freebsd-dev/sys/dev/safe/safe.c
Pedro F. Giffuni 718cf2ccb9 sys/dev: further adoption of SPDX licensing ID tags.
Mainly focus on files that use BSD 2-Clause license, however the tool I
was using misidentified many licenses so this was mostly a manual - error
prone - task.

The Software Package Data Exchange (SPDX) group provides a specification
to make it easier for automated tools to detect and summarize well known
opensource licenses. We are gradually adopting the specification, noting
that the tags are considered only advisory and do not, in any way,
superceed or replace the license texts.
2017-11-27 14:52:40 +00:00

2230 lines
60 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2003 Sam Leffler, Errno Consulting
* Copyright (c) 2003 Global Technology Associates, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* SafeNet SafeXcel-1141 hardware crypto accelerator
*/
#include "opt_safe.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/errno.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/mbuf.h>
#include <sys/module.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/sysctl.h>
#include <sys/endian.h>
#include <vm/vm.h>
#include <vm/pmap.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <crypto/sha1.h>
#include <opencrypto/cryptodev.h>
#include <opencrypto/cryptosoft.h>
#include <sys/md5.h>
#include <sys/random.h>
#include <sys/kobj.h>
#include "cryptodev_if.h"
#include <dev/pci/pcivar.h>
#include <dev/pci/pcireg.h>
#ifdef SAFE_RNDTEST
#include <dev/rndtest/rndtest.h>
#endif
#include <dev/safe/safereg.h>
#include <dev/safe/safevar.h>
#ifndef bswap32
#define bswap32 NTOHL
#endif
/*
* Prototypes and count for the pci_device structure
*/
static int safe_probe(device_t);
static int safe_attach(device_t);
static int safe_detach(device_t);
static int safe_suspend(device_t);
static int safe_resume(device_t);
static int safe_shutdown(device_t);
static int safe_newsession(device_t, u_int32_t *, struct cryptoini *);
static int safe_freesession(device_t, u_int64_t);
static int safe_process(device_t, struct cryptop *, int);
static device_method_t safe_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, safe_probe),
DEVMETHOD(device_attach, safe_attach),
DEVMETHOD(device_detach, safe_detach),
DEVMETHOD(device_suspend, safe_suspend),
DEVMETHOD(device_resume, safe_resume),
DEVMETHOD(device_shutdown, safe_shutdown),
/* crypto device methods */
DEVMETHOD(cryptodev_newsession, safe_newsession),
DEVMETHOD(cryptodev_freesession,safe_freesession),
DEVMETHOD(cryptodev_process, safe_process),
DEVMETHOD_END
};
static driver_t safe_driver = {
"safe",
safe_methods,
sizeof (struct safe_softc)
};
static devclass_t safe_devclass;
DRIVER_MODULE(safe, pci, safe_driver, safe_devclass, 0, 0);
MODULE_DEPEND(safe, crypto, 1, 1, 1);
#ifdef SAFE_RNDTEST
MODULE_DEPEND(safe, rndtest, 1, 1, 1);
#endif
static void safe_intr(void *);
static void safe_callback(struct safe_softc *, struct safe_ringentry *);
static void safe_feed(struct safe_softc *, struct safe_ringentry *);
static void safe_mcopy(struct mbuf *, struct mbuf *, u_int);
#ifndef SAFE_NO_RNG
static void safe_rng_init(struct safe_softc *);
static void safe_rng(void *);
#endif /* SAFE_NO_RNG */
static int safe_dma_malloc(struct safe_softc *, bus_size_t,
struct safe_dma_alloc *, int);
#define safe_dma_sync(_dma, _flags) \
bus_dmamap_sync((_dma)->dma_tag, (_dma)->dma_map, (_flags))
static void safe_dma_free(struct safe_softc *, struct safe_dma_alloc *);
static int safe_dmamap_aligned(const struct safe_operand *);
static int safe_dmamap_uniform(const struct safe_operand *);
static void safe_reset_board(struct safe_softc *);
static void safe_init_board(struct safe_softc *);
static void safe_init_pciregs(device_t dev);
static void safe_cleanchip(struct safe_softc *);
static void safe_totalreset(struct safe_softc *);
static int safe_free_entry(struct safe_softc *, struct safe_ringentry *);
static SYSCTL_NODE(_hw, OID_AUTO, safe, CTLFLAG_RD, 0,
"SafeNet driver parameters");
#ifdef SAFE_DEBUG
static void safe_dump_dmastatus(struct safe_softc *, const char *);
static void safe_dump_ringstate(struct safe_softc *, const char *);
static void safe_dump_intrstate(struct safe_softc *, const char *);
static void safe_dump_request(struct safe_softc *, const char *,
struct safe_ringentry *);
static struct safe_softc *safec; /* for use by hw.safe.dump */
static int safe_debug = 0;
SYSCTL_INT(_hw_safe, OID_AUTO, debug, CTLFLAG_RW, &safe_debug,
0, "control debugging msgs");
#define DPRINTF(_x) if (safe_debug) printf _x
#else
#define DPRINTF(_x)
#endif
#define READ_REG(sc,r) \
bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (r))
#define WRITE_REG(sc,reg,val) \
bus_space_write_4((sc)->sc_st, (sc)->sc_sh, reg, val)
struct safe_stats safestats;
SYSCTL_STRUCT(_hw_safe, OID_AUTO, stats, CTLFLAG_RD, &safestats,
safe_stats, "driver statistics");
#ifndef SAFE_NO_RNG
static int safe_rnginterval = 1; /* poll once a second */
SYSCTL_INT(_hw_safe, OID_AUTO, rnginterval, CTLFLAG_RW, &safe_rnginterval,
0, "RNG polling interval (secs)");
static int safe_rngbufsize = 16; /* 64 bytes each poll */
SYSCTL_INT(_hw_safe, OID_AUTO, rngbufsize, CTLFLAG_RW, &safe_rngbufsize,
0, "RNG polling buffer size (32-bit words)");
static int safe_rngmaxalarm = 8; /* max alarms before reset */
SYSCTL_INT(_hw_safe, OID_AUTO, rngmaxalarm, CTLFLAG_RW, &safe_rngmaxalarm,
0, "RNG max alarms before reset");
#endif /* SAFE_NO_RNG */
static int
safe_probe(device_t dev)
{
if (pci_get_vendor(dev) == PCI_VENDOR_SAFENET &&
pci_get_device(dev) == PCI_PRODUCT_SAFEXCEL)
return (BUS_PROBE_DEFAULT);
return (ENXIO);
}
static const char*
safe_partname(struct safe_softc *sc)
{
/* XXX sprintf numbers when not decoded */
switch (pci_get_vendor(sc->sc_dev)) {
case PCI_VENDOR_SAFENET:
switch (pci_get_device(sc->sc_dev)) {
case PCI_PRODUCT_SAFEXCEL: return "SafeNet SafeXcel-1141";
}
return "SafeNet unknown-part";
}
return "Unknown-vendor unknown-part";
}
#ifndef SAFE_NO_RNG
static void
default_harvest(struct rndtest_state *rsp, void *buf, u_int count)
{
/* MarkM: FIX!! Check that this does not swamp the harvester! */
random_harvest_queue(buf, count, count*NBBY/2, RANDOM_PURE_SAFE);
}
#endif /* SAFE_NO_RNG */
static int
safe_attach(device_t dev)
{
struct safe_softc *sc = device_get_softc(dev);
u_int32_t raddr;
u_int32_t i, devinfo;
int rid;
bzero(sc, sizeof (*sc));
sc->sc_dev = dev;
/* XXX handle power management */
pci_enable_busmaster(dev);
/*
* Setup memory-mapping of PCI registers.
*/
rid = BS_BAR;
sc->sc_sr = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
RF_ACTIVE);
if (sc->sc_sr == NULL) {
device_printf(dev, "cannot map register space\n");
goto bad;
}
sc->sc_st = rman_get_bustag(sc->sc_sr);
sc->sc_sh = rman_get_bushandle(sc->sc_sr);
/*
* Arrange interrupt line.
*/
rid = 0;
sc->sc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
RF_SHAREABLE|RF_ACTIVE);
if (sc->sc_irq == NULL) {
device_printf(dev, "could not map interrupt\n");
goto bad1;
}
/*
* NB: Network code assumes we are blocked with splimp()
* so make sure the IRQ is mapped appropriately.
*/
if (bus_setup_intr(dev, sc->sc_irq, INTR_TYPE_NET | INTR_MPSAFE,
NULL, safe_intr, sc, &sc->sc_ih)) {
device_printf(dev, "could not establish interrupt\n");
goto bad2;
}
sc->sc_cid = crypto_get_driverid(dev, CRYPTOCAP_F_HARDWARE);
if (sc->sc_cid < 0) {
device_printf(dev, "could not get crypto driver id\n");
goto bad3;
}
sc->sc_chiprev = READ_REG(sc, SAFE_DEVINFO) &
(SAFE_DEVINFO_REV_MAJ | SAFE_DEVINFO_REV_MIN);
/*
* Setup DMA descriptor area.
*/
if (bus_dma_tag_create(bus_get_dma_tag(dev), /* parent */
1, /* alignment */
SAFE_DMA_BOUNDARY, /* boundary */
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
SAFE_MAX_DMA, /* maxsize */
SAFE_MAX_PART, /* nsegments */
SAFE_MAX_SSIZE, /* maxsegsize */
BUS_DMA_ALLOCNOW, /* flags */
NULL, NULL, /* locking */
&sc->sc_srcdmat)) {
device_printf(dev, "cannot allocate DMA tag\n");
goto bad4;
}
if (bus_dma_tag_create(bus_get_dma_tag(dev), /* parent */
1, /* alignment */
SAFE_MAX_DSIZE, /* boundary */
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
SAFE_MAX_DMA, /* maxsize */
SAFE_MAX_PART, /* nsegments */
SAFE_MAX_DSIZE, /* maxsegsize */
BUS_DMA_ALLOCNOW, /* flags */
NULL, NULL, /* locking */
&sc->sc_dstdmat)) {
device_printf(dev, "cannot allocate DMA tag\n");
goto bad4;
}
/*
* Allocate packet engine descriptors.
*/
if (safe_dma_malloc(sc,
SAFE_MAX_NQUEUE * sizeof (struct safe_ringentry),
&sc->sc_ringalloc, 0)) {
device_printf(dev, "cannot allocate PE descriptor ring\n");
bus_dma_tag_destroy(sc->sc_srcdmat);
goto bad4;
}
/*
* Hookup the static portion of all our data structures.
*/
sc->sc_ring = (struct safe_ringentry *) sc->sc_ringalloc.dma_vaddr;
sc->sc_ringtop = sc->sc_ring + SAFE_MAX_NQUEUE;
sc->sc_front = sc->sc_ring;
sc->sc_back = sc->sc_ring;
raddr = sc->sc_ringalloc.dma_paddr;
bzero(sc->sc_ring, SAFE_MAX_NQUEUE * sizeof(struct safe_ringentry));
for (i = 0; i < SAFE_MAX_NQUEUE; i++) {
struct safe_ringentry *re = &sc->sc_ring[i];
re->re_desc.d_sa = raddr +
offsetof(struct safe_ringentry, re_sa);
re->re_sa.sa_staterec = raddr +
offsetof(struct safe_ringentry, re_sastate);
raddr += sizeof (struct safe_ringentry);
}
mtx_init(&sc->sc_ringmtx, device_get_nameunit(dev),
"packet engine ring", MTX_DEF);
/*
* Allocate scatter and gather particle descriptors.
*/
if (safe_dma_malloc(sc, SAFE_TOTAL_SPART * sizeof (struct safe_pdesc),
&sc->sc_spalloc, 0)) {
device_printf(dev, "cannot allocate source particle "
"descriptor ring\n");
mtx_destroy(&sc->sc_ringmtx);
safe_dma_free(sc, &sc->sc_ringalloc);
bus_dma_tag_destroy(sc->sc_srcdmat);
goto bad4;
}
sc->sc_spring = (struct safe_pdesc *) sc->sc_spalloc.dma_vaddr;
sc->sc_springtop = sc->sc_spring + SAFE_TOTAL_SPART;
sc->sc_spfree = sc->sc_spring;
bzero(sc->sc_spring, SAFE_TOTAL_SPART * sizeof(struct safe_pdesc));
if (safe_dma_malloc(sc, SAFE_TOTAL_DPART * sizeof (struct safe_pdesc),
&sc->sc_dpalloc, 0)) {
device_printf(dev, "cannot allocate destination particle "
"descriptor ring\n");
mtx_destroy(&sc->sc_ringmtx);
safe_dma_free(sc, &sc->sc_spalloc);
safe_dma_free(sc, &sc->sc_ringalloc);
bus_dma_tag_destroy(sc->sc_dstdmat);
goto bad4;
}
sc->sc_dpring = (struct safe_pdesc *) sc->sc_dpalloc.dma_vaddr;
sc->sc_dpringtop = sc->sc_dpring + SAFE_TOTAL_DPART;
sc->sc_dpfree = sc->sc_dpring;
bzero(sc->sc_dpring, SAFE_TOTAL_DPART * sizeof(struct safe_pdesc));
device_printf(sc->sc_dev, "%s", safe_partname(sc));
devinfo = READ_REG(sc, SAFE_DEVINFO);
if (devinfo & SAFE_DEVINFO_RNG) {
sc->sc_flags |= SAFE_FLAGS_RNG;
printf(" rng");
}
if (devinfo & SAFE_DEVINFO_PKEY) {
#if 0
printf(" key");
sc->sc_flags |= SAFE_FLAGS_KEY;
crypto_kregister(sc->sc_cid, CRK_MOD_EXP, 0);
crypto_kregister(sc->sc_cid, CRK_MOD_EXP_CRT, 0);
#endif
}
if (devinfo & SAFE_DEVINFO_DES) {
printf(" des/3des");
crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0);
crypto_register(sc->sc_cid, CRYPTO_DES_CBC, 0, 0);
}
if (devinfo & SAFE_DEVINFO_AES) {
printf(" aes");
crypto_register(sc->sc_cid, CRYPTO_AES_CBC, 0, 0);
}
if (devinfo & SAFE_DEVINFO_MD5) {
printf(" md5");
crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC, 0, 0);
}
if (devinfo & SAFE_DEVINFO_SHA1) {
printf(" sha1");
crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC, 0, 0);
}
printf(" null");
crypto_register(sc->sc_cid, CRYPTO_NULL_CBC, 0, 0);
crypto_register(sc->sc_cid, CRYPTO_NULL_HMAC, 0, 0);
/* XXX other supported algorithms */
printf("\n");
safe_reset_board(sc); /* reset h/w */
safe_init_pciregs(dev); /* init pci settings */
safe_init_board(sc); /* init h/w */
#ifndef SAFE_NO_RNG
if (sc->sc_flags & SAFE_FLAGS_RNG) {
#ifdef SAFE_RNDTEST
sc->sc_rndtest = rndtest_attach(dev);
if (sc->sc_rndtest)
sc->sc_harvest = rndtest_harvest;
else
sc->sc_harvest = default_harvest;
#else
sc->sc_harvest = default_harvest;
#endif
safe_rng_init(sc);
callout_init(&sc->sc_rngto, 1);
callout_reset(&sc->sc_rngto, hz*safe_rnginterval, safe_rng, sc);
}
#endif /* SAFE_NO_RNG */
#ifdef SAFE_DEBUG
safec = sc; /* for use by hw.safe.dump */
#endif
return (0);
bad4:
crypto_unregister_all(sc->sc_cid);
bad3:
bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
bad2:
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq);
bad1:
bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr);
bad:
return (ENXIO);
}
/*
* Detach a device that successfully probed.
*/
static int
safe_detach(device_t dev)
{
struct safe_softc *sc = device_get_softc(dev);
/* XXX wait/abort active ops */
WRITE_REG(sc, SAFE_HI_MASK, 0); /* disable interrupts */
callout_stop(&sc->sc_rngto);
crypto_unregister_all(sc->sc_cid);
#ifdef SAFE_RNDTEST
if (sc->sc_rndtest)
rndtest_detach(sc->sc_rndtest);
#endif
safe_cleanchip(sc);
safe_dma_free(sc, &sc->sc_dpalloc);
safe_dma_free(sc, &sc->sc_spalloc);
mtx_destroy(&sc->sc_ringmtx);
safe_dma_free(sc, &sc->sc_ringalloc);
bus_generic_detach(dev);
bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq);
bus_dma_tag_destroy(sc->sc_srcdmat);
bus_dma_tag_destroy(sc->sc_dstdmat);
bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr);
return (0);
}
/*
* Stop all chip i/o so that the kernel's probe routines don't
* get confused by errant DMAs when rebooting.
*/
static int
safe_shutdown(device_t dev)
{
#ifdef notyet
safe_stop(device_get_softc(dev));
#endif
return (0);
}
/*
* Device suspend routine.
*/
static int
safe_suspend(device_t dev)
{
struct safe_softc *sc = device_get_softc(dev);
#ifdef notyet
/* XXX stop the device and save PCI settings */
#endif
sc->sc_suspended = 1;
return (0);
}
static int
safe_resume(device_t dev)
{
struct safe_softc *sc = device_get_softc(dev);
#ifdef notyet
/* XXX retore PCI settings and start the device */
#endif
sc->sc_suspended = 0;
return (0);
}
/*
* SafeXcel Interrupt routine
*/
static void
safe_intr(void *arg)
{
struct safe_softc *sc = arg;
volatile u_int32_t stat;
stat = READ_REG(sc, SAFE_HM_STAT);
if (stat == 0) /* shared irq, not for us */
return;
WRITE_REG(sc, SAFE_HI_CLR, stat); /* IACK */
if ((stat & SAFE_INT_PE_DDONE)) {
/*
* Descriptor(s) done; scan the ring and
* process completed operations.
*/
mtx_lock(&sc->sc_ringmtx);
while (sc->sc_back != sc->sc_front) {
struct safe_ringentry *re = sc->sc_back;
#ifdef SAFE_DEBUG
if (safe_debug) {
safe_dump_ringstate(sc, __func__);
safe_dump_request(sc, __func__, re);
}
#endif
/*
* safe_process marks ring entries that were allocated
* but not used with a csr of zero. This insures the
* ring front pointer never needs to be set backwards
* in the event that an entry is allocated but not used
* because of a setup error.
*/
if (re->re_desc.d_csr != 0) {
if (!SAFE_PE_CSR_IS_DONE(re->re_desc.d_csr))
break;
if (!SAFE_PE_LEN_IS_DONE(re->re_desc.d_len))
break;
sc->sc_nqchip--;
safe_callback(sc, re);
}
if (++(sc->sc_back) == sc->sc_ringtop)
sc->sc_back = sc->sc_ring;
}
mtx_unlock(&sc->sc_ringmtx);
}
/*
* Check to see if we got any DMA Error
*/
if (stat & SAFE_INT_PE_ERROR) {
DPRINTF(("dmaerr dmastat %08x\n",
READ_REG(sc, SAFE_PE_DMASTAT)));
safestats.st_dmaerr++;
safe_totalreset(sc);
#if 0
safe_feed(sc);
#endif
}
if (sc->sc_needwakeup) { /* XXX check high watermark */
int wakeup = sc->sc_needwakeup & (CRYPTO_SYMQ|CRYPTO_ASYMQ);
DPRINTF(("%s: wakeup crypto %x\n", __func__,
sc->sc_needwakeup));
sc->sc_needwakeup &= ~wakeup;
crypto_unblock(sc->sc_cid, wakeup);
}
}
/*
* safe_feed() - post a request to chip
*/
static void
safe_feed(struct safe_softc *sc, struct safe_ringentry *re)
{
bus_dmamap_sync(sc->sc_srcdmat, re->re_src_map, BUS_DMASYNC_PREWRITE);
if (re->re_dst_map != NULL)
bus_dmamap_sync(sc->sc_dstdmat, re->re_dst_map,
BUS_DMASYNC_PREREAD);
/* XXX have no smaller granularity */
safe_dma_sync(&sc->sc_ringalloc,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
safe_dma_sync(&sc->sc_spalloc, BUS_DMASYNC_PREWRITE);
safe_dma_sync(&sc->sc_dpalloc, BUS_DMASYNC_PREWRITE);
#ifdef SAFE_DEBUG
if (safe_debug) {
safe_dump_ringstate(sc, __func__);
safe_dump_request(sc, __func__, re);
}
#endif
sc->sc_nqchip++;
if (sc->sc_nqchip > safestats.st_maxqchip)
safestats.st_maxqchip = sc->sc_nqchip;
/* poke h/w to check descriptor ring, any value can be written */
WRITE_REG(sc, SAFE_HI_RD_DESCR, 0);
}
#define N(a) (sizeof(a) / sizeof (a[0]))
static void
safe_setup_enckey(struct safe_session *ses, caddr_t key)
{
int i;
bcopy(key, ses->ses_key, ses->ses_klen / 8);
/* PE is little-endian, insure proper byte order */
for (i = 0; i < N(ses->ses_key); i++)
ses->ses_key[i] = htole32(ses->ses_key[i]);
}
static void
safe_setup_mackey(struct safe_session *ses, int algo, caddr_t key, int klen)
{
MD5_CTX md5ctx;
SHA1_CTX sha1ctx;
int i;
for (i = 0; i < klen; i++)
key[i] ^= HMAC_IPAD_VAL;
if (algo == CRYPTO_MD5_HMAC) {
MD5Init(&md5ctx);
MD5Update(&md5ctx, key, klen);
MD5Update(&md5ctx, hmac_ipad_buffer, MD5_HMAC_BLOCK_LEN - klen);
bcopy(md5ctx.state, ses->ses_hminner, sizeof(md5ctx.state));
} else {
SHA1Init(&sha1ctx);
SHA1Update(&sha1ctx, key, klen);
SHA1Update(&sha1ctx, hmac_ipad_buffer,
SHA1_HMAC_BLOCK_LEN - klen);
bcopy(sha1ctx.h.b32, ses->ses_hminner, sizeof(sha1ctx.h.b32));
}
for (i = 0; i < klen; i++)
key[i] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
if (algo == CRYPTO_MD5_HMAC) {
MD5Init(&md5ctx);
MD5Update(&md5ctx, key, klen);
MD5Update(&md5ctx, hmac_opad_buffer, MD5_HMAC_BLOCK_LEN - klen);
bcopy(md5ctx.state, ses->ses_hmouter, sizeof(md5ctx.state));
} else {
SHA1Init(&sha1ctx);
SHA1Update(&sha1ctx, key, klen);
SHA1Update(&sha1ctx, hmac_opad_buffer,
SHA1_HMAC_BLOCK_LEN - klen);
bcopy(sha1ctx.h.b32, ses->ses_hmouter, sizeof(sha1ctx.h.b32));
}
for (i = 0; i < klen; i++)
key[i] ^= HMAC_OPAD_VAL;
/* PE is little-endian, insure proper byte order */
for (i = 0; i < N(ses->ses_hminner); i++) {
ses->ses_hminner[i] = htole32(ses->ses_hminner[i]);
ses->ses_hmouter[i] = htole32(ses->ses_hmouter[i]);
}
}
#undef N
/*
* Allocate a new 'session' and return an encoded session id. 'sidp'
* contains our registration id, and should contain an encoded session
* id on successful allocation.
*/
static int
safe_newsession(device_t dev, u_int32_t *sidp, struct cryptoini *cri)
{
struct safe_softc *sc = device_get_softc(dev);
struct cryptoini *c, *encini = NULL, *macini = NULL;
struct safe_session *ses = NULL;
int sesn;
if (sidp == NULL || cri == NULL || sc == NULL)
return (EINVAL);
for (c = cri; c != NULL; c = c->cri_next) {
if (c->cri_alg == CRYPTO_MD5_HMAC ||
c->cri_alg == CRYPTO_SHA1_HMAC ||
c->cri_alg == CRYPTO_NULL_HMAC) {
if (macini)
return (EINVAL);
macini = c;
} else if (c->cri_alg == CRYPTO_DES_CBC ||
c->cri_alg == CRYPTO_3DES_CBC ||
c->cri_alg == CRYPTO_AES_CBC ||
c->cri_alg == CRYPTO_NULL_CBC) {
if (encini)
return (EINVAL);
encini = c;
} else
return (EINVAL);
}
if (encini == NULL && macini == NULL)
return (EINVAL);
if (encini) { /* validate key length */
switch (encini->cri_alg) {
case CRYPTO_DES_CBC:
if (encini->cri_klen != 64)
return (EINVAL);
break;
case CRYPTO_3DES_CBC:
if (encini->cri_klen != 192)
return (EINVAL);
break;
case CRYPTO_AES_CBC:
if (encini->cri_klen != 128 &&
encini->cri_klen != 192 &&
encini->cri_klen != 256)
return (EINVAL);
break;
}
}
if (sc->sc_sessions == NULL) {
ses = sc->sc_sessions = (struct safe_session *)malloc(
sizeof(struct safe_session), M_DEVBUF, M_NOWAIT);
if (ses == NULL)
return (ENOMEM);
sesn = 0;
sc->sc_nsessions = 1;
} else {
for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
if (sc->sc_sessions[sesn].ses_used == 0) {
ses = &sc->sc_sessions[sesn];
break;
}
}
if (ses == NULL) {
sesn = sc->sc_nsessions;
ses = (struct safe_session *)malloc((sesn + 1) *
sizeof(struct safe_session), M_DEVBUF, M_NOWAIT);
if (ses == NULL)
return (ENOMEM);
bcopy(sc->sc_sessions, ses, sesn *
sizeof(struct safe_session));
bzero(sc->sc_sessions, sesn *
sizeof(struct safe_session));
free(sc->sc_sessions, M_DEVBUF);
sc->sc_sessions = ses;
ses = &sc->sc_sessions[sesn];
sc->sc_nsessions++;
}
}
bzero(ses, sizeof(struct safe_session));
ses->ses_used = 1;
if (encini) {
/* get an IV */
/* XXX may read fewer than requested */
read_random(ses->ses_iv, sizeof(ses->ses_iv));
ses->ses_klen = encini->cri_klen;
if (encini->cri_key != NULL)
safe_setup_enckey(ses, encini->cri_key);
}
if (macini) {
ses->ses_mlen = macini->cri_mlen;
if (ses->ses_mlen == 0) {
if (macini->cri_alg == CRYPTO_MD5_HMAC)
ses->ses_mlen = MD5_HASH_LEN;
else
ses->ses_mlen = SHA1_HASH_LEN;
}
if (macini->cri_key != NULL) {
safe_setup_mackey(ses, macini->cri_alg, macini->cri_key,
macini->cri_klen / 8);
}
}
*sidp = SAFE_SID(device_get_unit(sc->sc_dev), sesn);
return (0);
}
/*
* Deallocate a session.
*/
static int
safe_freesession(device_t dev, u_int64_t tid)
{
struct safe_softc *sc = device_get_softc(dev);
int session, ret;
u_int32_t sid = ((u_int32_t) tid) & 0xffffffff;
if (sc == NULL)
return (EINVAL);
session = SAFE_SESSION(sid);
if (session < sc->sc_nsessions) {
bzero(&sc->sc_sessions[session], sizeof(sc->sc_sessions[session]));
ret = 0;
} else
ret = EINVAL;
return (ret);
}
static void
safe_op_cb(void *arg, bus_dma_segment_t *seg, int nsegs, bus_size_t mapsize, int error)
{
struct safe_operand *op = arg;
DPRINTF(("%s: mapsize %u nsegs %d error %d\n", __func__,
(u_int) mapsize, nsegs, error));
if (error != 0)
return;
op->mapsize = mapsize;
op->nsegs = nsegs;
bcopy(seg, op->segs, nsegs * sizeof (seg[0]));
}
static int
safe_process(device_t dev, struct cryptop *crp, int hint)
{
struct safe_softc *sc = device_get_softc(dev);
int err = 0, i, nicealign, uniform;
struct cryptodesc *crd1, *crd2, *maccrd, *enccrd;
int bypass, oplen, ivsize;
caddr_t iv;
int16_t coffset;
struct safe_session *ses;
struct safe_ringentry *re;
struct safe_sarec *sa;
struct safe_pdesc *pd;
u_int32_t cmd0, cmd1, staterec;
if (crp == NULL || crp->crp_callback == NULL || sc == NULL) {
safestats.st_invalid++;
return (EINVAL);
}
if (SAFE_SESSION(crp->crp_sid) >= sc->sc_nsessions) {
safestats.st_badsession++;
return (EINVAL);
}
mtx_lock(&sc->sc_ringmtx);
if (sc->sc_front == sc->sc_back && sc->sc_nqchip != 0) {
safestats.st_ringfull++;
sc->sc_needwakeup |= CRYPTO_SYMQ;
mtx_unlock(&sc->sc_ringmtx);
return (ERESTART);
}
re = sc->sc_front;
staterec = re->re_sa.sa_staterec; /* save */
/* NB: zero everything but the PE descriptor */
bzero(&re->re_sa, sizeof(struct safe_ringentry) - sizeof(re->re_desc));
re->re_sa.sa_staterec = staterec; /* restore */
re->re_crp = crp;
re->re_sesn = SAFE_SESSION(crp->crp_sid);
if (crp->crp_flags & CRYPTO_F_IMBUF) {
re->re_src_m = (struct mbuf *)crp->crp_buf;
re->re_dst_m = (struct mbuf *)crp->crp_buf;
} else if (crp->crp_flags & CRYPTO_F_IOV) {
re->re_src_io = (struct uio *)crp->crp_buf;
re->re_dst_io = (struct uio *)crp->crp_buf;
} else {
safestats.st_badflags++;
err = EINVAL;
goto errout; /* XXX we don't handle contiguous blocks! */
}
sa = &re->re_sa;
ses = &sc->sc_sessions[re->re_sesn];
crd1 = crp->crp_desc;
if (crd1 == NULL) {
safestats.st_nodesc++;
err = EINVAL;
goto errout;
}
crd2 = crd1->crd_next;
cmd0 = SAFE_SA_CMD0_BASIC; /* basic group operation */
cmd1 = 0;
if (crd2 == NULL) {
if (crd1->crd_alg == CRYPTO_MD5_HMAC ||
crd1->crd_alg == CRYPTO_SHA1_HMAC ||
crd1->crd_alg == CRYPTO_NULL_HMAC) {
maccrd = crd1;
enccrd = NULL;
cmd0 |= SAFE_SA_CMD0_OP_HASH;
} else if (crd1->crd_alg == CRYPTO_DES_CBC ||
crd1->crd_alg == CRYPTO_3DES_CBC ||
crd1->crd_alg == CRYPTO_AES_CBC ||
crd1->crd_alg == CRYPTO_NULL_CBC) {
maccrd = NULL;
enccrd = crd1;
cmd0 |= SAFE_SA_CMD0_OP_CRYPT;
} else {
safestats.st_badalg++;
err = EINVAL;
goto errout;
}
} else {
if ((crd1->crd_alg == CRYPTO_MD5_HMAC ||
crd1->crd_alg == CRYPTO_SHA1_HMAC ||
crd1->crd_alg == CRYPTO_NULL_HMAC) &&
(crd2->crd_alg == CRYPTO_DES_CBC ||
crd2->crd_alg == CRYPTO_3DES_CBC ||
crd2->crd_alg == CRYPTO_AES_CBC ||
crd2->crd_alg == CRYPTO_NULL_CBC) &&
((crd2->crd_flags & CRD_F_ENCRYPT) == 0)) {
maccrd = crd1;
enccrd = crd2;
} else if ((crd1->crd_alg == CRYPTO_DES_CBC ||
crd1->crd_alg == CRYPTO_3DES_CBC ||
crd1->crd_alg == CRYPTO_AES_CBC ||
crd1->crd_alg == CRYPTO_NULL_CBC) &&
(crd2->crd_alg == CRYPTO_MD5_HMAC ||
crd2->crd_alg == CRYPTO_SHA1_HMAC ||
crd2->crd_alg == CRYPTO_NULL_HMAC) &&
(crd1->crd_flags & CRD_F_ENCRYPT)) {
enccrd = crd1;
maccrd = crd2;
} else {
safestats.st_badalg++;
err = EINVAL;
goto errout;
}
cmd0 |= SAFE_SA_CMD0_OP_BOTH;
}
if (enccrd) {
if (enccrd->crd_flags & CRD_F_KEY_EXPLICIT)
safe_setup_enckey(ses, enccrd->crd_key);
if (enccrd->crd_alg == CRYPTO_DES_CBC) {
cmd0 |= SAFE_SA_CMD0_DES;
cmd1 |= SAFE_SA_CMD1_CBC;
ivsize = 2*sizeof(u_int32_t);
} else if (enccrd->crd_alg == CRYPTO_3DES_CBC) {
cmd0 |= SAFE_SA_CMD0_3DES;
cmd1 |= SAFE_SA_CMD1_CBC;
ivsize = 2*sizeof(u_int32_t);
} else if (enccrd->crd_alg == CRYPTO_AES_CBC) {
cmd0 |= SAFE_SA_CMD0_AES;
cmd1 |= SAFE_SA_CMD1_CBC;
if (ses->ses_klen == 128)
cmd1 |= SAFE_SA_CMD1_AES128;
else if (ses->ses_klen == 192)
cmd1 |= SAFE_SA_CMD1_AES192;
else
cmd1 |= SAFE_SA_CMD1_AES256;
ivsize = 4*sizeof(u_int32_t);
} else {
cmd0 |= SAFE_SA_CMD0_CRYPT_NULL;
ivsize = 0;
}
/*
* Setup encrypt/decrypt state. When using basic ops
* we can't use an inline IV because hash/crypt offset
* must be from the end of the IV to the start of the
* crypt data and this leaves out the preceding header
* from the hash calculation. Instead we place the IV
* in the state record and set the hash/crypt offset to
* copy both the header+IV.
*/
if (enccrd->crd_flags & CRD_F_ENCRYPT) {
cmd0 |= SAFE_SA_CMD0_OUTBOUND;
if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
iv = enccrd->crd_iv;
else
iv = (caddr_t) ses->ses_iv;
if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0) {
crypto_copyback(crp->crp_flags, crp->crp_buf,
enccrd->crd_inject, ivsize, iv);
}
bcopy(iv, re->re_sastate.sa_saved_iv, ivsize);
cmd0 |= SAFE_SA_CMD0_IVLD_STATE | SAFE_SA_CMD0_SAVEIV;
re->re_flags |= SAFE_QFLAGS_COPYOUTIV;
} else {
cmd0 |= SAFE_SA_CMD0_INBOUND;
if (enccrd->crd_flags & CRD_F_IV_EXPLICIT) {
bcopy(enccrd->crd_iv,
re->re_sastate.sa_saved_iv, ivsize);
} else {
crypto_copydata(crp->crp_flags, crp->crp_buf,
enccrd->crd_inject, ivsize,
(caddr_t)re->re_sastate.sa_saved_iv);
}
cmd0 |= SAFE_SA_CMD0_IVLD_STATE;
}
/*
* For basic encryption use the zero pad algorithm.
* This pads results to an 8-byte boundary and
* suppresses padding verification for inbound (i.e.
* decrypt) operations.
*
* NB: Not sure if the 8-byte pad boundary is a problem.
*/
cmd0 |= SAFE_SA_CMD0_PAD_ZERO;
/* XXX assert key bufs have the same size */
bcopy(ses->ses_key, sa->sa_key, sizeof(sa->sa_key));
}
if (maccrd) {
if (maccrd->crd_flags & CRD_F_KEY_EXPLICIT) {
safe_setup_mackey(ses, maccrd->crd_alg,
maccrd->crd_key, maccrd->crd_klen / 8);
}
if (maccrd->crd_alg == CRYPTO_MD5_HMAC) {
cmd0 |= SAFE_SA_CMD0_MD5;
cmd1 |= SAFE_SA_CMD1_HMAC; /* NB: enable HMAC */
} else if (maccrd->crd_alg == CRYPTO_SHA1_HMAC) {
cmd0 |= SAFE_SA_CMD0_SHA1;
cmd1 |= SAFE_SA_CMD1_HMAC; /* NB: enable HMAC */
} else {
cmd0 |= SAFE_SA_CMD0_HASH_NULL;
}
/*
* Digest data is loaded from the SA and the hash
* result is saved to the state block where we
* retrieve it for return to the caller.
*/
/* XXX assert digest bufs have the same size */
bcopy(ses->ses_hminner, sa->sa_indigest,
sizeof(sa->sa_indigest));
bcopy(ses->ses_hmouter, sa->sa_outdigest,
sizeof(sa->sa_outdigest));
cmd0 |= SAFE_SA_CMD0_HSLD_SA | SAFE_SA_CMD0_SAVEHASH;
re->re_flags |= SAFE_QFLAGS_COPYOUTICV;
}
if (enccrd && maccrd) {
/*
* The offset from hash data to the start of
* crypt data is the difference in the skips.
*/
bypass = maccrd->crd_skip;
coffset = enccrd->crd_skip - maccrd->crd_skip;
if (coffset < 0) {
DPRINTF(("%s: hash does not precede crypt; "
"mac skip %u enc skip %u\n",
__func__, maccrd->crd_skip, enccrd->crd_skip));
safestats.st_skipmismatch++;
err = EINVAL;
goto errout;
}
oplen = enccrd->crd_skip + enccrd->crd_len;
if (maccrd->crd_skip + maccrd->crd_len != oplen) {
DPRINTF(("%s: hash amount %u != crypt amount %u\n",
__func__, maccrd->crd_skip + maccrd->crd_len,
oplen));
safestats.st_lenmismatch++;
err = EINVAL;
goto errout;
}
#ifdef SAFE_DEBUG
if (safe_debug) {
printf("mac: skip %d, len %d, inject %d\n",
maccrd->crd_skip, maccrd->crd_len,
maccrd->crd_inject);
printf("enc: skip %d, len %d, inject %d\n",
enccrd->crd_skip, enccrd->crd_len,
enccrd->crd_inject);
printf("bypass %d coffset %d oplen %d\n",
bypass, coffset, oplen);
}
#endif
if (coffset & 3) { /* offset must be 32-bit aligned */
DPRINTF(("%s: coffset %u misaligned\n",
__func__, coffset));
safestats.st_coffmisaligned++;
err = EINVAL;
goto errout;
}
coffset >>= 2;
if (coffset > 255) { /* offset must be <256 dwords */
DPRINTF(("%s: coffset %u too big\n",
__func__, coffset));
safestats.st_cofftoobig++;
err = EINVAL;
goto errout;
}
/*
* Tell the hardware to copy the header to the output.
* The header is defined as the data from the end of
* the bypass to the start of data to be encrypted.
* Typically this is the inline IV. Note that you need
* to do this even if src+dst are the same; it appears
* that w/o this bit the crypted data is written
* immediately after the bypass data.
*/
cmd1 |= SAFE_SA_CMD1_HDRCOPY;
/*
* Disable IP header mutable bit handling. This is
* needed to get correct HMAC calculations.
*/
cmd1 |= SAFE_SA_CMD1_MUTABLE;
} else {
if (enccrd) {
bypass = enccrd->crd_skip;
oplen = bypass + enccrd->crd_len;
} else {
bypass = maccrd->crd_skip;
oplen = bypass + maccrd->crd_len;
}
coffset = 0;
}
/* XXX verify multiple of 4 when using s/g */
if (bypass > 96) { /* bypass offset must be <= 96 bytes */
DPRINTF(("%s: bypass %u too big\n", __func__, bypass));
safestats.st_bypasstoobig++;
err = EINVAL;
goto errout;
}
if (bus_dmamap_create(sc->sc_srcdmat, BUS_DMA_NOWAIT, &re->re_src_map)) {
safestats.st_nomap++;
err = ENOMEM;
goto errout;
}
if (crp->crp_flags & CRYPTO_F_IMBUF) {
if (bus_dmamap_load_mbuf(sc->sc_srcdmat, re->re_src_map,
re->re_src_m, safe_op_cb,
&re->re_src, BUS_DMA_NOWAIT) != 0) {
bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
re->re_src_map = NULL;
safestats.st_noload++;
err = ENOMEM;
goto errout;
}
} else if (crp->crp_flags & CRYPTO_F_IOV) {
if (bus_dmamap_load_uio(sc->sc_srcdmat, re->re_src_map,
re->re_src_io, safe_op_cb,
&re->re_src, BUS_DMA_NOWAIT) != 0) {
bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
re->re_src_map = NULL;
safestats.st_noload++;
err = ENOMEM;
goto errout;
}
}
nicealign = safe_dmamap_aligned(&re->re_src);
uniform = safe_dmamap_uniform(&re->re_src);
DPRINTF(("src nicealign %u uniform %u nsegs %u\n",
nicealign, uniform, re->re_src.nsegs));
if (re->re_src.nsegs > 1) {
re->re_desc.d_src = sc->sc_spalloc.dma_paddr +
((caddr_t) sc->sc_spfree - (caddr_t) sc->sc_spring);
for (i = 0; i < re->re_src_nsegs; i++) {
/* NB: no need to check if there's space */
pd = sc->sc_spfree;
if (++(sc->sc_spfree) == sc->sc_springtop)
sc->sc_spfree = sc->sc_spring;
KASSERT((pd->pd_flags&3) == 0 ||
(pd->pd_flags&3) == SAFE_PD_DONE,
("bogus source particle descriptor; flags %x",
pd->pd_flags));
pd->pd_addr = re->re_src_segs[i].ds_addr;
pd->pd_size = re->re_src_segs[i].ds_len;
pd->pd_flags = SAFE_PD_READY;
}
cmd0 |= SAFE_SA_CMD0_IGATHER;
} else {
/*
* No need for gather, reference the operand directly.
*/
re->re_desc.d_src = re->re_src_segs[0].ds_addr;
}
if (enccrd == NULL && maccrd != NULL) {
/*
* Hash op; no destination needed.
*/
} else {
if (crp->crp_flags & CRYPTO_F_IOV) {
if (!nicealign) {
safestats.st_iovmisaligned++;
err = EINVAL;
goto errout;
}
if (uniform != 1) {
/*
* Source is not suitable for direct use as
* the destination. Create a new scatter/gather
* list based on the destination requirements
* and check if that's ok.
*/
if (bus_dmamap_create(sc->sc_dstdmat,
BUS_DMA_NOWAIT, &re->re_dst_map)) {
safestats.st_nomap++;
err = ENOMEM;
goto errout;
}
if (bus_dmamap_load_uio(sc->sc_dstdmat,
re->re_dst_map, re->re_dst_io,
safe_op_cb, &re->re_dst,
BUS_DMA_NOWAIT) != 0) {
bus_dmamap_destroy(sc->sc_dstdmat,
re->re_dst_map);
re->re_dst_map = NULL;
safestats.st_noload++;
err = ENOMEM;
goto errout;
}
uniform = safe_dmamap_uniform(&re->re_dst);
if (!uniform) {
/*
* There's no way to handle the DMA
* requirements with this uio. We
* could create a separate DMA area for
* the result and then copy it back,
* but for now we just bail and return
* an error. Note that uio requests
* > SAFE_MAX_DSIZE are handled because
* the DMA map and segment list for the
* destination wil result in a
* destination particle list that does
* the necessary scatter DMA.
*/
safestats.st_iovnotuniform++;
err = EINVAL;
goto errout;
}
} else
re->re_dst = re->re_src;
} else if (crp->crp_flags & CRYPTO_F_IMBUF) {
if (nicealign && uniform == 1) {
/*
* Source layout is suitable for direct
* sharing of the DMA map and segment list.
*/
re->re_dst = re->re_src;
} else if (nicealign && uniform == 2) {
/*
* The source is properly aligned but requires a
* different particle list to handle DMA of the
* result. Create a new map and do the load to
* create the segment list. The particle
* descriptor setup code below will handle the
* rest.
*/
if (bus_dmamap_create(sc->sc_dstdmat,
BUS_DMA_NOWAIT, &re->re_dst_map)) {
safestats.st_nomap++;
err = ENOMEM;
goto errout;
}
if (bus_dmamap_load_mbuf(sc->sc_dstdmat,
re->re_dst_map, re->re_dst_m,
safe_op_cb, &re->re_dst,
BUS_DMA_NOWAIT) != 0) {
bus_dmamap_destroy(sc->sc_dstdmat,
re->re_dst_map);
re->re_dst_map = NULL;
safestats.st_noload++;
err = ENOMEM;
goto errout;
}
} else { /* !(aligned and/or uniform) */
int totlen, len;
struct mbuf *m, *top, **mp;
/*
* DMA constraints require that we allocate a
* new mbuf chain for the destination. We
* allocate an entire new set of mbufs of
* optimal/required size and then tell the
* hardware to copy any bits that are not
* created as a byproduct of the operation.
*/
if (!nicealign)
safestats.st_unaligned++;
if (!uniform)
safestats.st_notuniform++;
totlen = re->re_src_mapsize;
if (re->re_src_m->m_flags & M_PKTHDR) {
len = MHLEN;
MGETHDR(m, M_NOWAIT, MT_DATA);
if (m && !m_dup_pkthdr(m, re->re_src_m,
M_NOWAIT)) {
m_free(m);
m = NULL;
}
} else {
len = MLEN;
MGET(m, M_NOWAIT, MT_DATA);
}
if (m == NULL) {
safestats.st_nombuf++;
err = sc->sc_nqchip ? ERESTART : ENOMEM;
goto errout;
}
if (totlen >= MINCLSIZE) {
if (!(MCLGET(m, M_NOWAIT))) {
m_free(m);
safestats.st_nomcl++;
err = sc->sc_nqchip ?
ERESTART : ENOMEM;
goto errout;
}
len = MCLBYTES;
}
m->m_len = len;
top = NULL;
mp = &top;
while (totlen > 0) {
if (top) {
MGET(m, M_NOWAIT, MT_DATA);
if (m == NULL) {
m_freem(top);
safestats.st_nombuf++;
err = sc->sc_nqchip ?
ERESTART : ENOMEM;
goto errout;
}
len = MLEN;
}
if (top && totlen >= MINCLSIZE) {
if (!(MCLGET(m, M_NOWAIT))) {
*mp = m;
m_freem(top);
safestats.st_nomcl++;
err = sc->sc_nqchip ?
ERESTART : ENOMEM;
goto errout;
}
len = MCLBYTES;
}
m->m_len = len = min(totlen, len);
totlen -= len;
*mp = m;
mp = &m->m_next;
}
re->re_dst_m = top;
if (bus_dmamap_create(sc->sc_dstdmat,
BUS_DMA_NOWAIT, &re->re_dst_map) != 0) {
safestats.st_nomap++;
err = ENOMEM;
goto errout;
}
if (bus_dmamap_load_mbuf(sc->sc_dstdmat,
re->re_dst_map, re->re_dst_m,
safe_op_cb, &re->re_dst,
BUS_DMA_NOWAIT) != 0) {
bus_dmamap_destroy(sc->sc_dstdmat,
re->re_dst_map);
re->re_dst_map = NULL;
safestats.st_noload++;
err = ENOMEM;
goto errout;
}
if (re->re_src.mapsize > oplen) {
/*
* There's data following what the
* hardware will copy for us. If this
* isn't just the ICV (that's going to
* be written on completion), copy it
* to the new mbufs
*/
if (!(maccrd &&
(re->re_src.mapsize-oplen) == 12 &&
maccrd->crd_inject == oplen))
safe_mcopy(re->re_src_m,
re->re_dst_m,
oplen);
else
safestats.st_noicvcopy++;
}
}
} else {
safestats.st_badflags++;
err = EINVAL;
goto errout;
}
if (re->re_dst.nsegs > 1) {
re->re_desc.d_dst = sc->sc_dpalloc.dma_paddr +
((caddr_t) sc->sc_dpfree - (caddr_t) sc->sc_dpring);
for (i = 0; i < re->re_dst_nsegs; i++) {
pd = sc->sc_dpfree;
KASSERT((pd->pd_flags&3) == 0 ||
(pd->pd_flags&3) == SAFE_PD_DONE,
("bogus dest particle descriptor; flags %x",
pd->pd_flags));
if (++(sc->sc_dpfree) == sc->sc_dpringtop)
sc->sc_dpfree = sc->sc_dpring;
pd->pd_addr = re->re_dst_segs[i].ds_addr;
pd->pd_flags = SAFE_PD_READY;
}
cmd0 |= SAFE_SA_CMD0_OSCATTER;
} else {
/*
* No need for scatter, reference the operand directly.
*/
re->re_desc.d_dst = re->re_dst_segs[0].ds_addr;
}
}
/*
* All done with setup; fillin the SA command words
* and the packet engine descriptor. The operation
* is now ready for submission to the hardware.
*/
sa->sa_cmd0 = cmd0 | SAFE_SA_CMD0_IPCI | SAFE_SA_CMD0_OPCI;
sa->sa_cmd1 = cmd1
| (coffset << SAFE_SA_CMD1_OFFSET_S)
| SAFE_SA_CMD1_SAREV1 /* Rev 1 SA data structure */
| SAFE_SA_CMD1_SRPCI
;
/*
* NB: the order of writes is important here. In case the
* chip is scanning the ring because of an outstanding request
* it might nab this one too. In that case we need to make
* sure the setup is complete before we write the length
* field of the descriptor as it signals the descriptor is
* ready for processing.
*/
re->re_desc.d_csr = SAFE_PE_CSR_READY | SAFE_PE_CSR_SAPCI;
if (maccrd)
re->re_desc.d_csr |= SAFE_PE_CSR_LOADSA | SAFE_PE_CSR_HASHFINAL;
re->re_desc.d_len = oplen
| SAFE_PE_LEN_READY
| (bypass << SAFE_PE_LEN_BYPASS_S)
;
safestats.st_ipackets++;
safestats.st_ibytes += oplen;
if (++(sc->sc_front) == sc->sc_ringtop)
sc->sc_front = sc->sc_ring;
/* XXX honor batching */
safe_feed(sc, re);
mtx_unlock(&sc->sc_ringmtx);
return (0);
errout:
if ((re->re_dst_m != NULL) && (re->re_src_m != re->re_dst_m))
m_freem(re->re_dst_m);
if (re->re_dst_map != NULL && re->re_dst_map != re->re_src_map) {
bus_dmamap_unload(sc->sc_dstdmat, re->re_dst_map);
bus_dmamap_destroy(sc->sc_dstdmat, re->re_dst_map);
}
if (re->re_src_map != NULL) {
bus_dmamap_unload(sc->sc_srcdmat, re->re_src_map);
bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
}
mtx_unlock(&sc->sc_ringmtx);
if (err != ERESTART) {
crp->crp_etype = err;
crypto_done(crp);
} else {
sc->sc_needwakeup |= CRYPTO_SYMQ;
}
return (err);
}
static void
safe_callback(struct safe_softc *sc, struct safe_ringentry *re)
{
struct cryptop *crp = (struct cryptop *)re->re_crp;
struct cryptodesc *crd;
safestats.st_opackets++;
safestats.st_obytes += re->re_dst.mapsize;
safe_dma_sync(&sc->sc_ringalloc,
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
if (re->re_desc.d_csr & SAFE_PE_CSR_STATUS) {
device_printf(sc->sc_dev, "csr 0x%x cmd0 0x%x cmd1 0x%x\n",
re->re_desc.d_csr,
re->re_sa.sa_cmd0, re->re_sa.sa_cmd1);
safestats.st_peoperr++;
crp->crp_etype = EIO; /* something more meaningful? */
}
if (re->re_dst_map != NULL && re->re_dst_map != re->re_src_map) {
bus_dmamap_sync(sc->sc_dstdmat, re->re_dst_map,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->sc_dstdmat, re->re_dst_map);
bus_dmamap_destroy(sc->sc_dstdmat, re->re_dst_map);
}
bus_dmamap_sync(sc->sc_srcdmat, re->re_src_map, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_srcdmat, re->re_src_map);
bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
/*
* If result was written to a differet mbuf chain, swap
* it in as the return value and reclaim the original.
*/
if ((crp->crp_flags & CRYPTO_F_IMBUF) && re->re_src_m != re->re_dst_m) {
m_freem(re->re_src_m);
crp->crp_buf = (caddr_t)re->re_dst_m;
}
if (re->re_flags & SAFE_QFLAGS_COPYOUTIV) {
/* copy out IV for future use */
for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
int ivsize;
if (crd->crd_alg == CRYPTO_DES_CBC ||
crd->crd_alg == CRYPTO_3DES_CBC) {
ivsize = 2*sizeof(u_int32_t);
} else if (crd->crd_alg == CRYPTO_AES_CBC) {
ivsize = 4*sizeof(u_int32_t);
} else
continue;
crypto_copydata(crp->crp_flags, crp->crp_buf,
crd->crd_skip + crd->crd_len - ivsize, ivsize,
(caddr_t)sc->sc_sessions[re->re_sesn].ses_iv);
break;
}
}
if (re->re_flags & SAFE_QFLAGS_COPYOUTICV) {
/* copy out ICV result */
for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
if (!(crd->crd_alg == CRYPTO_MD5_HMAC ||
crd->crd_alg == CRYPTO_SHA1_HMAC ||
crd->crd_alg == CRYPTO_NULL_HMAC))
continue;
if (crd->crd_alg == CRYPTO_SHA1_HMAC) {
/*
* SHA-1 ICV's are byte-swapped; fix 'em up
* before copy them to their destination.
*/
re->re_sastate.sa_saved_indigest[0] =
bswap32(re->re_sastate.sa_saved_indigest[0]);
re->re_sastate.sa_saved_indigest[1] =
bswap32(re->re_sastate.sa_saved_indigest[1]);
re->re_sastate.sa_saved_indigest[2] =
bswap32(re->re_sastate.sa_saved_indigest[2]);
}
crypto_copyback(crp->crp_flags, crp->crp_buf,
crd->crd_inject,
sc->sc_sessions[re->re_sesn].ses_mlen,
(caddr_t)re->re_sastate.sa_saved_indigest);
break;
}
}
crypto_done(crp);
}
/*
* Copy all data past offset from srcm to dstm.
*/
static void
safe_mcopy(struct mbuf *srcm, struct mbuf *dstm, u_int offset)
{
u_int j, dlen, slen;
caddr_t dptr, sptr;
/*
* Advance src and dst to offset.
*/
j = offset;
while (j >= srcm->m_len) {
j -= srcm->m_len;
srcm = srcm->m_next;
if (srcm == NULL)
return;
}
sptr = mtod(srcm, caddr_t) + j;
slen = srcm->m_len - j;
j = offset;
while (j >= dstm->m_len) {
j -= dstm->m_len;
dstm = dstm->m_next;
if (dstm == NULL)
return;
}
dptr = mtod(dstm, caddr_t) + j;
dlen = dstm->m_len - j;
/*
* Copy everything that remains.
*/
for (;;) {
j = min(slen, dlen);
bcopy(sptr, dptr, j);
if (slen == j) {
srcm = srcm->m_next;
if (srcm == NULL)
return;
sptr = srcm->m_data;
slen = srcm->m_len;
} else
sptr += j, slen -= j;
if (dlen == j) {
dstm = dstm->m_next;
if (dstm == NULL)
return;
dptr = dstm->m_data;
dlen = dstm->m_len;
} else
dptr += j, dlen -= j;
}
}
#ifndef SAFE_NO_RNG
#define SAFE_RNG_MAXWAIT 1000
static void
safe_rng_init(struct safe_softc *sc)
{
u_int32_t w, v;
int i;
WRITE_REG(sc, SAFE_RNG_CTRL, 0);
/* use default value according to the manual */
WRITE_REG(sc, SAFE_RNG_CNFG, 0x834); /* magic from SafeNet */
WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
/*
* There is a bug in rev 1.0 of the 1140 that when the RNG
* is brought out of reset the ready status flag does not
* work until the RNG has finished its internal initialization.
*
* So in order to determine the device is through its
* initialization we must read the data register, using the
* status reg in the read in case it is initialized. Then read
* the data register until it changes from the first read.
* Once it changes read the data register until it changes
* again. At this time the RNG is considered initialized.
* This could take between 750ms - 1000ms in time.
*/
i = 0;
w = READ_REG(sc, SAFE_RNG_OUT);
do {
v = READ_REG(sc, SAFE_RNG_OUT);
if (v != w) {
w = v;
break;
}
DELAY(10);
} while (++i < SAFE_RNG_MAXWAIT);
/* Wait Until data changes again */
i = 0;
do {
v = READ_REG(sc, SAFE_RNG_OUT);
if (v != w)
break;
DELAY(10);
} while (++i < SAFE_RNG_MAXWAIT);
}
static __inline void
safe_rng_disable_short_cycle(struct safe_softc *sc)
{
WRITE_REG(sc, SAFE_RNG_CTRL,
READ_REG(sc, SAFE_RNG_CTRL) &~ SAFE_RNG_CTRL_SHORTEN);
}
static __inline void
safe_rng_enable_short_cycle(struct safe_softc *sc)
{
WRITE_REG(sc, SAFE_RNG_CTRL,
READ_REG(sc, SAFE_RNG_CTRL) | SAFE_RNG_CTRL_SHORTEN);
}
static __inline u_int32_t
safe_rng_read(struct safe_softc *sc)
{
int i;
i = 0;
while (READ_REG(sc, SAFE_RNG_STAT) != 0 && ++i < SAFE_RNG_MAXWAIT)
;
return READ_REG(sc, SAFE_RNG_OUT);
}
static void
safe_rng(void *arg)
{
struct safe_softc *sc = arg;
u_int32_t buf[SAFE_RNG_MAXBUFSIZ]; /* NB: maybe move to softc */
u_int maxwords;
int i;
safestats.st_rng++;
/*
* Fetch the next block of data.
*/
maxwords = safe_rngbufsize;
if (maxwords > SAFE_RNG_MAXBUFSIZ)
maxwords = SAFE_RNG_MAXBUFSIZ;
retry:
for (i = 0; i < maxwords; i++)
buf[i] = safe_rng_read(sc);
/*
* Check the comparator alarm count and reset the h/w if
* it exceeds our threshold. This guards against the
* hardware oscillators resonating with external signals.
*/
if (READ_REG(sc, SAFE_RNG_ALM_CNT) > safe_rngmaxalarm) {
u_int32_t freq_inc, w;
DPRINTF(("%s: alarm count %u exceeds threshold %u\n", __func__,
READ_REG(sc, SAFE_RNG_ALM_CNT), safe_rngmaxalarm));
safestats.st_rngalarm++;
safe_rng_enable_short_cycle(sc);
freq_inc = 18;
for (i = 0; i < 64; i++) {
w = READ_REG(sc, SAFE_RNG_CNFG);
freq_inc = ((w + freq_inc) & 0x3fL);
w = ((w & ~0x3fL) | freq_inc);
WRITE_REG(sc, SAFE_RNG_CNFG, w);
WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
(void) safe_rng_read(sc);
DELAY(25);
if (READ_REG(sc, SAFE_RNG_ALM_CNT) == 0) {
safe_rng_disable_short_cycle(sc);
goto retry;
}
freq_inc = 1;
}
safe_rng_disable_short_cycle(sc);
} else
WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
(*sc->sc_harvest)(sc->sc_rndtest, buf, maxwords*sizeof (u_int32_t));
callout_reset(&sc->sc_rngto,
hz * (safe_rnginterval ? safe_rnginterval : 1), safe_rng, sc);
}
#endif /* SAFE_NO_RNG */
static void
safe_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
bus_addr_t *paddr = (bus_addr_t*) arg;
*paddr = segs->ds_addr;
}
static int
safe_dma_malloc(
struct safe_softc *sc,
bus_size_t size,
struct safe_dma_alloc *dma,
int mapflags
)
{
int r;
r = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), /* parent */
sizeof(u_int32_t), 0, /* alignment, bounds */
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
size, /* maxsize */
1, /* nsegments */
size, /* maxsegsize */
BUS_DMA_ALLOCNOW, /* flags */
NULL, NULL, /* locking */
&dma->dma_tag);
if (r != 0) {
device_printf(sc->sc_dev, "safe_dma_malloc: "
"bus_dma_tag_create failed; error %u\n", r);
goto fail_0;
}
r = bus_dmamem_alloc(dma->dma_tag, (void**) &dma->dma_vaddr,
BUS_DMA_NOWAIT, &dma->dma_map);
if (r != 0) {
device_printf(sc->sc_dev, "safe_dma_malloc: "
"bus_dmammem_alloc failed; size %ju, error %u\n",
(uintmax_t)size, r);
goto fail_1;
}
r = bus_dmamap_load(dma->dma_tag, dma->dma_map, dma->dma_vaddr,
size,
safe_dmamap_cb,
&dma->dma_paddr,
mapflags | BUS_DMA_NOWAIT);
if (r != 0) {
device_printf(sc->sc_dev, "safe_dma_malloc: "
"bus_dmamap_load failed; error %u\n", r);
goto fail_2;
}
dma->dma_size = size;
return (0);
bus_dmamap_unload(dma->dma_tag, dma->dma_map);
fail_2:
bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
fail_1:
bus_dma_tag_destroy(dma->dma_tag);
fail_0:
dma->dma_tag = NULL;
return (r);
}
static void
safe_dma_free(struct safe_softc *sc, struct safe_dma_alloc *dma)
{
bus_dmamap_unload(dma->dma_tag, dma->dma_map);
bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
bus_dma_tag_destroy(dma->dma_tag);
}
/*
* Resets the board. Values in the regesters are left as is
* from the reset (i.e. initial values are assigned elsewhere).
*/
static void
safe_reset_board(struct safe_softc *sc)
{
u_int32_t v;
/*
* Reset the device. The manual says no delay
* is needed between marking and clearing reset.
*/
v = READ_REG(sc, SAFE_PE_DMACFG) &~
(SAFE_PE_DMACFG_PERESET | SAFE_PE_DMACFG_PDRRESET |
SAFE_PE_DMACFG_SGRESET);
WRITE_REG(sc, SAFE_PE_DMACFG, v
| SAFE_PE_DMACFG_PERESET
| SAFE_PE_DMACFG_PDRRESET
| SAFE_PE_DMACFG_SGRESET);
WRITE_REG(sc, SAFE_PE_DMACFG, v);
}
/*
* Initialize registers we need to touch only once.
*/
static void
safe_init_board(struct safe_softc *sc)
{
u_int32_t v, dwords;
v = READ_REG(sc, SAFE_PE_DMACFG);
v &=~ SAFE_PE_DMACFG_PEMODE;
v |= SAFE_PE_DMACFG_FSENA /* failsafe enable */
| SAFE_PE_DMACFG_GPRPCI /* gather ring on PCI */
| SAFE_PE_DMACFG_SPRPCI /* scatter ring on PCI */
| SAFE_PE_DMACFG_ESDESC /* endian-swap descriptors */
| SAFE_PE_DMACFG_ESSA /* endian-swap SA's */
| SAFE_PE_DMACFG_ESPDESC /* endian-swap part. desc's */
;
WRITE_REG(sc, SAFE_PE_DMACFG, v);
#if 0
/* XXX select byte swap based on host byte order */
WRITE_REG(sc, SAFE_ENDIAN, 0x1b);
#endif
if (sc->sc_chiprev == SAFE_REV(1,0)) {
/*
* Avoid large PCI DMA transfers. Rev 1.0 has a bug where
* "target mode transfers" done while the chip is DMA'ing
* >1020 bytes cause the hardware to lockup. To avoid this
* we reduce the max PCI transfer size and use small source
* particle descriptors (<= 256 bytes).
*/
WRITE_REG(sc, SAFE_DMA_CFG, 256);
device_printf(sc->sc_dev,
"Reduce max DMA size to %u words for rev %u.%u WAR\n",
(READ_REG(sc, SAFE_DMA_CFG)>>2) & 0xff,
SAFE_REV_MAJ(sc->sc_chiprev),
SAFE_REV_MIN(sc->sc_chiprev));
}
/* NB: operands+results are overlaid */
WRITE_REG(sc, SAFE_PE_PDRBASE, sc->sc_ringalloc.dma_paddr);
WRITE_REG(sc, SAFE_PE_RDRBASE, sc->sc_ringalloc.dma_paddr);
/*
* Configure ring entry size and number of items in the ring.
*/
KASSERT((sizeof(struct safe_ringentry) % sizeof(u_int32_t)) == 0,
("PE ring entry not 32-bit aligned!"));
dwords = sizeof(struct safe_ringentry) / sizeof(u_int32_t);
WRITE_REG(sc, SAFE_PE_RINGCFG,
(dwords << SAFE_PE_RINGCFG_OFFSET_S) | SAFE_MAX_NQUEUE);
WRITE_REG(sc, SAFE_PE_RINGPOLL, 0); /* disable polling */
WRITE_REG(sc, SAFE_PE_GRNGBASE, sc->sc_spalloc.dma_paddr);
WRITE_REG(sc, SAFE_PE_SRNGBASE, sc->sc_dpalloc.dma_paddr);
WRITE_REG(sc, SAFE_PE_PARTSIZE,
(SAFE_TOTAL_DPART<<16) | SAFE_TOTAL_SPART);
/*
* NB: destination particles are fixed size. We use
* an mbuf cluster and require all results go to
* clusters or smaller.
*/
WRITE_REG(sc, SAFE_PE_PARTCFG, SAFE_MAX_DSIZE);
/* it's now safe to enable PE mode, do it */
WRITE_REG(sc, SAFE_PE_DMACFG, v | SAFE_PE_DMACFG_PEMODE);
/*
* Configure hardware to use level-triggered interrupts and
* to interrupt after each descriptor is processed.
*/
WRITE_REG(sc, SAFE_HI_CFG, SAFE_HI_CFG_LEVEL);
WRITE_REG(sc, SAFE_HI_DESC_CNT, 1);
WRITE_REG(sc, SAFE_HI_MASK, SAFE_INT_PE_DDONE | SAFE_INT_PE_ERROR);
}
/*
* Init PCI registers
*/
static void
safe_init_pciregs(device_t dev)
{
}
/*
* Clean up after a chip crash.
* It is assumed that the caller in splimp()
*/
static void
safe_cleanchip(struct safe_softc *sc)
{
if (sc->sc_nqchip != 0) {
struct safe_ringentry *re = sc->sc_back;
while (re != sc->sc_front) {
if (re->re_desc.d_csr != 0)
safe_free_entry(sc, re);
if (++re == sc->sc_ringtop)
re = sc->sc_ring;
}
sc->sc_back = re;
sc->sc_nqchip = 0;
}
}
/*
* free a safe_q
* It is assumed that the caller is within splimp().
*/
static int
safe_free_entry(struct safe_softc *sc, struct safe_ringentry *re)
{
struct cryptop *crp;
/*
* Free header MCR
*/
if ((re->re_dst_m != NULL) && (re->re_src_m != re->re_dst_m))
m_freem(re->re_dst_m);
crp = (struct cryptop *)re->re_crp;
re->re_desc.d_csr = 0;
crp->crp_etype = EFAULT;
crypto_done(crp);
return(0);
}
/*
* Routine to reset the chip and clean up.
* It is assumed that the caller is in splimp()
*/
static void
safe_totalreset(struct safe_softc *sc)
{
safe_reset_board(sc);
safe_init_board(sc);
safe_cleanchip(sc);
}
/*
* Is the operand suitable aligned for direct DMA. Each
* segment must be aligned on a 32-bit boundary and all
* but the last segment must be a multiple of 4 bytes.
*/
static int
safe_dmamap_aligned(const struct safe_operand *op)
{
int i;
for (i = 0; i < op->nsegs; i++) {
if (op->segs[i].ds_addr & 3)
return (0);
if (i != (op->nsegs - 1) && (op->segs[i].ds_len & 3))
return (0);
}
return (1);
}
/*
* Is the operand suitable for direct DMA as the destination
* of an operation. The hardware requires that each ``particle''
* but the last in an operation result have the same size. We
* fix that size at SAFE_MAX_DSIZE bytes. This routine returns
* 0 if some segment is not a multiple of of this size, 1 if all
* segments are exactly this size, or 2 if segments are at worst
* a multple of this size.
*/
static int
safe_dmamap_uniform(const struct safe_operand *op)
{
int result = 1;
if (op->nsegs > 0) {
int i;
for (i = 0; i < op->nsegs-1; i++) {
if (op->segs[i].ds_len % SAFE_MAX_DSIZE)
return (0);
if (op->segs[i].ds_len != SAFE_MAX_DSIZE)
result = 2;
}
}
return (result);
}
#ifdef SAFE_DEBUG
static void
safe_dump_dmastatus(struct safe_softc *sc, const char *tag)
{
printf("%s: ENDIAN 0x%x SRC 0x%x DST 0x%x STAT 0x%x\n"
, tag
, READ_REG(sc, SAFE_DMA_ENDIAN)
, READ_REG(sc, SAFE_DMA_SRCADDR)
, READ_REG(sc, SAFE_DMA_DSTADDR)
, READ_REG(sc, SAFE_DMA_STAT)
);
}
static void
safe_dump_intrstate(struct safe_softc *sc, const char *tag)
{
printf("%s: HI_CFG 0x%x HI_MASK 0x%x HI_DESC_CNT 0x%x HU_STAT 0x%x HM_STAT 0x%x\n"
, tag
, READ_REG(sc, SAFE_HI_CFG)
, READ_REG(sc, SAFE_HI_MASK)
, READ_REG(sc, SAFE_HI_DESC_CNT)
, READ_REG(sc, SAFE_HU_STAT)
, READ_REG(sc, SAFE_HM_STAT)
);
}
static void
safe_dump_ringstate(struct safe_softc *sc, const char *tag)
{
u_int32_t estat = READ_REG(sc, SAFE_PE_ERNGSTAT);
/* NB: assume caller has lock on ring */
printf("%s: ERNGSTAT %x (next %u) back %lu front %lu\n",
tag,
estat, (estat >> SAFE_PE_ERNGSTAT_NEXT_S),
(unsigned long)(sc->sc_back - sc->sc_ring),
(unsigned long)(sc->sc_front - sc->sc_ring));
}
static void
safe_dump_request(struct safe_softc *sc, const char* tag, struct safe_ringentry *re)
{
int ix, nsegs;
ix = re - sc->sc_ring;
printf("%s: %p (%u): csr %x src %x dst %x sa %x len %x\n"
, tag
, re, ix
, re->re_desc.d_csr
, re->re_desc.d_src
, re->re_desc.d_dst
, re->re_desc.d_sa
, re->re_desc.d_len
);
if (re->re_src.nsegs > 1) {
ix = (re->re_desc.d_src - sc->sc_spalloc.dma_paddr) /
sizeof(struct safe_pdesc);
for (nsegs = re->re_src.nsegs; nsegs; nsegs--) {
printf(" spd[%u] %p: %p size %u flags %x"
, ix, &sc->sc_spring[ix]
, (caddr_t)(uintptr_t) sc->sc_spring[ix].pd_addr
, sc->sc_spring[ix].pd_size
, sc->sc_spring[ix].pd_flags
);
if (sc->sc_spring[ix].pd_size == 0)
printf(" (zero!)");
printf("\n");
if (++ix == SAFE_TOTAL_SPART)
ix = 0;
}
}
if (re->re_dst.nsegs > 1) {
ix = (re->re_desc.d_dst - sc->sc_dpalloc.dma_paddr) /
sizeof(struct safe_pdesc);
for (nsegs = re->re_dst.nsegs; nsegs; nsegs--) {
printf(" dpd[%u] %p: %p flags %x\n"
, ix, &sc->sc_dpring[ix]
, (caddr_t)(uintptr_t) sc->sc_dpring[ix].pd_addr
, sc->sc_dpring[ix].pd_flags
);
if (++ix == SAFE_TOTAL_DPART)
ix = 0;
}
}
printf("sa: cmd0 %08x cmd1 %08x staterec %x\n",
re->re_sa.sa_cmd0, re->re_sa.sa_cmd1, re->re_sa.sa_staterec);
printf("sa: key %x %x %x %x %x %x %x %x\n"
, re->re_sa.sa_key[0]
, re->re_sa.sa_key[1]
, re->re_sa.sa_key[2]
, re->re_sa.sa_key[3]
, re->re_sa.sa_key[4]
, re->re_sa.sa_key[5]
, re->re_sa.sa_key[6]
, re->re_sa.sa_key[7]
);
printf("sa: indigest %x %x %x %x %x\n"
, re->re_sa.sa_indigest[0]
, re->re_sa.sa_indigest[1]
, re->re_sa.sa_indigest[2]
, re->re_sa.sa_indigest[3]
, re->re_sa.sa_indigest[4]
);
printf("sa: outdigest %x %x %x %x %x\n"
, re->re_sa.sa_outdigest[0]
, re->re_sa.sa_outdigest[1]
, re->re_sa.sa_outdigest[2]
, re->re_sa.sa_outdigest[3]
, re->re_sa.sa_outdigest[4]
);
printf("sr: iv %x %x %x %x\n"
, re->re_sastate.sa_saved_iv[0]
, re->re_sastate.sa_saved_iv[1]
, re->re_sastate.sa_saved_iv[2]
, re->re_sastate.sa_saved_iv[3]
);
printf("sr: hashbc %u indigest %x %x %x %x %x\n"
, re->re_sastate.sa_saved_hashbc
, re->re_sastate.sa_saved_indigest[0]
, re->re_sastate.sa_saved_indigest[1]
, re->re_sastate.sa_saved_indigest[2]
, re->re_sastate.sa_saved_indigest[3]
, re->re_sastate.sa_saved_indigest[4]
);
}
static void
safe_dump_ring(struct safe_softc *sc, const char *tag)
{
mtx_lock(&sc->sc_ringmtx);
printf("\nSafeNet Ring State:\n");
safe_dump_intrstate(sc, tag);
safe_dump_dmastatus(sc, tag);
safe_dump_ringstate(sc, tag);
if (sc->sc_nqchip) {
struct safe_ringentry *re = sc->sc_back;
do {
safe_dump_request(sc, tag, re);
if (++re == sc->sc_ringtop)
re = sc->sc_ring;
} while (re != sc->sc_front);
}
mtx_unlock(&sc->sc_ringmtx);
}
static int
sysctl_hw_safe_dump(SYSCTL_HANDLER_ARGS)
{
char dmode[64];
int error;
strncpy(dmode, "", sizeof(dmode) - 1);
dmode[sizeof(dmode) - 1] = '\0';
error = sysctl_handle_string(oidp, &dmode[0], sizeof(dmode), req);
if (error == 0 && req->newptr != NULL) {
struct safe_softc *sc = safec;
if (!sc)
return EINVAL;
if (strncmp(dmode, "dma", 3) == 0)
safe_dump_dmastatus(sc, "safe0");
else if (strncmp(dmode, "int", 3) == 0)
safe_dump_intrstate(sc, "safe0");
else if (strncmp(dmode, "ring", 4) == 0)
safe_dump_ring(sc, "safe0");
else
return EINVAL;
}
return error;
}
SYSCTL_PROC(_hw_safe, OID_AUTO, dump, CTLTYPE_STRING | CTLFLAG_RW,
0, 0, sysctl_hw_safe_dump, "A", "Dump driver state");
#endif /* SAFE_DEBUG */