freebsd-dev/sys/net/iflib.c
Scott Long 4c7070db25 Import the 'iflib' API library for network drivers. From the author:
"iflib is a library to eliminate the need for frequently duplicated device
independent logic propagated (poorly) across many network drivers."

Participation is purely optional.  The IFLIB kernel config option is
provided for drivers that want to transition between legacy and iflib
modes of operation.  ixl and ixgbe driver conversions will be committed
shortly.  We hope to see participation from the Broadcom and maybe
Chelsio drivers in the near future.

Submitted by:   mmacy@nextbsd.org
Reviewed by:    gallatin
Differential Revision:  D5211
2016-05-18 04:35:58 +00:00

4787 lines
127 KiB
C

/*-
* Copyright (c) 2014-2016, Matthew Macy <mmacy@nextbsd.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Neither the name of Matthew Macy nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/types.h>
#include <sys/bus.h>
#include <sys/eventhandler.h>
#include <sys/sockio.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/module.h>
#include <sys/kobj.h>
#include <sys/rman.h>
#include <sys/sbuf.h>
#include <sys/smp.h>
#include <sys/socket.h>
#include <sys/sysctl.h>
#include <sys/syslog.h>
#include <sys/taskqueue.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/if_types.h>
#include <net/if_media.h>
#include <net/bpf.h>
#include <net/ethernet.h>
#include <net/mp_ring.h>
#include <netinet/in.h>
#include <netinet/in_pcb.h>
#include <netinet/tcp_lro.h>
#include <netinet/in_systm.h>
#include <netinet/if_ether.h>
#include <netinet/ip.h>
#include <netinet/ip6.h>
#include <netinet/tcp.h>
#include <machine/bus.h>
#include <machine/in_cksum.h>
#include <vm/vm.h>
#include <vm/pmap.h>
#include <dev/led/led.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pci_private.h>
#include <net/iflib.h>
#include "opt_inet.h"
#include "opt_inet6.h"
#include "opt_acpi.h"
#include "ifdi_if.h"
#if defined(__i386__) || defined(__amd64__)
#include <sys/memdesc.h>
#include <machine/bus.h>
#include <machine/md_var.h>
#include <machine/specialreg.h>
#include <x86/include/busdma_impl.h>
#include <x86/iommu/busdma_dmar.h>
#endif
/*
* enable accounting of every mbuf as it comes in to and goes out of iflib's software descriptor references
*/
#define MEMORY_LOGGING 0
/*
* Enable mbuf vectors for compressing long mbuf chains
*/
/*
* NB:
* - Prefetching in tx cleaning should perhaps be a tunable. The distance ahead
* we prefetch needs to be determined by the time spent in m_free vis a vis
* the cost of a prefetch. This will of course vary based on the workload:
* - NFLX's m_free path is dominated by vm-based M_EXT manipulation which
* is quite expensive, thus suggesting very little prefetch.
* - small packet forwarding which is just returning a single mbuf to
* UMA will typically be very fast vis a vis the cost of a memory
* access.
*/
/*
* File organization:
* - private structures
* - iflib private utility functions
* - ifnet functions
* - vlan registry and other exported functions
* - iflib public core functions
*
*
*/
static MALLOC_DEFINE(M_IFLIB, "iflib", "ifnet library");
struct iflib_txq;
typedef struct iflib_txq *iflib_txq_t;
struct iflib_rxq;
typedef struct iflib_rxq *iflib_rxq_t;
struct iflib_fl;
typedef struct iflib_fl *iflib_fl_t;
typedef struct iflib_filter_info {
driver_filter_t *ifi_filter;
void *ifi_filter_arg;
struct grouptask *ifi_task;
} *iflib_filter_info_t;
struct iflib_ctx {
KOBJ_FIELDS;
/*
* Pointer to hardware driver's softc
*/
void *ifc_softc;
device_t ifc_dev;
if_t ifc_ifp;
cpuset_t ifc_cpus;
if_shared_ctx_t ifc_sctx;
struct if_softc_ctx ifc_softc_ctx;
struct mtx ifc_mtx;
uint16_t ifc_nhwtxqs;
uint16_t ifc_nhwrxqs;
iflib_txq_t ifc_txqs;
iflib_rxq_t ifc_rxqs;
uint32_t ifc_if_flags;
uint32_t ifc_flags;
uint32_t ifc_max_fl_buf_size;
int ifc_in_detach;
int ifc_link_state;
int ifc_link_irq;
int ifc_pause_frames;
int ifc_watchdog_events;
struct cdev *ifc_led_dev;
struct resource *ifc_msix_mem;
struct if_irq ifc_legacy_irq;
struct grouptask ifc_admin_task;
struct grouptask ifc_vflr_task;
struct iflib_filter_info ifc_filter_info;
struct ifmedia ifc_media;
struct sysctl_oid *ifc_sysctl_node;
uint16_t ifc_sysctl_ntxqs;
uint16_t ifc_sysctl_nrxqs;
uint16_t ifc_sysctl_ntxds;
uint16_t ifc_sysctl_nrxds;
struct if_txrx ifc_txrx;
#define isc_txd_encap ifc_txrx.ift_txd_encap
#define isc_txd_flush ifc_txrx.ift_txd_flush
#define isc_txd_credits_update ifc_txrx.ift_txd_credits_update
#define isc_rxd_available ifc_txrx.ift_rxd_available
#define isc_rxd_pkt_get ifc_txrx.ift_rxd_pkt_get
#define isc_rxd_refill ifc_txrx.ift_rxd_refill
#define isc_rxd_flush ifc_txrx.ift_rxd_flush
#define isc_rxd_refill ifc_txrx.ift_rxd_refill
#define isc_rxd_refill ifc_txrx.ift_rxd_refill
#define isc_legacy_intr ifc_txrx.ift_legacy_intr
eventhandler_tag ifc_vlan_attach_event;
eventhandler_tag ifc_vlan_detach_event;
uint8_t ifc_mac[ETHER_ADDR_LEN];
char ifc_mtx_name[16];
};
void *
iflib_get_softc(if_ctx_t ctx)
{
return (ctx->ifc_softc);
}
device_t
iflib_get_dev(if_ctx_t ctx)
{
return (ctx->ifc_dev);
}
if_t
iflib_get_ifp(if_ctx_t ctx)
{
return (ctx->ifc_ifp);
}
struct ifmedia *
iflib_get_media(if_ctx_t ctx)
{
return (&ctx->ifc_media);
}
void
iflib_set_mac(if_ctx_t ctx, uint8_t mac[ETHER_ADDR_LEN])
{
bcopy(mac, ctx->ifc_mac, ETHER_ADDR_LEN);
}
if_softc_ctx_t
iflib_get_softc_ctx(if_ctx_t ctx)
{
return (&ctx->ifc_softc_ctx);
}
if_shared_ctx_t
iflib_get_sctx(if_ctx_t ctx)
{
return (ctx->ifc_sctx);
}
#define CACHE_PTR_INCREMENT (CACHE_LINE_SIZE/sizeof(void*))
#define LINK_ACTIVE(ctx) ((ctx)->ifc_link_state == LINK_STATE_UP)
#define CTX_IS_VF(ctx) ((ctx)->ifc_sctx->isc_flags & IFLIB_IS_VF)
#define RX_SW_DESC_MAP_CREATED (1 << 0)
#define TX_SW_DESC_MAP_CREATED (1 << 1)
#define RX_SW_DESC_INUSE (1 << 3)
#define TX_SW_DESC_MAPPED (1 << 4)
typedef struct iflib_sw_rx_desc {
bus_dmamap_t ifsd_map; /* bus_dma map for packet */
struct mbuf *ifsd_m; /* rx: uninitialized mbuf */
caddr_t ifsd_cl; /* direct cluster pointer for rx */
uint16_t ifsd_flags;
} *iflib_rxsd_t;
typedef struct iflib_sw_tx_desc_val {
bus_dmamap_t ifsd_map; /* bus_dma map for packet */
struct mbuf *ifsd_m; /* pkthdr mbuf */
uint8_t ifsd_flags;
} *iflib_txsd_val_t;
typedef struct iflib_sw_tx_desc_array {
bus_dmamap_t *ifsd_map; /* bus_dma maps for packet */
struct mbuf **ifsd_m; /* pkthdr mbufs */
uint8_t *ifsd_flags;
} iflib_txsd_array_t;
/* magic number that should be high enough for any hardware */
#define IFLIB_MAX_TX_SEGS 128
#define IFLIB_MAX_RX_SEGS 32
#define IFLIB_RX_COPY_THRESH 128
#define IFLIB_MAX_RX_REFRESH 32
#define IFLIB_QUEUE_IDLE 0
#define IFLIB_QUEUE_HUNG 1
#define IFLIB_QUEUE_WORKING 2
/* this should really scale with ring size - 32 is a fairly arbitrary value for this */
#define TX_BATCH_SIZE 16
#define IFLIB_RESTART_BUDGET 8
#define IFC_LEGACY 0x1
#define IFC_QFLUSH 0x2
#define IFC_MULTISEG 0x4
#define IFC_DMAR 0x8
#define CSUM_OFFLOAD (CSUM_IP_TSO|CSUM_IP6_TSO|CSUM_IP| \
CSUM_IP_UDP|CSUM_IP_TCP|CSUM_IP_SCTP| \
CSUM_IP6_UDP|CSUM_IP6_TCP|CSUM_IP6_SCTP)
struct iflib_txq {
uint16_t ift_in_use;
uint16_t ift_cidx;
uint16_t ift_cidx_processed;
uint16_t ift_pidx;
uint8_t ift_gen;
uint8_t ift_db_pending;
uint8_t ift_db_pending_queued;
uint8_t ift_npending;
/* implicit pad */
uint64_t ift_processed;
uint64_t ift_cleaned;
#if MEMORY_LOGGING
uint64_t ift_enqueued;
uint64_t ift_dequeued;
#endif
uint64_t ift_no_tx_dma_setup;
uint64_t ift_no_desc_avail;
uint64_t ift_mbuf_defrag_failed;
uint64_t ift_mbuf_defrag;
uint64_t ift_map_failed;
uint64_t ift_txd_encap_efbig;
uint64_t ift_pullups;
struct mtx ift_mtx;
struct mtx ift_db_mtx;
/* constant values */
if_ctx_t ift_ctx;
struct ifmp_ring **ift_br;
struct grouptask ift_task;
uint16_t ift_size;
uint16_t ift_id;
struct callout ift_timer;
struct callout ift_db_check;
iflib_txsd_array_t ift_sds;
uint8_t ift_nbr;
uint8_t ift_qstatus;
uint8_t ift_active;
uint8_t ift_closed;
int ift_watchdog_time;
struct iflib_filter_info ift_filter_info;
bus_dma_tag_t ift_desc_tag;
bus_dma_tag_t ift_tso_desc_tag;
iflib_dma_info_t ift_ifdi;
#define MTX_NAME_LEN 16
char ift_mtx_name[MTX_NAME_LEN];
char ift_db_mtx_name[MTX_NAME_LEN];
bus_dma_segment_t ift_segs[IFLIB_MAX_TX_SEGS] __aligned(CACHE_LINE_SIZE);
} __aligned(CACHE_LINE_SIZE);
struct iflib_fl {
uint16_t ifl_cidx;
uint16_t ifl_pidx;
uint16_t ifl_credits;
uint8_t ifl_gen;
#if MEMORY_LOGGING
uint64_t ifl_m_enqueued;
uint64_t ifl_m_dequeued;
uint64_t ifl_cl_enqueued;
uint64_t ifl_cl_dequeued;
#endif
/* implicit pad */
/* constant */
uint16_t ifl_size;
uint16_t ifl_buf_size;
uint16_t ifl_cltype;
uma_zone_t ifl_zone;
iflib_rxsd_t ifl_sds;
iflib_rxq_t ifl_rxq;
uint8_t ifl_id;
bus_dma_tag_t ifl_desc_tag;
iflib_dma_info_t ifl_ifdi;
uint64_t ifl_bus_addrs[IFLIB_MAX_RX_REFRESH] __aligned(CACHE_LINE_SIZE);
caddr_t ifl_vm_addrs[IFLIB_MAX_RX_REFRESH];
} __aligned(CACHE_LINE_SIZE);
static inline int
get_inuse(int size, int cidx, int pidx, int gen)
{
int used;
if (pidx > cidx)
used = pidx - cidx;
else if (pidx < cidx)
used = size - cidx + pidx;
else if (gen == 0 && pidx == cidx)
used = 0;
else if (gen == 1 && pidx == cidx)
used = size;
else
panic("bad state");
return (used);
}
#define TXQ_AVAIL(txq) (txq->ift_size - get_inuse(txq->ift_size, txq->ift_cidx, txq->ift_pidx, txq->ift_gen))
#define IDXDIFF(head, tail, wrap) \
((head) >= (tail) ? (head) - (tail) : (wrap) - (tail) + (head))
struct iflib_rxq {
/* If there is a separate completion queue -
* these are the cq cidx and pidx. Otherwise
* these are unused.
*/
uint16_t ifr_size;
uint16_t ifr_cq_cidx;
uint16_t ifr_cq_pidx;
uint8_t ifr_cq_gen;
if_ctx_t ifr_ctx;
iflib_fl_t ifr_fl;
uint64_t ifr_rx_irq;
uint16_t ifr_id;
uint8_t ifr_lro_enabled;
uint8_t ifr_nfl;
struct lro_ctrl ifr_lc;
struct grouptask ifr_task;
struct iflib_filter_info ifr_filter_info;
iflib_dma_info_t ifr_ifdi;
/* dynamically allocate if any drivers need a value substantially larger than this */
struct if_rxd_frag ifr_frags[IFLIB_MAX_RX_SEGS] __aligned(CACHE_LINE_SIZE);
} __aligned(CACHE_LINE_SIZE);
/*
* Only allow a single packet to take up most 1/nth of the tx ring
*/
#define MAX_SINGLE_PACKET_FRACTION 12
#define IF_BAD_DMA (bus_addr_t)-1
static int enable_msix = 1;
#define mtx_held(m) (((m)->mtx_lock & ~MTX_FLAGMASK) != (uintptr_t)0)
#define CTX_ACTIVE(ctx) ((if_getdrvflags((ctx)->ifc_ifp) & IFF_DRV_RUNNING))
#define CTX_LOCK_INIT(_sc, _name) mtx_init(&(_sc)->ifc_mtx, _name, "iflib ctx lock", MTX_DEF)
#define CTX_LOCK(ctx) mtx_lock(&(ctx)->ifc_mtx)
#define CTX_UNLOCK(ctx) mtx_unlock(&(ctx)->ifc_mtx)
#define CTX_LOCK_DESTROY(ctx) mtx_destroy(&(ctx)->ifc_mtx)
#define TXDB_LOCK_INIT(txq) mtx_init(&(txq)->ift_db_mtx, (txq)->ift_db_mtx_name, NULL, MTX_DEF)
#define TXDB_TRYLOCK(txq) mtx_trylock(&(txq)->ift_db_mtx)
#define TXDB_LOCK(txq) mtx_lock(&(txq)->ift_db_mtx)
#define TXDB_UNLOCK(txq) mtx_unlock(&(txq)->ift_db_mtx)
#define TXDB_LOCK_DESTROY(txq) mtx_destroy(&(txq)->ift_db_mtx)
#define CALLOUT_LOCK(txq) mtx_lock(&txq->ift_mtx)
#define CALLOUT_UNLOCK(txq) mtx_unlock(&txq->ift_mtx)
/* Our boot-time initialization hook */
static int iflib_module_event_handler(module_t, int, void *);
static moduledata_t iflib_moduledata = {
"iflib",
iflib_module_event_handler,
NULL
};
DECLARE_MODULE(iflib, iflib_moduledata, SI_SUB_INIT_IF, SI_ORDER_ANY);
MODULE_VERSION(iflib, 1);
MODULE_DEPEND(iflib, pci, 1, 1, 1);
MODULE_DEPEND(iflib, ether, 1, 1, 1);
TASKQGROUP_DEFINE(if_io_tqg, mp_ncpus, 1);
TASKQGROUP_DEFINE(if_config_tqg, 1, 1);
#ifndef IFLIB_DEBUG_COUNTERS
#ifdef INVARIANTS
#define IFLIB_DEBUG_COUNTERS 1
#else
#define IFLIB_DEBUG_COUNTERS 0
#endif /* !INVARIANTS */
#endif
static SYSCTL_NODE(_net, OID_AUTO, iflib, CTLFLAG_RD, 0,
"iflib driver parameters");
/*
* XXX need to ensure that this can't accidentally cause the head to be moved backwards
*/
static int iflib_min_tx_latency = 0;
SYSCTL_INT(_net_iflib, OID_AUTO, min_tx_latency, CTLFLAG_RW,
&iflib_min_tx_latency, 0, "minimize transmit latency at the possibel expense of throughput");
#if IFLIB_DEBUG_COUNTERS
static int iflib_tx_seen;
static int iflib_tx_sent;
static int iflib_tx_encap;
static int iflib_rx_allocs;
static int iflib_fl_refills;
static int iflib_fl_refills_large;
static int iflib_tx_frees;
SYSCTL_INT(_net_iflib, OID_AUTO, tx_seen, CTLFLAG_RD,
&iflib_tx_seen, 0, "# tx mbufs seen");
SYSCTL_INT(_net_iflib, OID_AUTO, tx_sent, CTLFLAG_RD,
&iflib_tx_sent, 0, "# tx mbufs sent");
SYSCTL_INT(_net_iflib, OID_AUTO, tx_encap, CTLFLAG_RD,
&iflib_tx_encap, 0, "# tx mbufs encapped");
SYSCTL_INT(_net_iflib, OID_AUTO, tx_frees, CTLFLAG_RD,
&iflib_tx_frees, 0, "# tx frees");
SYSCTL_INT(_net_iflib, OID_AUTO, rx_allocs, CTLFLAG_RD,
&iflib_rx_allocs, 0, "# rx allocations");
SYSCTL_INT(_net_iflib, OID_AUTO, fl_refills, CTLFLAG_RD,
&iflib_fl_refills, 0, "# refills");
SYSCTL_INT(_net_iflib, OID_AUTO, fl_refills_large, CTLFLAG_RD,
&iflib_fl_refills_large, 0, "# large refills");
static int iflib_txq_drain_flushing;
static int iflib_txq_drain_oactive;
static int iflib_txq_drain_notready;
static int iflib_txq_drain_encapfail;
SYSCTL_INT(_net_iflib, OID_AUTO, txq_drain_flushing, CTLFLAG_RD,
&iflib_txq_drain_flushing, 0, "# drain flushes");
SYSCTL_INT(_net_iflib, OID_AUTO, txq_drain_oactive, CTLFLAG_RD,
&iflib_txq_drain_oactive, 0, "# drain oactives");
SYSCTL_INT(_net_iflib, OID_AUTO, txq_drain_notready, CTLFLAG_RD,
&iflib_txq_drain_notready, 0, "# drain notready");
SYSCTL_INT(_net_iflib, OID_AUTO, txq_drain_encapfail, CTLFLAG_RD,
&iflib_txq_drain_encapfail, 0, "# drain encap fails");
static int iflib_encap_load_mbuf_fail;
static int iflib_encap_txq_avail_fail;
static int iflib_encap_txd_encap_fail;
SYSCTL_INT(_net_iflib, OID_AUTO, encap_load_mbuf_fail, CTLFLAG_RD,
&iflib_encap_load_mbuf_fail, 0, "# busdma load failures");
SYSCTL_INT(_net_iflib, OID_AUTO, encap_txq_avail_fail, CTLFLAG_RD,
&iflib_encap_txq_avail_fail, 0, "# txq avail failures");
SYSCTL_INT(_net_iflib, OID_AUTO, encap_txd_encap_fail, CTLFLAG_RD,
&iflib_encap_txd_encap_fail, 0, "# driver encap failures");
static int iflib_task_fn_rxs;
static int iflib_rx_intr_enables;
static int iflib_fast_intrs;
static int iflib_intr_link;
static int iflib_intr_msix;
static int iflib_rx_unavail;
static int iflib_rx_ctx_inactive;
static int iflib_rx_zero_len;
static int iflib_rx_if_input;
static int iflib_rx_mbuf_null;
static int iflib_rxd_flush;
static int iflib_verbose_debug;
SYSCTL_INT(_net_iflib, OID_AUTO, intr_link, CTLFLAG_RD,
&iflib_intr_link, 0, "# intr link calls");
SYSCTL_INT(_net_iflib, OID_AUTO, intr_msix, CTLFLAG_RD,
&iflib_intr_msix, 0, "# intr msix calls");
SYSCTL_INT(_net_iflib, OID_AUTO, task_fn_rx, CTLFLAG_RD,
&iflib_task_fn_rxs, 0, "# task_fn_rx calls");
SYSCTL_INT(_net_iflib, OID_AUTO, rx_intr_enables, CTLFLAG_RD,
&iflib_rx_intr_enables, 0, "# rx intr enables");
SYSCTL_INT(_net_iflib, OID_AUTO, fast_intrs, CTLFLAG_RD,
&iflib_fast_intrs, 0, "# fast_intr calls");
SYSCTL_INT(_net_iflib, OID_AUTO, rx_unavail, CTLFLAG_RD,
&iflib_rx_unavail, 0, "# times rxeof called with no available data");
SYSCTL_INT(_net_iflib, OID_AUTO, rx_ctx_inactive, CTLFLAG_RD,
&iflib_rx_ctx_inactive, 0, "# times rxeof called with inactive context");
SYSCTL_INT(_net_iflib, OID_AUTO, rx_zero_len, CTLFLAG_RD,
&iflib_rx_zero_len, 0, "# times rxeof saw zero len mbuf");
SYSCTL_INT(_net_iflib, OID_AUTO, rx_if_input, CTLFLAG_RD,
&iflib_rx_if_input, 0, "# times rxeof called if_input");
SYSCTL_INT(_net_iflib, OID_AUTO, rx_mbuf_null, CTLFLAG_RD,
&iflib_rx_mbuf_null, 0, "# times rxeof got null mbuf");
SYSCTL_INT(_net_iflib, OID_AUTO, rxd_flush, CTLFLAG_RD,
&iflib_rxd_flush, 0, "# times rxd_flush called");
SYSCTL_INT(_net_iflib, OID_AUTO, verbose_debug, CTLFLAG_RW,
&iflib_verbose_debug, 0, "enable verbose debugging");
#define DBG_COUNTER_INC(name) atomic_add_int(&(iflib_ ## name), 1)
#else
#define DBG_COUNTER_INC(name)
#endif
#define IFLIB_DEBUG 0
static void iflib_tx_structures_free(if_ctx_t ctx);
static void iflib_rx_structures_free(if_ctx_t ctx);
static int iflib_queues_alloc(if_ctx_t ctx);
static int iflib_tx_credits_update(if_ctx_t ctx, iflib_txq_t txq);
static int iflib_rxd_avail(if_ctx_t ctx, iflib_rxq_t rxq, int cidx);
static int iflib_qset_structures_setup(if_ctx_t ctx);
static int iflib_msix_init(if_ctx_t ctx);
static int iflib_legacy_setup(if_ctx_t ctx, driver_filter_t filter, void *filterarg, int *rid, char *str);
static void iflib_txq_check_drain(iflib_txq_t txq, int budget);
static uint32_t iflib_txq_can_drain(struct ifmp_ring *);
static int iflib_register(if_ctx_t);
static void iflib_init_locked(if_ctx_t ctx);
static void iflib_add_device_sysctl_pre(if_ctx_t ctx);
static void iflib_add_device_sysctl_post(if_ctx_t ctx);
#ifdef DEV_NETMAP
#include <sys/selinfo.h>
#include <net/netmap.h>
#include <dev/netmap/netmap_kern.h>
MODULE_DEPEND(iflib, netmap, 1, 1, 1);
/*
* device-specific sysctl variables:
*
* ixl_crcstrip: 0: keep CRC in rx frames (default), 1: strip it.
* During regular operations the CRC is stripped, but on some
* hardware reception of frames not multiple of 64 is slower,
* so using crcstrip=0 helps in benchmarks.
*
* ixl_rx_miss, ixl_rx_miss_bufs:
* count packets that might be missed due to lost interrupts.
*/
SYSCTL_DECL(_dev_netmap);
/*
* The xl driver by default strips CRCs and we do not override it.
*/
int iflib_crcstrip = 1;
SYSCTL_INT(_dev_netmap, OID_AUTO, iflib_crcstrip,
CTLFLAG_RW, &iflib_crcstrip, 1, "strip CRC on rx frames");
int iflib_rx_miss, iflib_rx_miss_bufs;
SYSCTL_INT(_dev_netmap, OID_AUTO, iflib_rx_miss,
CTLFLAG_RW, &iflib_rx_miss, 0, "potentially missed rx intr");
SYSCTL_INT(_dev_netmap, OID_AUTO, ixl_rx_miss_bufs,
CTLFLAG_RW, &iflib_rx_miss_bufs, 0, "potentially missed rx intr bufs");
/*
* Register/unregister. We are already under netmap lock.
* Only called on the first register or the last unregister.
*/
static int
iflib_netmap_register(struct netmap_adapter *na, int onoff)
{
struct ifnet *ifp = na->ifp;
if_ctx_t ctx = ifp->if_softc;
CTX_LOCK(ctx);
IFDI_INTR_DISABLE(ctx);
/* Tell the stack that the interface is no longer active */
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
if (!CTX_IS_VF(ctx))
IFDI_CRCSTRIP_SET(ctx, onoff);
/* enable or disable flags and callbacks in na and ifp */
if (onoff) {
nm_set_native_flags(na);
} else {
nm_clear_native_flags(na);
}
IFDI_INIT(ctx);
IFDI_CRCSTRIP_SET(ctx, onoff); // XXX why twice ?
CTX_UNLOCK(ctx);
return (ifp->if_drv_flags & IFF_DRV_RUNNING ? 0 : 1);
}
/*
* Reconcile kernel and user view of the transmit ring.
*
* All information is in the kring.
* Userspace wants to send packets up to the one before kring->rhead,
* kernel knows kring->nr_hwcur is the first unsent packet.
*
* Here we push packets out (as many as possible), and possibly
* reclaim buffers from previously completed transmission.
*
* The caller (netmap) guarantees that there is only one instance
* running at any time. Any interference with other driver
* methods should be handled by the individual drivers.
*/
static int
iflib_netmap_txsync(struct netmap_kring *kring, int flags)
{
struct netmap_adapter *na = kring->na;
struct ifnet *ifp = na->ifp;
struct netmap_ring *ring = kring->ring;
u_int nm_i; /* index into the netmap ring */
u_int nic_i; /* index into the NIC ring */
u_int n;
u_int const lim = kring->nkr_num_slots - 1;
u_int const head = kring->rhead;
struct if_pkt_info pi;
/*
* interrupts on every tx packet are expensive so request
* them every half ring, or where NS_REPORT is set
*/
u_int report_frequency = kring->nkr_num_slots >> 1;
/* device-specific */
if_ctx_t ctx = ifp->if_softc;
iflib_txq_t txq = &ctx->ifc_txqs[kring->ring_id];
pi.ipi_segs = txq->ift_segs;
pi.ipi_qsidx = kring->ring_id;
pi.ipi_ndescs = 0;
bus_dmamap_sync(txq->ift_desc_tag, txq->ift_ifdi->idi_map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
/*
* First part: process new packets to send.
* nm_i is the current index in the netmap ring,
* nic_i is the corresponding index in the NIC ring.
*
* If we have packets to send (nm_i != head)
* iterate over the netmap ring, fetch length and update
* the corresponding slot in the NIC ring. Some drivers also
* need to update the buffer's physical address in the NIC slot
* even NS_BUF_CHANGED is not set (PNMB computes the addresses).
*
* The netmap_reload_map() calls is especially expensive,
* even when (as in this case) the tag is 0, so do only
* when the buffer has actually changed.
*
* If possible do not set the report/intr bit on all slots,
* but only a few times per ring or when NS_REPORT is set.
*
* Finally, on 10G and faster drivers, it might be useful
* to prefetch the next slot and txr entry.
*/
nm_i = kring->nr_hwcur;
if (nm_i != head) { /* we have new packets to send */
nic_i = netmap_idx_k2n(kring, nm_i);
__builtin_prefetch(&ring->slot[nm_i]);
__builtin_prefetch(&txq->ift_sds.ifsd_m[nic_i]);
__builtin_prefetch(&txq->ift_sds.ifsd_map[nic_i]);
for (n = 0; nm_i != head; n++) {
struct netmap_slot *slot = &ring->slot[nm_i];
u_int len = slot->len;
uint64_t paddr;
void *addr = PNMB(na, slot, &paddr);
int flags = (slot->flags & NS_REPORT ||
nic_i == 0 || nic_i == report_frequency) ?
IPI_TX_INTR : 0;
/* device-specific */
pi.ipi_pidx = nic_i;
pi.ipi_flags = flags;
/* Fill the slot in the NIC ring. */
ctx->isc_txd_encap(ctx->ifc_softc, &pi);
/* prefetch for next round */
__builtin_prefetch(&ring->slot[nm_i + 1]);
__builtin_prefetch(&txq->ift_sds.ifsd_m[nic_i + 1]);
__builtin_prefetch(&txq->ift_sds.ifsd_map[nic_i + 1]);
NM_CHECK_ADDR_LEN(na, addr, len);
if (slot->flags & NS_BUF_CHANGED) {
/* buffer has changed, reload map */
netmap_reload_map(na, txq->ift_desc_tag, txq->ift_sds.ifsd_map[nic_i], addr);
}
slot->flags &= ~(NS_REPORT | NS_BUF_CHANGED);
/* make sure changes to the buffer are synced */
bus_dmamap_sync(txq->ift_ifdi->idi_tag, txq->ift_sds.ifsd_map[nic_i],
BUS_DMASYNC_PREWRITE);
nm_i = nm_next(nm_i, lim);
nic_i = nm_next(nic_i, lim);
}
kring->nr_hwcur = head;
/* synchronize the NIC ring */
bus_dmamap_sync(txq->ift_desc_tag, txq->ift_ifdi->idi_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
/* (re)start the tx unit up to slot nic_i (excluded) */
ctx->isc_txd_flush(ctx->ifc_softc, txq->ift_id, nic_i);
}
/*
* Second part: reclaim buffers for completed transmissions.
*/
if (iflib_tx_credits_update(ctx, txq)) {
/* some tx completed, increment avail */
nic_i = txq->ift_cidx_processed;
kring->nr_hwtail = nm_prev(netmap_idx_n2k(kring, nic_i), lim);
}
return (0);
}
/*
* Reconcile kernel and user view of the receive ring.
* Same as for the txsync, this routine must be efficient.
* The caller guarantees a single invocations, but races against
* the rest of the driver should be handled here.
*
* On call, kring->rhead is the first packet that userspace wants
* to keep, and kring->rcur is the wakeup point.
* The kernel has previously reported packets up to kring->rtail.
*
* If (flags & NAF_FORCE_READ) also check for incoming packets irrespective
* of whether or not we received an interrupt.
*/
static int
iflib_netmap_rxsync(struct netmap_kring *kring, int flags)
{
struct netmap_adapter *na = kring->na;
struct ifnet *ifp = na->ifp;
struct netmap_ring *ring = kring->ring;
u_int nm_i; /* index into the netmap ring */
u_int nic_i; /* index into the NIC ring */
u_int i, n;
u_int const lim = kring->nkr_num_slots - 1;
u_int const head = kring->rhead;
int force_update = (flags & NAF_FORCE_READ) || kring->nr_kflags & NKR_PENDINTR;
struct if_rxd_info ri;
/* device-specific */
if_ctx_t ctx = ifp->if_softc;
iflib_rxq_t rxq = &ctx->ifc_rxqs[kring->ring_id];
iflib_fl_t fl = rxq->ifr_fl;
if (head > lim)
return netmap_ring_reinit(kring);
bzero(&ri, sizeof(ri));
ri.iri_qsidx = kring->ring_id;
ri.iri_ifp = ctx->ifc_ifp;
/* XXX check sync modes */
for (i = 0, fl = rxq->ifr_fl; i < rxq->ifr_nfl; i++, fl++)
bus_dmamap_sync(rxq->ifr_fl[i].ifl_desc_tag, fl->ifl_ifdi->idi_map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
/*
* First part: import newly received packets.
*
* nm_i is the index of the next free slot in the netmap ring,
* nic_i is the index of the next received packet in the NIC ring,
* and they may differ in case if_init() has been called while
* in netmap mode. For the receive ring we have
*
* nic_i = rxr->next_check;
* nm_i = kring->nr_hwtail (previous)
* and
* nm_i == (nic_i + kring->nkr_hwofs) % ring_size
*
* rxr->next_check is set to 0 on a ring reinit
*/
if (netmap_no_pendintr || force_update) {
int crclen = iflib_crcstrip ? 0 : 4;
int error, avail;
uint16_t slot_flags = kring->nkr_slot_flags;
for (fl = rxq->ifr_fl, i = 0; i < rxq->ifr_nfl; i++, fl++) {
nic_i = fl->ifl_cidx;
nm_i = netmap_idx_n2k(kring, nic_i);
avail = ctx->isc_rxd_available(ctx->ifc_softc, kring->ring_id, nic_i);
for (n = 0; avail > 0; n++, avail--) {
error = ctx->isc_rxd_pkt_get(ctx->ifc_softc, &ri);
if (error)
ring->slot[nm_i].len = 0;
else
ring->slot[nm_i].len = ri.iri_len - crclen;
ring->slot[nm_i].flags = slot_flags;
bus_dmamap_sync(fl->ifl_ifdi->idi_tag,
fl->ifl_sds[nic_i].ifsd_map, BUS_DMASYNC_POSTREAD);
nm_i = nm_next(nm_i, lim);
nic_i = nm_next(nic_i, lim);
}
if (n) { /* update the state variables */
if (netmap_no_pendintr && !force_update) {
/* diagnostics */
iflib_rx_miss ++;
iflib_rx_miss_bufs += n;
}
fl->ifl_cidx = nic_i;
kring->nr_hwtail = nm_i;
}
kring->nr_kflags &= ~NKR_PENDINTR;
}
}
/*
* Second part: skip past packets that userspace has released.
* (kring->nr_hwcur to head excluded),
* and make the buffers available for reception.
* As usual nm_i is the index in the netmap ring,
* nic_i is the index in the NIC ring, and
* nm_i == (nic_i + kring->nkr_hwofs) % ring_size
*/
/* XXX not sure how this will work with multiple free lists */
nm_i = kring->nr_hwcur;
if (nm_i != head) {
nic_i = netmap_idx_k2n(kring, nm_i);
for (n = 0; nm_i != head; n++) {
struct netmap_slot *slot = &ring->slot[nm_i];
uint64_t paddr;
caddr_t vaddr;
void *addr = PNMB(na, slot, &paddr);
if (addr == NETMAP_BUF_BASE(na)) /* bad buf */
goto ring_reset;
vaddr = addr;
if (slot->flags & NS_BUF_CHANGED) {
/* buffer has changed, reload map */
netmap_reload_map(na, fl->ifl_ifdi->idi_tag, fl->ifl_sds[nic_i].ifsd_map, addr);
slot->flags &= ~NS_BUF_CHANGED;
}
/*
* XXX we should be batching this operation - TODO
*/
ctx->isc_rxd_refill(ctx->ifc_softc, rxq->ifr_id, fl->ifl_id, nic_i, &paddr, &vaddr, 1);
bus_dmamap_sync(fl->ifl_ifdi->idi_tag, fl->ifl_sds[nic_i].ifsd_map,
BUS_DMASYNC_PREREAD);
nm_i = nm_next(nm_i, lim);
nic_i = nm_next(nic_i, lim);
}
kring->nr_hwcur = head;
bus_dmamap_sync(fl->ifl_ifdi->idi_tag, fl->ifl_ifdi->idi_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
/*
* IMPORTANT: we must leave one free slot in the ring,
* so move nic_i back by one unit
*/
nic_i = nm_prev(nic_i, lim);
ctx->isc_rxd_flush(ctx->ifc_softc, rxq->ifr_id, fl->ifl_id, nic_i);
}
return 0;
ring_reset:
return netmap_ring_reinit(kring);
}
static int
iflib_netmap_attach(if_ctx_t ctx)
{
struct netmap_adapter na;
bzero(&na, sizeof(na));
na.ifp = ctx->ifc_ifp;
na.na_flags = NAF_BDG_MAYSLEEP;
MPASS(ctx->ifc_softc_ctx.isc_ntxqsets);
MPASS(ctx->ifc_softc_ctx.isc_nrxqsets);
na.num_tx_desc = ctx->ifc_sctx->isc_ntxd;
na.num_rx_desc = ctx->ifc_sctx->isc_ntxd;
na.nm_txsync = iflib_netmap_txsync;
na.nm_rxsync = iflib_netmap_rxsync;
na.nm_register = iflib_netmap_register;
na.num_tx_rings = ctx->ifc_softc_ctx.isc_ntxqsets;
na.num_rx_rings = ctx->ifc_softc_ctx.isc_nrxqsets;
return (netmap_attach(&na));
}
static void
iflib_netmap_txq_init(if_ctx_t ctx, iflib_txq_t txq)
{
struct netmap_adapter *na = NA(ctx->ifc_ifp);
struct netmap_slot *slot;
slot = netmap_reset(na, NR_TX, txq->ift_id, 0);
if (slot == 0)
return;
for (int i = 0; i < ctx->ifc_sctx->isc_ntxd; i++) {
/*
* In netmap mode, set the map for the packet buffer.
* NOTE: Some drivers (not this one) also need to set
* the physical buffer address in the NIC ring.
* netmap_idx_n2k() maps a nic index, i, into the corresponding
* netmap slot index, si
*/
int si = netmap_idx_n2k(&na->tx_rings[txq->ift_id], i);
netmap_load_map(na, txq->ift_desc_tag, txq->ift_sds.ifsd_map[i], NMB(na, slot + si));
}
}
static void
iflib_netmap_rxq_init(if_ctx_t ctx, iflib_rxq_t rxq)
{
struct netmap_adapter *na = NA(ctx->ifc_ifp);
struct netmap_slot *slot;
iflib_rxsd_t sd;
int nrxd;
slot = netmap_reset(na, NR_RX, rxq->ifr_id, 0);
if (slot == 0)
return;
sd = rxq->ifr_fl[0].ifl_sds;
nrxd = ctx->ifc_sctx->isc_nrxd;
for (int i = 0; i < nrxd; i++, sd++) {
int sj = netmap_idx_n2k(&na->rx_rings[rxq->ifr_id], i);
uint64_t paddr;
void *addr;
caddr_t vaddr;
vaddr = addr = PNMB(na, slot + sj, &paddr);
netmap_load_map(na, rxq->ifr_fl[0].ifl_ifdi->idi_tag, sd->ifsd_map, addr);
/* Update descriptor and the cached value */
ctx->isc_rxd_refill(ctx->ifc_softc, rxq->ifr_id, 0 /* fl_id */, i, &paddr, &vaddr, 1);
}
/* preserve queue */
if (ctx->ifc_ifp->if_capenable & IFCAP_NETMAP) {
struct netmap_kring *kring = &na->rx_rings[rxq->ifr_id];
int t = na->num_rx_desc - 1 - nm_kr_rxspace(kring);
ctx->isc_rxd_flush(ctx->ifc_softc, rxq->ifr_id, 0 /* fl_id */, t);
} else
ctx->isc_rxd_flush(ctx->ifc_softc, rxq->ifr_id, 0 /* fl_id */, nrxd-1);
}
#define iflib_netmap_detach(ifp) netmap_detach(ifp)
#else
#define iflib_netmap_txq_init(ctx, txq)
#define iflib_netmap_rxq_init(ctx, rxq)
#define iflib_netmap_detach(ifp)
#define iflib_netmap_attach(ctx) (0)
#define netmap_rx_irq(ifp, qid, budget) (0)
#endif
#if defined(__i386__) || defined(__amd64__)
static __inline void
prefetch(void *x)
{
__asm volatile("prefetcht0 %0" :: "m" (*(unsigned long *)x));
}
#else
#define prefetch(x)
#endif
static void
_iflib_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int err)
{
if (err)
return;
*(bus_addr_t *) arg = segs[0].ds_addr;
}
int
iflib_dma_alloc(if_ctx_t ctx, int size, iflib_dma_info_t dma, int mapflags)
{
int err;
if_shared_ctx_t sctx = ctx->ifc_sctx;
device_t dev = ctx->ifc_dev;
KASSERT(sctx->isc_q_align != 0, ("alignment value not initialized"));
err = bus_dma_tag_create(bus_get_dma_tag(dev), /* parent */
sctx->isc_q_align, 0, /* alignment, bounds */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
size, /* maxsize */
1, /* nsegments */
size, /* maxsegsize */
BUS_DMA_ALLOCNOW, /* flags */
NULL, /* lockfunc */
NULL, /* lockarg */
&dma->idi_tag);
if (err) {
device_printf(dev,
"%s: bus_dma_tag_create failed: %d\n",
__func__, err);
goto fail_0;
}
err = bus_dmamem_alloc(dma->idi_tag, (void**) &dma->idi_vaddr,
BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &dma->idi_map);
if (err) {
device_printf(dev,
"%s: bus_dmamem_alloc(%ju) failed: %d\n",
__func__, (uintmax_t)size, err);
goto fail_1;
}
dma->idi_paddr = IF_BAD_DMA;
err = bus_dmamap_load(dma->idi_tag, dma->idi_map, dma->idi_vaddr,
size, _iflib_dmamap_cb, &dma->idi_paddr, mapflags | BUS_DMA_NOWAIT);
if (err || dma->idi_paddr == IF_BAD_DMA) {
device_printf(dev,
"%s: bus_dmamap_load failed: %d\n",
__func__, err);
goto fail_2;
}
dma->idi_size = size;
return (0);
fail_2:
bus_dmamem_free(dma->idi_tag, dma->idi_vaddr, dma->idi_map);
fail_1:
bus_dma_tag_destroy(dma->idi_tag);
fail_0:
dma->idi_tag = NULL;
return (err);
}
int
iflib_dma_alloc_multi(if_ctx_t ctx, int *sizes, iflib_dma_info_t *dmalist, int mapflags, int count)
{
int i, err;
iflib_dma_info_t *dmaiter;
dmaiter = dmalist;
for (i = 0; i < count; i++, dmaiter++) {
if ((err = iflib_dma_alloc(ctx, sizes[i], *dmaiter, mapflags)) != 0)
break;
}
if (err)
iflib_dma_free_multi(dmalist, i);
return (err);
}
void
iflib_dma_free(iflib_dma_info_t dma)
{
if (dma->idi_tag == NULL)
return;
if (dma->idi_paddr != IF_BAD_DMA) {
bus_dmamap_sync(dma->idi_tag, dma->idi_map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(dma->idi_tag, dma->idi_map);
dma->idi_paddr = IF_BAD_DMA;
}
if (dma->idi_vaddr != NULL) {
bus_dmamem_free(dma->idi_tag, dma->idi_vaddr, dma->idi_map);
dma->idi_vaddr = NULL;
}
bus_dma_tag_destroy(dma->idi_tag);
dma->idi_tag = NULL;
}
void
iflib_dma_free_multi(iflib_dma_info_t *dmalist, int count)
{
int i;
iflib_dma_info_t *dmaiter = dmalist;
for (i = 0; i < count; i++, dmaiter++)
iflib_dma_free(*dmaiter);
}
static int
iflib_fast_intr(void *arg)
{
iflib_filter_info_t info = arg;
struct grouptask *gtask = info->ifi_task;
DBG_COUNTER_INC(fast_intrs);
if (info->ifi_filter != NULL && info->ifi_filter(info->ifi_filter_arg) == FILTER_HANDLED)
return (FILTER_HANDLED);
GROUPTASK_ENQUEUE(gtask);
return (FILTER_HANDLED);
}
static int
_iflib_irq_alloc(if_ctx_t ctx, if_irq_t irq, int rid,
driver_filter_t filter, driver_intr_t handler, void *arg,
char *name)
{
int rc;
struct resource *res;
void *tag;
device_t dev = ctx->ifc_dev;
MPASS(rid < 512);
irq->ii_rid = rid;
res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &irq->ii_rid,
RF_SHAREABLE | RF_ACTIVE);
if (res == NULL) {
device_printf(dev,
"failed to allocate IRQ for rid %d, name %s.\n", rid, name);
return (ENOMEM);
}
irq->ii_res = res;
KASSERT(filter == NULL || handler == NULL, ("filter and handler can't both be non-NULL"));
rc = bus_setup_intr(dev, res, INTR_MPSAFE | INTR_TYPE_NET,
filter, handler, arg, &tag);
if (rc != 0) {
device_printf(dev,
"failed to setup interrupt for rid %d, name %s: %d\n",
rid, name ? name : "unknown", rc);
return (rc);
} else if (name)
bus_describe_intr(dev, res, tag, name);
irq->ii_tag = tag;
return (0);
}
/*********************************************************************
*
* Allocate memory for tx_buffer structures. The tx_buffer stores all
* the information needed to transmit a packet on the wire. This is
* called only once at attach, setup is done every reset.
*
**********************************************************************/
static int
iflib_txsd_alloc(iflib_txq_t txq)
{
if_ctx_t ctx = txq->ift_ctx;
if_shared_ctx_t sctx = ctx->ifc_sctx;
if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
device_t dev = ctx->ifc_dev;
int err, nsegments, ntsosegments;
nsegments = scctx->isc_tx_nsegments;
ntsosegments = scctx->isc_tx_tso_segments_max;
MPASS(sctx->isc_ntxd > 0);
MPASS(nsegments > 0);
MPASS(ntsosegments > 0);
/*
* Setup DMA descriptor areas.
*/
if ((err = bus_dma_tag_create(bus_get_dma_tag(dev),
1, 0, /* alignment, bounds */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
sctx->isc_tx_maxsize, /* maxsize */
nsegments, /* nsegments */
sctx->isc_tx_maxsegsize, /* maxsegsize */
0, /* flags */
NULL, /* lockfunc */
NULL, /* lockfuncarg */
&txq->ift_desc_tag))) {
device_printf(dev,"Unable to allocate TX DMA tag: %d\n", err);
device_printf(dev,"maxsize: %zd nsegments: %d maxsegsize: %zd\n",
sctx->isc_tx_maxsize, nsegments, sctx->isc_tx_maxsegsize);
goto fail;
}
#ifdef INVARIANTS
device_printf(dev,"maxsize: %zd nsegments: %d maxsegsize: %zd\n",
sctx->isc_tx_maxsize, nsegments, sctx->isc_tx_maxsegsize);
#endif
device_printf(dev,"TSO maxsize: %d ntsosegments: %d maxsegsize: %d\n",
scctx->isc_tx_tso_size_max, ntsosegments,
scctx->isc_tx_tso_segsize_max);
if ((err = bus_dma_tag_create(bus_get_dma_tag(dev),
1, 0, /* alignment, bounds */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
scctx->isc_tx_tso_size_max, /* maxsize */
ntsosegments, /* nsegments */
scctx->isc_tx_tso_segsize_max, /* maxsegsize */
0, /* flags */
NULL, /* lockfunc */
NULL, /* lockfuncarg */
&txq->ift_tso_desc_tag))) {
device_printf(dev,"Unable to allocate TX TSO DMA tag: %d\n", err);
goto fail;
}
#ifdef INVARIANTS
device_printf(dev,"TSO maxsize: %d ntsosegments: %d maxsegsize: %d\n",
scctx->isc_tx_tso_size_max, ntsosegments,
scctx->isc_tx_tso_segsize_max);
#endif
if (!(txq->ift_sds.ifsd_flags =
(uint8_t *) malloc(sizeof(uint8_t) *
sctx->isc_ntxd, M_IFLIB, M_NOWAIT | M_ZERO))) {
device_printf(dev, "Unable to allocate tx_buffer memory\n");
err = ENOMEM;
goto fail;
}
if (!(txq->ift_sds.ifsd_m =
(struct mbuf **) malloc(sizeof(struct mbuf *) *
sctx->isc_ntxd, M_IFLIB, M_NOWAIT | M_ZERO))) {
device_printf(dev, "Unable to allocate tx_buffer memory\n");
err = ENOMEM;
goto fail;
}
/* Create the descriptor buffer dma maps */
#if defined(ACPI_DMAR) || (!(defined(__i386__) && !defined(__amd64__)))
if ((ctx->ifc_flags & IFC_DMAR) == 0)
return (0);
if (!(txq->ift_sds.ifsd_map =
(bus_dmamap_t *) malloc(sizeof(bus_dmamap_t) * sctx->isc_ntxd, M_IFLIB, M_NOWAIT | M_ZERO))) {
device_printf(dev, "Unable to allocate tx_buffer map memory\n");
err = ENOMEM;
goto fail;
}
for (int i = 0; i < sctx->isc_ntxd; i++) {
err = bus_dmamap_create(txq->ift_desc_tag, 0, &txq->ift_sds.ifsd_map[i]);
if (err != 0) {
device_printf(dev, "Unable to create TX DMA map\n");
goto fail;
}
}
#endif
return (0);
fail:
/* We free all, it handles case where we are in the middle */
iflib_tx_structures_free(ctx);
return (err);
}
static void
iflib_txsd_destroy(if_ctx_t ctx, iflib_txq_t txq, int i)
{
bus_dmamap_t map;
map = NULL;
if (txq->ift_sds.ifsd_map != NULL)
map = txq->ift_sds.ifsd_map[i];
if (map != NULL) {
bus_dmamap_unload(txq->ift_desc_tag, map);
bus_dmamap_destroy(txq->ift_desc_tag, map);
txq->ift_sds.ifsd_map[i] = NULL;
}
}
static void
iflib_txq_destroy(iflib_txq_t txq)
{
if_ctx_t ctx = txq->ift_ctx;
if_shared_ctx_t sctx = ctx->ifc_sctx;
for (int i = 0; i < sctx->isc_ntxd; i++)
iflib_txsd_destroy(ctx, txq, i);
if (txq->ift_sds.ifsd_map != NULL) {
free(txq->ift_sds.ifsd_map, M_IFLIB);
txq->ift_sds.ifsd_map = NULL;
}
if (txq->ift_sds.ifsd_m != NULL) {
free(txq->ift_sds.ifsd_m, M_IFLIB);
txq->ift_sds.ifsd_m = NULL;
}
if (txq->ift_sds.ifsd_flags != NULL) {
free(txq->ift_sds.ifsd_flags, M_IFLIB);
txq->ift_sds.ifsd_flags = NULL;
}
if (txq->ift_desc_tag != NULL) {
bus_dma_tag_destroy(txq->ift_desc_tag);
txq->ift_desc_tag = NULL;
}
if (txq->ift_tso_desc_tag != NULL) {
bus_dma_tag_destroy(txq->ift_tso_desc_tag);
txq->ift_tso_desc_tag = NULL;
}
}
static void
iflib_txsd_free(if_ctx_t ctx, iflib_txq_t txq, int i)
{
struct mbuf **mp;
mp = &txq->ift_sds.ifsd_m[i];
if (*mp == NULL)
return;
if (txq->ift_sds.ifsd_map != NULL) {
bus_dmamap_sync(txq->ift_desc_tag,
txq->ift_sds.ifsd_map[i],
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(txq->ift_desc_tag,
txq->ift_sds.ifsd_map[i]);
}
m_freem(*mp);
DBG_COUNTER_INC(tx_frees);
*mp = NULL;
}
static int
iflib_txq_setup(iflib_txq_t txq)
{
if_ctx_t ctx = txq->ift_ctx;
if_shared_ctx_t sctx = ctx->ifc_sctx;
iflib_dma_info_t di;
int i;
/* Set number of descriptors available */
txq->ift_qstatus = IFLIB_QUEUE_IDLE;
/* Reset indices */
txq->ift_cidx_processed = txq->ift_pidx = txq->ift_cidx = txq->ift_npending = 0;
txq->ift_size = sctx->isc_ntxd;
for (i = 0, di = txq->ift_ifdi; i < ctx->ifc_nhwtxqs; i++, di++)
bzero((void *)di->idi_vaddr, di->idi_size);
IFDI_TXQ_SETUP(ctx, txq->ift_id);
for (i = 0, di = txq->ift_ifdi; i < ctx->ifc_nhwtxqs; i++, di++)
bus_dmamap_sync(di->idi_tag, di->idi_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
return (0);
}
/*********************************************************************
*
* Allocate memory for rx_buffer structures. Since we use one
* rx_buffer per received packet, the maximum number of rx_buffer's
* that we'll need is equal to the number of receive descriptors
* that we've allocated.
*
**********************************************************************/
static int
iflib_rxsd_alloc(iflib_rxq_t rxq)
{
if_ctx_t ctx = rxq->ifr_ctx;
if_shared_ctx_t sctx = ctx->ifc_sctx;
device_t dev = ctx->ifc_dev;
iflib_fl_t fl;
iflib_rxsd_t rxsd;
int err;
MPASS(sctx->isc_nrxd > 0);
fl = rxq->ifr_fl;
for (int i = 0; i < rxq->ifr_nfl; i++, fl++) {
fl->ifl_sds = malloc(sizeof(struct iflib_sw_rx_desc) *
sctx->isc_nrxd, M_IFLIB, M_WAITOK | M_ZERO);
if (fl->ifl_sds == NULL) {
device_printf(dev, "Unable to allocate rx sw desc memory\n");
return (ENOMEM);
}
fl->ifl_size = sctx->isc_nrxd; /* this isn't necessarily the same */
err = bus_dma_tag_create(bus_get_dma_tag(dev), /* parent */
1, 0, /* alignment, bounds */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
sctx->isc_rx_maxsize, /* maxsize */
sctx->isc_rx_nsegments, /* nsegments */
sctx->isc_rx_maxsegsize, /* maxsegsize */
0, /* flags */
NULL, /* lockfunc */
NULL, /* lockarg */
&fl->ifl_desc_tag);
if (err) {
device_printf(dev, "%s: bus_dma_tag_create failed %d\n",
__func__, err);
goto fail;
}
rxsd = fl->ifl_sds;
for (int i = 0; i < sctx->isc_nrxd; i++, rxsd++) {
err = bus_dmamap_create(fl->ifl_desc_tag, 0, &rxsd->ifsd_map);
if (err) {
device_printf(dev, "%s: bus_dmamap_create failed: %d\n",
__func__, err);
goto fail;
}
}
}
return (0);
fail:
iflib_rx_structures_free(ctx);
return (err);
}
/*
* Internal service routines
*/
struct rxq_refill_cb_arg {
int error;
bus_dma_segment_t seg;
int nseg;
};
static void
_rxq_refill_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
struct rxq_refill_cb_arg *cb_arg = arg;
cb_arg->error = error;
cb_arg->seg = segs[0];
cb_arg->nseg = nseg;
}
#ifdef ACPI_DMAR
#define IS_DMAR(ctx) (ctx->ifc_flags & IFC_DMAR)
#else
#define IS_DMAR(ctx) (0)
#endif
/**
* rxq_refill - refill an rxq free-buffer list
* @ctx: the iflib context
* @rxq: the free-list to refill
* @n: the number of new buffers to allocate
*
* (Re)populate an rxq free-buffer list with up to @n new packet buffers.
* The caller must assure that @n does not exceed the queue's capacity.
*/
static void
_iflib_fl_refill(if_ctx_t ctx, iflib_fl_t fl, int count)
{
struct mbuf *m;
int pidx = fl->ifl_pidx;
iflib_rxsd_t rxsd = &fl->ifl_sds[pidx];
caddr_t cl;
int n, i = 0;
uint64_t bus_addr;
int err;
n = count;
MPASS(n > 0);
MPASS(fl->ifl_credits >= 0);
MPASS(fl->ifl_credits + n <= fl->ifl_size);
if (pidx < fl->ifl_cidx)
MPASS(pidx + n <= fl->ifl_cidx);
if (pidx == fl->ifl_cidx && (fl->ifl_credits < fl->ifl_size))
MPASS(fl->ifl_gen == 0);
if (pidx > fl->ifl_cidx)
MPASS(n <= fl->ifl_size - pidx + fl->ifl_cidx);
DBG_COUNTER_INC(fl_refills);
if (n > 8)
DBG_COUNTER_INC(fl_refills_large);
while (n--) {
/*
* We allocate an uninitialized mbuf + cluster, mbuf is
* initialized after rx.
*
* If the cluster is still set then we know a minimum sized packet was received
*/
if ((cl = rxsd->ifsd_cl) == NULL) {
if ((cl = rxsd->ifsd_cl = m_cljget(NULL, M_NOWAIT, fl->ifl_buf_size)) == NULL)
break;
#if MEMORY_LOGGING
fl->ifl_cl_enqueued++;
#endif
}
if ((m = m_gethdr(M_NOWAIT, MT_NOINIT)) == NULL) {
break;
}
#if MEMORY_LOGGING
fl->ifl_m_enqueued++;
#endif
DBG_COUNTER_INC(rx_allocs);
#ifdef notyet
if ((rxsd->ifsd_flags & RX_SW_DESC_MAP_CREATED) == 0) {
int err;
if ((err = bus_dmamap_create(fl->ifl_ifdi->idi_tag, 0, &rxsd->ifsd_map))) {
log(LOG_WARNING, "bus_dmamap_create failed %d\n", err);
uma_zfree(fl->ifl_zone, cl);
n = 0;
goto done;
}
rxsd->ifsd_flags |= RX_SW_DESC_MAP_CREATED;
}
#endif
#if defined(__i386__) || defined(__amd64__)
if (!IS_DMAR(ctx)) {
bus_addr = pmap_kextract((vm_offset_t)cl);
} else
#endif
{
struct rxq_refill_cb_arg cb_arg;
iflib_rxq_t q;
cb_arg.error = 0;
q = fl->ifl_rxq;
err = bus_dmamap_load(fl->ifl_desc_tag, rxsd->ifsd_map,
cl, fl->ifl_buf_size, _rxq_refill_cb, &cb_arg, 0);
if (err != 0 || cb_arg.error) {
/*
* !zone_pack ?
*/
if (fl->ifl_zone == zone_pack)
uma_zfree(fl->ifl_zone, cl);
m_free(m);
n = 0;
goto done;
}
bus_addr = cb_arg.seg.ds_addr;
}
rxsd->ifsd_flags |= RX_SW_DESC_INUSE;
MPASS(rxsd->ifsd_m == NULL);
rxsd->ifsd_cl = cl;
rxsd->ifsd_m = m;
fl->ifl_bus_addrs[i] = bus_addr;
fl->ifl_vm_addrs[i] = cl;
rxsd++;
fl->ifl_credits++;
i++;
MPASS(fl->ifl_credits <= fl->ifl_size);
if (++fl->ifl_pidx == fl->ifl_size) {
fl->ifl_pidx = 0;
fl->ifl_gen = 1;
rxsd = fl->ifl_sds;
}
if (n == 0 || i == IFLIB_MAX_RX_REFRESH) {
ctx->isc_rxd_refill(ctx->ifc_softc, fl->ifl_rxq->ifr_id, fl->ifl_id, pidx,
fl->ifl_bus_addrs, fl->ifl_vm_addrs, i);
i = 0;
pidx = fl->ifl_pidx;
}
}
done:
DBG_COUNTER_INC(rxd_flush);
if (fl->ifl_pidx == 0)
pidx = fl->ifl_size - 1;
else
pidx = fl->ifl_pidx - 1;
ctx->isc_rxd_flush(ctx->ifc_softc, fl->ifl_rxq->ifr_id, fl->ifl_id, pidx);
}
static __inline void
__iflib_fl_refill_lt(if_ctx_t ctx, iflib_fl_t fl, int max)
{
/* we avoid allowing pidx to catch up with cidx as it confuses ixl */
int32_t reclaimable = fl->ifl_size - fl->ifl_credits - 1;
#ifdef INVARIANTS
int32_t delta = fl->ifl_size - get_inuse(fl->ifl_size, fl->ifl_cidx, fl->ifl_pidx, fl->ifl_gen) - 1;
#endif
MPASS(fl->ifl_credits <= fl->ifl_size);
MPASS(reclaimable == delta);
if (reclaimable > 0)
_iflib_fl_refill(ctx, fl, min(max, reclaimable));
}
static void
iflib_fl_bufs_free(iflib_fl_t fl)
{
iflib_dma_info_t idi = fl->ifl_ifdi;
uint32_t i;
MPASS(fl->ifl_credits >= 0);
for (i = 0; i < fl->ifl_size; i++) {
iflib_rxsd_t d = &fl->ifl_sds[i];
if (d->ifsd_flags & RX_SW_DESC_INUSE) {
bus_dmamap_unload(fl->ifl_desc_tag, d->ifsd_map);
bus_dmamap_destroy(fl->ifl_desc_tag, d->ifsd_map);
if (d->ifsd_m != NULL) {
m_init(d->ifsd_m, M_NOWAIT, MT_DATA, 0);
uma_zfree(zone_mbuf, d->ifsd_m);
}
if (d->ifsd_cl != NULL)
uma_zfree(fl->ifl_zone, d->ifsd_cl);
d->ifsd_flags = 0;
} else {
MPASS(d->ifsd_cl == NULL);
MPASS(d->ifsd_m == NULL);
}
#if MEMORY_LOGGING
fl->ifl_m_dequeued++;
fl->ifl_cl_dequeued++;
#endif
d->ifsd_cl = NULL;
d->ifsd_m = NULL;
}
/*
* Reset free list values
*/
fl->ifl_credits = fl->ifl_cidx = fl->ifl_pidx = fl->ifl_gen = 0;;
bzero(idi->idi_vaddr, idi->idi_size);
}
/*********************************************************************
*
* Initialize a receive ring and its buffers.
*
**********************************************************************/
static int
iflib_fl_setup(iflib_fl_t fl)
{
iflib_rxq_t rxq = fl->ifl_rxq;
if_ctx_t ctx = rxq->ifr_ctx;
if_softc_ctx_t sctx = &ctx->ifc_softc_ctx;
/*
** Free current RX buffer structs and their mbufs
*/
iflib_fl_bufs_free(fl);
/* Now replenish the mbufs */
MPASS(fl->ifl_credits == 0);
/*
* XXX don't set the max_frame_size to larger
* than the hardware can handle
*/
if (sctx->isc_max_frame_size <= 2048)
fl->ifl_buf_size = MCLBYTES;
else if (sctx->isc_max_frame_size <= 4096)
fl->ifl_buf_size = MJUMPAGESIZE;
else if (sctx->isc_max_frame_size <= 9216)
fl->ifl_buf_size = MJUM9BYTES;
else
fl->ifl_buf_size = MJUM16BYTES;
if (fl->ifl_buf_size > ctx->ifc_max_fl_buf_size)
ctx->ifc_max_fl_buf_size = fl->ifl_buf_size;
fl->ifl_cltype = m_gettype(fl->ifl_buf_size);
fl->ifl_zone = m_getzone(fl->ifl_buf_size);
/* avoid pre-allocating zillions of clusters to an idle card
* potentially speeding up attach
*/
_iflib_fl_refill(ctx, fl, min(128, fl->ifl_size));
MPASS(min(128, fl->ifl_size) == fl->ifl_credits);
if (min(128, fl->ifl_size) != fl->ifl_credits)
return (ENOBUFS);
/*
* handle failure
*/
MPASS(rxq != NULL);
MPASS(fl->ifl_ifdi != NULL);
bus_dmamap_sync(fl->ifl_ifdi->idi_tag, fl->ifl_ifdi->idi_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
return (0);
}
/*********************************************************************
*
* Free receive ring data structures
*
**********************************************************************/
static void
iflib_rx_sds_free(iflib_rxq_t rxq)
{
iflib_fl_t fl;
int i;
if (rxq->ifr_fl != NULL) {
for (i = 0; i < rxq->ifr_nfl; i++) {
fl = &rxq->ifr_fl[i];
if (fl->ifl_desc_tag != NULL) {
bus_dma_tag_destroy(fl->ifl_desc_tag);
fl->ifl_desc_tag = NULL;
}
}
if (rxq->ifr_fl->ifl_sds != NULL)
free(rxq->ifr_fl->ifl_sds, M_IFLIB);
free(rxq->ifr_fl, M_IFLIB);
rxq->ifr_fl = NULL;
rxq->ifr_cq_gen = rxq->ifr_cq_cidx = rxq->ifr_cq_pidx = 0;
}
}
/*
* MI independent logic
*
*/
static void
iflib_timer(void *arg)
{
iflib_txq_t txq = arg;
if_ctx_t ctx = txq->ift_ctx;
if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
if (!(if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_RUNNING))
return;
/*
** Check on the state of the TX queue(s), this
** can be done without the lock because its RO
** and the HUNG state will be static if set.
*/
IFDI_TIMER(ctx, txq->ift_id);
if ((txq->ift_qstatus == IFLIB_QUEUE_HUNG) &&
(ctx->ifc_pause_frames == 0))
goto hung;
if (TXQ_AVAIL(txq) <= 2*scctx->isc_tx_nsegments ||
ifmp_ring_is_stalled(txq->ift_br[0]))
GROUPTASK_ENQUEUE(&txq->ift_task);
ctx->ifc_pause_frames = 0;
if (if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_RUNNING)
callout_reset_on(&txq->ift_timer, hz/2, iflib_timer, txq, txq->ift_timer.c_cpu);
return;
hung:
CTX_LOCK(ctx);
if_setdrvflagbits(ctx->ifc_ifp, 0, IFF_DRV_RUNNING);
device_printf(ctx->ifc_dev, "TX(%d) desc avail = %d, pidx = %d\n",
txq->ift_id, TXQ_AVAIL(txq), txq->ift_pidx);
IFDI_WATCHDOG_RESET(ctx);
ctx->ifc_watchdog_events++;
ctx->ifc_pause_frames = 0;
iflib_init_locked(ctx);
CTX_UNLOCK(ctx);
}
static void
iflib_init_locked(if_ctx_t ctx)
{
if_softc_ctx_t sctx = &ctx->ifc_softc_ctx;
if_t ifp = ctx->ifc_ifp;
iflib_fl_t fl;
iflib_txq_t txq;
iflib_rxq_t rxq;
int i, j;
if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, IFF_DRV_RUNNING);
IFDI_INTR_DISABLE(ctx);
/* Set hardware offload abilities */
if_clearhwassist(ifp);
if (if_getcapenable(ifp) & IFCAP_TXCSUM)
if_sethwassistbits(ifp, CSUM_IP | CSUM_TCP | CSUM_UDP, 0);
if (if_getcapenable(ifp) & IFCAP_TXCSUM_IPV6)
if_sethwassistbits(ifp, (CSUM_TCP_IPV6 | CSUM_UDP_IPV6), 0);
if (if_getcapenable(ifp) & IFCAP_TSO4)
if_sethwassistbits(ifp, CSUM_IP_TSO, 0);
if (if_getcapenable(ifp) & IFCAP_TSO6)
if_sethwassistbits(ifp, CSUM_IP6_TSO, 0);
for (i = 0, txq = ctx->ifc_txqs; i < sctx->isc_ntxqsets; i++, txq++) {
CALLOUT_LOCK(txq);
callout_stop(&txq->ift_timer);
callout_stop(&txq->ift_db_check);
CALLOUT_UNLOCK(txq);
iflib_netmap_txq_init(ctx, txq);
}
for (i = 0, rxq = ctx->ifc_rxqs; i < sctx->isc_nrxqsets; i++, rxq++) {
iflib_netmap_rxq_init(ctx, rxq);
}
IFDI_INIT(ctx);
for (i = 0, rxq = ctx->ifc_rxqs; i < sctx->isc_nrxqsets; i++, rxq++) {
for (j = 0, fl = rxq->ifr_fl; j < rxq->ifr_nfl; j++, fl++) {
if (iflib_fl_setup(fl)) {
device_printf(ctx->ifc_dev, "freelist setup failed - check cluster settings\n");
goto done;
}
}
}
done:
if_setdrvflagbits(ctx->ifc_ifp, IFF_DRV_RUNNING, IFF_DRV_OACTIVE);
IFDI_INTR_ENABLE(ctx);
txq = ctx->ifc_txqs;
for (i = 0; i < sctx->isc_ntxqsets; i++, txq++)
callout_reset_on(&txq->ift_timer, hz/2, iflib_timer, txq,
txq->ift_timer.c_cpu);
}
static int
iflib_media_change(if_t ifp)
{
if_ctx_t ctx = if_getsoftc(ifp);
int err;
CTX_LOCK(ctx);
if ((err = IFDI_MEDIA_CHANGE(ctx)) == 0)
iflib_init_locked(ctx);
CTX_UNLOCK(ctx);
return (err);
}
static void
iflib_media_status(if_t ifp, struct ifmediareq *ifmr)
{
if_ctx_t ctx = if_getsoftc(ifp);
CTX_LOCK(ctx);
IFDI_UPDATE_ADMIN_STATUS(ctx);
IFDI_MEDIA_STATUS(ctx, ifmr);
CTX_UNLOCK(ctx);
}
static void
iflib_stop(if_ctx_t ctx)
{
iflib_txq_t txq = ctx->ifc_txqs;
iflib_rxq_t rxq = ctx->ifc_rxqs;
if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
if_shared_ctx_t sctx = ctx->ifc_sctx;
iflib_dma_info_t di;
iflib_fl_t fl;
int i, j;
/* Tell the stack that the interface is no longer active */
if_setdrvflagbits(ctx->ifc_ifp, IFF_DRV_OACTIVE, IFF_DRV_RUNNING);
IFDI_INTR_DISABLE(ctx);
msleep(ctx, &ctx->ifc_mtx, PUSER, "iflib_init", hz);
/* Wait for current tx queue users to exit to disarm watchdog timer. */
for (i = 0; i < scctx->isc_ntxqsets; i++, txq++) {
/* make sure all transmitters have completed before proceeding XXX */
/* clean any enqueued buffers */
iflib_txq_check_drain(txq, 0);
/* Free any existing tx buffers. */
for (j = 0; j < sctx->isc_ntxd; j++) {
iflib_txsd_free(ctx, txq, j);
}
txq->ift_processed = txq->ift_cleaned = txq->ift_cidx_processed = 0;
txq->ift_in_use = txq->ift_cidx = txq->ift_pidx = txq->ift_no_desc_avail = 0;
txq->ift_closed = txq->ift_mbuf_defrag = txq->ift_mbuf_defrag_failed = 0;
txq->ift_no_tx_dma_setup = txq->ift_txd_encap_efbig = txq->ift_map_failed = 0;
txq->ift_pullups = 0;
ifmp_ring_reset_stats(txq->ift_br[0]);
for (j = 0, di = txq->ift_ifdi; j < ctx->ifc_nhwtxqs; j++, di++)
bzero((void *)di->idi_vaddr, di->idi_size);
}
for (i = 0; i < scctx->isc_nrxqsets; i++, rxq++) {
/* make sure all transmitters have completed before proceeding XXX */
for (j = 0, di = txq->ift_ifdi; j < ctx->ifc_nhwrxqs; j++, di++)
bzero((void *)di->idi_vaddr, di->idi_size);
/* also resets the free lists pidx/cidx */
for (j = 0, fl = rxq->ifr_fl; j < rxq->ifr_nfl; j++, fl++)
iflib_fl_bufs_free(fl);
}
IFDI_STOP(ctx);
}
static iflib_rxsd_t
rxd_frag_to_sd(iflib_rxq_t rxq, if_rxd_frag_t irf, int *cltype, int unload)
{
int flid, cidx;
iflib_rxsd_t sd;
iflib_fl_t fl;
iflib_dma_info_t di;
flid = irf->irf_flid;
cidx = irf->irf_idx;
fl = &rxq->ifr_fl[flid];
fl->ifl_credits--;
#if MEMORY_LOGGING
fl->ifl_m_dequeued++;
if (cltype)
fl->ifl_cl_dequeued++;
#endif
sd = &fl->ifl_sds[cidx];
di = fl->ifl_ifdi;
bus_dmamap_sync(di->idi_tag, di->idi_map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
/* not valid assert if bxe really does SGE from non-contiguous elements */
MPASS(fl->ifl_cidx == cidx);
if (unload)
bus_dmamap_unload(fl->ifl_desc_tag, sd->ifsd_map);
if (__predict_false(++fl->ifl_cidx == fl->ifl_size)) {
fl->ifl_cidx = 0;
fl->ifl_gen = 0;
}
/* YES ick */
if (cltype)
*cltype = fl->ifl_cltype;
return (sd);
}
static struct mbuf *
assemble_segments(iflib_rxq_t rxq, if_rxd_info_t ri)
{
int i, padlen , flags, cltype;
struct mbuf *m, *mh, *mt;
iflib_rxsd_t sd;
caddr_t cl;
i = 0;
do {
sd = rxd_frag_to_sd(rxq, &ri->iri_frags[i], &cltype, TRUE);
MPASS(sd->ifsd_cl != NULL);
MPASS(sd->ifsd_m != NULL);
m = sd->ifsd_m;
if (i == 0) {
flags = M_PKTHDR|M_EXT;
mh = mt = m;
padlen = ri->iri_pad;
} else {
flags = M_EXT;
mt->m_next = m;
mt = m;
/* assuming padding is only on the first fragment */
padlen = 0;
}
sd->ifsd_m = NULL;
cl = sd->ifsd_cl;
sd->ifsd_cl = NULL;
/* Can these two be made one ? */
m_init(m, M_NOWAIT, MT_DATA, flags);
m_cljset(m, cl, cltype);
/*
* These must follow m_init and m_cljset
*/
m->m_data += padlen;
ri->iri_len -= padlen;
m->m_len = ri->iri_len;
} while (++i < ri->iri_nfrags);
return (mh);
}
/*
* Process one software descriptor
*/
static struct mbuf *
iflib_rxd_pkt_get(iflib_rxq_t rxq, if_rxd_info_t ri)
{
struct mbuf *m;
iflib_rxsd_t sd;
/* should I merge this back in now that the two paths are basically duplicated? */
if (ri->iri_len <= IFLIB_RX_COPY_THRESH) {
sd = rxd_frag_to_sd(rxq, &ri->iri_frags[0], NULL, FALSE);
m = sd->ifsd_m;
sd->ifsd_m = NULL;
m_init(m, M_NOWAIT, MT_DATA, M_PKTHDR);
memcpy(m->m_data, sd->ifsd_cl, ri->iri_len);
m->m_len = ri->iri_len;
} else {
m = assemble_segments(rxq, ri);
}
m->m_pkthdr.len = ri->iri_len;
m->m_pkthdr.rcvif = ri->iri_ifp;
m->m_flags |= ri->iri_flags;
m->m_pkthdr.ether_vtag = ri->iri_vtag;
m->m_pkthdr.flowid = ri->iri_flowid;
M_HASHTYPE_SET(m, ri->iri_rsstype);
m->m_pkthdr.csum_flags = ri->iri_csum_flags;
m->m_pkthdr.csum_data = ri->iri_csum_data;
return (m);
}
static bool
iflib_rxeof(iflib_rxq_t rxq, int budget)
{
if_ctx_t ctx = rxq->ifr_ctx;
if_shared_ctx_t sctx = ctx->ifc_sctx;
int avail, i;
uint16_t *cidxp;
struct if_rxd_info ri;
int err, budget_left, rx_bytes, rx_pkts;
iflib_fl_t fl;
struct ifnet *ifp;
struct lro_entry *queued;
int lro_enabled;
/*
* XXX early demux data packets so that if_input processing only handles
* acks in interrupt context
*/
struct mbuf *m, *mh, *mt;
if (netmap_rx_irq(ctx->ifc_ifp, rxq->ifr_id, &budget)) {
return (FALSE);
}
mh = mt = NULL;
MPASS(budget > 0);
rx_pkts = rx_bytes = 0;
if (sctx->isc_flags & IFLIB_HAS_CQ)
cidxp = &rxq->ifr_cq_cidx;
else
cidxp = &rxq->ifr_fl[0].ifl_cidx;
if ((avail = iflib_rxd_avail(ctx, rxq, *cidxp)) == 0) {
for (i = 0, fl = &rxq->ifr_fl[0]; i < sctx->isc_nfl; i++, fl++)
__iflib_fl_refill_lt(ctx, fl, budget + 8);
DBG_COUNTER_INC(rx_unavail);
return (false);
}
for (budget_left = budget; (budget_left > 0) && (avail > 0); budget_left--, avail--) {
if (__predict_false(!CTX_ACTIVE(ctx))) {
DBG_COUNTER_INC(rx_ctx_inactive);
break;
}
/*
* Reset client set fields to their default values
*/
bzero(&ri, sizeof(ri));
ri.iri_qsidx = rxq->ifr_id;
ri.iri_cidx = *cidxp;
ri.iri_ifp = ctx->ifc_ifp;
ri.iri_frags = rxq->ifr_frags;
err = ctx->isc_rxd_pkt_get(ctx->ifc_softc, &ri);
/* in lieu of handling correctly - make sure it isn't being unhandled */
MPASS(err == 0);
if (sctx->isc_flags & IFLIB_HAS_CQ) {
/* we know we consumed _one_ CQ entry */
if (++rxq->ifr_cq_cidx == sctx->isc_nrxd) {
rxq->ifr_cq_cidx = 0;
rxq->ifr_cq_gen = 0;
}
/* was this only a completion queue message? */
if (__predict_false(ri.iri_nfrags == 0))
continue;
}
MPASS(ri.iri_nfrags != 0);
MPASS(ri.iri_len != 0);
/* will advance the cidx on the corresponding free lists */
m = iflib_rxd_pkt_get(rxq, &ri);
if (avail == 0 && budget_left)
avail = iflib_rxd_avail(ctx, rxq, *cidxp);
if (__predict_false(m == NULL)) {
DBG_COUNTER_INC(rx_mbuf_null);
continue;
}
/* imm_pkt: -- cxgb */
if (mh == NULL)
mh = mt = m;
else {
mt->m_nextpkt = m;
mt = m;
}
}
/* make sure that we can refill faster than drain */
for (i = 0, fl = &rxq->ifr_fl[0]; i < sctx->isc_nfl; i++, fl++)
__iflib_fl_refill_lt(ctx, fl, budget + 8);
ifp = ctx->ifc_ifp;
lro_enabled = (if_getcapenable(ifp) & IFCAP_LRO);
while (mh != NULL) {
m = mh;
mh = mh->m_nextpkt;
m->m_nextpkt = NULL;
rx_bytes += m->m_pkthdr.len;
rx_pkts++;
if (lro_enabled && tcp_lro_rx(&rxq->ifr_lc, m, 0) == 0)
continue;
DBG_COUNTER_INC(rx_if_input);
ifp->if_input(ifp, m);
}
if_inc_counter(ifp, IFCOUNTER_IBYTES, rx_bytes);
if_inc_counter(ifp, IFCOUNTER_IPACKETS, rx_pkts);
/*
* Flush any outstanding LRO work
*/
while ((queued = LIST_FIRST(&rxq->ifr_lc.lro_active)) != NULL) {
LIST_REMOVE(queued, next);
tcp_lro_flush(&rxq->ifr_lc, queued);
}
return (iflib_rxd_avail(ctx, rxq, *cidxp));
}
#define M_CSUM_FLAGS(m) ((m)->m_pkthdr.csum_flags)
#define M_HAS_VLANTAG(m) (m->m_flags & M_VLANTAG)
#define TXQ_MAX_DB_DEFERRED(ctx) (ctx->ifc_sctx->isc_ntxd >> 5)
#define TXQ_MAX_DB_CONSUMED(ctx) (ctx->ifc_sctx->isc_ntxd >> 4)
static __inline void
iflib_txd_db_check(if_ctx_t ctx, iflib_txq_t txq, int ring)
{
uint32_t dbval;
if (ring || txq->ift_db_pending >= TXQ_MAX_DB_DEFERRED(ctx)) {
/* the lock will only ever be contended in the !min_latency case */
if (!TXDB_TRYLOCK(txq))
return;
dbval = txq->ift_npending ? txq->ift_npending : txq->ift_pidx;
ctx->isc_txd_flush(ctx->ifc_softc, txq->ift_id, dbval);
txq->ift_db_pending = txq->ift_npending = 0;
TXDB_UNLOCK(txq);
}
}
static void
iflib_txd_deferred_db_check(void * arg)
{
iflib_txq_t txq = arg;
/* simple non-zero boolean so use bitwise OR */
if ((txq->ift_db_pending | txq->ift_npending) &&
txq->ift_db_pending >= txq->ift_db_pending_queued)
iflib_txd_db_check(txq->ift_ctx, txq, TRUE);
txq->ift_db_pending_queued = 0;
if (ifmp_ring_is_stalled(txq->ift_br[0]))
iflib_txq_check_drain(txq, 4);
}
#ifdef PKT_DEBUG
static void
print_pkt(if_pkt_info_t pi)
{
printf("pi len: %d qsidx: %d nsegs: %d ndescs: %d flags: %x pidx: %d\n",
pi->ipi_len, pi->ipi_qsidx, pi->ipi_nsegs, pi->ipi_ndescs, pi->ipi_flags, pi->ipi_pidx);
printf("pi new_pidx: %d csum_flags: %lx tso_segsz: %d mflags: %x vtag: %d\n",
pi->ipi_new_pidx, pi->ipi_csum_flags, pi->ipi_tso_segsz, pi->ipi_mflags, pi->ipi_vtag);
printf("pi etype: %d ehdrlen: %d ip_hlen: %d ipproto: %d\n",
pi->ipi_etype, pi->ipi_ehdrlen, pi->ipi_ip_hlen, pi->ipi_ipproto);
}
#endif
#define IS_TSO4(pi) ((pi)->ipi_csum_flags & CSUM_IP_TSO)
#define IS_TSO6(pi) ((pi)->ipi_csum_flags & CSUM_IP6_TSO)
static int
iflib_parse_header(iflib_txq_t txq, if_pkt_info_t pi, struct mbuf **mp)
{
struct ether_vlan_header *eh;
struct mbuf *m, *n;
m = *mp;
/*
* Determine where frame payload starts.
* Jump over vlan headers if already present,
* helpful for QinQ too.
*/
if (__predict_false(m->m_len < sizeof(*eh))) {
txq->ift_pullups++;
if (__predict_false((m = m_pullup(m, sizeof(*eh))) == NULL))
return (ENOMEM);
}
eh = mtod(m, struct ether_vlan_header *);
if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
pi->ipi_etype = ntohs(eh->evl_proto);
pi->ipi_ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
} else {
pi->ipi_etype = ntohs(eh->evl_encap_proto);
pi->ipi_ehdrlen = ETHER_HDR_LEN;
}
switch (pi->ipi_etype) {
#ifdef INET
case ETHERTYPE_IP:
{
struct ip *ip = NULL;
struct tcphdr *th = NULL;
int minthlen;
minthlen = min(m->m_pkthdr.len, pi->ipi_ehdrlen + sizeof(*ip) + sizeof(*th));
if (__predict_false(m->m_len < minthlen)) {
/*
* if this code bloat is causing too much of a hit
* move it to a separate function and mark it noinline
*/
if (m->m_len == pi->ipi_ehdrlen) {
n = m->m_next;
MPASS(n);
if (n->m_len >= sizeof(*ip)) {
ip = (struct ip *)n->m_data;
if (n->m_len >= (ip->ip_hl << 2) + sizeof(*th))
th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
} else {
txq->ift_pullups++;
if (__predict_false((m = m_pullup(m, minthlen)) == NULL))
return (ENOMEM);
ip = (struct ip *)(m->m_data + pi->ipi_ehdrlen);
}
} else {
txq->ift_pullups++;
if (__predict_false((m = m_pullup(m, minthlen)) == NULL))
return (ENOMEM);
ip = (struct ip *)(m->m_data + pi->ipi_ehdrlen);
if (m->m_len >= (ip->ip_hl << 2) + sizeof(*th))
th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
}
} else {
ip = (struct ip *)(m->m_data + pi->ipi_ehdrlen);
if (m->m_len >= (ip->ip_hl << 2) + sizeof(*th))
th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
}
pi->ipi_ip_hlen = ip->ip_hl << 2;
pi->ipi_ipproto = ip->ip_p;
pi->ipi_flags |= IPI_TX_IPV4;
if (pi->ipi_csum_flags & CSUM_IP)
ip->ip_sum = 0;
if (pi->ipi_ipproto == IPPROTO_TCP) {
if (__predict_false(th == NULL)) {
txq->ift_pullups++;
if (__predict_false((m = m_pullup(m, (ip->ip_hl << 2) + sizeof(*th))) == NULL))
return (ENOMEM);
th = (struct tcphdr *)((caddr_t)ip + pi->ipi_ip_hlen);
}
pi->ipi_tcp_hflags = th->th_flags;
pi->ipi_tcp_hlen = th->th_off << 2;
pi->ipi_tcp_seq = th->th_seq;
}
if (IS_TSO4(pi)) {
if (__predict_false(ip->ip_p != IPPROTO_TCP))
return (ENXIO);
th->th_sum = in_pseudo(ip->ip_src.s_addr,
ip->ip_dst.s_addr, htons(IPPROTO_TCP));
pi->ipi_tso_segsz = m->m_pkthdr.tso_segsz;
}
break;
}
#endif
#ifdef INET6
case ETHERTYPE_IPV6:
{
struct ip6_hdr *ip6 = (struct ip6_hdr *)(m->m_data + pi->ipi_ehdrlen);
struct tcphdr *th;
pi->ipi_ip_hlen = sizeof(struct ip6_hdr);
if (__predict_false(m->m_len < pi->ipi_ehdrlen + sizeof(struct ip6_hdr))) {
if (__predict_false((m = m_pullup(m, pi->ipi_ehdrlen + sizeof(struct ip6_hdr))) == NULL))
return (ENOMEM);
}
th = (struct tcphdr *)((caddr_t)ip6 + pi->ipi_ip_hlen);
/* XXX-BZ this will go badly in case of ext hdrs. */
pi->ipi_ipproto = ip6->ip6_nxt;
pi->ipi_flags |= IPI_TX_IPV6;
if (pi->ipi_ipproto == IPPROTO_TCP) {
if (__predict_false(m->m_len < pi->ipi_ehdrlen + sizeof(struct ip6_hdr) + sizeof(struct tcphdr))) {
if (__predict_false((m = m_pullup(m, pi->ipi_ehdrlen + sizeof(struct ip6_hdr) + sizeof(struct tcphdr))) == NULL))
return (ENOMEM);
}
pi->ipi_tcp_hflags = th->th_flags;
pi->ipi_tcp_hlen = th->th_off << 2;
}
if (IS_TSO6(pi)) {
if (__predict_false(ip6->ip6_nxt != IPPROTO_TCP))
return (ENXIO);
/*
* The corresponding flag is set by the stack in the IPv4
* TSO case, but not in IPv6 (at least in FreeBSD 10.2).
* So, set it here because the rest of the flow requires it.
*/
pi->ipi_csum_flags |= CSUM_TCP_IPV6;
th->th_sum = in6_cksum_pseudo(ip6, 0, IPPROTO_TCP, 0);
pi->ipi_tso_segsz = m->m_pkthdr.tso_segsz;
}
break;
}
#endif
default:
pi->ipi_csum_flags &= ~CSUM_OFFLOAD;
pi->ipi_ip_hlen = 0;
break;
}
*mp = m;
return (0);
}
static __noinline struct mbuf *
collapse_pkthdr(struct mbuf *m0)
{
struct mbuf *m, *m_next, *tmp;
m = m0;
m_next = m->m_next;
while (m_next != NULL && m_next->m_len == 0) {
m = m_next;
m->m_next = NULL;
m_free(m);
m_next = m_next->m_next;
}
m = m0;
m->m_next = m_next;
if ((m_next->m_flags & M_EXT) == 0) {
m = m_defrag(m, M_NOWAIT);
} else {
tmp = m_next->m_next;
memcpy(m_next, m, MPKTHSIZE);
m = m_next;
m->m_next = tmp;
}
return (m);
}
/*
* If dodgy hardware rejects the scatter gather chain we've handed it
* we'll need to rebuild the mbuf chain before we can call m_defrag
*/
static __noinline struct mbuf *
iflib_rebuild_mbuf(iflib_txq_t txq)
{
int ntxd, mhlen, len, i, pidx;
struct mbuf *m, *mh, **ifsd_m;
if_shared_ctx_t sctx;
pidx = txq->ift_pidx;
ifsd_m = txq->ift_sds.ifsd_m;
sctx = txq->ift_ctx->ifc_sctx;
ntxd = sctx->isc_ntxd;
mh = m = ifsd_m[pidx];
ifsd_m[pidx] = NULL;
#if MEMORY_LOGGING
txq->ift_dequeued++;
#endif
len = m->m_len;
mhlen = m->m_pkthdr.len;
i = 1;
while (len < mhlen && (m->m_next == NULL)) {
m->m_next = ifsd_m[(pidx + i) & (ntxd-1)];
ifsd_m[(pidx + i) & (ntxd -1)] = NULL;
#if MEMORY_LOGGING
txq->ift_dequeued++;
#endif
m = m->m_next;
len += m->m_len;
i++;
}
return (mh);
}
static int
iflib_busdma_load_mbuf_sg(iflib_txq_t txq, bus_dma_tag_t tag, bus_dmamap_t map,
struct mbuf **m0, bus_dma_segment_t *segs, int *nsegs,
int max_segs, int flags)
{
if_ctx_t ctx;
if_shared_ctx_t sctx;
int i, next, pidx, mask, err, maxsegsz, ntxd, count;
struct mbuf *m, *tmp, **ifsd_m, **mp;
m = *m0;
/*
* Please don't ever do this
*/
if (__predict_false(m->m_len == 0))
*m0 = m = collapse_pkthdr(m);
ctx = txq->ift_ctx;
sctx = ctx->ifc_sctx;
ifsd_m = txq->ift_sds.ifsd_m;
ntxd = sctx->isc_ntxd;
pidx = txq->ift_pidx;
if (map != NULL) {
uint8_t *ifsd_flags = txq->ift_sds.ifsd_flags;
err = bus_dmamap_load_mbuf_sg(tag, map,
*m0, segs, nsegs, BUS_DMA_NOWAIT);
if (err)
return (err);
ifsd_flags[pidx] |= TX_SW_DESC_MAPPED;
i = 0;
next = pidx;
mask = (sctx->isc_ntxd-1);
m = *m0;
do {
mp = &ifsd_m[next];
*mp = m;
m = m->m_next;
(*mp)->m_next = NULL;
if (__predict_false((*mp)->m_len == 0)) {
m_free(*mp);
*mp = NULL;
} else
next = (pidx + i) & (ntxd-1);
} while (m != NULL);
} else {
int buflen, sgsize, max_sgsize;
vm_offset_t vaddr;
vm_paddr_t curaddr;
count = i = 0;
maxsegsz = sctx->isc_tx_maxsize;
m = *m0;
do {
if (__predict_false(m->m_len <= 0)) {
tmp = m;
m = m->m_next;
tmp->m_next = NULL;
m_free(tmp);
continue;
}
buflen = m->m_len;
vaddr = (vm_offset_t)m->m_data;
/*
* see if we can't be smarter about physically
* contiguous mappings
*/
next = (pidx + count) & (ntxd-1);
MPASS(ifsd_m[next] == NULL);
#if MEMORY_LOGGING
txq->ift_enqueued++;
#endif
ifsd_m[next] = m;
while (buflen > 0) {
max_sgsize = MIN(buflen, maxsegsz);
curaddr = pmap_kextract(vaddr);
sgsize = PAGE_SIZE - (curaddr & PAGE_MASK);
sgsize = MIN(sgsize, max_sgsize);
segs[i].ds_addr = curaddr;
segs[i].ds_len = sgsize;
vaddr += sgsize;
buflen -= sgsize;
i++;
if (i >= max_segs)
goto err;
}
count++;
tmp = m;
m = m->m_next;
tmp->m_next = NULL;
} while (m != NULL);
*nsegs = i;
}
return (0);
err:
*m0 = iflib_rebuild_mbuf(txq);
return (EFBIG);
}
static int
iflib_encap(iflib_txq_t txq, struct mbuf **m_headp)
{
if_ctx_t ctx;
if_shared_ctx_t sctx;
if_softc_ctx_t scctx;
bus_dma_segment_t *segs;
struct mbuf *m_head;
bus_dmamap_t map;
struct if_pkt_info pi;
int remap = 0;
int err, nsegs, ndesc, max_segs, pidx, cidx, next, ntxd;
bus_dma_tag_t desc_tag;
segs = txq->ift_segs;
ctx = txq->ift_ctx;
sctx = ctx->ifc_sctx;
scctx = &ctx->ifc_softc_ctx;
segs = txq->ift_segs;
ntxd = sctx->isc_ntxd;
m_head = *m_headp;
map = NULL;
/*
* If we're doing TSO the next descriptor to clean may be quite far ahead
*/
cidx = txq->ift_cidx;
pidx = txq->ift_pidx;
next = (cidx + CACHE_PTR_INCREMENT) & (ntxd-1);
/* prefetch the next cache line of mbuf pointers and flags */
prefetch(&txq->ift_sds.ifsd_m[next]);
if (txq->ift_sds.ifsd_map != NULL) {
prefetch(&txq->ift_sds.ifsd_map[next]);
map = txq->ift_sds.ifsd_map[pidx];
next = (cidx + CACHE_LINE_SIZE) & (ntxd-1);
prefetch(&txq->ift_sds.ifsd_flags[next]);
}
if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
desc_tag = txq->ift_tso_desc_tag;
max_segs = scctx->isc_tx_tso_segments_max;
} else {
desc_tag = txq->ift_desc_tag;
max_segs = scctx->isc_tx_nsegments;
}
m_head = *m_headp;
bzero(&pi, sizeof(pi));
pi.ipi_len = m_head->m_pkthdr.len;
pi.ipi_mflags = (m_head->m_flags & (M_VLANTAG|M_BCAST|M_MCAST));
pi.ipi_csum_flags = m_head->m_pkthdr.csum_flags;
pi.ipi_vtag = (m_head->m_flags & M_VLANTAG) ? m_head->m_pkthdr.ether_vtag : 0;
pi.ipi_pidx = pidx;
pi.ipi_qsidx = txq->ift_id;
/* deliberate bitwise OR to make one condition */
if (__predict_true((pi.ipi_csum_flags | pi.ipi_vtag))) {
if (__predict_false((err = iflib_parse_header(txq, &pi, m_headp)) != 0))
return (err);
m_head = *m_headp;
}
retry:
err = iflib_busdma_load_mbuf_sg(txq, desc_tag, map, m_headp, segs, &nsegs, max_segs, BUS_DMA_NOWAIT);
defrag:
if (__predict_false(err)) {
switch (err) {
case EFBIG:
/* try collapse once and defrag once */
if (remap == 0)
m_head = m_collapse(*m_headp, M_NOWAIT, max_segs);
if (remap == 1)
m_head = m_defrag(*m_headp, M_NOWAIT);
remap++;
if (__predict_false(m_head == NULL))
goto defrag_failed;
txq->ift_mbuf_defrag++;
*m_headp = m_head;
goto retry;
break;
case ENOMEM:
txq->ift_no_tx_dma_setup++;
break;
default:
txq->ift_no_tx_dma_setup++;
m_freem(*m_headp);
DBG_COUNTER_INC(tx_frees);
*m_headp = NULL;
break;
}
txq->ift_map_failed++;
DBG_COUNTER_INC(encap_load_mbuf_fail);
return (err);
}
/*
* XXX assumes a 1 to 1 relationship between segments and
* descriptors - this does not hold true on all drivers, e.g.
* cxgb
*/
if (__predict_false(nsegs + 2 > TXQ_AVAIL(txq))) {
txq->ift_no_desc_avail++;
if (map != NULL)
bus_dmamap_unload(desc_tag, map);
DBG_COUNTER_INC(encap_txq_avail_fail);
if (txq->ift_task.gt_task.ta_pending == 0)
GROUPTASK_ENQUEUE(&txq->ift_task);
return (ENOBUFS);
}
pi.ipi_segs = segs;
pi.ipi_nsegs = nsegs;
MPASS(pidx >= 0 && pidx < sctx->isc_ntxd);
#ifdef PKT_DEBUG
print_pkt(&pi);
#endif
if ((err = ctx->isc_txd_encap(ctx->ifc_softc, &pi)) == 0) {
bus_dmamap_sync(txq->ift_ifdi->idi_tag, txq->ift_ifdi->idi_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
DBG_COUNTER_INC(tx_encap);
MPASS(pi.ipi_new_pidx >= 0 && pi.ipi_new_pidx < sctx->isc_ntxd);
ndesc = pi.ipi_new_pidx - pi.ipi_pidx;
if (pi.ipi_new_pidx < pi.ipi_pidx) {
ndesc += sctx->isc_ntxd;
txq->ift_gen = 1;
}
MPASS(pi.ipi_new_pidx != pidx);
MPASS(ndesc > 0);
txq->ift_in_use += ndesc;
/*
* We update the last software descriptor again here because there may
* be a sentinel and/or there may be more mbufs than segments
*/
txq->ift_pidx = pi.ipi_new_pidx;
txq->ift_npending += pi.ipi_ndescs;
} else if (__predict_false(err == EFBIG && remap < 2)) {
*m_headp = m_head = iflib_rebuild_mbuf(txq);
remap = 1;
txq->ift_txd_encap_efbig++;
goto defrag;
} else
DBG_COUNTER_INC(encap_txd_encap_fail);
return (err);
defrag_failed:
txq->ift_mbuf_defrag_failed++;
txq->ift_map_failed++;
m_freem(*m_headp);
DBG_COUNTER_INC(tx_frees);
*m_headp = NULL;
return (ENOMEM);
}
/* forward compatibility for cxgb */
#define FIRST_QSET(ctx) 0
#define NTXQSETS(ctx) ((ctx)->ifc_softc_ctx.isc_ntxqsets)
#define NRXQSETS(ctx) ((ctx)->ifc_softc_ctx.isc_nrxqsets)
#define QIDX(ctx, m) ((((m)->m_pkthdr.flowid & ctx->ifc_softc_ctx.isc_rss_table_mask) % NRXQSETS(ctx)) + FIRST_QSET(ctx))
#define DESC_RECLAIMABLE(q) ((int)((q)->ift_processed - (q)->ift_cleaned - (q)->ift_ctx->ifc_softc_ctx.isc_tx_nsegments))
#define RECLAIM_THRESH(ctx) ((ctx)->ifc_sctx->isc_tx_reclaim_thresh)
#define MAX_TX_DESC(ctx) ((ctx)->ifc_softc_ctx.isc_tx_tso_segments_max)
/* if there are more than TXQ_MIN_OCCUPANCY packets pending we consider deferring
* doorbell writes
*
* ORing with 2 assures that min occupancy is never less than 2 without any conditional logic
*/
#define TXQ_MIN_OCCUPANCY(ctx) ((ctx->ifc_sctx->isc_ntxd >> 6)| 0x2)
static inline int
iflib_txq_min_occupancy(iflib_txq_t txq)
{
if_ctx_t ctx;
ctx = txq->ift_ctx;
return (get_inuse(txq->ift_size, txq->ift_cidx, txq->ift_pidx, txq->ift_gen) < TXQ_MIN_OCCUPANCY(ctx) + MAX_TX_DESC(ctx));
}
static void
iflib_tx_desc_free(iflib_txq_t txq, int n)
{
int hasmap;
uint32_t qsize, cidx, mask, gen;
struct mbuf *m, **ifsd_m;
uint8_t *ifsd_flags;
bus_dmamap_t *ifsd_map;
cidx = txq->ift_cidx;
gen = txq->ift_gen;
qsize = txq->ift_ctx->ifc_sctx->isc_ntxd;
mask = qsize-1;
hasmap = txq->ift_sds.ifsd_map != NULL;
ifsd_flags = txq->ift_sds.ifsd_flags;
ifsd_m = txq->ift_sds.ifsd_m;
ifsd_map = txq->ift_sds.ifsd_map;
while (n--) {
prefetch(ifsd_m[(cidx + 3) & mask]);
prefetch(ifsd_m[(cidx + 4) & mask]);
if (ifsd_m[cidx] != NULL) {
prefetch(&ifsd_m[(cidx + CACHE_PTR_INCREMENT) & mask]);
prefetch(&ifsd_flags[(cidx + CACHE_PTR_INCREMENT) & mask]);
if (hasmap && (ifsd_flags[cidx] & TX_SW_DESC_MAPPED)) {
/*
* does it matter if it's not the TSO tag? If so we'll
* have to add the type to flags
*/
bus_dmamap_unload(txq->ift_desc_tag, ifsd_map[cidx]);
ifsd_flags[cidx] &= ~TX_SW_DESC_MAPPED;
}
if ((m = ifsd_m[cidx]) != NULL) {
/* XXX we don't support any drivers that batch packets yet */
MPASS(m->m_nextpkt == NULL);
m_freem(m);
ifsd_m[cidx] = NULL;
#if MEMORY_LOGGING
txq->ift_dequeued++;
#endif
DBG_COUNTER_INC(tx_frees);
}
}
if (__predict_false(++cidx == qsize)) {
cidx = 0;
gen = 0;
}
}
txq->ift_cidx = cidx;
txq->ift_gen = gen;
}
static __inline int
iflib_completed_tx_reclaim(iflib_txq_t txq, int thresh)
{
int reclaim;
if_ctx_t ctx = txq->ift_ctx;
KASSERT(thresh >= 0, ("invalid threshold to reclaim"));
MPASS(thresh /*+ MAX_TX_DESC(txq->ift_ctx) */ < txq->ift_size);
/*
* Need a rate-limiting check so that this isn't called every time
*/
iflib_tx_credits_update(ctx, txq);
reclaim = DESC_RECLAIMABLE(txq);
if (reclaim <= thresh /* + MAX_TX_DESC(txq->ift_ctx) */) {
#ifdef INVARIANTS
if (iflib_verbose_debug) {
printf("%s processed=%ju cleaned=%ju tx_nsegments=%d reclaim=%d thresh=%d\n", __FUNCTION__,
txq->ift_processed, txq->ift_cleaned, txq->ift_ctx->ifc_softc_ctx.isc_tx_nsegments,
reclaim, thresh);
}
#endif
return (0);
}
iflib_tx_desc_free(txq, reclaim);
txq->ift_cleaned += reclaim;
txq->ift_in_use -= reclaim;
if (txq->ift_active == FALSE)
txq->ift_active = TRUE;
return (reclaim);
}
static struct mbuf **
_ring_peek_one(struct ifmp_ring *r, int cidx, int offset)
{
return (__DEVOLATILE(struct mbuf **, &r->items[(cidx + offset) & (r->size-1)]));
}
static void
iflib_txq_check_drain(iflib_txq_t txq, int budget)
{
ifmp_ring_check_drainage(txq->ift_br[0], budget);
}
static uint32_t
iflib_txq_can_drain(struct ifmp_ring *r)
{
iflib_txq_t txq = r->cookie;
if_ctx_t ctx = txq->ift_ctx;
return ((TXQ_AVAIL(txq) >= MAX_TX_DESC(ctx)) ||
ctx->isc_txd_credits_update(ctx->ifc_softc, txq->ift_id, txq->ift_cidx_processed, false));
}
static uint32_t
iflib_txq_drain(struct ifmp_ring *r, uint32_t cidx, uint32_t pidx)
{
iflib_txq_t txq = r->cookie;
if_ctx_t ctx = txq->ift_ctx;
if_t ifp = ctx->ifc_ifp;
struct mbuf **mp, *m;
int i, count, consumed, pkt_sent, bytes_sent, mcast_sent, avail, err, in_use_prev, desc_used;
if (__predict_false(!(if_getdrvflags(ifp) & IFF_DRV_RUNNING) ||
!LINK_ACTIVE(ctx))) {
DBG_COUNTER_INC(txq_drain_notready);
return (0);
}
avail = IDXDIFF(pidx, cidx, r->size);
if (__predict_false(ctx->ifc_flags & IFC_QFLUSH)) {
DBG_COUNTER_INC(txq_drain_flushing);
for (i = 0; i < avail; i++) {
m_freem(r->items[(cidx + i) & (r->size-1)]);
r->items[(cidx + i) & (r->size-1)] = NULL;
}
return (avail);
}
iflib_completed_tx_reclaim(txq, RECLAIM_THRESH(ctx));
if (__predict_false(if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_OACTIVE)) {
txq->ift_qstatus = IFLIB_QUEUE_IDLE;
CALLOUT_LOCK(txq);
callout_stop(&txq->ift_timer);
callout_stop(&txq->ift_db_check);
CALLOUT_UNLOCK(txq);
DBG_COUNTER_INC(txq_drain_oactive);
return (0);
}
consumed = mcast_sent = bytes_sent = pkt_sent = 0;
count = MIN(avail, TX_BATCH_SIZE);
for (desc_used = i = 0; i < count && TXQ_AVAIL(txq) > MAX_TX_DESC(ctx) + 2; i++) {
mp = _ring_peek_one(r, cidx, i);
in_use_prev = txq->ift_in_use;
err = iflib_encap(txq, mp);
/*
* What other errors should we bail out for?
*/
if (err == ENOBUFS) {
DBG_COUNTER_INC(txq_drain_encapfail);
break;
}
consumed++;
if (err)
continue;
pkt_sent++;
m = *mp;
DBG_COUNTER_INC(tx_sent);
bytes_sent += m->m_pkthdr.len;
if (m->m_flags & M_MCAST)
mcast_sent++;
txq->ift_db_pending += (txq->ift_in_use - in_use_prev);
desc_used += (txq->ift_in_use - in_use_prev);
iflib_txd_db_check(ctx, txq, FALSE);
ETHER_BPF_MTAP(ifp, m);
if (__predict_false(!(if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_RUNNING)))
break;
if (desc_used > TXQ_MAX_DB_CONSUMED(ctx))
break;
}
if ((iflib_min_tx_latency || iflib_txq_min_occupancy(txq)) && txq->ift_db_pending)
iflib_txd_db_check(ctx, txq, TRUE);
else if ((txq->ift_db_pending || TXQ_AVAIL(txq) < MAX_TX_DESC(ctx)) &&
(callout_pending(&txq->ift_db_check) == 0)) {
txq->ift_db_pending_queued = txq->ift_db_pending;
callout_reset_on(&txq->ift_db_check, 1, iflib_txd_deferred_db_check,
txq, txq->ift_db_check.c_cpu);
}
if_inc_counter(ifp, IFCOUNTER_OBYTES, bytes_sent);
if_inc_counter(ifp, IFCOUNTER_OPACKETS, pkt_sent);
if (mcast_sent)
if_inc_counter(ifp, IFCOUNTER_OMCASTS, mcast_sent);
return (consumed);
}
static void
_task_fn_tx(void *context, int pending)
{
iflib_txq_t txq = context;
if_ctx_t ctx = txq->ift_ctx;
if (!(if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_RUNNING))
return;
ifmp_ring_check_drainage(txq->ift_br[0], TX_BATCH_SIZE);
}
static void
_task_fn_rx(void *context, int pending)
{
iflib_rxq_t rxq = context;
if_ctx_t ctx = rxq->ifr_ctx;
bool more;
DBG_COUNTER_INC(task_fn_rxs);
if (__predict_false(!(if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_RUNNING)))
return;
if ((more = iflib_rxeof(rxq, 16 /* XXX */)) == false) {
if (ctx->ifc_flags & IFC_LEGACY)
IFDI_INTR_ENABLE(ctx);
else {
DBG_COUNTER_INC(rx_intr_enables);
IFDI_QUEUE_INTR_ENABLE(ctx, rxq->ifr_id);
}
}
if (__predict_false(!(if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_RUNNING)))
return;
if (more)
GROUPTASK_ENQUEUE(&rxq->ifr_task);
}
static void
_task_fn_admin(void *context, int pending)
{
if_ctx_t ctx = context;
if_softc_ctx_t sctx = &ctx->ifc_softc_ctx;
iflib_txq_t txq;
int i;
if (!(if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_RUNNING))
return;
CTX_LOCK(ctx);
for (txq = ctx->ifc_txqs, i = 0; i < sctx->isc_ntxqsets; i++, txq++) {
CALLOUT_LOCK(txq);
callout_stop(&txq->ift_timer);
CALLOUT_UNLOCK(txq);
}
IFDI_UPDATE_ADMIN_STATUS(ctx);
for (txq = ctx->ifc_txqs, i = 0; i < sctx->isc_ntxqsets; i++, txq++)
callout_reset_on(&txq->ift_timer, hz/2, iflib_timer, txq, txq->ift_timer.c_cpu);
IFDI_LINK_INTR_ENABLE(ctx);
CTX_UNLOCK(ctx);
if (LINK_ACTIVE(ctx) == 0)
return;
for (txq = ctx->ifc_txqs, i = 0; i < sctx->isc_ntxqsets; i++, txq++)
iflib_txq_check_drain(txq, IFLIB_RESTART_BUDGET);
}
static void
_task_fn_iov(void *context, int pending)
{
if_ctx_t ctx = context;
if (!(if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_RUNNING))
return;
CTX_LOCK(ctx);
IFDI_VFLR_HANDLE(ctx);
CTX_UNLOCK(ctx);
}
static int
iflib_sysctl_int_delay(SYSCTL_HANDLER_ARGS)
{
int err;
if_int_delay_info_t info;
if_ctx_t ctx;
info = (if_int_delay_info_t)arg1;
ctx = info->iidi_ctx;
info->iidi_req = req;
info->iidi_oidp = oidp;
CTX_LOCK(ctx);
err = IFDI_SYSCTL_INT_DELAY(ctx, info);
CTX_UNLOCK(ctx);
return (err);
}
/*********************************************************************
*
* IFNET FUNCTIONS
*
**********************************************************************/
static void
iflib_if_init_locked(if_ctx_t ctx)
{
iflib_stop(ctx);
iflib_init_locked(ctx);
}
static void
iflib_if_init(void *arg)
{
if_ctx_t ctx = arg;
CTX_LOCK(ctx);
iflib_if_init_locked(ctx);
CTX_UNLOCK(ctx);
}
static int
iflib_if_transmit(if_t ifp, struct mbuf *m)
{
if_ctx_t ctx = if_getsoftc(ifp);
iflib_txq_t txq;
struct mbuf *marr[8], **mp, *next;
int err, i, count, qidx;
if (__predict_false((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || !LINK_ACTIVE(ctx))) {
DBG_COUNTER_INC(tx_frees);
m_freem(m);
return (0);
}
qidx = 0;
if ((NTXQSETS(ctx) > 1) && M_HASHTYPE_GET(m))
qidx = QIDX(ctx, m);
/*
* XXX calculate buf_ring based on flowid (divvy up bits?)
*/
txq = &ctx->ifc_txqs[qidx];
#ifdef DRIVER_BACKPRESSURE
if (txq->ift_closed) {
while (m != NULL) {
next = m->m_nextpkt;
m->m_nextpkt = NULL;
m_freem(m);
m = next;
}
return (ENOBUFS);
}
#endif
qidx = count = 0;
mp = marr;
next = m;
do {
count++;
next = next->m_nextpkt;
} while (next != NULL);
if (count > 8)
if ((mp = malloc(count*sizeof(struct mbuf *), M_IFLIB, M_NOWAIT)) == NULL) {
/* XXX check nextpkt */
m_freem(m);
/* XXX simplify for now */
DBG_COUNTER_INC(tx_frees);
return (ENOBUFS);
}
for (next = m, i = 0; next != NULL; i++) {
mp[i] = next;
next = next->m_nextpkt;
mp[i]->m_nextpkt = NULL;
}
DBG_COUNTER_INC(tx_seen);
err = ifmp_ring_enqueue(txq->ift_br[0], (void **)mp, count, TX_BATCH_SIZE);
if (iflib_txq_can_drain(txq->ift_br[0]))
GROUPTASK_ENQUEUE(&txq->ift_task);
if (err) {
/* support forthcoming later */
#ifdef DRIVER_BACKPRESSURE
txq->ift_closed = TRUE;
#endif
for (i = 0; i < count; i++)
m_freem(mp[i]);
ifmp_ring_check_drainage(txq->ift_br[0], TX_BATCH_SIZE);
}
if (count > 16)
free(mp, M_IFLIB);
return (err);
}
static void
iflib_if_qflush(if_t ifp)
{
if_ctx_t ctx = if_getsoftc(ifp);
iflib_txq_t txq = ctx->ifc_txqs;
int i;
CTX_LOCK(ctx);
ctx->ifc_flags |= IFC_QFLUSH;
CTX_UNLOCK(ctx);
for (i = 0; i < NTXQSETS(ctx); i++, txq++)
while (!(ifmp_ring_is_idle(txq->ift_br[0]) || ifmp_ring_is_stalled(txq->ift_br[0])))
iflib_txq_check_drain(txq, 0);
CTX_LOCK(ctx);
ctx->ifc_flags &= ~IFC_QFLUSH;
CTX_UNLOCK(ctx);
if_qflush(ifp);
}
#define IFCAP_REINIT (IFCAP_HWCSUM|IFCAP_TSO4|IFCAP_TSO6|IFCAP_VLAN_HWTAGGING|IFCAP_VLAN_MTU | \
IFCAP_VLAN_HWFILTER | IFCAP_VLAN_HWTSO)
#define IFCAP_FLAGS (IFCAP_RXCSUM | IFCAP_RXCSUM_IPV6 | IFCAP_HWCSUM | IFCAP_LRO | \
IFCAP_TSO4 | IFCAP_TSO6 | IFCAP_VLAN_HWTAGGING | \
IFCAP_VLAN_MTU | IFCAP_VLAN_HWFILTER | IFCAP_VLAN_HWTSO)
static int
iflib_if_ioctl(if_t ifp, u_long command, caddr_t data)
{
if_ctx_t ctx = if_getsoftc(ifp);
struct ifreq *ifr = (struct ifreq *)data;
#if defined(INET) || defined(INET6)
struct ifaddr *ifa = (struct ifaddr *)data;
#endif
bool avoid_reset = FALSE;
int err = 0, reinit = 0, bits;
switch (command) {
case SIOCSIFADDR:
#ifdef INET
if (ifa->ifa_addr->sa_family == AF_INET)
avoid_reset = TRUE;
#endif
#ifdef INET6
if (ifa->ifa_addr->sa_family == AF_INET6)
avoid_reset = TRUE;
#endif
/*
** Calling init results in link renegotiation,
** so we avoid doing it when possible.
*/
if (avoid_reset) {
if_setflagbits(ifp, IFF_UP,0);
if (!(if_getdrvflags(ifp)& IFF_DRV_RUNNING))
reinit = 1;
#ifdef INET
if (!(if_getflags(ifp) & IFF_NOARP))
arp_ifinit(ifp, ifa);
#endif
} else
err = ether_ioctl(ifp, command, data);
break;
case SIOCSIFMTU:
CTX_LOCK(ctx);
if (ifr->ifr_mtu == if_getmtu(ifp)) {
CTX_UNLOCK(ctx);
break;
}
bits = if_getdrvflags(ifp);
/* stop the driver and free any clusters before proceeding */
iflib_stop(ctx);
if ((err = IFDI_MTU_SET(ctx, ifr->ifr_mtu)) == 0) {
if (ifr->ifr_mtu > ctx->ifc_max_fl_buf_size)
ctx->ifc_flags |= IFC_MULTISEG;
else
ctx->ifc_flags &= ~IFC_MULTISEG;
err = if_setmtu(ifp, ifr->ifr_mtu);
}
iflib_init_locked(ctx);
if_setdrvflags(ifp, bits);
CTX_UNLOCK(ctx);
break;
case SIOCSIFFLAGS:
CTX_LOCK(ctx);
if (if_getflags(ifp) & IFF_UP) {
if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
if ((if_getflags(ifp) ^ ctx->ifc_if_flags) &
(IFF_PROMISC | IFF_ALLMULTI)) {
err = IFDI_PROMISC_SET(ctx, if_getflags(ifp));
}
} else
reinit = 1;
} else if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
iflib_stop(ctx);
}
ctx->ifc_if_flags = if_getflags(ifp);
CTX_UNLOCK(ctx);
break;
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
CTX_LOCK(ctx);
IFDI_INTR_DISABLE(ctx);
IFDI_MULTI_SET(ctx);
IFDI_INTR_ENABLE(ctx);
CTX_UNLOCK(ctx);
}
break;
case SIOCSIFMEDIA:
CTX_LOCK(ctx);
IFDI_MEDIA_SET(ctx);
CTX_UNLOCK(ctx);
/* falls thru */
case SIOCGIFMEDIA:
err = ifmedia_ioctl(ifp, ifr, &ctx->ifc_media, command);
break;
case SIOCGI2C:
{
struct ifi2creq i2c;
err = copyin(ifr->ifr_data, &i2c, sizeof(i2c));
if (err != 0)
break;
if (i2c.dev_addr != 0xA0 && i2c.dev_addr != 0xA2) {
err = EINVAL;
break;
}
if (i2c.len > sizeof(i2c.data)) {
err = EINVAL;
break;
}
if ((err = IFDI_I2C_REQ(ctx, &i2c)) == 0)
err = copyout(&i2c, ifr->ifr_data, sizeof(i2c));
break;
}
case SIOCSIFCAP:
{
int mask, setmask;
mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
setmask = 0;
#ifdef TCP_OFFLOAD
setmask |= mask & (IFCAP_TOE4|IFCAP_TOE6);
#endif
setmask |= (mask & IFCAP_FLAGS);
if ((mask & IFCAP_WOL) &&
(if_getcapabilities(ifp) & IFCAP_WOL) != 0)
setmask |= (mask & (IFCAP_WOL_MCAST|IFCAP_WOL_MAGIC));
if_vlancap(ifp);
/*
* want to ensure that traffic has stopped before we change any of the flags
*/
if (setmask) {
CTX_LOCK(ctx);
bits = if_getdrvflags(ifp);
if (setmask & IFCAP_REINIT)
iflib_stop(ctx);
if_togglecapenable(ifp, setmask);
if (setmask & IFCAP_REINIT)
iflib_init_locked(ctx);
if_setdrvflags(ifp, bits);
CTX_UNLOCK(ctx);
}
break;
}
case SIOCGPRIVATE_0:
case SIOCSDRVSPEC:
case SIOCGDRVSPEC:
CTX_LOCK(ctx);
err = IFDI_PRIV_IOCTL(ctx, command, data);
CTX_UNLOCK(ctx);
break;
default:
err = ether_ioctl(ifp, command, data);
break;
}
if (reinit)
iflib_if_init(ctx);
return (err);
}
static uint64_t
iflib_if_get_counter(if_t ifp, ift_counter cnt)
{
if_ctx_t ctx = if_getsoftc(ifp);
return (IFDI_GET_COUNTER(ctx, cnt));
}
/*********************************************************************
*
* OTHER FUNCTIONS EXPORTED TO THE STACK
*
**********************************************************************/
static void
iflib_vlan_register(void *arg, if_t ifp, uint16_t vtag)
{
if_ctx_t ctx = if_getsoftc(ifp);
if ((void *)ctx != arg)
return;
if ((vtag == 0) || (vtag > 4095))
return;
CTX_LOCK(ctx);
IFDI_VLAN_REGISTER(ctx, vtag);
/* Re-init to load the changes */
if (if_getcapenable(ifp) & IFCAP_VLAN_HWFILTER)
iflib_init_locked(ctx);
CTX_UNLOCK(ctx);
}
static void
iflib_vlan_unregister(void *arg, if_t ifp, uint16_t vtag)
{
if_ctx_t ctx = if_getsoftc(ifp);
if ((void *)ctx != arg)
return;
if ((vtag == 0) || (vtag > 4095))
return;
CTX_LOCK(ctx);
IFDI_VLAN_UNREGISTER(ctx, vtag);
/* Re-init to load the changes */
if (if_getcapenable(ifp) & IFCAP_VLAN_HWFILTER)
iflib_init_locked(ctx);
CTX_UNLOCK(ctx);
}
static void
iflib_led_func(void *arg, int onoff)
{
if_ctx_t ctx = arg;
CTX_LOCK(ctx);
IFDI_LED_FUNC(ctx, onoff);
CTX_UNLOCK(ctx);
}
/*********************************************************************
*
* BUS FUNCTION DEFINITIONS
*
**********************************************************************/
int
iflib_device_probe(device_t dev)
{
pci_vendor_info_t *ent;
uint16_t pci_vendor_id, pci_device_id;
uint16_t pci_subvendor_id, pci_subdevice_id;
uint16_t pci_rev_id;
if_shared_ctx_t sctx;
if ((sctx = DEVICE_REGISTER(dev)) == NULL || sctx->isc_magic != IFLIB_MAGIC)
return (ENOTSUP);
pci_vendor_id = pci_get_vendor(dev);
pci_device_id = pci_get_device(dev);
pci_subvendor_id = pci_get_subvendor(dev);
pci_subdevice_id = pci_get_subdevice(dev);
pci_rev_id = pci_get_revid(dev);
if (sctx->isc_parse_devinfo != NULL)
sctx->isc_parse_devinfo(&pci_device_id, &pci_subvendor_id, &pci_subdevice_id, &pci_rev_id);
ent = sctx->isc_vendor_info;
while (ent->pvi_vendor_id != 0) {
if (pci_vendor_id != ent->pvi_vendor_id) {
ent++;
continue;
}
if ((pci_device_id == ent->pvi_device_id) &&
((pci_subvendor_id == ent->pvi_subvendor_id) ||
(ent->pvi_subvendor_id == 0)) &&
((pci_subdevice_id == ent->pvi_subdevice_id) ||
(ent->pvi_subdevice_id == 0)) &&
((pci_rev_id == ent->pvi_rev_id) ||
(ent->pvi_rev_id == 0))) {
device_set_desc_copy(dev, ent->pvi_name);
/* this needs to be changed to zero if the bus probing code
* ever stops re-probing on best match because the sctx
* may have its values over written by register calls
* in subsequent probes
*/
return (BUS_PROBE_DEFAULT);
}
ent++;
}
return (ENXIO);
}
int
iflib_device_register(device_t dev, void *sc, if_shared_ctx_t sctx, if_ctx_t *ctxp)
{
int err, rid, msix, msix_bar;
if_ctx_t ctx;
if_t ifp;
if_softc_ctx_t scctx;
ctx = malloc(sizeof(* ctx), M_IFLIB, M_WAITOK|M_ZERO);
if (sc == NULL) {
sc = malloc(sctx->isc_driver->size, M_IFLIB, M_WAITOK|M_ZERO);
device_set_softc(dev, ctx);
}
ctx->ifc_sctx = sctx;
ctx->ifc_dev = dev;
ctx->ifc_txrx = *sctx->isc_txrx;
ctx->ifc_softc = sc;
if ((err = iflib_register(ctx)) != 0) {
device_printf(dev, "iflib_register failed %d\n", err);
return (err);
}
iflib_add_device_sysctl_pre(ctx);
if ((err = IFDI_ATTACH_PRE(ctx)) != 0) {
device_printf(dev, "IFDI_ATTACH_PRE failed %d\n", err);
return (err);
}
#ifdef ACPI_DMAR
if (dmar_get_dma_tag(device_get_parent(dev), dev) != NULL)
ctx->ifc_flags |= IFC_DMAR;
#endif
scctx = &ctx->ifc_softc_ctx;
msix_bar = scctx->isc_msix_bar;
if (scctx->isc_tx_nsegments > sctx->isc_ntxd / MAX_SINGLE_PACKET_FRACTION)
scctx->isc_tx_nsegments = max(1, sctx->isc_ntxd / MAX_SINGLE_PACKET_FRACTION);
if (scctx->isc_tx_tso_segments_max > sctx->isc_ntxd / MAX_SINGLE_PACKET_FRACTION)
scctx->isc_tx_tso_segments_max = max(1, sctx->isc_ntxd / MAX_SINGLE_PACKET_FRACTION);
ifp = ctx->ifc_ifp;
/*
* XXX sanity check that ntxd & nrxd are a power of 2
*/
/*
* Protect the stack against modern hardware
*/
if (scctx->isc_tx_tso_size_max > FREEBSD_TSO_SIZE_MAX)
scctx->isc_tx_tso_size_max = FREEBSD_TSO_SIZE_MAX;
/* TSO parameters - dig these out of the data sheet - simply correspond to tag setup */
ifp->if_hw_tsomaxsegcount = scctx->isc_tx_tso_segments_max;
ifp->if_hw_tsomax = scctx->isc_tx_tso_size_max;
ifp->if_hw_tsomaxsegsize = scctx->isc_tx_tso_segsize_max;
if (scctx->isc_rss_table_size == 0)
scctx->isc_rss_table_size = 64;
scctx->isc_rss_table_mask = scctx->isc_rss_table_size-1;;
/*
** Now setup MSI or MSI/X, should
** return us the number of supported
** vectors. (Will be 1 for MSI)
*/
if (sctx->isc_flags & IFLIB_SKIP_MSIX) {
msix = scctx->isc_vectors;
} else if (scctx->isc_msix_bar != 0)
msix = iflib_msix_init(ctx);
else {
scctx->isc_vectors = 1;
scctx->isc_ntxqsets = 1;
scctx->isc_nrxqsets = 1;
scctx->isc_intr = IFLIB_INTR_LEGACY;
msix = 0;
}
/* Get memory for the station queues */
if ((err = iflib_queues_alloc(ctx))) {
device_printf(dev, "Unable to allocate queue memory\n");
goto fail;
}
if ((err = iflib_qset_structures_setup(ctx))) {
device_printf(dev, "qset structure setup failed %d\n", err);
goto fail_queues;
}
if (msix > 1 && (err = IFDI_MSIX_INTR_ASSIGN(ctx, msix)) != 0) {
device_printf(dev, "IFDI_MSIX_INTR_ASSIGN failed %d\n", err);
goto fail_intr_free;
}
if (msix <= 1) {
rid = 0;
if (scctx->isc_intr == IFLIB_INTR_MSI) {
MPASS(msix == 1);
rid = 1;
}
if ((err = iflib_legacy_setup(ctx, ctx->isc_legacy_intr, ctx, &rid, "irq0")) != 0) {
device_printf(dev, "iflib_legacy_setup failed %d\n", err);
goto fail_intr_free;
}
}
ether_ifattach(ctx->ifc_ifp, ctx->ifc_mac);
if ((err = IFDI_ATTACH_POST(ctx)) != 0) {
device_printf(dev, "IFDI_ATTACH_POST failed %d\n", err);
goto fail_detach;
}
if ((err = iflib_netmap_attach(ctx))) {
device_printf(ctx->ifc_dev, "netmap attach failed: %d\n", err);
goto fail_detach;
}
*ctxp = ctx;
iflib_add_device_sysctl_post(ctx);
return (0);
fail_detach:
ether_ifdetach(ctx->ifc_ifp);
fail_intr_free:
if (scctx->isc_intr == IFLIB_INTR_MSIX || scctx->isc_intr == IFLIB_INTR_MSI)
pci_release_msi(ctx->ifc_dev);
fail_queues:
/* XXX free queues */
fail:
IFDI_DETACH(ctx);
return (err);
}
int
iflib_device_attach(device_t dev)
{
if_ctx_t ctx;
if_shared_ctx_t sctx;
if ((sctx = DEVICE_REGISTER(dev)) == NULL || sctx->isc_magic != IFLIB_MAGIC)
return (ENOTSUP);
pci_enable_busmaster(dev);
return (iflib_device_register(dev, NULL, sctx, &ctx));
}
int
iflib_device_deregister(if_ctx_t ctx)
{
if_t ifp = ctx->ifc_ifp;
iflib_txq_t txq;
iflib_rxq_t rxq;
device_t dev = ctx->ifc_dev;
int i;
struct taskqgroup *tqg;
/* Make sure VLANS are not using driver */
if (if_vlantrunkinuse(ifp)) {
device_printf(dev,"Vlan in use, detach first\n");
return (EBUSY);
}
CTX_LOCK(ctx);
ctx->ifc_in_detach = 1;
iflib_stop(ctx);
CTX_UNLOCK(ctx);
/* Unregister VLAN events */
if (ctx->ifc_vlan_attach_event != NULL)
EVENTHANDLER_DEREGISTER(vlan_config, ctx->ifc_vlan_attach_event);
if (ctx->ifc_vlan_detach_event != NULL)
EVENTHANDLER_DEREGISTER(vlan_unconfig, ctx->ifc_vlan_detach_event);
iflib_netmap_detach(ifp);
ether_ifdetach(ifp);
/* ether_ifdetach calls if_qflush - lock must be destroy afterwards*/
CTX_LOCK_DESTROY(ctx);
if (ctx->ifc_led_dev != NULL)
led_destroy(ctx->ifc_led_dev);
/* XXX drain any dependent tasks */
tqg = qgroup_if_io_tqg;
for (txq = ctx->ifc_txqs, i = 0, rxq = ctx->ifc_rxqs; i < NTXQSETS(ctx); i++, txq++) {
callout_drain(&txq->ift_timer);
callout_drain(&txq->ift_db_check);
if (txq->ift_task.gt_uniq != NULL)
taskqgroup_detach(tqg, &txq->ift_task);
}
for (i = 0, rxq = ctx->ifc_rxqs; i < NRXQSETS(ctx); i++, rxq++) {
if (rxq->ifr_task.gt_uniq != NULL)
taskqgroup_detach(tqg, &rxq->ifr_task);
}
tqg = qgroup_if_config_tqg;
if (ctx->ifc_admin_task.gt_uniq != NULL)
taskqgroup_detach(tqg, &ctx->ifc_admin_task);
if (ctx->ifc_vflr_task.gt_uniq != NULL)
taskqgroup_detach(tqg, &ctx->ifc_vflr_task);
IFDI_DETACH(ctx);
if (ctx->ifc_softc_ctx.isc_intr != IFLIB_INTR_LEGACY) {
pci_release_msi(dev);
}
if (ctx->ifc_softc_ctx.isc_intr != IFLIB_INTR_MSIX) {
iflib_irq_free(ctx, &ctx->ifc_legacy_irq);
}
if (ctx->ifc_msix_mem != NULL) {
bus_release_resource(ctx->ifc_dev, SYS_RES_MEMORY,
ctx->ifc_softc_ctx.isc_msix_bar, ctx->ifc_msix_mem);
ctx->ifc_msix_mem = NULL;
}
bus_generic_detach(dev);
if_free(ifp);
iflib_tx_structures_free(ctx);
iflib_rx_structures_free(ctx);
return (0);
}
int
iflib_device_detach(device_t dev)
{
if_ctx_t ctx = device_get_softc(dev);
return (iflib_device_deregister(ctx));
}
int
iflib_device_suspend(device_t dev)
{
if_ctx_t ctx = device_get_softc(dev);
CTX_LOCK(ctx);
IFDI_SUSPEND(ctx);
CTX_UNLOCK(ctx);
return bus_generic_suspend(dev);
}
int
iflib_device_shutdown(device_t dev)
{
if_ctx_t ctx = device_get_softc(dev);
CTX_LOCK(ctx);
IFDI_SHUTDOWN(ctx);
CTX_UNLOCK(ctx);
return bus_generic_suspend(dev);
}
int
iflib_device_resume(device_t dev)
{
if_ctx_t ctx = device_get_softc(dev);
iflib_txq_t txq = ctx->ifc_txqs;
CTX_LOCK(ctx);
IFDI_RESUME(ctx);
iflib_init_locked(ctx);
CTX_UNLOCK(ctx);
for (int i = 0; i < NTXQSETS(ctx); i++, txq++)
iflib_txq_check_drain(txq, IFLIB_RESTART_BUDGET);
return (bus_generic_resume(dev));
}
int
iflib_device_iov_init(device_t dev, uint16_t num_vfs, const nvlist_t *params)
{
int error;
if_ctx_t ctx = device_get_softc(dev);
CTX_LOCK(ctx);
error = IFDI_IOV_INIT(ctx, num_vfs, params);
CTX_UNLOCK(ctx);
return (error);
}
void
iflib_device_iov_uninit(device_t dev)
{
if_ctx_t ctx = device_get_softc(dev);
CTX_LOCK(ctx);
IFDI_IOV_UNINIT(ctx);
CTX_UNLOCK(ctx);
}
int
iflib_device_iov_add_vf(device_t dev, uint16_t vfnum, const nvlist_t *params)
{
int error;
if_ctx_t ctx = device_get_softc(dev);
CTX_LOCK(ctx);
error = IFDI_IOV_VF_ADD(ctx, vfnum, params);
CTX_UNLOCK(ctx);
return (error);
}
/*********************************************************************
*
* MODULE FUNCTION DEFINITIONS
*
**********************************************************************/
/*
* - Start a fast taskqueue thread for each core
* - Start a taskqueue for control operations
*/
static int
iflib_module_init(void)
{
return (0);
}
static int
iflib_module_event_handler(module_t mod, int what, void *arg)
{
int err;
switch (what) {
case MOD_LOAD:
if ((err = iflib_module_init()) != 0)
return (err);
break;
case MOD_UNLOAD:
return (EBUSY);
default:
return (EOPNOTSUPP);
}
return (0);
}
/*********************************************************************
*
* PUBLIC FUNCTION DEFINITIONS
* ordered as in iflib.h
*
**********************************************************************/
static void
_iflib_assert(if_shared_ctx_t sctx)
{
MPASS(sctx->isc_tx_maxsize);
MPASS(sctx->isc_tx_maxsegsize);
MPASS(sctx->isc_rx_maxsize);
MPASS(sctx->isc_rx_nsegments);
MPASS(sctx->isc_rx_maxsegsize);
MPASS(sctx->isc_txrx->ift_txd_encap);
MPASS(sctx->isc_txrx->ift_txd_flush);
MPASS(sctx->isc_txrx->ift_txd_credits_update);
MPASS(sctx->isc_txrx->ift_rxd_available);
MPASS(sctx->isc_txrx->ift_rxd_pkt_get);
MPASS(sctx->isc_txrx->ift_rxd_refill);
MPASS(sctx->isc_txrx->ift_rxd_flush);
MPASS(sctx->isc_nrxd);
}
static int
iflib_register(if_ctx_t ctx)
{
if_shared_ctx_t sctx = ctx->ifc_sctx;
driver_t *driver = sctx->isc_driver;
device_t dev = ctx->ifc_dev;
if_t ifp;
_iflib_assert(sctx);
CTX_LOCK_INIT(ctx, device_get_nameunit(ctx->ifc_dev));
MPASS(ctx->ifc_flags == 0);
ifp = ctx->ifc_ifp = if_gethandle(IFT_ETHER);
if (ifp == NULL) {
device_printf(dev, "can not allocate ifnet structure\n");
return (ENOMEM);
}
/*
* Initialize our context's device specific methods
*/
kobj_init((kobj_t) ctx, (kobj_class_t) driver);
kobj_class_compile((kobj_class_t) driver);
driver->refs++;
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
if_setsoftc(ifp, ctx);
if_setdev(ifp, dev);
if_setinitfn(ifp, iflib_if_init);
if_setioctlfn(ifp, iflib_if_ioctl);
if_settransmitfn(ifp, iflib_if_transmit);
if_setqflushfn(ifp, iflib_if_qflush);
if_setgetcounterfn(ifp, iflib_if_get_counter);
if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
if_setcapabilities(ifp, 0);
if_setcapenable(ifp, 0);
ctx->ifc_vlan_attach_event =
EVENTHANDLER_REGISTER(vlan_config, iflib_vlan_register, ctx,
EVENTHANDLER_PRI_FIRST);
ctx->ifc_vlan_detach_event =
EVENTHANDLER_REGISTER(vlan_unconfig, iflib_vlan_unregister, ctx,
EVENTHANDLER_PRI_FIRST);
ifmedia_init(&ctx->ifc_media, IFM_IMASK,
iflib_media_change, iflib_media_status);
return (0);
}
static int
iflib_queues_alloc(if_ctx_t ctx)
{
if_shared_ctx_t sctx = ctx->ifc_sctx;
device_t dev = ctx->ifc_dev;
int nrxqsets = ctx->ifc_softc_ctx.isc_nrxqsets;
int ntxqsets = ctx->ifc_softc_ctx.isc_ntxqsets;
iflib_txq_t txq;
iflib_rxq_t rxq;
iflib_fl_t fl = NULL;
int i, j, err, txconf, rxconf, fl_ifdi_offset;
iflib_dma_info_t ifdip;
uint32_t *rxqsizes = sctx->isc_rxqsizes;
uint32_t *txqsizes = sctx->isc_txqsizes;
uint8_t nrxqs = sctx->isc_nrxqs;
uint8_t ntxqs = sctx->isc_ntxqs;
int nfree_lists = sctx->isc_nfl ? sctx->isc_nfl : 1;
caddr_t *vaddrs;
uint64_t *paddrs;
struct ifmp_ring **brscp;
int nbuf_rings = 1; /* XXX determine dynamically */
KASSERT(ntxqs > 0, ("number of queues must be at least 1"));
KASSERT(nrxqs > 0, ("number of queues must be at least 1"));
/* Allocate the TX ring struct memory */
if (!(txq =
(iflib_txq_t) malloc(sizeof(struct iflib_txq) *
ntxqsets, M_IFLIB, M_NOWAIT | M_ZERO))) {
device_printf(dev, "Unable to allocate TX ring memory\n");
err = ENOMEM;
goto fail;
}
/* Now allocate the RX */
if (!(rxq =
(iflib_rxq_t) malloc(sizeof(struct iflib_rxq) *
nrxqsets, M_IFLIB, M_NOWAIT | M_ZERO))) {
device_printf(dev, "Unable to allocate RX ring memory\n");
err = ENOMEM;
goto rx_fail;
}
if (!(brscp = malloc(sizeof(void *) * nbuf_rings * nrxqsets, M_IFLIB, M_NOWAIT | M_ZERO))) {
device_printf(dev, "Unable to buf_ring_sc * memory\n");
err = ENOMEM;
goto rx_fail;
}
ctx->ifc_txqs = txq;
ctx->ifc_rxqs = rxq;
/*
* XXX handle allocation failure
*/
for (txconf = i = 0; i < ntxqsets; i++, txconf++, txq++) {
/* Set up some basics */
if ((ifdip = malloc(sizeof(struct iflib_dma_info) * ntxqs, M_IFLIB, M_WAITOK|M_ZERO)) == NULL) {
device_printf(dev, "failed to allocate iflib_dma_info\n");
err = ENOMEM;
goto fail;
}
txq->ift_ifdi = ifdip;
for (j = 0; j < ntxqs; j++, ifdip++) {
if (iflib_dma_alloc(ctx, txqsizes[j], ifdip, BUS_DMA_NOWAIT)) {
device_printf(dev, "Unable to allocate Descriptor memory\n");
err = ENOMEM;
goto err_tx_desc;
}
bzero((void *)ifdip->idi_vaddr, txqsizes[j]);
}
txq->ift_ctx = ctx;
txq->ift_id = i;
/* XXX fix this */
txq->ift_timer.c_cpu = i % mp_ncpus;
txq->ift_db_check.c_cpu = i % mp_ncpus;
txq->ift_nbr = nbuf_rings;
if (iflib_txsd_alloc(txq)) {
device_printf(dev, "Critical Failure setting up TX buffers\n");
err = ENOMEM;
goto err_tx_desc;
}
/* Initialize the TX lock */
snprintf(txq->ift_mtx_name, MTX_NAME_LEN, "%s:tx(%d):callout",
device_get_nameunit(dev), txq->ift_id);
mtx_init(&txq->ift_mtx, txq->ift_mtx_name, NULL, MTX_DEF);
callout_init_mtx(&txq->ift_timer, &txq->ift_mtx, 0);
callout_init_mtx(&txq->ift_db_check, &txq->ift_mtx, 0);
snprintf(txq->ift_db_mtx_name, MTX_NAME_LEN, "%s:tx(%d):db",
device_get_nameunit(dev), txq->ift_id);
TXDB_LOCK_INIT(txq);
txq->ift_br = brscp + i*nbuf_rings;
for (j = 0; j < nbuf_rings; j++) {
err = ifmp_ring_alloc(&txq->ift_br[j], 2048, txq, iflib_txq_drain,
iflib_txq_can_drain, M_IFLIB, M_WAITOK);
if (err) {
/* XXX free any allocated rings */
device_printf(dev, "Unable to allocate buf_ring\n");
goto fail;
}
}
}
for (rxconf = i = 0; i < nrxqsets; i++, rxconf++, rxq++) {
/* Set up some basics */
if ((ifdip = malloc(sizeof(struct iflib_dma_info) * nrxqs, M_IFLIB, M_WAITOK|M_ZERO)) == NULL) {
device_printf(dev, "failed to allocate iflib_dma_info\n");
err = ENOMEM;
goto fail;
}
rxq->ifr_ifdi = ifdip;
for (j = 0; j < nrxqs; j++, ifdip++) {
if (iflib_dma_alloc(ctx, rxqsizes[j], ifdip, BUS_DMA_NOWAIT)) {
device_printf(dev, "Unable to allocate Descriptor memory\n");
err = ENOMEM;
goto err_tx_desc;
}
bzero((void *)ifdip->idi_vaddr, rxqsizes[j]);
}
rxq->ifr_ctx = ctx;
rxq->ifr_id = i;
if (sctx->isc_flags & IFLIB_HAS_CQ) {
fl_ifdi_offset = 1;
} else {
fl_ifdi_offset = 0;
}
rxq->ifr_nfl = nfree_lists;
if (!(fl =
(iflib_fl_t) malloc(sizeof(struct iflib_fl) * nfree_lists, M_IFLIB, M_NOWAIT | M_ZERO))) {
device_printf(dev, "Unable to allocate free list memory\n");
err = ENOMEM;
goto fail;
}
rxq->ifr_fl = fl;
for (j = 0; j < nfree_lists; j++) {
rxq->ifr_fl[j].ifl_rxq = rxq;
rxq->ifr_fl[j].ifl_id = j;
rxq->ifr_fl[j].ifl_ifdi = &rxq->ifr_ifdi[j + fl_ifdi_offset];
}
/* Allocate receive buffers for the ring*/
if (iflib_rxsd_alloc(rxq)) {
device_printf(dev,
"Critical Failure setting up receive buffers\n");
err = ENOMEM;
goto err_rx_desc;
}
}
/* TXQs */
vaddrs = malloc(sizeof(caddr_t)*ntxqsets*ntxqs, M_IFLIB, M_WAITOK);
paddrs = malloc(sizeof(uint64_t)*ntxqsets*ntxqs, M_IFLIB, M_WAITOK);
for (i = 0; i < ntxqsets; i++) {
iflib_dma_info_t di = ctx->ifc_txqs[i].ift_ifdi;
for (j = 0; j < ntxqs; j++, di++) {
vaddrs[i*ntxqs + j] = di->idi_vaddr;
paddrs[i*ntxqs + j] = di->idi_paddr;
}
}
if ((err = IFDI_TX_QUEUES_ALLOC(ctx, vaddrs, paddrs, ntxqs, ntxqsets)) != 0) {
device_printf(ctx->ifc_dev, "device queue allocation failed\n");
iflib_tx_structures_free(ctx);
free(vaddrs, M_IFLIB);
free(paddrs, M_IFLIB);
goto err_rx_desc;
}
free(vaddrs, M_IFLIB);
free(paddrs, M_IFLIB);
/* RXQs */
vaddrs = malloc(sizeof(caddr_t)*nrxqsets*nrxqs, M_IFLIB, M_WAITOK);
paddrs = malloc(sizeof(uint64_t)*nrxqsets*nrxqs, M_IFLIB, M_WAITOK);
for (i = 0; i < nrxqsets; i++) {
iflib_dma_info_t di = ctx->ifc_rxqs[i].ifr_ifdi;
for (j = 0; j < nrxqs; j++, di++) {
vaddrs[i*nrxqs + j] = di->idi_vaddr;
paddrs[i*nrxqs + j] = di->idi_paddr;
}
}
if ((err = IFDI_RX_QUEUES_ALLOC(ctx, vaddrs, paddrs, nrxqs, nrxqsets)) != 0) {
device_printf(ctx->ifc_dev, "device queue allocation failed\n");
iflib_tx_structures_free(ctx);
free(vaddrs, M_IFLIB);
free(paddrs, M_IFLIB);
goto err_rx_desc;
}
free(vaddrs, M_IFLIB);
free(paddrs, M_IFLIB);
return (0);
/* XXX handle allocation failure changes */
err_rx_desc:
err_tx_desc:
if (ctx->ifc_rxqs != NULL)
free(ctx->ifc_rxqs, M_IFLIB);
ctx->ifc_rxqs = NULL;
rx_fail:
if (ctx->ifc_txqs != NULL)
free(ctx->ifc_txqs, M_IFLIB);
ctx->ifc_txqs = NULL;
fail:
return (err);
}
static int
iflib_tx_structures_setup(if_ctx_t ctx)
{
iflib_txq_t txq = ctx->ifc_txqs;
int i;
for (i = 0; i < NTXQSETS(ctx); i++, txq++)
iflib_txq_setup(txq);
return (0);
}
static void
iflib_tx_structures_free(if_ctx_t ctx)
{
iflib_txq_t txq = ctx->ifc_txqs;
int i, j;
for (i = 0; i < NTXQSETS(ctx); i++, txq++) {
iflib_txq_destroy(txq);
for (j = 0; j < ctx->ifc_nhwtxqs; j++)
iflib_dma_free(&txq->ift_ifdi[j]);
}
free(ctx->ifc_txqs, M_IFLIB);
ctx->ifc_txqs = NULL;
IFDI_QUEUES_FREE(ctx);
}
/*********************************************************************
*
* Initialize all receive rings.
*
**********************************************************************/
static int
iflib_rx_structures_setup(if_ctx_t ctx)
{
iflib_rxq_t rxq = ctx->ifc_rxqs;
int i, q, err;
for (q = 0; q < ctx->ifc_softc_ctx.isc_nrxqsets; q++, rxq++) {
tcp_lro_free(&rxq->ifr_lc);
if ((err = tcp_lro_init(&rxq->ifr_lc)) != 0) {
device_printf(ctx->ifc_dev, "LRO Initialization failed!\n");
goto fail;
}
rxq->ifr_lro_enabled = TRUE;
rxq->ifr_lc.ifp = ctx->ifc_ifp;
IFDI_RXQ_SETUP(ctx, rxq->ifr_id);
}
return (0);
fail:
/*
* Free RX software descriptors allocated so far, we will only handle
* the rings that completed, the failing case will have
* cleaned up for itself. 'q' failed, so its the terminus.
*/
rxq = ctx->ifc_rxqs;
for (i = 0; i < q; ++i, rxq++) {
iflib_rx_sds_free(rxq);
rxq->ifr_cq_gen = rxq->ifr_cq_cidx = rxq->ifr_cq_pidx = 0;
}
return (err);
}
/*********************************************************************
*
* Free all receive rings.
*
**********************************************************************/
static void
iflib_rx_structures_free(if_ctx_t ctx)
{
iflib_rxq_t rxq = ctx->ifc_rxqs;
for (int i = 0; i < ctx->ifc_softc_ctx.isc_ntxqsets; i++, rxq++) {
iflib_rx_sds_free(rxq);
}
}
static int
iflib_qset_structures_setup(if_ctx_t ctx)
{
int err;
if ((err = iflib_tx_structures_setup(ctx)) != 0)
return (err);
if ((err = iflib_rx_structures_setup(ctx)) != 0) {
device_printf(ctx->ifc_dev, "iflib_rx_structures_setup failed: %d\n", err);
iflib_tx_structures_free(ctx);
iflib_rx_structures_free(ctx);
}
return (err);
}
int
iflib_irq_alloc(if_ctx_t ctx, if_irq_t irq, int rid,
driver_filter_t filter, void *filter_arg, driver_intr_t handler, void *arg, char *name)
{
return (_iflib_irq_alloc(ctx, irq, rid, filter, handler, arg, name));
}
static void
find_nth(if_ctx_t ctx, cpuset_t *cpus, int qid)
{
int i, cpuid;
CPU_COPY(&ctx->ifc_cpus, cpus);
/* clear up to the qid'th bit */
for (i = 0; i < qid; i++) {
cpuid = CPU_FFS(cpus);
CPU_CLR(cpuid, cpus);
}
}
int
iflib_irq_alloc_generic(if_ctx_t ctx, if_irq_t irq, int rid,
iflib_intr_type_t type, driver_filter_t *filter,
void *filter_arg, int qid, char *name)
{
struct grouptask *gtask;
struct taskqgroup *tqg;
iflib_filter_info_t info;
cpuset_t cpus;
task_fn_t *fn;
int tqrid, err;
void *q;
info = &ctx->ifc_filter_info;
switch (type) {
/* XXX merge tx/rx for netmap? */
case IFLIB_INTR_TX:
q = &ctx->ifc_txqs[qid];
info = &ctx->ifc_txqs[qid].ift_filter_info;
gtask = &ctx->ifc_txqs[qid].ift_task;
tqg = qgroup_if_io_tqg;
tqrid = irq->ii_rid;
fn = _task_fn_tx;
break;
case IFLIB_INTR_RX:
q = &ctx->ifc_rxqs[qid];
info = &ctx->ifc_rxqs[qid].ifr_filter_info;
gtask = &ctx->ifc_rxqs[qid].ifr_task;
tqg = qgroup_if_io_tqg;
tqrid = irq->ii_rid;
fn = _task_fn_rx;
break;
case IFLIB_INTR_ADMIN:
q = ctx;
info = &ctx->ifc_filter_info;
gtask = &ctx->ifc_admin_task;
tqg = qgroup_if_config_tqg;
tqrid = -1;
fn = _task_fn_admin;
break;
default:
panic("unknown net intr type");
}
GROUPTASK_INIT(gtask, 0, fn, q);
info->ifi_filter = filter;
info->ifi_filter_arg = filter_arg;
info->ifi_task = gtask;
/* XXX query cpu that rid belongs to */
err = _iflib_irq_alloc(ctx, irq, rid, iflib_fast_intr, NULL, info, name);
if (err != 0)
return (err);
if (tqrid != -1) {
find_nth(ctx, &cpus, qid);
taskqgroup_attach_cpu(tqg, gtask, q, CPU_FFS(&cpus), irq->ii_rid, name);
} else
taskqgroup_attach(tqg, gtask, q, tqrid, name);
return (0);
}
void
iflib_softirq_alloc_generic(if_ctx_t ctx, int rid, iflib_intr_type_t type, void *arg, int qid, char *name)
{
struct grouptask *gtask;
struct taskqgroup *tqg;
task_fn_t *fn;
void *q;
switch (type) {
case IFLIB_INTR_TX:
q = &ctx->ifc_txqs[qid];
gtask = &ctx->ifc_txqs[qid].ift_task;
tqg = qgroup_if_io_tqg;
fn = _task_fn_tx;
break;
case IFLIB_INTR_RX:
q = &ctx->ifc_rxqs[qid];
gtask = &ctx->ifc_rxqs[qid].ifr_task;
tqg = qgroup_if_io_tqg;
fn = _task_fn_rx;
break;
case IFLIB_INTR_ADMIN:
q = ctx;
gtask = &ctx->ifc_admin_task;
tqg = qgroup_if_config_tqg;
rid = -1;
fn = _task_fn_admin;
break;
case IFLIB_INTR_IOV:
q = ctx;
gtask = &ctx->ifc_vflr_task;
tqg = qgroup_if_config_tqg;
rid = -1;
fn = _task_fn_iov;
break;
default:
panic("unknown net intr type");
}
GROUPTASK_INIT(gtask, 0, fn, q);
taskqgroup_attach(tqg, gtask, q, rid, name);
}
void
iflib_irq_free(if_ctx_t ctx, if_irq_t irq)
{
if (irq->ii_tag)
bus_teardown_intr(ctx->ifc_dev, irq->ii_res, irq->ii_tag);
if (irq->ii_res)
bus_release_resource(ctx->ifc_dev, SYS_RES_IRQ, irq->ii_rid, irq->ii_res);
}
static int
iflib_legacy_setup(if_ctx_t ctx, driver_filter_t filter, void *filter_arg, int *rid, char *name)
{
iflib_txq_t txq = ctx->ifc_txqs;
iflib_rxq_t rxq = ctx->ifc_rxqs;
if_irq_t irq = &ctx->ifc_legacy_irq;
iflib_filter_info_t info;
struct grouptask *gtask;
struct taskqgroup *tqg;
task_fn_t *fn;
int tqrid;
void *q;
int err;
q = &ctx->ifc_rxqs[0];
info = &rxq[0].ifr_filter_info;
gtask = &rxq[0].ifr_task;
tqg = qgroup_if_io_tqg;
tqrid = irq->ii_rid = *rid;
fn = _task_fn_rx;
ctx->ifc_flags |= IFC_LEGACY;
info->ifi_filter = filter;
info->ifi_filter_arg = filter_arg;
info->ifi_task = gtask;
/* We allocate a single interrupt resource */
if ((err = _iflib_irq_alloc(ctx, irq, tqrid, iflib_fast_intr, NULL, info, name)) != 0)
return (err);
GROUPTASK_INIT(gtask, 0, fn, q);
taskqgroup_attach(tqg, gtask, q, tqrid, name);
GROUPTASK_INIT(&txq->ift_task, 0, _task_fn_tx, txq);
taskqgroup_attach(qgroup_if_io_tqg, &txq->ift_task, txq, tqrid, "tx");
GROUPTASK_INIT(&ctx->ifc_admin_task, 0, _task_fn_admin, ctx);
taskqgroup_attach(qgroup_if_config_tqg, &ctx->ifc_admin_task, ctx, -1, "admin/link");
return (0);
}
void
iflib_led_create(if_ctx_t ctx)
{
ctx->ifc_led_dev = led_create(iflib_led_func, ctx,
device_get_nameunit(ctx->ifc_dev));
}
void
iflib_tx_intr_deferred(if_ctx_t ctx, int txqid)
{
GROUPTASK_ENQUEUE(&ctx->ifc_txqs[txqid].ift_task);
}
void
iflib_rx_intr_deferred(if_ctx_t ctx, int rxqid)
{
GROUPTASK_ENQUEUE(&ctx->ifc_rxqs[rxqid].ifr_task);
}
void
iflib_admin_intr_deferred(if_ctx_t ctx)
{
GROUPTASK_ENQUEUE(&ctx->ifc_admin_task);
}
void
iflib_iov_intr_deferred(if_ctx_t ctx)
{
GROUPTASK_ENQUEUE(&ctx->ifc_vflr_task);
}
void
iflib_io_tqg_attach(struct grouptask *gt, void *uniq, int cpu, char *name)
{
taskqgroup_attach_cpu(qgroup_if_io_tqg, gt, uniq, cpu, -1, name);
}
void
iflib_config_gtask_init(if_ctx_t ctx, struct grouptask *gtask, task_fn_t *fn,
char *name)
{
GROUPTASK_INIT(gtask, 0, fn, ctx);
taskqgroup_attach(qgroup_if_config_tqg, gtask, gtask, -1, name);
}
void
iflib_link_state_change(if_ctx_t ctx, int link_state)
{
if_t ifp = ctx->ifc_ifp;
iflib_txq_t txq = ctx->ifc_txqs;
#if 0
if_setbaudrate(ifp, baudrate);
#endif
/* If link down, disable watchdog */
if ((ctx->ifc_link_state == LINK_STATE_UP) && (link_state == LINK_STATE_DOWN)) {
for (int i = 0; i < ctx->ifc_softc_ctx.isc_ntxqsets; i++, txq++)
txq->ift_qstatus = IFLIB_QUEUE_IDLE;
}
ctx->ifc_link_state = link_state;
if_link_state_change(ifp, link_state);
}
static int
iflib_tx_credits_update(if_ctx_t ctx, iflib_txq_t txq)
{
int credits;
if (ctx->isc_txd_credits_update == NULL)
return (0);
if ((credits = ctx->isc_txd_credits_update(ctx->ifc_softc, txq->ift_id, txq->ift_cidx_processed, true)) == 0)
return (0);
txq->ift_processed += credits;
txq->ift_cidx_processed += credits;
if (txq->ift_cidx_processed >= txq->ift_size)
txq->ift_cidx_processed -= txq->ift_size;
return (credits);
}
static int
iflib_rxd_avail(if_ctx_t ctx, iflib_rxq_t rxq, int cidx)
{
return (ctx->isc_rxd_available(ctx->ifc_softc, rxq->ifr_id, cidx));
}
void
iflib_add_int_delay_sysctl(if_ctx_t ctx, const char *name,
const char *description, if_int_delay_info_t info,
int offset, int value)
{
info->iidi_ctx = ctx;
info->iidi_offset = offset;
info->iidi_value = value;
SYSCTL_ADD_PROC(device_get_sysctl_ctx(ctx->ifc_dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(ctx->ifc_dev)),
OID_AUTO, name, CTLTYPE_INT|CTLFLAG_RW,
info, 0, iflib_sysctl_int_delay, "I", description);
}
struct mtx *
iflib_ctx_lock_get(if_ctx_t ctx)
{
return (&ctx->ifc_mtx);
}
static int
iflib_msix_init(if_ctx_t ctx)
{
device_t dev = ctx->ifc_dev;
if_shared_ctx_t sctx = ctx->ifc_sctx;
if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
int vectors, queues, rx_queues, tx_queues, queuemsgs, msgs;
int iflib_num_tx_queues, iflib_num_rx_queues;
int err, admincnt, bar;
iflib_num_tx_queues = ctx->ifc_sysctl_ntxqs;
iflib_num_rx_queues = ctx->ifc_sysctl_nrxqs;
bar = ctx->ifc_softc_ctx.isc_msix_bar;
admincnt = sctx->isc_admin_intrcnt;
/* Override by tuneable */
if (enable_msix == 0)
goto msi;
/*
** When used in a virtualized environment
** PCI BUSMASTER capability may not be set
** so explicity set it here and rewrite
** the ENABLE in the MSIX control register
** at this point to cause the host to
** successfully initialize us.
*/
{
uint16_t pci_cmd_word;
int msix_ctrl, rid;
rid = 0;
pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
pci_cmd_word |= PCIM_CMD_BUSMASTEREN;
pci_write_config(dev, PCIR_COMMAND, pci_cmd_word, 2);
pci_find_cap(dev, PCIY_MSIX, &rid);
rid += PCIR_MSIX_CTRL;
msix_ctrl = pci_read_config(dev, rid, 2);
msix_ctrl |= PCIM_MSIXCTRL_MSIX_ENABLE;
pci_write_config(dev, rid, msix_ctrl, 2);
}
/*
* bar == -1 => "trust me I know what I'm doing"
* https://www.youtube.com/watch?v=nnwWKkNau4I
* Some drivers are for hardware that is so shoddily
* documented that no one knows which bars are which
* so the developer has to map all bars. This hack
* allows shoddy garbage to use msix in this framework.
*/
if (bar != -1) {
ctx->ifc_msix_mem = bus_alloc_resource_any(dev,
SYS_RES_MEMORY, &bar, RF_ACTIVE);
if (ctx->ifc_msix_mem == NULL) {
/* May not be enabled */
device_printf(dev, "Unable to map MSIX table \n");
goto msi;
}
}
/* First try MSI/X */
if ((msgs = pci_msix_count(dev)) == 0) { /* system has msix disabled */
device_printf(dev, "System has MSIX disabled \n");
bus_release_resource(dev, SYS_RES_MEMORY,
bar, ctx->ifc_msix_mem);
ctx->ifc_msix_mem = NULL;
goto msi;
}
#if IFLIB_DEBUG
/* use only 1 qset in debug mode */
queuemsgs = min(msgs - admincnt, 1);
#else
queuemsgs = msgs - admincnt;
#endif
if (bus_get_cpus(dev, INTR_CPUS, sizeof(ctx->ifc_cpus), &ctx->ifc_cpus) == 0) {
#ifdef RSS
queues = imin(queuemsgs, rss_getnumbuckets());
#else
queues = queuemsgs;
#endif
queues = imin(CPU_COUNT(&ctx->ifc_cpus), queues);
device_printf(dev, "pxm cpus: %d queue msgs: %d admincnt: %d\n",
CPU_COUNT(&ctx->ifc_cpus), queuemsgs, admincnt);
} else {
device_printf(dev, "Unable to fetch CPU list\n");
/* Figure out a reasonable auto config value */
queues = min(queuemsgs, mp_ncpus);
}
#ifdef RSS
/* If we're doing RSS, clamp at the number of RSS buckets */
if (queues > rss_getnumbuckets())
queues = rss_getnumbuckets();
#endif
if (iflib_num_rx_queues > 0 && iflib_num_rx_queues < queues)
queues = rx_queues = iflib_num_rx_queues;
else
rx_queues = queues;
if (iflib_num_tx_queues > 0 && iflib_num_tx_queues < queues)
tx_queues = iflib_num_tx_queues;
else
tx_queues = queues;
device_printf(dev, "using %d rx queues %d tx queues \n", rx_queues, tx_queues);
vectors = queues + admincnt;
if ((err = pci_alloc_msix(dev, &vectors)) == 0) {
device_printf(dev,
"Using MSIX interrupts with %d vectors\n", vectors);
scctx->isc_vectors = vectors;
scctx->isc_nrxqsets = rx_queues;
scctx->isc_ntxqsets = tx_queues;
scctx->isc_intr = IFLIB_INTR_MSIX;
return (vectors);
} else {
device_printf(dev, "failed to allocate %d msix vectors, err: %d - using MSI\n", vectors, err);
}
msi:
vectors = pci_msi_count(dev);
scctx->isc_nrxqsets = 1;
scctx->isc_ntxqsets = 1;
scctx->isc_vectors = vectors;
if (vectors == 1 && pci_alloc_msi(dev, &vectors) == 0) {
device_printf(dev,"Using an MSI interrupt\n");
scctx->isc_intr = IFLIB_INTR_MSI;
} else {
device_printf(dev,"Using a Legacy interrupt\n");
scctx->isc_intr = IFLIB_INTR_LEGACY;
}
return (vectors);
}
char * ring_states[] = { "IDLE", "BUSY", "STALLED", "ABDICATED" };
static int
mp_ring_state_handler(SYSCTL_HANDLER_ARGS)
{
int rc;
uint16_t *state = ((uint16_t *)oidp->oid_arg1);
struct sbuf *sb;
char *ring_state = "UNKNOWN";
/* XXX needed ? */
rc = sysctl_wire_old_buffer(req, 0);
MPASS(rc == 0);
if (rc != 0)
return (rc);
sb = sbuf_new_for_sysctl(NULL, NULL, 80, req);
MPASS(sb != NULL);
if (sb == NULL)
return (ENOMEM);
if (state[3] <= 3)
ring_state = ring_states[state[3]];
sbuf_printf(sb, "pidx_head: %04hd pidx_tail: %04hd cidx: %04hd state: %s",
state[0], state[1], state[2], ring_state);
rc = sbuf_finish(sb);
sbuf_delete(sb);
return(rc);
}
#define NAME_BUFLEN 32
static void
iflib_add_device_sysctl_pre(if_ctx_t ctx)
{
device_t dev = iflib_get_dev(ctx);
struct sysctl_oid_list *child, *oid_list;
struct sysctl_ctx_list *ctx_list;
struct sysctl_oid *node;
ctx_list = device_get_sysctl_ctx(dev);
child = SYSCTL_CHILDREN(device_get_sysctl_tree(dev));
ctx->ifc_sysctl_node = node = SYSCTL_ADD_NODE(ctx_list, child, OID_AUTO, "iflib",
CTLFLAG_RD, NULL, "IFLIB fields");
oid_list = SYSCTL_CHILDREN(node);
SYSCTL_ADD_U16(ctx_list, oid_list, OID_AUTO, "override_ntxqs",
CTLFLAG_RWTUN, &ctx->ifc_sysctl_ntxqs, 0,
"# of txqs to use, 0 => use default #");
SYSCTL_ADD_U16(ctx_list, oid_list, OID_AUTO, "override_nrxqs",
CTLFLAG_RWTUN, &ctx->ifc_sysctl_ntxqs, 0,
"# of txqs to use, 0 => use default #");
SYSCTL_ADD_U16(ctx_list, oid_list, OID_AUTO, "override_ntxds",
CTLFLAG_RWTUN, &ctx->ifc_sysctl_ntxds, 0,
"# of tx descriptors to use, 0 => use default #");
SYSCTL_ADD_U16(ctx_list, oid_list, OID_AUTO, "override_nrxds",
CTLFLAG_RWTUN, &ctx->ifc_sysctl_nrxds, 0,
"# of rx descriptors to use, 0 => use default #");
}
static void
iflib_add_device_sysctl_post(if_ctx_t ctx)
{
if_shared_ctx_t sctx = ctx->ifc_sctx;
if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
device_t dev = iflib_get_dev(ctx);
struct sysctl_oid_list *child;
struct sysctl_ctx_list *ctx_list;
iflib_fl_t fl;
iflib_txq_t txq;
iflib_rxq_t rxq;
int i, j;
char namebuf[NAME_BUFLEN];
char *qfmt;
struct sysctl_oid *queue_node, *fl_node, *node;
struct sysctl_oid_list *queue_list, *fl_list;
ctx_list = device_get_sysctl_ctx(dev);
node = ctx->ifc_sysctl_node;
child = SYSCTL_CHILDREN(node);
if (scctx->isc_ntxqsets > 100)
qfmt = "txq%03d";
else if (scctx->isc_ntxqsets > 10)
qfmt = "txq%02d";
else
qfmt = "txq%d";
for (i = 0, txq = ctx->ifc_txqs; i < scctx->isc_ntxqsets; i++, txq++) {
snprintf(namebuf, NAME_BUFLEN, qfmt, i);
queue_node = SYSCTL_ADD_NODE(ctx_list, child, OID_AUTO, namebuf,
CTLFLAG_RD, NULL, "Queue Name");
queue_list = SYSCTL_CHILDREN(queue_node);
#if MEMORY_LOGGING
SYSCTL_ADD_QUAD(ctx_list, queue_list, OID_AUTO, "txq_dequeued",
CTLFLAG_RD,
&txq->ift_dequeued, "total mbufs freed");
SYSCTL_ADD_QUAD(ctx_list, queue_list, OID_AUTO, "txq_enqueued",
CTLFLAG_RD,
&txq->ift_enqueued, "total mbufs enqueued");
#endif
SYSCTL_ADD_QUAD(ctx_list, queue_list, OID_AUTO, "mbuf_defrag",
CTLFLAG_RD,
&txq->ift_mbuf_defrag, "# of times m_defrag was called");
SYSCTL_ADD_QUAD(ctx_list, queue_list, OID_AUTO, "m_pullups",
CTLFLAG_RD,
&txq->ift_pullups, "# of times m_pullup was called");
SYSCTL_ADD_QUAD(ctx_list, queue_list, OID_AUTO, "mbuf_defrag_failed",
CTLFLAG_RD,
&txq->ift_mbuf_defrag_failed, "# of times m_defrag failed");
SYSCTL_ADD_QUAD(ctx_list, queue_list, OID_AUTO, "no_desc_avail",
CTLFLAG_RD,
&txq->ift_mbuf_defrag_failed, "# of times no descriptors were available");
SYSCTL_ADD_QUAD(ctx_list, queue_list, OID_AUTO, "tx_map_failed",
CTLFLAG_RD,
&txq->ift_map_failed, "# of times dma map failed");
SYSCTL_ADD_QUAD(ctx_list, queue_list, OID_AUTO, "txd_encap_efbig",
CTLFLAG_RD,
&txq->ift_txd_encap_efbig, "# of times txd_encap returned EFBIG");
SYSCTL_ADD_QUAD(ctx_list, queue_list, OID_AUTO, "no_tx_dma_setup",
CTLFLAG_RD,
&txq->ift_no_tx_dma_setup, "# of times map failed for other than EFBIG");
SYSCTL_ADD_U16(ctx_list, queue_list, OID_AUTO, "txq_pidx",
CTLFLAG_RD,
&txq->ift_pidx, 1, "Producer Index");
SYSCTL_ADD_U16(ctx_list, queue_list, OID_AUTO, "txq_cidx",
CTLFLAG_RD,
&txq->ift_cidx, 1, "Consumer Index");
SYSCTL_ADD_U16(ctx_list, queue_list, OID_AUTO, "txq_cidx_processed",
CTLFLAG_RD,
&txq->ift_cidx_processed, 1, "Consumer Index seen by credit update");
SYSCTL_ADD_U16(ctx_list, queue_list, OID_AUTO, "txq_in_use",
CTLFLAG_RD,
&txq->ift_in_use, 1, "descriptors in use");
SYSCTL_ADD_QUAD(ctx_list, queue_list, OID_AUTO, "txq_processed",
CTLFLAG_RD,
&txq->ift_processed, "descriptors procesed for clean");
SYSCTL_ADD_QUAD(ctx_list, queue_list, OID_AUTO, "txq_cleaned",
CTLFLAG_RD,
&txq->ift_cleaned, "total cleaned");
SYSCTL_ADD_PROC(ctx_list, queue_list, OID_AUTO, "ring_state",
CTLTYPE_STRING | CTLFLAG_RD, __DEVOLATILE(uint64_t *, &txq->ift_br[0]->state),
0, mp_ring_state_handler, "A", "soft ring state");
SYSCTL_ADD_COUNTER_U64(ctx_list, queue_list, OID_AUTO, "r_enqueues",
CTLFLAG_RD, &txq->ift_br[0]->enqueues,
"# of enqueues to the mp_ring for this queue");
SYSCTL_ADD_COUNTER_U64(ctx_list, queue_list, OID_AUTO, "r_drops",
CTLFLAG_RD, &txq->ift_br[0]->drops,
"# of drops in the mp_ring for this queue");
SYSCTL_ADD_COUNTER_U64(ctx_list, queue_list, OID_AUTO, "r_starts",
CTLFLAG_RD, &txq->ift_br[0]->starts,
"# of normal consumer starts in the mp_ring for this queue");
SYSCTL_ADD_COUNTER_U64(ctx_list, queue_list, OID_AUTO, "r_stalls",
CTLFLAG_RD, &txq->ift_br[0]->stalls,
"# of consumer stalls in the mp_ring for this queue");
SYSCTL_ADD_COUNTER_U64(ctx_list, queue_list, OID_AUTO, "r_restarts",
CTLFLAG_RD, &txq->ift_br[0]->restarts,
"# of consumer restarts in the mp_ring for this queue");
SYSCTL_ADD_COUNTER_U64(ctx_list, queue_list, OID_AUTO, "r_abdications",
CTLFLAG_RD, &txq->ift_br[0]->abdications,
"# of consumer abdications in the mp_ring for this queue");
}
if (scctx->isc_nrxqsets > 100)
qfmt = "rxq%03d";
else if (scctx->isc_nrxqsets > 10)
qfmt = "rxq%02d";
else
qfmt = "rxq%d";
for (i = 0, rxq = ctx->ifc_rxqs; i < scctx->isc_nrxqsets; i++, rxq++) {
snprintf(namebuf, NAME_BUFLEN, qfmt, i);
queue_node = SYSCTL_ADD_NODE(ctx_list, child, OID_AUTO, namebuf,
CTLFLAG_RD, NULL, "Queue Name");
queue_list = SYSCTL_CHILDREN(queue_node);
if (sctx->isc_flags & IFLIB_HAS_CQ) {
SYSCTL_ADD_U16(ctx_list, queue_list, OID_AUTO, "rxq_cq_pidx",
CTLFLAG_RD,
&rxq->ifr_cq_pidx, 1, "Producer Index");
SYSCTL_ADD_U16(ctx_list, queue_list, OID_AUTO, "rxq_cq_cidx",
CTLFLAG_RD,
&rxq->ifr_cq_cidx, 1, "Consumer Index");
}
for (j = 0, fl = rxq->ifr_fl; j < rxq->ifr_nfl; j++, fl++) {
snprintf(namebuf, NAME_BUFLEN, "rxq_fl%d", j);
fl_node = SYSCTL_ADD_NODE(ctx_list, queue_list, OID_AUTO, namebuf,
CTLFLAG_RD, NULL, "freelist Name");
fl_list = SYSCTL_CHILDREN(fl_node);
SYSCTL_ADD_U16(ctx_list, fl_list, OID_AUTO, "pidx",
CTLFLAG_RD,
&fl->ifl_pidx, 1, "Producer Index");
SYSCTL_ADD_U16(ctx_list, fl_list, OID_AUTO, "cidx",
CTLFLAG_RD,
&fl->ifl_cidx, 1, "Consumer Index");
SYSCTL_ADD_U16(ctx_list, fl_list, OID_AUTO, "credits",
CTLFLAG_RD,
&fl->ifl_credits, 1, "credits available");
#if MEMORY_LOGGING
SYSCTL_ADD_QUAD(ctx_list, fl_list, OID_AUTO, "fl_m_enqueued",
CTLFLAG_RD,
&fl->ifl_m_enqueued, "mbufs allocated");
SYSCTL_ADD_QUAD(ctx_list, fl_list, OID_AUTO, "fl_m_dequeued",
CTLFLAG_RD,
&fl->ifl_m_dequeued, "mbufs freed");
SYSCTL_ADD_QUAD(ctx_list, fl_list, OID_AUTO, "fl_cl_enqueued",
CTLFLAG_RD,
&fl->ifl_cl_enqueued, "clusters allocated");
SYSCTL_ADD_QUAD(ctx_list, fl_list, OID_AUTO, "fl_cl_dequeued",
CTLFLAG_RD,
&fl->ifl_cl_dequeued, "clusters freed");
#endif
}
}
}