
|
|
memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
|
|
KEYPRINTF(sc, k->wk_keyix, hk, mac);
|
|
return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
|
|
}
|
|
return 0;
|
|
#undef IEEE80211_KEY_XR
|
|
}
|
|
|
|
/*
|
|
* Set a net80211 key into the hardware. This handles the
|
|
* potential distribution of key state to multiple key
|
|
* cache slots for TKIP with hardware MIC support.
|
|
*/
|
|
int
|
|
ath_keyset(struct ath_softc *sc, struct ieee80211vap *vap,
|
|
const struct ieee80211_key *k,
|
|
struct ieee80211_node *bss)
|
|
{
|
|
#define N(a) (sizeof(a)/sizeof(a[0]))
|
|
static const u_int8_t ciphermap[] = {
|
|
HAL_CIPHER_WEP, /* IEEE80211_CIPHER_WEP */
|
|
HAL_CIPHER_TKIP, /* IEEE80211_CIPHER_TKIP */
|
|
HAL_CIPHER_AES_OCB, /* IEEE80211_CIPHER_AES_OCB */
|
|
HAL_CIPHER_AES_CCM, /* IEEE80211_CIPHER_AES_CCM */
|
|
(u_int8_t) -1, /* 4 is not allocated */
|
|
HAL_CIPHER_CKIP, /* IEEE80211_CIPHER_CKIP */
|
|
HAL_CIPHER_CLR, /* IEEE80211_CIPHER_NONE */
|
|
};
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
const struct ieee80211_cipher *cip = k->wk_cipher;
|
|
u_int8_t gmac[IEEE80211_ADDR_LEN];
|
|
const u_int8_t *mac;
|
|
HAL_KEYVAL hk;
|
|
int ret;
|
|
|
|
memset(&hk, 0, sizeof(hk));
|
|
/*
|
|
* Software crypto uses a "clear key" so non-crypto
|
|
* state kept in the key cache are maintained and
|
|
* so that rx frames have an entry to match.
|
|
*/
|
|
if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
|
|
KASSERT(cip->ic_cipher < N(ciphermap),
|
|
("invalid cipher type %u", cip->ic_cipher));
|
|
hk.kv_type = ciphermap[cip->ic_cipher];
|
|
hk.kv_len = k->wk_keylen;
|
|
memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
|
|
} else
|
|
hk.kv_type = HAL_CIPHER_CLR;
|
|
|
|
/*
|
|
* If we're installing a clear cipher key and
|
|
* the hardware doesn't support that, just succeed.
|
|
* Leave it up to the net80211 layer to figure it out.
|
|
*/
|
|
if (hk.kv_type == HAL_CIPHER_CLR && sc->sc_hasclrkey == 0) {
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* XXX TODO: check this:
|
|
*
|
|
* Group keys on hardware that supports multicast frame
|
|
* key search should only be done in adhoc/hostap mode,
|
|
* not STA mode.
|
|
*
|
|
* XXX TODO: what about mesh, tdma?
|
|
*/
|
|
#if 0
|
|
if ((vap->iv_opmode == IEEE80211_M_HOSTAP ||
|
|
vap->iv_opmode == IEEE80211_M_IBSS) &&
|
|
#else
|
|
if (
|
|
#endif
|
|
(k->wk_flags & IEEE80211_KEY_GROUP) &&
|
|
sc->sc_mcastkey) {
|
|
/*
|
|
* Group keys on hardware that supports multicast frame
|
|
* key search use a MAC that is the sender's address with
|
|
* the multicast bit set instead of the app-specified address.
|
|
*/
|
|
IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
|
|
gmac[0] |= 0x01;
|
|
mac = gmac;
|
|
} else
|
|
mac = k->wk_macaddr;
|
|
|
|
ATH_LOCK(sc);
|
|
ath_power_set_power_state(sc, HAL_PM_AWAKE);
|
|
if (hk.kv_type == HAL_CIPHER_TKIP &&
|
|
(k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
|
|
ret = ath_keyset_tkip(sc, k, &hk, mac);
|
|
} else {
|
|
KEYPRINTF(sc, k->wk_keyix, &hk, mac);
|
|
ret = ath_hal_keyset(ah, k->wk_keyix, &hk, mac);
|
|
}
|
|
ath_power_restore_power_state(sc);
|
|
ATH_UNLOCK(sc);
|
|
|
|
return (ret);
|
|
#undef N
|
|
}
|
|
|
|
/*
|
|
* Allocate tx/rx key slots for TKIP. We allocate two slots for
|
|
* each key, one for decrypt/encrypt and the other for the MIC.
|
|
*/
|
|
static u_int16_t
|
|
key_alloc_2pair(struct ath_softc *sc,
|
|
ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
|
|
{
|
|
#define N(a) (sizeof(a)/sizeof(a[0]))
|
|
u_int i, keyix;
|
|
|
|
KASSERT(sc->sc_splitmic, ("key cache !split"));
|
|
/* XXX could optimize */
|
|
for (i = 0; i < N(sc->sc_keymap)/4; i++) {
|
|
u_int8_t b = sc->sc_keymap[i];
|
|
if (b != 0xff) {
|
|
/*
|
|
* One or more slots in this byte are free.
|
|
*/
|
|
keyix = i*NBBY;
|
|
while (b & 1) {
|
|
again:
|
|
keyix++;
|
|
b >>= 1;
|
|
}
|
|
/* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
|
|
if (isset(sc->sc_keymap, keyix+32) ||
|
|
isset(sc->sc_keymap, keyix+64) ||
|
|
isset(sc->sc_keymap, keyix+32+64)) {
|
|
/* full pair unavailable */
|
|
/* XXX statistic */
|
|
if (keyix == (i+1)*NBBY) {
|
|
/* no slots were appropriate, advance */
|
|
continue;
|
|
}
|
|
goto again;
|
|
}
|
|
setbit(sc->sc_keymap, keyix);
|
|
setbit(sc->sc_keymap, keyix+64);
|
|
setbit(sc->sc_keymap, keyix+32);
|
|
setbit(sc->sc_keymap, keyix+32+64);
|
|
DPRINTF(sc, ATH_DEBUG_KEYCACHE,
|
|
"%s: key pair %u,%u %u,%u\n",
|
|
__func__, keyix, keyix+64,
|
|
keyix+32, keyix+32+64);
|
|
*txkeyix = keyix;
|
|
*rxkeyix = keyix+32;
|
|
return 1;
|
|
}
|
|
}
|
|
DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
|
|
return 0;
|
|
#undef N
|
|
}
|
|
|
|
/*
|
|
* Allocate tx/rx key slots for TKIP. We allocate two slots for
|
|
* each key, one for decrypt/encrypt and the other for the MIC.
|
|
*/
|
|
static u_int16_t
|
|
key_alloc_pair(struct ath_softc *sc,
|
|
ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
|
|
{
|
|
#define N(a) (sizeof(a)/sizeof(a[0]))
|
|
u_int i, keyix;
|
|
|
|
KASSERT(!sc->sc_splitmic, ("key cache split"));
|
|
/* XXX could optimize */
|
|
for (i = 0; i < N(sc->sc_keymap)/4; i++) {
|
|
u_int8_t b = sc->sc_keymap[i];
|
|
if (b != 0xff) {
|
|
/*
|
|
* One or more slots in this byte are free.
|
|
*/
|
|
keyix = i*NBBY;
|
|
while (b & 1) {
|
|
again:
|
|
keyix++;
|
|
b >>= 1;
|
|
}
|
|
if (isset(sc->sc_keymap, keyix+64)) {
|
|
/* full pair unavailable */
|
|
/* XXX statistic */
|
|
if (keyix == (i+1)*NBBY) {
|
|
/* no slots were appropriate, advance */
|
|
continue;
|
|
}
|
|
goto again;
|
|
}
|
|
setbit(sc->sc_keymap, keyix);
|
|
setbit(sc->sc_keymap, keyix+64);
|
|
DPRINTF(sc, ATH_DEBUG_KEYCACHE,
|
|
"%s: key pair %u,%u\n",
|
|
__func__, keyix, keyix+64);
|
|
*txkeyix = *rxkeyix = keyix;
|
|
return 1;
|
|
}
|
|
}
|
|
DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
|
|
return 0;
|
|
#undef N
|
|
}
|
|
|
|
/*
|
|
* Allocate a single key cache slot.
|
|
*/
|
|
static int
|
|
key_alloc_single(struct ath_softc *sc,
|
|
ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
|
|
{
|
|
#define N(a) (sizeof(a)/sizeof(a[0]))
|
|
u_int i, keyix;
|
|
|
|
if (sc->sc_hasclrkey == 0) {
|
|
/*
|
|
* Map to slot 0 for the AR5210.
|
|
*/
|
|
*txkeyix = *rxkeyix = 0;
|
|
return (1);
|
|
}
|
|
|
|
/* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
|
|
for (i = 0; i < N(sc->sc_keymap); i++) {
|
|
u_int8_t b = sc->sc_keymap[i];
|
|
if (b != 0xff) {
|
|
/*
|
|
* One or more slots are free.
|
|
*/
|
|
keyix = i*NBBY;
|
|
while (b & 1)
|
|
keyix++, b >>= 1;
|
|
setbit(sc->sc_keymap, keyix);
|
|
DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
|
|
__func__, keyix);
|
|
*txkeyix = *rxkeyix = keyix;
|
|
return 1;
|
|
}
|
|
}
|
|
DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
|
|
return 0;
|
|
#undef N
|
|
}
|
|
|
|
/*
|
|
* Allocate one or more key cache slots for a uniacst key. The
|
|
* key itself is needed only to identify the cipher. For hardware
|
|
* TKIP with split cipher+MIC keys we allocate two key cache slot
|
|
* pairs so that we can setup separate TX and RX MIC keys. Note
|
|
* that the MIC key for a TKIP key at slot i is assumed by the
|
|
* hardware to be at slot i+64. This limits TKIP keys to the first
|
|
* 64 entries.
|
|
*/
|
|
int
|
|
ath_key_alloc(struct ieee80211vap *vap, struct ieee80211_key *k,
|
|
ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
|
|
{
|
|
struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
|
|
|
|
/*
|
|
* Group key allocation must be handled specially for
|
|
* parts that do not support multicast key cache search
|
|
* functionality. For those parts the key id must match
|
|
* the h/w key index so lookups find the right key. On
|
|
* parts w/ the key search facility we install the sender's
|
|
* mac address (with the high bit set) and let the hardware
|
|
* find the key w/o using the key id. This is preferred as
|
|
* it permits us to support multiple users for adhoc and/or
|
|
* multi-station operation.
|
|
*/
|
|
if (k->wk_keyix != IEEE80211_KEYIX_NONE) {
|
|
/*
|
|
* Only global keys should have key index assigned.
|
|
*/
|
|
if (!(&vap->iv_nw_keys[0] <= k &&
|
|
k < &vap->iv_nw_keys[IEEE80211_WEP_NKID])) {
|
|
/* should not happen */
|
|
DPRINTF(sc, ATH_DEBUG_KEYCACHE,
|
|
"%s: bogus group key\n", __func__);
|
|
return 0;
|
|
}
|
|
if (vap->iv_opmode != IEEE80211_M_HOSTAP ||
|
|
!(k->wk_flags & IEEE80211_KEY_GROUP) ||
|
|
!sc->sc_mcastkey) {
|
|
/*
|
|
* XXX we pre-allocate the global keys so
|
|
* have no way to check if they've already
|
|
* been allocated.
|
|
*/
|
|
*keyix = *rxkeyix = k - vap->iv_nw_keys;
|
|
return 1;
|
|
}
|
|
/*
|
|
* Group key and device supports multicast key search.
|
|
*/
|
|
k->wk_keyix = IEEE80211_KEYIX_NONE;
|
|
}
|
|
|
|
/*
|
|
* We allocate two pair for TKIP when using the h/w to do
|
|
* the MIC. For everything else, including software crypto,
|
|
* we allocate a single entry. Note that s/w crypto requires
|
|
* a pass-through slot on the 5211 and 5212. The 5210 does
|
|
* not support pass-through cache entries and we map all
|
|
* those requests to slot 0.
|
|
*/
|
|
if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
|
|
return key_alloc_single(sc, keyix, rxkeyix);
|
|
} else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
|
|
(k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
|
|
if (sc->sc_splitmic)
|
|
return key_alloc_2pair(sc, keyix, rxkeyix);
|
|
else
|
|
return key_alloc_pair(sc, keyix, rxkeyix);
|
|
} else {
|
|
return key_alloc_single(sc, keyix, rxkeyix);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Delete an entry in the key cache allocated by ath_key_alloc.
|
|
*/
|
|
int
|
|
ath_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k)
|
|
{
|
|
struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
const struct ieee80211_cipher *cip = k->wk_cipher;
|
|
u_int keyix = k->wk_keyix;
|
|
|
|
DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
|
|
|
|
ATH_LOCK(sc);
|
|
ath_power_set_power_state(sc, HAL_PM_AWAKE);
|
|
ath_hal_keyreset(ah, keyix);
|
|
/*
|
|
* Handle split tx/rx keying required for TKIP with h/w MIC.
|
|
*/
|
|
if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
|
|
(k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
|
|
ath_hal_keyreset(ah, keyix+32); /* RX key */
|
|
if (keyix >= IEEE80211_WEP_NKID) {
|
|
/*
|
|
* Don't touch keymap entries for global keys so
|
|
* they are never considered for dynamic allocation.
|
|
*/
|
|
clrbit(sc->sc_keymap, keyix);
|
|
if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
|
|
(k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
|
|
clrbit(sc->sc_keymap, keyix+64); /* TX key MIC */
|
|
if (sc->sc_splitmic) {
|
|
/* +32 for RX key, +32+64 for RX key MIC */
|
|
clrbit(sc->sc_keymap, keyix+32);
|
|
clrbit(sc->sc_keymap, keyix+32+64);
|
|
}
|
|
}
|
|
}
|
|
ath_power_restore_power_state(sc);
|
|
ATH_UNLOCK(sc);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Set the key cache contents for the specified key. Key cache
|
|
* slot(s) must already have been allocated by ath_key_alloc.
|
|
*/
|
|
int
|
|
ath_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k,
|
|
const u_int8_t mac[IEEE80211_ADDR_LEN])
|
|
{
|
|
struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
|
|
|
|
return ath_keyset(sc, vap, k, vap->iv_bss);
|
|
}
|