e5f1b1b180
Approved by: jkh
228 lines
5.3 KiB
C
228 lines
5.3 KiB
C
/*
|
|
* Copyright (c) 1996 - 2000
|
|
* HD Associates, Inc. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by HD Associates, Inc
|
|
* 4. Neither the name of the author nor the names of any co-contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY HD ASSOCIATES AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL HD ASSOCIATES OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* $FreeBSD$
|
|
*/
|
|
#include <unistd.h>
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <errno.h>
|
|
#include <err.h>
|
|
#include <fcntl.h>
|
|
#include <sys/types.h>
|
|
#include <sys/mman.h>
|
|
#include <sys/time.h>
|
|
#include <sched.h>
|
|
#include <signal.h>
|
|
|
|
volatile int ticked;
|
|
#define CAN_USE_ALARMS
|
|
|
|
#ifdef CAN_USE_ALARMS
|
|
void tick(int arg)
|
|
{
|
|
ticked = 1;
|
|
}
|
|
#endif
|
|
|
|
/* Fifo: Verify that fifo and round-robin scheduling seem to work.
|
|
*
|
|
* This tests:
|
|
* 1. That sched_rr_get_interval seems to work;
|
|
* 2. That FIFO scheduling doesn't seeem to be round-robin;
|
|
* 3. That round-robin scheduling seems to work.
|
|
*
|
|
*/
|
|
static pid_t child;
|
|
static void tidyup(void)
|
|
{
|
|
if (child)
|
|
kill(child, SIGHUP);
|
|
}
|
|
|
|
static double
|
|
tvsub(const struct timeval *a, const struct timeval *b)
|
|
{
|
|
long sdiff;
|
|
long udiff;
|
|
|
|
sdiff = a->tv_sec - b->tv_sec;
|
|
udiff = a->tv_usec - b->tv_usec;
|
|
|
|
return (double)(sdiff * 1000000 + udiff) / 1e6;
|
|
}
|
|
|
|
int fifo(int argc, char *argv[])
|
|
{
|
|
int e = 0;
|
|
volatile long *p, pid;
|
|
int i;
|
|
struct sched_param fifo_param;
|
|
struct timespec interval;
|
|
#define MAX_RANAT 32
|
|
struct timeval ranat[MAX_RANAT];
|
|
|
|
#ifdef CAN_USE_ALARMS
|
|
static struct itimerval itimerval;
|
|
#endif
|
|
|
|
/* What is the round robin interval?
|
|
*/
|
|
|
|
if (sched_rr_get_interval(0, &interval) == -1) {
|
|
perror("sched_rr_get_interval");
|
|
exit(errno);
|
|
}
|
|
|
|
#ifdef CAN_USE_ALARMS
|
|
signal(SIGALRM, tick);
|
|
#endif
|
|
|
|
fifo_param.sched_priority = 1;
|
|
|
|
p = (long *)mmap(0, sizeof(*p),
|
|
PROT_READ|PROT_WRITE, MAP_ANON|MAP_SHARED|MAP_INHERIT, -1, 0);
|
|
|
|
if (p == (long *)-1)
|
|
err(errno, "mmap");
|
|
|
|
*p = 0;
|
|
|
|
if (sched_setscheduler(0, SCHED_FIFO, &fifo_param) == -1)
|
|
{
|
|
perror("sched_setscheduler");
|
|
return -1;
|
|
}
|
|
|
|
pid = getpid();
|
|
|
|
if ((child = fork()) == 0)
|
|
{
|
|
/* Child process. Just keep setting the pointer to our
|
|
* PID. The parent will kill us when it wants to.
|
|
*/
|
|
|
|
pid = getpid();
|
|
while (1)
|
|
*p = pid;
|
|
}
|
|
else
|
|
{
|
|
atexit(tidyup);
|
|
*p = pid;
|
|
|
|
|
|
ticked = 0;
|
|
|
|
#ifdef CAN_USE_ALARMS
|
|
/* Set an alarm for 250 times the round-robin interval.
|
|
* Then we will verify that a similar priority process
|
|
* will not run when we are using the FIFO scheduler.
|
|
*/
|
|
itimerval.it_value.tv_usec = interval.tv_nsec / (1000 / 250);
|
|
|
|
itimerval.it_value.tv_sec = itimerval.it_value.tv_usec / 1000000;
|
|
itimerval.it_value.tv_usec %= 1000000;
|
|
|
|
|
|
if (setitimer(ITIMER_REAL, &itimerval, 0) == -1) {
|
|
perror("setitimer");
|
|
exit(errno);
|
|
}
|
|
#endif
|
|
|
|
|
|
gettimeofday(ranat, 0);
|
|
i = 1;
|
|
while (!ticked && i < MAX_RANAT)
|
|
if (*p == child) {
|
|
gettimeofday(ranat + i, 0);
|
|
*p = 0;
|
|
e = -1;
|
|
i++;
|
|
}
|
|
|
|
if (e) {
|
|
int j;
|
|
|
|
fprintf(stderr,
|
|
"SCHED_FIFO had erroneous context switches:\n");
|
|
for (j = 1; j < i; j++) {
|
|
fprintf(stderr, "%d %g\n", j,
|
|
tvsub(ranat + j, ranat + j - 1));
|
|
}
|
|
return e;
|
|
}
|
|
|
|
/* Switch to the round robin scheduler and the child
|
|
* should run within twice the interval.
|
|
*/
|
|
if (sched_setscheduler(child, SCHED_RR, &fifo_param) == -1 ||
|
|
sched_setscheduler(0, SCHED_RR, &fifo_param) == -1)
|
|
{
|
|
perror("sched_setscheduler");
|
|
return -1;
|
|
}
|
|
|
|
e = -1;
|
|
|
|
ticked = 0;
|
|
|
|
#ifdef CAN_USE_ALARMS
|
|
|
|
/* Now we do want to see it run. But only set
|
|
* the alarm for twice the interval:
|
|
*/
|
|
itimerval.it_value.tv_usec = interval.tv_nsec / 500;
|
|
|
|
if (setitimer(ITIMER_REAL, &itimerval, 0) == -1) {
|
|
perror("setitimer");
|
|
exit(errno);
|
|
}
|
|
#endif
|
|
|
|
for (i = 0; !ticked; i++)
|
|
if (*p == child) {
|
|
e = 0;
|
|
break;
|
|
}
|
|
|
|
if (e)
|
|
fprintf(stderr,"Child never ran when it should have.\n");
|
|
}
|
|
|
|
exit(e);
|
|
}
|
|
|
|
#ifdef STANDALONE_TESTS
|
|
int main(int argc, char *argv[]) { return fifo(argc, argv); }
|
|
#endif
|