freebsd-dev/sys/kern/kern_timeout.c
Davide Italiano 3f321a4eac Cache the callout precision argument as part of the informations required
for migrating callouts to new CPU. This value is passed to
callout_cc_add() in order to update properly precision field in case of
rescheduling/migration.

Reviewed by:	mav
2013-03-25 09:43:50 +00:00

1436 lines
41 KiB
C

/*-
* Copyright (c) 1982, 1986, 1991, 1993
* The Regents of the University of California. All rights reserved.
* (c) UNIX System Laboratories, Inc.
* All or some portions of this file are derived from material licensed
* to the University of California by American Telephone and Telegraph
* Co. or Unix System Laboratories, Inc. and are reproduced herein with
* the permission of UNIX System Laboratories, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* From: @(#)kern_clock.c 8.5 (Berkeley) 1/21/94
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_callout_profiling.h"
#include "opt_kdtrace.h"
#if defined(__arm__)
#include "opt_timer.h"
#endif
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/callout.h>
#include <sys/file.h>
#include <sys/interrupt.h>
#include <sys/kernel.h>
#include <sys/ktr.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/sdt.h>
#include <sys/sleepqueue.h>
#include <sys/sysctl.h>
#include <sys/smp.h>
#ifdef SMP
#include <machine/cpu.h>
#endif
#ifndef NO_EVENTTIMERS
DPCPU_DECLARE(sbintime_t, hardclocktime);
#endif
SDT_PROVIDER_DEFINE(callout_execute);
SDT_PROBE_DEFINE(callout_execute, kernel, , callout_start, callout-start);
SDT_PROBE_ARGTYPE(callout_execute, kernel, , callout_start, 0,
"struct callout *");
SDT_PROBE_DEFINE(callout_execute, kernel, , callout_end, callout-end);
SDT_PROBE_ARGTYPE(callout_execute, kernel, , callout_end, 0,
"struct callout *");
#ifdef CALLOUT_PROFILING
static int avg_depth;
SYSCTL_INT(_debug, OID_AUTO, to_avg_depth, CTLFLAG_RD, &avg_depth, 0,
"Average number of items examined per softclock call. Units = 1/1000");
static int avg_gcalls;
SYSCTL_INT(_debug, OID_AUTO, to_avg_gcalls, CTLFLAG_RD, &avg_gcalls, 0,
"Average number of Giant callouts made per softclock call. Units = 1/1000");
static int avg_lockcalls;
SYSCTL_INT(_debug, OID_AUTO, to_avg_lockcalls, CTLFLAG_RD, &avg_lockcalls, 0,
"Average number of lock callouts made per softclock call. Units = 1/1000");
static int avg_mpcalls;
SYSCTL_INT(_debug, OID_AUTO, to_avg_mpcalls, CTLFLAG_RD, &avg_mpcalls, 0,
"Average number of MP callouts made per softclock call. Units = 1/1000");
static int avg_depth_dir;
SYSCTL_INT(_debug, OID_AUTO, to_avg_depth_dir, CTLFLAG_RD, &avg_depth_dir, 0,
"Average number of direct callouts examined per callout_process call. "
"Units = 1/1000");
static int avg_lockcalls_dir;
SYSCTL_INT(_debug, OID_AUTO, to_avg_lockcalls_dir, CTLFLAG_RD,
&avg_lockcalls_dir, 0, "Average number of lock direct callouts made per "
"callout_process call. Units = 1/1000");
static int avg_mpcalls_dir;
SYSCTL_INT(_debug, OID_AUTO, to_avg_mpcalls_dir, CTLFLAG_RD, &avg_mpcalls_dir,
0, "Average number of MP direct callouts made per callout_process call. "
"Units = 1/1000");
#endif
static int ncallout;
SYSCTL_INT(_kern, OID_AUTO, ncallout, CTLFLAG_RDTUN, &ncallout, 0,
"Number of entries in callwheel and size of timeout() preallocation");
/*
* TODO:
* allocate more timeout table slots when table overflows.
*/
u_int callwheelsize, callwheelmask;
/*
* The callout cpu exec entities represent informations necessary for
* describing the state of callouts currently running on the CPU and the ones
* necessary for migrating callouts to the new callout cpu. In particular,
* the first entry of the array cc_exec_entity holds informations for callout
* running in SWI thread context, while the second one holds informations
* for callout running directly from hardware interrupt context.
* The cached informations are very important for deferring migration when
* the migrating callout is already running.
*/
struct cc_exec {
struct callout *cc_next;
struct callout *cc_curr;
#ifdef SMP
void (*ce_migration_func)(void *);
void *ce_migration_arg;
int ce_migration_cpu;
sbintime_t ce_migration_time;
sbintime_t ce_migration_prec;
#endif
bool cc_cancel;
bool cc_waiting;
};
/*
* There is one struct callout_cpu per cpu, holding all relevant
* state for the callout processing thread on the individual CPU.
*/
struct callout_cpu {
struct mtx_padalign cc_lock;
struct cc_exec cc_exec_entity[2];
struct callout *cc_callout;
struct callout_list *cc_callwheel;
struct callout_tailq cc_expireq;
struct callout_slist cc_callfree;
sbintime_t cc_firstevent;
sbintime_t cc_lastscan;
void *cc_cookie;
u_int cc_bucket;
};
#define cc_exec_curr cc_exec_entity[0].cc_curr
#define cc_exec_next cc_exec_entity[0].cc_next
#define cc_exec_cancel cc_exec_entity[0].cc_cancel
#define cc_exec_waiting cc_exec_entity[0].cc_waiting
#define cc_exec_curr_dir cc_exec_entity[1].cc_curr
#define cc_exec_next_dir cc_exec_entity[1].cc_next
#define cc_exec_cancel_dir cc_exec_entity[1].cc_cancel
#define cc_exec_waiting_dir cc_exec_entity[1].cc_waiting
#ifdef SMP
#define cc_migration_func cc_exec_entity[0].ce_migration_func
#define cc_migration_arg cc_exec_entity[0].ce_migration_arg
#define cc_migration_cpu cc_exec_entity[0].ce_migration_cpu
#define cc_migration_time cc_exec_entity[0].ce_migration_time
#define cc_migration_prec cc_exec_entity[0].ce_migration_prec
#define cc_migration_func_dir cc_exec_entity[1].ce_migration_func
#define cc_migration_arg_dir cc_exec_entity[1].ce_migration_arg
#define cc_migration_cpu_dir cc_exec_entity[1].ce_migration_cpu
#define cc_migration_time_dir cc_exec_entity[1].ce_migration_time
#define cc_migration_prec_dir cc_exec_entity[1].ce_migration_prec
struct callout_cpu cc_cpu[MAXCPU];
#define CPUBLOCK MAXCPU
#define CC_CPU(cpu) (&cc_cpu[(cpu)])
#define CC_SELF() CC_CPU(PCPU_GET(cpuid))
#else
struct callout_cpu cc_cpu;
#define CC_CPU(cpu) &cc_cpu
#define CC_SELF() &cc_cpu
#endif
#define CC_LOCK(cc) mtx_lock_spin(&(cc)->cc_lock)
#define CC_UNLOCK(cc) mtx_unlock_spin(&(cc)->cc_lock)
#define CC_LOCK_ASSERT(cc) mtx_assert(&(cc)->cc_lock, MA_OWNED)
static int timeout_cpu;
static void callout_cpu_init(struct callout_cpu *cc);
static void softclock_call_cc(struct callout *c, struct callout_cpu *cc,
#ifdef CALLOUT_PROFILING
int *mpcalls, int *lockcalls, int *gcalls,
#endif
int direct);
static MALLOC_DEFINE(M_CALLOUT, "callout", "Callout datastructures");
/**
* Locked by cc_lock:
* cc_curr - If a callout is in progress, it is cc_curr.
* If cc_curr is non-NULL, threads waiting in
* callout_drain() will be woken up as soon as the
* relevant callout completes.
* cc_cancel - Changing to 1 with both callout_lock and cc_lock held
* guarantees that the current callout will not run.
* The softclock() function sets this to 0 before it
* drops callout_lock to acquire c_lock, and it calls
* the handler only if curr_cancelled is still 0 after
* cc_lock is successfully acquired.
* cc_waiting - If a thread is waiting in callout_drain(), then
* callout_wait is nonzero. Set only when
* cc_curr is non-NULL.
*/
/*
* Resets the execution entity tied to a specific callout cpu.
*/
static void
cc_cce_cleanup(struct callout_cpu *cc, int direct)
{
cc->cc_exec_entity[direct].cc_curr = NULL;
cc->cc_exec_entity[direct].cc_next = NULL;
cc->cc_exec_entity[direct].cc_cancel = false;
cc->cc_exec_entity[direct].cc_waiting = false;
#ifdef SMP
cc->cc_exec_entity[direct].ce_migration_cpu = CPUBLOCK;
cc->cc_exec_entity[direct].ce_migration_time = 0;
cc->cc_exec_entity[direct].ce_migration_prec = 0;
cc->cc_exec_entity[direct].ce_migration_func = NULL;
cc->cc_exec_entity[direct].ce_migration_arg = NULL;
#endif
}
/*
* Checks if migration is requested by a specific callout cpu.
*/
static int
cc_cce_migrating(struct callout_cpu *cc, int direct)
{
#ifdef SMP
return (cc->cc_exec_entity[direct].ce_migration_cpu != CPUBLOCK);
#else
return (0);
#endif
}
/*
* Kernel low level callwheel initialization
* called on cpu0 during kernel startup.
*/
static void
callout_callwheel_init(void *dummy)
{
struct callout_cpu *cc;
/*
* Calculate the size of the callout wheel and the preallocated
* timeout() structures.
* XXX: Clip callout to result of previous function of maxusers
* maximum 384. This is still huge, but acceptable.
*/
ncallout = imin(16 + maxproc + maxfiles, 18508);
TUNABLE_INT_FETCH("kern.ncallout", &ncallout);
/*
* Calculate callout wheel size, should be next power of two higher
* than 'ncallout'.
*/
callwheelsize = 1 << fls(ncallout);
callwheelmask = callwheelsize - 1;
/*
* Only cpu0 handles timeout(9) and receives a preallocation.
*
* XXX: Once all timeout(9) consumers are converted this can
* be removed.
*/
timeout_cpu = PCPU_GET(cpuid);
cc = CC_CPU(timeout_cpu);
cc->cc_callout = malloc(ncallout * sizeof(struct callout),
M_CALLOUT, M_WAITOK);
callout_cpu_init(cc);
}
SYSINIT(callwheel_init, SI_SUB_CPU, SI_ORDER_ANY, callout_callwheel_init, NULL);
/*
* Initialize the per-cpu callout structures.
*/
static void
callout_cpu_init(struct callout_cpu *cc)
{
struct callout *c;
int i;
mtx_init(&cc->cc_lock, "callout", NULL, MTX_SPIN | MTX_RECURSE);
SLIST_INIT(&cc->cc_callfree);
cc->cc_callwheel = malloc(sizeof(struct callout_list) * callwheelsize,
M_CALLOUT, M_WAITOK);
for (i = 0; i < callwheelsize; i++)
LIST_INIT(&cc->cc_callwheel[i]);
TAILQ_INIT(&cc->cc_expireq);
cc->cc_firstevent = INT64_MAX;
for (i = 0; i < 2; i++)
cc_cce_cleanup(cc, i);
if (cc->cc_callout == NULL) /* Only cpu0 handles timeout(9) */
return;
for (i = 0; i < ncallout; i++) {
c = &cc->cc_callout[i];
callout_init(c, 0);
c->c_flags = CALLOUT_LOCAL_ALLOC;
SLIST_INSERT_HEAD(&cc->cc_callfree, c, c_links.sle);
}
}
#ifdef SMP
/*
* Switches the cpu tied to a specific callout.
* The function expects a locked incoming callout cpu and returns with
* locked outcoming callout cpu.
*/
static struct callout_cpu *
callout_cpu_switch(struct callout *c, struct callout_cpu *cc, int new_cpu)
{
struct callout_cpu *new_cc;
MPASS(c != NULL && cc != NULL);
CC_LOCK_ASSERT(cc);
/*
* Avoid interrupts and preemption firing after the callout cpu
* is blocked in order to avoid deadlocks as the new thread
* may be willing to acquire the callout cpu lock.
*/
c->c_cpu = CPUBLOCK;
spinlock_enter();
CC_UNLOCK(cc);
new_cc = CC_CPU(new_cpu);
CC_LOCK(new_cc);
spinlock_exit();
c->c_cpu = new_cpu;
return (new_cc);
}
#endif
/*
* Start standard softclock thread.
*/
static void
start_softclock(void *dummy)
{
struct callout_cpu *cc;
#ifdef SMP
int cpu;
#endif
cc = CC_CPU(timeout_cpu);
if (swi_add(&clk_intr_event, "clock", softclock, cc, SWI_CLOCK,
INTR_MPSAFE, &cc->cc_cookie))
panic("died while creating standard software ithreads");
#ifdef SMP
CPU_FOREACH(cpu) {
if (cpu == timeout_cpu)
continue;
cc = CC_CPU(cpu);
cc->cc_callout = NULL; /* Only cpu0 handles timeout(9). */
callout_cpu_init(cc);
if (swi_add(NULL, "clock", softclock, cc, SWI_CLOCK,
INTR_MPSAFE, &cc->cc_cookie))
panic("died while creating standard software ithreads");
}
#endif
}
SYSINIT(start_softclock, SI_SUB_SOFTINTR, SI_ORDER_FIRST, start_softclock, NULL);
#define CC_HASH_SHIFT 8
static inline u_int
callout_hash(sbintime_t sbt)
{
return (sbt >> (32 - CC_HASH_SHIFT));
}
static inline u_int
callout_get_bucket(sbintime_t sbt)
{
return (callout_hash(sbt) & callwheelmask);
}
void
callout_process(sbintime_t now)
{
struct callout *tmp, *tmpn;
struct callout_cpu *cc;
struct callout_list *sc;
sbintime_t first, last, max, tmp_max;
uint32_t lookahead;
u_int firstb, lastb, nowb;
#ifdef CALLOUT_PROFILING
int depth_dir = 0, mpcalls_dir = 0, lockcalls_dir = 0;
#endif
cc = CC_SELF();
mtx_lock_spin_flags(&cc->cc_lock, MTX_QUIET);
/* Compute the buckets of the last scan and present times. */
firstb = callout_hash(cc->cc_lastscan);
cc->cc_lastscan = now;
nowb = callout_hash(now);
/* Compute the last bucket and minimum time of the bucket after it. */
if (nowb == firstb)
lookahead = (SBT_1S / 16);
else if (nowb - firstb == 1)
lookahead = (SBT_1S / 8);
else
lookahead = (SBT_1S / 2);
first = last = now;
first += (lookahead / 2);
last += lookahead;
last &= (0xffffffffffffffffLLU << (32 - CC_HASH_SHIFT));
lastb = callout_hash(last) - 1;
max = last;
/*
* Check if we wrapped around the entire wheel from the last scan.
* In case, we need to scan entirely the wheel for pending callouts.
*/
if (lastb - firstb >= callwheelsize) {
lastb = firstb + callwheelsize - 1;
if (nowb - firstb >= callwheelsize)
nowb = lastb;
}
/* Iterate callwheel from firstb to nowb and then up to lastb. */
do {
sc = &cc->cc_callwheel[firstb & callwheelmask];
tmp = LIST_FIRST(sc);
while (tmp != NULL) {
/* Run the callout if present time within allowed. */
if (tmp->c_time <= now) {
/*
* Consumer told us the callout may be run
* directly from hardware interrupt context.
*/
if (tmp->c_flags & CALLOUT_DIRECT) {
#ifdef CALLOUT_PROFILING
++depth_dir;
#endif
cc->cc_exec_next_dir =
LIST_NEXT(tmp, c_links.le);
cc->cc_bucket = firstb & callwheelmask;
LIST_REMOVE(tmp, c_links.le);
softclock_call_cc(tmp, cc,
#ifdef CALLOUT_PROFILING
&mpcalls_dir, &lockcalls_dir, NULL,
#endif
1);
tmp = cc->cc_exec_next_dir;
} else {
tmpn = LIST_NEXT(tmp, c_links.le);
LIST_REMOVE(tmp, c_links.le);
TAILQ_INSERT_TAIL(&cc->cc_expireq,
tmp, c_links.tqe);
tmp->c_flags |= CALLOUT_PROCESSED;
tmp = tmpn;
}
continue;
}
/* Skip events from distant future. */
if (tmp->c_time >= max)
goto next;
/*
* Event minimal time is bigger than present maximal
* time, so it cannot be aggregated.
*/
if (tmp->c_time > last) {
lastb = nowb;
goto next;
}
/* Update first and last time, respecting this event. */
if (tmp->c_time < first)
first = tmp->c_time;
tmp_max = tmp->c_time + tmp->c_precision;
if (tmp_max < last)
last = tmp_max;
next:
tmp = LIST_NEXT(tmp, c_links.le);
}
/* Proceed with the next bucket. */
firstb++;
/*
* Stop if we looked after present time and found
* some event we can't execute at now.
* Stop if we looked far enough into the future.
*/
} while (((int)(firstb - lastb)) <= 0);
cc->cc_firstevent = last;
#ifndef NO_EVENTTIMERS
cpu_new_callout(curcpu, last, first);
#endif
#ifdef CALLOUT_PROFILING
avg_depth_dir += (depth_dir * 1000 - avg_depth_dir) >> 8;
avg_mpcalls_dir += (mpcalls_dir * 1000 - avg_mpcalls_dir) >> 8;
avg_lockcalls_dir += (lockcalls_dir * 1000 - avg_lockcalls_dir) >> 8;
#endif
mtx_unlock_spin_flags(&cc->cc_lock, MTX_QUIET);
/*
* swi_sched acquires the thread lock, so we don't want to call it
* with cc_lock held; incorrect locking order.
*/
if (!TAILQ_EMPTY(&cc->cc_expireq))
swi_sched(cc->cc_cookie, 0);
}
static struct callout_cpu *
callout_lock(struct callout *c)
{
struct callout_cpu *cc;
int cpu;
for (;;) {
cpu = c->c_cpu;
#ifdef SMP
if (cpu == CPUBLOCK) {
while (c->c_cpu == CPUBLOCK)
cpu_spinwait();
continue;
}
#endif
cc = CC_CPU(cpu);
CC_LOCK(cc);
if (cpu == c->c_cpu)
break;
CC_UNLOCK(cc);
}
return (cc);
}
static void
callout_cc_add(struct callout *c, struct callout_cpu *cc,
sbintime_t sbt, sbintime_t precision, void (*func)(void *),
void *arg, int cpu, int flags)
{
int bucket;
CC_LOCK_ASSERT(cc);
if (sbt < cc->cc_lastscan)
sbt = cc->cc_lastscan;
c->c_arg = arg;
c->c_flags |= (CALLOUT_ACTIVE | CALLOUT_PENDING);
if (flags & C_DIRECT_EXEC)
c->c_flags |= CALLOUT_DIRECT;
c->c_flags &= ~CALLOUT_PROCESSED;
c->c_func = func;
c->c_time = sbt;
c->c_precision = precision;
bucket = callout_get_bucket(c->c_time);
CTR3(KTR_CALLOUT, "precision set for %p: %d.%08x",
c, (int)(c->c_precision >> 32),
(u_int)(c->c_precision & 0xffffffff));
LIST_INSERT_HEAD(&cc->cc_callwheel[bucket], c, c_links.le);
if (cc->cc_bucket == bucket)
cc->cc_exec_next_dir = c;
#ifndef NO_EVENTTIMERS
/*
* Inform the eventtimers(4) subsystem there's a new callout
* that has been inserted, but only if really required.
*/
sbt = c->c_time + c->c_precision;
if (sbt < cc->cc_firstevent) {
cc->cc_firstevent = sbt;
cpu_new_callout(cpu, sbt, c->c_time);
}
#endif
}
static void
callout_cc_del(struct callout *c, struct callout_cpu *cc)
{
if ((c->c_flags & CALLOUT_LOCAL_ALLOC) == 0)
return;
c->c_func = NULL;
SLIST_INSERT_HEAD(&cc->cc_callfree, c, c_links.sle);
}
static void
softclock_call_cc(struct callout *c, struct callout_cpu *cc,
#ifdef CALLOUT_PROFILING
int *mpcalls, int *lockcalls, int *gcalls,
#endif
int direct)
{
void (*c_func)(void *);
void *c_arg;
struct lock_class *class;
struct lock_object *c_lock;
int c_flags, sharedlock;
#ifdef SMP
struct callout_cpu *new_cc;
void (*new_func)(void *);
void *new_arg;
int flags, new_cpu;
sbintime_t new_prec, new_time;
#endif
#if defined(DIAGNOSTIC) || defined(CALLOUT_PROFILING)
sbintime_t sbt1, sbt2;
struct timespec ts2;
static sbintime_t maxdt = 2 * SBT_1MS; /* 2 msec */
static timeout_t *lastfunc;
#endif
KASSERT((c->c_flags & (CALLOUT_PENDING | CALLOUT_ACTIVE)) ==
(CALLOUT_PENDING | CALLOUT_ACTIVE),
("softclock_call_cc: pend|act %p %x", c, c->c_flags));
class = (c->c_lock != NULL) ? LOCK_CLASS(c->c_lock) : NULL;
sharedlock = (c->c_flags & CALLOUT_SHAREDLOCK) ? 0 : 1;
c_lock = c->c_lock;
c_func = c->c_func;
c_arg = c->c_arg;
c_flags = c->c_flags;
if (c->c_flags & CALLOUT_LOCAL_ALLOC)
c->c_flags = CALLOUT_LOCAL_ALLOC;
else
c->c_flags &= ~CALLOUT_PENDING;
cc->cc_exec_entity[direct].cc_curr = c;
cc->cc_exec_entity[direct].cc_cancel = false;
CC_UNLOCK(cc);
if (c_lock != NULL) {
class->lc_lock(c_lock, sharedlock);
/*
* The callout may have been cancelled
* while we switched locks.
*/
if (cc->cc_exec_entity[direct].cc_cancel) {
class->lc_unlock(c_lock);
goto skip;
}
/* The callout cannot be stopped now. */
cc->cc_exec_entity[direct].cc_cancel = true;
if (c_lock == &Giant.lock_object) {
#ifdef CALLOUT_PROFILING
(*gcalls)++;
#endif
CTR3(KTR_CALLOUT, "callout giant %p func %p arg %p",
c, c_func, c_arg);
} else {
#ifdef CALLOUT_PROFILING
(*lockcalls)++;
#endif
CTR3(KTR_CALLOUT, "callout lock %p func %p arg %p",
c, c_func, c_arg);
}
} else {
#ifdef CALLOUT_PROFILING
(*mpcalls)++;
#endif
CTR3(KTR_CALLOUT, "callout %p func %p arg %p",
c, c_func, c_arg);
}
#if defined(DIAGNOSTIC) || defined(CALLOUT_PROFILING)
sbt1 = sbinuptime();
#endif
THREAD_NO_SLEEPING();
SDT_PROBE(callout_execute, kernel, , callout_start, c, 0, 0, 0, 0);
c_func(c_arg);
SDT_PROBE(callout_execute, kernel, , callout_end, c, 0, 0, 0, 0);
THREAD_SLEEPING_OK();
#if defined(DIAGNOSTIC) || defined(CALLOUT_PROFILING)
sbt2 = sbinuptime();
sbt2 -= sbt1;
if (sbt2 > maxdt) {
if (lastfunc != c_func || sbt2 > maxdt * 2) {
ts2 = sbttots(sbt2);
printf(
"Expensive timeout(9) function: %p(%p) %jd.%09ld s\n",
c_func, c_arg, (intmax_t)ts2.tv_sec, ts2.tv_nsec);
}
maxdt = sbt2;
lastfunc = c_func;
}
#endif
CTR1(KTR_CALLOUT, "callout %p finished", c);
if ((c_flags & CALLOUT_RETURNUNLOCKED) == 0)
class->lc_unlock(c_lock);
skip:
CC_LOCK(cc);
KASSERT(cc->cc_exec_entity[direct].cc_curr == c, ("mishandled cc_curr"));
cc->cc_exec_entity[direct].cc_curr = NULL;
if (cc->cc_exec_entity[direct].cc_waiting) {
/*
* There is someone waiting for the
* callout to complete.
* If the callout was scheduled for
* migration just cancel it.
*/
if (cc_cce_migrating(cc, direct)) {
cc_cce_cleanup(cc, direct);
/*
* It should be assert here that the callout is not
* destroyed but that is not easy.
*/
c->c_flags &= ~CALLOUT_DFRMIGRATION;
}
cc->cc_exec_entity[direct].cc_waiting = false;
CC_UNLOCK(cc);
wakeup(&cc->cc_exec_entity[direct].cc_waiting);
CC_LOCK(cc);
} else if (cc_cce_migrating(cc, direct)) {
KASSERT((c_flags & CALLOUT_LOCAL_ALLOC) == 0,
("Migrating legacy callout %p", c));
#ifdef SMP
/*
* If the callout was scheduled for
* migration just perform it now.
*/
new_cpu = cc->cc_exec_entity[direct].ce_migration_cpu;
new_time = cc->cc_exec_entity[direct].ce_migration_time;
new_prec = cc->cc_exec_entity[direct].ce_migration_prec;
new_func = cc->cc_exec_entity[direct].ce_migration_func;
new_arg = cc->cc_exec_entity[direct].ce_migration_arg;
cc_cce_cleanup(cc, direct);
/*
* It should be assert here that the callout is not destroyed
* but that is not easy.
*
* As first thing, handle deferred callout stops.
*/
if ((c->c_flags & CALLOUT_DFRMIGRATION) == 0) {
CTR3(KTR_CALLOUT,
"deferred cancelled %p func %p arg %p",
c, new_func, new_arg);
callout_cc_del(c, cc);
return;
}
c->c_flags &= ~CALLOUT_DFRMIGRATION;
new_cc = callout_cpu_switch(c, cc, new_cpu);
flags = (direct) ? C_DIRECT_EXEC : 0;
callout_cc_add(c, new_cc, new_time, new_prec, new_func,
new_arg, new_cpu, flags);
CC_UNLOCK(new_cc);
CC_LOCK(cc);
#else
panic("migration should not happen");
#endif
}
/*
* If the current callout is locally allocated (from
* timeout(9)) then put it on the freelist.
*
* Note: we need to check the cached copy of c_flags because
* if it was not local, then it's not safe to deref the
* callout pointer.
*/
KASSERT((c_flags & CALLOUT_LOCAL_ALLOC) == 0 ||
c->c_flags == CALLOUT_LOCAL_ALLOC,
("corrupted callout"));
if (c_flags & CALLOUT_LOCAL_ALLOC)
callout_cc_del(c, cc);
}
/*
* The callout mechanism is based on the work of Adam M. Costello and
* George Varghese, published in a technical report entitled "Redesigning
* the BSD Callout and Timer Facilities" and modified slightly for inclusion
* in FreeBSD by Justin T. Gibbs. The original work on the data structures
* used in this implementation was published by G. Varghese and T. Lauck in
* the paper "Hashed and Hierarchical Timing Wheels: Data Structures for
* the Efficient Implementation of a Timer Facility" in the Proceedings of
* the 11th ACM Annual Symposium on Operating Systems Principles,
* Austin, Texas Nov 1987.
*/
/*
* Software (low priority) clock interrupt.
* Run periodic events from timeout queue.
*/
void
softclock(void *arg)
{
struct callout_cpu *cc;
struct callout *c;
#ifdef CALLOUT_PROFILING
int depth = 0, gcalls = 0, lockcalls = 0, mpcalls = 0;
#endif
cc = (struct callout_cpu *)arg;
CC_LOCK(cc);
while ((c = TAILQ_FIRST(&cc->cc_expireq)) != NULL) {
TAILQ_REMOVE(&cc->cc_expireq, c, c_links.tqe);
softclock_call_cc(c, cc,
#ifdef CALLOUT_PROFILING
&mpcalls, &lockcalls, &gcalls,
#endif
0);
#ifdef CALLOUT_PROFILING
++depth;
#endif
}
#ifdef CALLOUT_PROFILING
avg_depth += (depth * 1000 - avg_depth) >> 8;
avg_mpcalls += (mpcalls * 1000 - avg_mpcalls) >> 8;
avg_lockcalls += (lockcalls * 1000 - avg_lockcalls) >> 8;
avg_gcalls += (gcalls * 1000 - avg_gcalls) >> 8;
#endif
CC_UNLOCK(cc);
}
/*
* timeout --
* Execute a function after a specified length of time.
*
* untimeout --
* Cancel previous timeout function call.
*
* callout_handle_init --
* Initialize a handle so that using it with untimeout is benign.
*
* See AT&T BCI Driver Reference Manual for specification. This
* implementation differs from that one in that although an
* identification value is returned from timeout, the original
* arguments to timeout as well as the identifier are used to
* identify entries for untimeout.
*/
struct callout_handle
timeout(ftn, arg, to_ticks)
timeout_t *ftn;
void *arg;
int to_ticks;
{
struct callout_cpu *cc;
struct callout *new;
struct callout_handle handle;
cc = CC_CPU(timeout_cpu);
CC_LOCK(cc);
/* Fill in the next free callout structure. */
new = SLIST_FIRST(&cc->cc_callfree);
if (new == NULL)
/* XXX Attempt to malloc first */
panic("timeout table full");
SLIST_REMOVE_HEAD(&cc->cc_callfree, c_links.sle);
callout_reset(new, to_ticks, ftn, arg);
handle.callout = new;
CC_UNLOCK(cc);
return (handle);
}
void
untimeout(ftn, arg, handle)
timeout_t *ftn;
void *arg;
struct callout_handle handle;
{
struct callout_cpu *cc;
/*
* Check for a handle that was initialized
* by callout_handle_init, but never used
* for a real timeout.
*/
if (handle.callout == NULL)
return;
cc = callout_lock(handle.callout);
if (handle.callout->c_func == ftn && handle.callout->c_arg == arg)
callout_stop(handle.callout);
CC_UNLOCK(cc);
}
void
callout_handle_init(struct callout_handle *handle)
{
handle->callout = NULL;
}
/*
* New interface; clients allocate their own callout structures.
*
* callout_reset() - establish or change a timeout
* callout_stop() - disestablish a timeout
* callout_init() - initialize a callout structure so that it can
* safely be passed to callout_reset() and callout_stop()
*
* <sys/callout.h> defines three convenience macros:
*
* callout_active() - returns truth if callout has not been stopped,
* drained, or deactivated since the last time the callout was
* reset.
* callout_pending() - returns truth if callout is still waiting for timeout
* callout_deactivate() - marks the callout as having been serviced
*/
int
callout_reset_sbt_on(struct callout *c, sbintime_t sbt, sbintime_t precision,
void (*ftn)(void *), void *arg, int cpu, int flags)
{
sbintime_t to_sbt, pr;
struct callout_cpu *cc;
int cancelled, direct;
cancelled = 0;
if (flags & C_ABSOLUTE) {
to_sbt = sbt;
} else {
if ((flags & C_HARDCLOCK) && (sbt < tick_sbt))
sbt = tick_sbt;
if ((flags & C_HARDCLOCK) ||
#ifdef NO_EVENTTIMERS
sbt >= sbt_timethreshold) {
to_sbt = getsbinuptime();
/* Add safety belt for the case of hz > 1000. */
to_sbt += tc_tick_sbt - tick_sbt;
#else
sbt >= sbt_tickthreshold) {
/*
* Obtain the time of the last hardclock() call on
* this CPU directly from the kern_clocksource.c.
* This value is per-CPU, but it is equal for all
* active ones.
*/
#ifdef __LP64__
to_sbt = DPCPU_GET(hardclocktime);
#else
spinlock_enter();
to_sbt = DPCPU_GET(hardclocktime);
spinlock_exit();
#endif
#endif
if ((flags & C_HARDCLOCK) == 0)
to_sbt += tick_sbt;
} else
to_sbt = sbinuptime();
to_sbt += sbt;
pr = ((C_PRELGET(flags) < 0) ? sbt >> tc_precexp :
sbt >> C_PRELGET(flags));
if (pr > precision)
precision = pr;
}
/*
* Don't allow migration of pre-allocated callouts lest they
* become unbalanced.
*/
if (c->c_flags & CALLOUT_LOCAL_ALLOC)
cpu = c->c_cpu;
direct = (c->c_flags & CALLOUT_DIRECT) != 0;
KASSERT(!direct || c->c_lock == NULL,
("%s: direct callout %p has lock", __func__, c));
cc = callout_lock(c);
if (cc->cc_exec_entity[direct].cc_curr == c) {
/*
* We're being asked to reschedule a callout which is
* currently in progress. If there is a lock then we
* can cancel the callout if it has not really started.
*/
if (c->c_lock != NULL && !cc->cc_exec_entity[direct].cc_cancel)
cancelled = cc->cc_exec_entity[direct].cc_cancel = true;
if (cc->cc_exec_entity[direct].cc_waiting) {
/*
* Someone has called callout_drain to kill this
* callout. Don't reschedule.
*/
CTR4(KTR_CALLOUT, "%s %p func %p arg %p",
cancelled ? "cancelled" : "failed to cancel",
c, c->c_func, c->c_arg);
CC_UNLOCK(cc);
return (cancelled);
}
}
if (c->c_flags & CALLOUT_PENDING) {
if ((c->c_flags & CALLOUT_PROCESSED) == 0) {
if (cc->cc_exec_next_dir == c)
cc->cc_exec_next_dir = LIST_NEXT(c, c_links.le);
LIST_REMOVE(c, c_links.le);
} else
TAILQ_REMOVE(&cc->cc_expireq, c, c_links.tqe);
cancelled = 1;
c->c_flags &= ~(CALLOUT_ACTIVE | CALLOUT_PENDING);
}
#ifdef SMP
/*
* If the callout must migrate try to perform it immediately.
* If the callout is currently running, just defer the migration
* to a more appropriate moment.
*/
if (c->c_cpu != cpu) {
if (cc->cc_exec_entity[direct].cc_curr == c) {
cc->cc_exec_entity[direct].ce_migration_cpu = cpu;
cc->cc_exec_entity[direct].ce_migration_time
= to_sbt;
cc->cc_exec_entity[direct].ce_migration_prec
= precision;
cc->cc_exec_entity[direct].ce_migration_func = ftn;
cc->cc_exec_entity[direct].ce_migration_arg = arg;
c->c_flags |= CALLOUT_DFRMIGRATION;
CTR6(KTR_CALLOUT,
"migration of %p func %p arg %p in %d.%08x to %u deferred",
c, c->c_func, c->c_arg, (int)(to_sbt >> 32),
(u_int)(to_sbt & 0xffffffff), cpu);
CC_UNLOCK(cc);
return (cancelled);
}
cc = callout_cpu_switch(c, cc, cpu);
}
#endif
callout_cc_add(c, cc, to_sbt, precision, ftn, arg, cpu, flags);
CTR6(KTR_CALLOUT, "%sscheduled %p func %p arg %p in %d.%08x",
cancelled ? "re" : "", c, c->c_func, c->c_arg, (int)(to_sbt >> 32),
(u_int)(to_sbt & 0xffffffff));
CC_UNLOCK(cc);
return (cancelled);
}
/*
* Common idioms that can be optimized in the future.
*/
int
callout_schedule_on(struct callout *c, int to_ticks, int cpu)
{
return callout_reset_on(c, to_ticks, c->c_func, c->c_arg, cpu);
}
int
callout_schedule(struct callout *c, int to_ticks)
{
return callout_reset_on(c, to_ticks, c->c_func, c->c_arg, c->c_cpu);
}
int
_callout_stop_safe(c, safe)
struct callout *c;
int safe;
{
struct callout_cpu *cc, *old_cc;
struct lock_class *class;
int direct, sq_locked, use_lock;
/*
* Some old subsystems don't hold Giant while running a callout_stop(),
* so just discard this check for the moment.
*/
if (!safe && c->c_lock != NULL) {
if (c->c_lock == &Giant.lock_object)
use_lock = mtx_owned(&Giant);
else {
use_lock = 1;
class = LOCK_CLASS(c->c_lock);
class->lc_assert(c->c_lock, LA_XLOCKED);
}
} else
use_lock = 0;
direct = (c->c_flags & CALLOUT_DIRECT) != 0;
sq_locked = 0;
old_cc = NULL;
again:
cc = callout_lock(c);
/*
* If the callout was migrating while the callout cpu lock was
* dropped, just drop the sleepqueue lock and check the states
* again.
*/
if (sq_locked != 0 && cc != old_cc) {
#ifdef SMP
CC_UNLOCK(cc);
sleepq_release(&old_cc->cc_exec_entity[direct].cc_waiting);
sq_locked = 0;
old_cc = NULL;
goto again;
#else
panic("migration should not happen");
#endif
}
/*
* If the callout isn't pending, it's not on the queue, so
* don't attempt to remove it from the queue. We can try to
* stop it by other means however.
*/
if (!(c->c_flags & CALLOUT_PENDING)) {
c->c_flags &= ~CALLOUT_ACTIVE;
/*
* If it wasn't on the queue and it isn't the current
* callout, then we can't stop it, so just bail.
*/
if (cc->cc_exec_entity[direct].cc_curr != c) {
CTR3(KTR_CALLOUT, "failed to stop %p func %p arg %p",
c, c->c_func, c->c_arg);
CC_UNLOCK(cc);
if (sq_locked)
sleepq_release(
&cc->cc_exec_entity[direct].cc_waiting);
return (0);
}
if (safe) {
/*
* The current callout is running (or just
* about to run) and blocking is allowed, so
* just wait for the current invocation to
* finish.
*/
while (cc->cc_exec_entity[direct].cc_curr == c) {
/*
* Use direct calls to sleepqueue interface
* instead of cv/msleep in order to avoid
* a LOR between cc_lock and sleepqueue
* chain spinlocks. This piece of code
* emulates a msleep_spin() call actually.
*
* If we already have the sleepqueue chain
* locked, then we can safely block. If we
* don't already have it locked, however,
* we have to drop the cc_lock to lock
* it. This opens several races, so we
* restart at the beginning once we have
* both locks. If nothing has changed, then
* we will end up back here with sq_locked
* set.
*/
if (!sq_locked) {
CC_UNLOCK(cc);
sleepq_lock(
&cc->cc_exec_entity[direct].cc_waiting);
sq_locked = 1;
old_cc = cc;
goto again;
}
/*
* Migration could be cancelled here, but
* as long as it is still not sure when it
* will be packed up, just let softclock()
* take care of it.
*/
cc->cc_exec_entity[direct].cc_waiting = true;
DROP_GIANT();
CC_UNLOCK(cc);
sleepq_add(
&cc->cc_exec_entity[direct].cc_waiting,
&cc->cc_lock.lock_object, "codrain",
SLEEPQ_SLEEP, 0);
sleepq_wait(
&cc->cc_exec_entity[direct].cc_waiting,
0);
sq_locked = 0;
old_cc = NULL;
/* Reacquire locks previously released. */
PICKUP_GIANT();
CC_LOCK(cc);
}
} else if (use_lock &&
!cc->cc_exec_entity[direct].cc_cancel) {
/*
* The current callout is waiting for its
* lock which we hold. Cancel the callout
* and return. After our caller drops the
* lock, the callout will be skipped in
* softclock().
*/
cc->cc_exec_entity[direct].cc_cancel = true;
CTR3(KTR_CALLOUT, "cancelled %p func %p arg %p",
c, c->c_func, c->c_arg);
KASSERT(!cc_cce_migrating(cc, direct),
("callout wrongly scheduled for migration"));
CC_UNLOCK(cc);
KASSERT(!sq_locked, ("sleepqueue chain locked"));
return (1);
} else if ((c->c_flags & CALLOUT_DFRMIGRATION) != 0) {
c->c_flags &= ~CALLOUT_DFRMIGRATION;
CTR3(KTR_CALLOUT, "postponing stop %p func %p arg %p",
c, c->c_func, c->c_arg);
CC_UNLOCK(cc);
return (1);
}
CTR3(KTR_CALLOUT, "failed to stop %p func %p arg %p",
c, c->c_func, c->c_arg);
CC_UNLOCK(cc);
KASSERT(!sq_locked, ("sleepqueue chain still locked"));
return (0);
}
if (sq_locked)
sleepq_release(&cc->cc_exec_entity[direct].cc_waiting);
c->c_flags &= ~(CALLOUT_ACTIVE | CALLOUT_PENDING);
CTR3(KTR_CALLOUT, "cancelled %p func %p arg %p",
c, c->c_func, c->c_arg);
if ((c->c_flags & CALLOUT_PROCESSED) == 0) {
if (cc->cc_exec_next_dir == c)
cc->cc_exec_next_dir = LIST_NEXT(c, c_links.le);
LIST_REMOVE(c, c_links.le);
} else
TAILQ_REMOVE(&cc->cc_expireq, c, c_links.tqe);
callout_cc_del(c, cc);
CC_UNLOCK(cc);
return (1);
}
void
callout_init(c, mpsafe)
struct callout *c;
int mpsafe;
{
bzero(c, sizeof *c);
if (mpsafe) {
c->c_lock = NULL;
c->c_flags = CALLOUT_RETURNUNLOCKED;
} else {
c->c_lock = &Giant.lock_object;
c->c_flags = 0;
}
c->c_cpu = timeout_cpu;
}
void
_callout_init_lock(c, lock, flags)
struct callout *c;
struct lock_object *lock;
int flags;
{
bzero(c, sizeof *c);
c->c_lock = lock;
KASSERT((flags & ~(CALLOUT_RETURNUNLOCKED | CALLOUT_SHAREDLOCK)) == 0,
("callout_init_lock: bad flags %d", flags));
KASSERT(lock != NULL || (flags & CALLOUT_RETURNUNLOCKED) == 0,
("callout_init_lock: CALLOUT_RETURNUNLOCKED with no lock"));
KASSERT(lock == NULL || !(LOCK_CLASS(lock)->lc_flags &
(LC_SPINLOCK | LC_SLEEPABLE)), ("%s: invalid lock class",
__func__));
c->c_flags = flags & (CALLOUT_RETURNUNLOCKED | CALLOUT_SHAREDLOCK);
c->c_cpu = timeout_cpu;
}
#ifdef APM_FIXUP_CALLTODO
/*
* Adjust the kernel calltodo timeout list. This routine is used after
* an APM resume to recalculate the calltodo timer list values with the
* number of hz's we have been sleeping. The next hardclock() will detect
* that there are fired timers and run softclock() to execute them.
*
* Please note, I have not done an exhaustive analysis of what code this
* might break. I am motivated to have my select()'s and alarm()'s that
* have expired during suspend firing upon resume so that the applications
* which set the timer can do the maintanence the timer was for as close
* as possible to the originally intended time. Testing this code for a
* week showed that resuming from a suspend resulted in 22 to 25 timers
* firing, which seemed independant on whether the suspend was 2 hours or
* 2 days. Your milage may vary. - Ken Key <key@cs.utk.edu>
*/
void
adjust_timeout_calltodo(time_change)
struct timeval *time_change;
{
register struct callout *p;
unsigned long delta_ticks;
/*
* How many ticks were we asleep?
* (stolen from tvtohz()).
*/
/* Don't do anything */
if (time_change->tv_sec < 0)
return;
else if (time_change->tv_sec <= LONG_MAX / 1000000)
delta_ticks = (time_change->tv_sec * 1000000 +
time_change->tv_usec + (tick - 1)) / tick + 1;
else if (time_change->tv_sec <= LONG_MAX / hz)
delta_ticks = time_change->tv_sec * hz +
(time_change->tv_usec + (tick - 1)) / tick + 1;
else
delta_ticks = LONG_MAX;
if (delta_ticks > INT_MAX)
delta_ticks = INT_MAX;
/*
* Now rip through the timer calltodo list looking for timers
* to expire.
*/
/* don't collide with softclock() */
CC_LOCK(cc);
for (p = calltodo.c_next; p != NULL; p = p->c_next) {
p->c_time -= delta_ticks;
/* Break if the timer had more time on it than delta_ticks */
if (p->c_time > 0)
break;
/* take back the ticks the timer didn't use (p->c_time <= 0) */
delta_ticks = -p->c_time;
}
CC_UNLOCK(cc);
return;
}
#endif /* APM_FIXUP_CALLTODO */
static int
flssbt(sbintime_t sbt)
{
sbt += (uint64_t)sbt >> 1;
if (sizeof(long) >= sizeof(sbintime_t))
return (flsl(sbt));
if (sbt >= SBT_1S)
return (flsl(((uint64_t)sbt) >> 32) + 32);
return (flsl(sbt));
}
/*
* Dump immediate statistic snapshot of the scheduled callouts.
*/
static int
sysctl_kern_callout_stat(SYSCTL_HANDLER_ARGS)
{
struct callout *tmp;
struct callout_cpu *cc;
struct callout_list *sc;
sbintime_t maxpr, maxt, medpr, medt, now, spr, st, t;
int ct[64], cpr[64], ccpbk[32];
int error, val, i, count, tcum, pcum, maxc, c, medc;
#ifdef SMP
int cpu;
#endif
val = 0;
error = sysctl_handle_int(oidp, &val, 0, req);
if (error != 0 || req->newptr == NULL)
return (error);
count = maxc = 0;
st = spr = maxt = maxpr = 0;
bzero(ccpbk, sizeof(ccpbk));
bzero(ct, sizeof(ct));
bzero(cpr, sizeof(cpr));
now = sbinuptime();
#ifdef SMP
CPU_FOREACH(cpu) {
cc = CC_CPU(cpu);
#else
cc = CC_CPU(timeout_cpu);
#endif
CC_LOCK(cc);
for (i = 0; i < callwheelsize; i++) {
sc = &cc->cc_callwheel[i];
c = 0;
LIST_FOREACH(tmp, sc, c_links.le) {
c++;
t = tmp->c_time - now;
if (t < 0)
t = 0;
st += t / SBT_1US;
spr += tmp->c_precision / SBT_1US;
if (t > maxt)
maxt = t;
if (tmp->c_precision > maxpr)
maxpr = tmp->c_precision;
ct[flssbt(t)]++;
cpr[flssbt(tmp->c_precision)]++;
}
if (c > maxc)
maxc = c;
ccpbk[fls(c + c / 2)]++;
count += c;
}
CC_UNLOCK(cc);
#ifdef SMP
}
#endif
for (i = 0, tcum = 0; i < 64 && tcum < count / 2; i++)
tcum += ct[i];
medt = (i >= 2) ? (((sbintime_t)1) << (i - 2)) : 0;
for (i = 0, pcum = 0; i < 64 && pcum < count / 2; i++)
pcum += cpr[i];
medpr = (i >= 2) ? (((sbintime_t)1) << (i - 2)) : 0;
for (i = 0, c = 0; i < 32 && c < count / 2; i++)
c += ccpbk[i];
medc = (i >= 2) ? (1 << (i - 2)) : 0;
printf("Scheduled callouts statistic snapshot:\n");
printf(" Callouts: %6d Buckets: %6d*%-3d Bucket size: 0.%06ds\n",
count, callwheelsize, mp_ncpus, 1000000 >> CC_HASH_SHIFT);
printf(" C/Bk: med %5d avg %6d.%06jd max %6d\n",
medc,
count / callwheelsize / mp_ncpus,
(uint64_t)count * 1000000 / callwheelsize / mp_ncpus % 1000000,
maxc);
printf(" Time: med %5jd.%06jds avg %6jd.%06jds max %6jd.%06jds\n",
medt / SBT_1S, (medt & 0xffffffff) * 1000000 >> 32,
(st / count) / 1000000, (st / count) % 1000000,
maxt / SBT_1S, (maxt & 0xffffffff) * 1000000 >> 32);
printf(" Prec: med %5jd.%06jds avg %6jd.%06jds max %6jd.%06jds\n",
medpr / SBT_1S, (medpr & 0xffffffff) * 1000000 >> 32,
(spr / count) / 1000000, (spr / count) % 1000000,
maxpr / SBT_1S, (maxpr & 0xffffffff) * 1000000 >> 32);
printf(" Distribution: \tbuckets\t time\t tcum\t"
" prec\t pcum\n");
for (i = 0, tcum = pcum = 0; i < 64; i++) {
if (ct[i] == 0 && cpr[i] == 0)
continue;
t = (i != 0) ? (((sbintime_t)1) << (i - 1)) : 0;
tcum += ct[i];
pcum += cpr[i];
printf(" %10jd.%06jds\t 2**%d\t%7d\t%7d\t%7d\t%7d\n",
t / SBT_1S, (t & 0xffffffff) * 1000000 >> 32,
i - 1 - (32 - CC_HASH_SHIFT),
ct[i], tcum, cpr[i], pcum);
}
return (error);
}
SYSCTL_PROC(_kern, OID_AUTO, callout_stat,
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
0, 0, sysctl_kern_callout_stat, "I",
"Dump immediate statistic snapshot of the scheduled callouts");