freebsd-dev/sys/kern/subr_intr.c
Andrew Turner 3fc155dc64 Introduce MSI and MSI-X support to intrng. This adds a new msi device
interface with 5 methods to mirror the 5 MSI/MSI-X methods in the pcib
interface. The pcib driver will need to perform a device specific lookup
to find the MSI controller and pass this to intrng as the xref. Intrng
will finally find the controller and have it handle the requested operation.

Obtained from:	ABT Systems Ltd
MFH:		yes
Sponsored by:	The FreeBSD Foundation
Differential Revision:	https://reviews.freebsd.org/D5985
2016-05-16 09:11:40 +00:00

1480 lines
34 KiB
C

/*-
* Copyright (c) 2015-2016 Svatopluk Kraus
* Copyright (c) 2015-2016 Michal Meloun
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* New-style Interrupt Framework
*
* TODO: - to support IPI (PPI) enabling on other CPUs if already started
* - to complete things for removable PICs
*/
#include "opt_acpi.h"
#include "opt_ddb.h"
#include "opt_platform.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/syslog.h>
#include <sys/malloc.h>
#include <sys/proc.h>
#include <sys/queue.h>
#include <sys/bus.h>
#include <sys/interrupt.h>
#include <sys/conf.h>
#include <sys/cpuset.h>
#include <sys/rman.h>
#include <sys/sched.h>
#include <sys/smp.h>
#include <machine/atomic.h>
#include <machine/intr.h>
#include <machine/cpu.h>
#include <machine/smp.h>
#include <machine/stdarg.h>
#ifdef FDT
#include <dev/ofw/openfirm.h>
#include <dev/ofw/ofw_bus.h>
#include <dev/ofw/ofw_bus_subr.h>
#endif
#ifdef DDB
#include <ddb/ddb.h>
#endif
#include "pic_if.h"
#include "msi_if.h"
#define INTRNAME_LEN (2*MAXCOMLEN + 1)
#ifdef DEBUG
#define debugf(fmt, args...) do { printf("%s(): ", __func__); \
printf(fmt,##args); } while (0)
#else
#define debugf(fmt, args...)
#endif
MALLOC_DECLARE(M_INTRNG);
MALLOC_DEFINE(M_INTRNG, "intr", "intr interrupt handling");
/* Main interrupt handler called from assembler -> 'hidden' for C code. */
void intr_irq_handler(struct trapframe *tf);
/* Root interrupt controller stuff. */
device_t intr_irq_root_dev;
static intr_irq_filter_t *irq_root_filter;
static void *irq_root_arg;
static u_int irq_root_ipicount;
/* Interrupt controller definition. */
struct intr_pic {
SLIST_ENTRY(intr_pic) pic_next;
intptr_t pic_xref; /* hardware identification */
device_t pic_dev;
#define FLAG_PIC (1 << 0)
#define FLAG_MSI (1 << 1)
u_int pic_flags;
};
static struct mtx pic_list_lock;
static SLIST_HEAD(, intr_pic) pic_list;
static struct intr_pic *pic_lookup(device_t dev, intptr_t xref);
/* Interrupt source definition. */
static struct mtx isrc_table_lock;
static struct intr_irqsrc *irq_sources[NIRQ];
u_int irq_next_free;
/*
* XXX - All stuff around struct intr_dev_data is considered as temporary
* until better place for storing struct intr_map_data will be find.
*
* For now, there are two global interrupt numbers spaces:
* <0, NIRQ) ... interrupts without config data
* managed in irq_sources[]
* IRQ_DDATA_BASE + <0, 2 * NIRQ) ... interrupts with config data
* managed in intr_ddata_tab[]
*
* Read intr_ddata_lookup() to see how these spaces are worked with.
* Note that each interrupt number from second space duplicates some number
* from first space at this moment. An interrupt number from first space can
* be duplicated even multiple times in second space.
*/
struct intr_dev_data {
device_t idd_dev;
intptr_t idd_xref;
u_int idd_irq;
struct intr_map_data * idd_data;
struct intr_irqsrc * idd_isrc;
};
static struct intr_dev_data *intr_ddata_tab[2 * NIRQ];
static u_int intr_ddata_first_unused;
#define IRQ_DDATA_BASE 10000
CTASSERT(IRQ_DDATA_BASE > nitems(irq_sources));
#ifdef SMP
static boolean_t irq_assign_cpu = FALSE;
#endif
/*
* - 2 counters for each I/O interrupt.
* - MAXCPU counters for each IPI counters for SMP.
*/
#ifdef SMP
#define INTRCNT_COUNT (NIRQ * 2 + INTR_IPI_COUNT * MAXCPU)
#else
#define INTRCNT_COUNT (NIRQ * 2)
#endif
/* Data for MI statistics reporting. */
u_long intrcnt[INTRCNT_COUNT];
char intrnames[INTRCNT_COUNT * INTRNAME_LEN];
size_t sintrcnt = sizeof(intrcnt);
size_t sintrnames = sizeof(intrnames);
static u_int intrcnt_index;
/*
* Interrupt framework initialization routine.
*/
static void
intr_irq_init(void *dummy __unused)
{
SLIST_INIT(&pic_list);
mtx_init(&pic_list_lock, "intr pic list", NULL, MTX_DEF);
mtx_init(&isrc_table_lock, "intr isrc table", NULL, MTX_DEF);
}
SYSINIT(intr_irq_init, SI_SUB_INTR, SI_ORDER_FIRST, intr_irq_init, NULL);
static void
intrcnt_setname(const char *name, int index)
{
snprintf(intrnames + INTRNAME_LEN * index, INTRNAME_LEN, "%-*s",
INTRNAME_LEN - 1, name);
}
/*
* Update name for interrupt source with interrupt event.
*/
static void
intrcnt_updatename(struct intr_irqsrc *isrc)
{
/* QQQ: What about stray counter name? */
mtx_assert(&isrc_table_lock, MA_OWNED);
intrcnt_setname(isrc->isrc_event->ie_fullname, isrc->isrc_index);
}
/*
* Virtualization for interrupt source interrupt counter increment.
*/
static inline void
isrc_increment_count(struct intr_irqsrc *isrc)
{
if (isrc->isrc_flags & INTR_ISRCF_PPI)
atomic_add_long(&isrc->isrc_count[0], 1);
else
isrc->isrc_count[0]++;
}
/*
* Virtualization for interrupt source interrupt stray counter increment.
*/
static inline void
isrc_increment_straycount(struct intr_irqsrc *isrc)
{
isrc->isrc_count[1]++;
}
/*
* Virtualization for interrupt source interrupt name update.
*/
static void
isrc_update_name(struct intr_irqsrc *isrc, const char *name)
{
char str[INTRNAME_LEN];
mtx_assert(&isrc_table_lock, MA_OWNED);
if (name != NULL) {
snprintf(str, INTRNAME_LEN, "%s: %s", isrc->isrc_name, name);
intrcnt_setname(str, isrc->isrc_index);
snprintf(str, INTRNAME_LEN, "stray %s: %s", isrc->isrc_name,
name);
intrcnt_setname(str, isrc->isrc_index + 1);
} else {
snprintf(str, INTRNAME_LEN, "%s:", isrc->isrc_name);
intrcnt_setname(str, isrc->isrc_index);
snprintf(str, INTRNAME_LEN, "stray %s:", isrc->isrc_name);
intrcnt_setname(str, isrc->isrc_index + 1);
}
}
/*
* Virtualization for interrupt source interrupt counters setup.
*/
static void
isrc_setup_counters(struct intr_irqsrc *isrc)
{
u_int index;
/*
* XXX - it does not work well with removable controllers and
* interrupt sources !!!
*/
index = atomic_fetchadd_int(&intrcnt_index, 2);
isrc->isrc_index = index;
isrc->isrc_count = &intrcnt[index];
isrc_update_name(isrc, NULL);
}
/*
* Virtualization for interrupt source interrupt counters release.
*/
static void
isrc_release_counters(struct intr_irqsrc *isrc)
{
panic("%s: not implemented", __func__);
}
#ifdef SMP
/*
* Virtualization for interrupt source IPI counters setup.
*/
u_long *
intr_ipi_setup_counters(const char *name)
{
u_int index, i;
char str[INTRNAME_LEN];
index = atomic_fetchadd_int(&intrcnt_index, MAXCPU);
for (i = 0; i < MAXCPU; i++) {
snprintf(str, INTRNAME_LEN, "cpu%d:%s", i, name);
intrcnt_setname(str, index + i);
}
return (&intrcnt[index]);
}
#endif
/*
* Main interrupt dispatch handler. It's called straight
* from the assembler, where CPU interrupt is served.
*/
void
intr_irq_handler(struct trapframe *tf)
{
struct trapframe * oldframe;
struct thread * td;
KASSERT(irq_root_filter != NULL, ("%s: no filter", __func__));
PCPU_INC(cnt.v_intr);
critical_enter();
td = curthread;
oldframe = td->td_intr_frame;
td->td_intr_frame = tf;
irq_root_filter(irq_root_arg);
td->td_intr_frame = oldframe;
critical_exit();
}
/*
* interrupt controller dispatch function for interrupts. It should
* be called straight from the interrupt controller, when associated interrupt
* source is learned.
*/
int
intr_isrc_dispatch(struct intr_irqsrc *isrc, struct trapframe *tf)
{
KASSERT(isrc != NULL, ("%s: no source", __func__));
isrc_increment_count(isrc);
#ifdef INTR_SOLO
if (isrc->isrc_filter != NULL) {
int error;
error = isrc->isrc_filter(isrc->isrc_arg, tf);
PIC_POST_FILTER(isrc->isrc_dev, isrc);
if (error == FILTER_HANDLED)
return (0);
} else
#endif
if (isrc->isrc_event != NULL) {
if (intr_event_handle(isrc->isrc_event, tf) == 0)
return (0);
}
isrc_increment_straycount(isrc);
return (EINVAL);
}
/*
* Alloc unique interrupt number (resource handle) for interrupt source.
*
* There could be various strategies how to allocate free interrupt number
* (resource handle) for new interrupt source.
*
* 1. Handles are always allocated forward, so handles are not recycled
* immediately. However, if only one free handle left which is reused
* constantly...
*/
static inline int
isrc_alloc_irq(struct intr_irqsrc *isrc)
{
u_int maxirqs, irq;
mtx_assert(&isrc_table_lock, MA_OWNED);
maxirqs = nitems(irq_sources);
if (irq_next_free >= maxirqs)
return (ENOSPC);
for (irq = irq_next_free; irq < maxirqs; irq++) {
if (irq_sources[irq] == NULL)
goto found;
}
for (irq = 0; irq < irq_next_free; irq++) {
if (irq_sources[irq] == NULL)
goto found;
}
irq_next_free = maxirqs;
return (ENOSPC);
found:
isrc->isrc_irq = irq;
irq_sources[irq] = isrc;
irq_next_free = irq + 1;
if (irq_next_free >= maxirqs)
irq_next_free = 0;
return (0);
}
/*
* Free unique interrupt number (resource handle) from interrupt source.
*/
static inline int
isrc_free_irq(struct intr_irqsrc *isrc)
{
mtx_assert(&isrc_table_lock, MA_OWNED);
if (isrc->isrc_irq >= nitems(irq_sources))
return (EINVAL);
if (irq_sources[isrc->isrc_irq] != isrc)
return (EINVAL);
irq_sources[isrc->isrc_irq] = NULL;
isrc->isrc_irq = INTR_IRQ_INVALID; /* just to be safe */
return (0);
}
/*
* Lookup interrupt source by interrupt number (resource handle).
*/
static inline struct intr_irqsrc *
isrc_lookup(u_int irq)
{
if (irq < nitems(irq_sources))
return (irq_sources[irq]);
return (NULL);
}
/*
* Initialize interrupt source and register it into global interrupt table.
*/
int
intr_isrc_register(struct intr_irqsrc *isrc, device_t dev, u_int flags,
const char *fmt, ...)
{
int error;
va_list ap;
bzero(isrc, sizeof(struct intr_irqsrc));
isrc->isrc_dev = dev;
isrc->isrc_irq = INTR_IRQ_INVALID; /* just to be safe */
isrc->isrc_flags = flags;
va_start(ap, fmt);
vsnprintf(isrc->isrc_name, INTR_ISRC_NAMELEN, fmt, ap);
va_end(ap);
mtx_lock(&isrc_table_lock);
error = isrc_alloc_irq(isrc);
if (error != 0) {
mtx_unlock(&isrc_table_lock);
return (error);
}
/*
* Setup interrupt counters, but not for IPI sources. Those are setup
* later and only for used ones (up to INTR_IPI_COUNT) to not exhaust
* our counter pool.
*/
if ((isrc->isrc_flags & INTR_ISRCF_IPI) == 0)
isrc_setup_counters(isrc);
mtx_unlock(&isrc_table_lock);
return (0);
}
/*
* Deregister interrupt source from global interrupt table.
*/
int
intr_isrc_deregister(struct intr_irqsrc *isrc)
{
int error;
mtx_lock(&isrc_table_lock);
if ((isrc->isrc_flags & INTR_ISRCF_IPI) == 0)
isrc_release_counters(isrc);
error = isrc_free_irq(isrc);
mtx_unlock(&isrc_table_lock);
return (error);
}
#ifdef SMP
/*
* A support function for a PIC to decide if provided ISRC should be inited
* on given cpu. The logic of INTR_ISRCF_BOUND flag and isrc_cpu member of
* struct intr_irqsrc is the following:
*
* If INTR_ISRCF_BOUND is set, the ISRC should be inited only on cpus
* set in isrc_cpu. If not, the ISRC should be inited on every cpu and
* isrc_cpu is kept consistent with it. Thus isrc_cpu is always correct.
*/
bool
intr_isrc_init_on_cpu(struct intr_irqsrc *isrc, u_int cpu)
{
if (isrc->isrc_handlers == 0)
return (false);
if ((isrc->isrc_flags & (INTR_ISRCF_PPI | INTR_ISRCF_IPI)) == 0)
return (false);
if (isrc->isrc_flags & INTR_ISRCF_BOUND)
return (CPU_ISSET(cpu, &isrc->isrc_cpu));
CPU_SET(cpu, &isrc->isrc_cpu);
return (true);
}
#endif
static struct intr_dev_data *
intr_ddata_alloc(u_int extsize)
{
struct intr_dev_data *ddata;
size_t size;
size = sizeof(*ddata);
ddata = malloc(size + extsize, M_INTRNG, M_WAITOK | M_ZERO);
mtx_lock(&isrc_table_lock);
if (intr_ddata_first_unused >= nitems(intr_ddata_tab)) {
mtx_unlock(&isrc_table_lock);
free(ddata, M_INTRNG);
return (NULL);
}
intr_ddata_tab[intr_ddata_first_unused] = ddata;
ddata->idd_irq = IRQ_DDATA_BASE + intr_ddata_first_unused++;
mtx_unlock(&isrc_table_lock);
ddata->idd_data = (struct intr_map_data *)((uintptr_t)ddata + size);
ddata->idd_data->size = extsize;
return (ddata);
}
static struct intr_irqsrc *
intr_ddata_lookup(u_int irq, struct intr_map_data **datap)
{
int error;
struct intr_irqsrc *isrc;
struct intr_dev_data *ddata;
isrc = isrc_lookup(irq);
if (isrc != NULL) {
if (datap != NULL)
*datap = NULL;
return (isrc);
}
if (irq < IRQ_DDATA_BASE)
return (NULL);
irq -= IRQ_DDATA_BASE;
if (irq >= nitems(intr_ddata_tab))
return (NULL);
ddata = intr_ddata_tab[irq];
if (ddata->idd_isrc == NULL) {
error = intr_map_irq(ddata->idd_dev, ddata->idd_xref,
ddata->idd_data, &irq);
if (error != 0)
return (NULL);
ddata->idd_isrc = isrc_lookup(irq);
}
if (datap != NULL)
*datap = ddata->idd_data;
return (ddata->idd_isrc);
}
#ifdef DEV_ACPI
/*
* Map interrupt source according to ACPI info into framework. If such mapping
* does not exist, create it. Return unique interrupt number (resource handle)
* associated with mapped interrupt source.
*/
u_int
intr_acpi_map_irq(device_t dev, u_int irq, enum intr_polarity pol,
enum intr_trigger trig)
{
struct intr_map_data_acpi *daa;
struct intr_dev_data *ddata;
ddata = intr_ddata_alloc(sizeof(struct intr_map_data_acpi));
if (ddata == NULL)
return (INTR_IRQ_INVALID); /* no space left */
ddata->idd_dev = dev;
ddata->idd_data->type = INTR_MAP_DATA_ACPI;
daa = (struct intr_map_data_acpi *)ddata->idd_data;
daa->irq = irq;
daa->pol = pol;
daa->trig = trig;
return (ddata->idd_irq);
}
#endif
#ifdef FDT
/*
* Map interrupt source according to FDT data into framework. If such mapping
* does not exist, create it. Return unique interrupt number (resource handle)
* associated with mapped interrupt source.
*/
u_int
intr_fdt_map_irq(phandle_t node, pcell_t *cells, u_int ncells)
{
size_t cellsize;
struct intr_dev_data *ddata;
struct intr_map_data_fdt *daf;
cellsize = ncells * sizeof(*cells);
ddata = intr_ddata_alloc(sizeof(struct intr_map_data_fdt) + cellsize);
if (ddata == NULL)
return (INTR_IRQ_INVALID); /* no space left */
ddata->idd_xref = (intptr_t)node;
ddata->idd_data->type = INTR_MAP_DATA_FDT;
daf = (struct intr_map_data_fdt *)ddata->idd_data;
daf->ncells = ncells;
memcpy(daf->cells, cells, cellsize);
return (ddata->idd_irq);
}
#endif
/*
* Store GPIO interrupt decription in framework and return unique interrupt
* number (resource handle) associated with it.
*/
u_int
intr_gpio_map_irq(device_t dev, u_int pin_num, u_int pin_flags, u_int intr_mode)
{
struct intr_dev_data *ddata;
struct intr_map_data_gpio *dag;
ddata = intr_ddata_alloc(sizeof(struct intr_map_data_gpio));
if (ddata == NULL)
return (INTR_IRQ_INVALID); /* no space left */
ddata->idd_dev = dev;
ddata->idd_data->type = INTR_MAP_DATA_GPIO;
dag = (struct intr_map_data_gpio *)ddata->idd_data;
dag->gpio_pin_num = pin_num;
dag->gpio_pin_flags = pin_flags;
dag->gpio_intr_mode = intr_mode;
return (ddata->idd_irq);
}
#ifdef INTR_SOLO
/*
* Setup filter into interrupt source.
*/
static int
iscr_setup_filter(struct intr_irqsrc *isrc, const char *name,
intr_irq_filter_t *filter, void *arg, void **cookiep)
{
if (filter == NULL)
return (EINVAL);
mtx_lock(&isrc_table_lock);
/*
* Make sure that we do not mix the two ways
* how we handle interrupt sources.
*/
if (isrc->isrc_filter != NULL || isrc->isrc_event != NULL) {
mtx_unlock(&isrc_table_lock);
return (EBUSY);
}
isrc->isrc_filter = filter;
isrc->isrc_arg = arg;
isrc_update_name(isrc, name);
mtx_unlock(&isrc_table_lock);
*cookiep = isrc;
return (0);
}
#endif
/*
* Interrupt source pre_ithread method for MI interrupt framework.
*/
static void
intr_isrc_pre_ithread(void *arg)
{
struct intr_irqsrc *isrc = arg;
PIC_PRE_ITHREAD(isrc->isrc_dev, isrc);
}
/*
* Interrupt source post_ithread method for MI interrupt framework.
*/
static void
intr_isrc_post_ithread(void *arg)
{
struct intr_irqsrc *isrc = arg;
PIC_POST_ITHREAD(isrc->isrc_dev, isrc);
}
/*
* Interrupt source post_filter method for MI interrupt framework.
*/
static void
intr_isrc_post_filter(void *arg)
{
struct intr_irqsrc *isrc = arg;
PIC_POST_FILTER(isrc->isrc_dev, isrc);
}
/*
* Interrupt source assign_cpu method for MI interrupt framework.
*/
static int
intr_isrc_assign_cpu(void *arg, int cpu)
{
#ifdef SMP
struct intr_irqsrc *isrc = arg;
int error;
if (isrc->isrc_dev != intr_irq_root_dev)
return (EINVAL);
mtx_lock(&isrc_table_lock);
if (cpu == NOCPU) {
CPU_ZERO(&isrc->isrc_cpu);
isrc->isrc_flags &= ~INTR_ISRCF_BOUND;
} else {
CPU_SETOF(cpu, &isrc->isrc_cpu);
isrc->isrc_flags |= INTR_ISRCF_BOUND;
}
/*
* In NOCPU case, it's up to PIC to either leave ISRC on same CPU or
* re-balance it to another CPU or enable it on more CPUs. However,
* PIC is expected to change isrc_cpu appropriately to keep us well
* informed if the call is successful.
*/
if (irq_assign_cpu) {
error = PIC_BIND_INTR(isrc->isrc_dev, isrc);
if (error) {
CPU_ZERO(&isrc->isrc_cpu);
mtx_unlock(&isrc_table_lock);
return (error);
}
}
mtx_unlock(&isrc_table_lock);
return (0);
#else
return (EOPNOTSUPP);
#endif
}
/*
* Create interrupt event for interrupt source.
*/
static int
isrc_event_create(struct intr_irqsrc *isrc)
{
struct intr_event *ie;
int error;
error = intr_event_create(&ie, isrc, 0, isrc->isrc_irq,
intr_isrc_pre_ithread, intr_isrc_post_ithread, intr_isrc_post_filter,
intr_isrc_assign_cpu, "%s:", isrc->isrc_name);
if (error)
return (error);
mtx_lock(&isrc_table_lock);
/*
* Make sure that we do not mix the two ways
* how we handle interrupt sources. Let contested event wins.
*/
#ifdef INTR_SOLO
if (isrc->isrc_filter != NULL || isrc->isrc_event != NULL) {
#else
if (isrc->isrc_event != NULL) {
#endif
mtx_unlock(&isrc_table_lock);
intr_event_destroy(ie);
return (isrc->isrc_event != NULL ? EBUSY : 0);
}
isrc->isrc_event = ie;
mtx_unlock(&isrc_table_lock);
return (0);
}
#ifdef notyet
/*
* Destroy interrupt event for interrupt source.
*/
static void
isrc_event_destroy(struct intr_irqsrc *isrc)
{
struct intr_event *ie;
mtx_lock(&isrc_table_lock);
ie = isrc->isrc_event;
isrc->isrc_event = NULL;
mtx_unlock(&isrc_table_lock);
if (ie != NULL)
intr_event_destroy(ie);
}
#endif
/*
* Add handler to interrupt source.
*/
static int
isrc_add_handler(struct intr_irqsrc *isrc, const char *name,
driver_filter_t filter, driver_intr_t handler, void *arg,
enum intr_type flags, void **cookiep)
{
int error;
if (isrc->isrc_event == NULL) {
error = isrc_event_create(isrc);
if (error)
return (error);
}
error = intr_event_add_handler(isrc->isrc_event, name, filter, handler,
arg, intr_priority(flags), flags, cookiep);
if (error == 0) {
mtx_lock(&isrc_table_lock);
intrcnt_updatename(isrc);
mtx_unlock(&isrc_table_lock);
}
return (error);
}
/*
* Lookup interrupt controller locked.
*/
static inline struct intr_pic *
pic_lookup_locked(device_t dev, intptr_t xref)
{
struct intr_pic *pic;
mtx_assert(&pic_list_lock, MA_OWNED);
if (dev == NULL && xref == 0)
return (NULL);
/* Note that pic->pic_dev is never NULL on registered PIC. */
SLIST_FOREACH(pic, &pic_list, pic_next) {
if (dev == NULL) {
if (xref == pic->pic_xref)
return (pic);
} else if (xref == 0 || pic->pic_xref == 0) {
if (dev == pic->pic_dev)
return (pic);
} else if (xref == pic->pic_xref && dev == pic->pic_dev)
return (pic);
}
return (NULL);
}
/*
* Lookup interrupt controller.
*/
static struct intr_pic *
pic_lookup(device_t dev, intptr_t xref)
{
struct intr_pic *pic;
mtx_lock(&pic_list_lock);
pic = pic_lookup_locked(dev, xref);
mtx_unlock(&pic_list_lock);
return (pic);
}
/*
* Create interrupt controller.
*/
static struct intr_pic *
pic_create(device_t dev, intptr_t xref)
{
struct intr_pic *pic;
mtx_lock(&pic_list_lock);
pic = pic_lookup_locked(dev, xref);
if (pic != NULL) {
mtx_unlock(&pic_list_lock);
return (pic);
}
pic = malloc(sizeof(*pic), M_INTRNG, M_NOWAIT | M_ZERO);
if (pic == NULL) {
mtx_unlock(&pic_list_lock);
return (NULL);
}
pic->pic_xref = xref;
pic->pic_dev = dev;
SLIST_INSERT_HEAD(&pic_list, pic, pic_next);
mtx_unlock(&pic_list_lock);
return (pic);
}
#ifdef notyet
/*
* Destroy interrupt controller.
*/
static void
pic_destroy(device_t dev, intptr_t xref)
{
struct intr_pic *pic;
mtx_lock(&pic_list_lock);
pic = pic_lookup_locked(dev, xref);
if (pic == NULL) {
mtx_unlock(&pic_list_lock);
return;
}
SLIST_REMOVE(&pic_list, pic, intr_pic, pic_next);
mtx_unlock(&pic_list_lock);
free(pic, M_INTRNG);
}
#endif
/*
* Register interrupt controller.
*/
int
intr_pic_register(device_t dev, intptr_t xref)
{
struct intr_pic *pic;
if (dev == NULL)
return (EINVAL);
pic = pic_create(dev, xref);
if (pic == NULL)
return (ENOMEM);
pic->pic_flags |= FLAG_PIC;
debugf("PIC %p registered for %s <dev %p, xref %x>\n", pic,
device_get_nameunit(dev), dev, xref);
return (0);
}
/*
* Unregister interrupt controller.
*/
int
intr_pic_deregister(device_t dev, intptr_t xref)
{
panic("%s: not implemented", __func__);
}
/*
* Mark interrupt controller (itself) as a root one.
*
* Note that only an interrupt controller can really know its position
* in interrupt controller's tree. So root PIC must claim itself as a root.
*
* In FDT case, according to ePAPR approved version 1.1 from 08 April 2011,
* page 30:
* "The root of the interrupt tree is determined when traversal
* of the interrupt tree reaches an interrupt controller node without
* an interrupts property and thus no explicit interrupt parent."
*/
int
intr_pic_claim_root(device_t dev, intptr_t xref, intr_irq_filter_t *filter,
void *arg, u_int ipicount)
{
struct intr_pic *pic;
pic = pic_lookup(dev, xref);
if (pic == NULL) {
device_printf(dev, "not registered\n");
return (EINVAL);
}
KASSERT((pic->pic_flags & FLAG_PIC) != 0,
("%s: Found a non-PIC controller: %s", __func__,
device_get_name(pic->pic_dev)));
if (filter == NULL) {
device_printf(dev, "filter missing\n");
return (EINVAL);
}
/*
* Only one interrupt controllers could be on the root for now.
* Note that we further suppose that there is not threaded interrupt
* routine (handler) on the root. See intr_irq_handler().
*/
if (intr_irq_root_dev != NULL) {
device_printf(dev, "another root already set\n");
return (EBUSY);
}
intr_irq_root_dev = dev;
irq_root_filter = filter;
irq_root_arg = arg;
irq_root_ipicount = ipicount;
debugf("irq root set to %s\n", device_get_nameunit(dev));
return (0);
}
int
intr_map_irq(device_t dev, intptr_t xref, struct intr_map_data *data,
u_int *irqp)
{
int error;
struct intr_irqsrc *isrc;
struct intr_pic *pic;
if (data == NULL)
return (EINVAL);
pic = pic_lookup(dev, xref);
if (pic == NULL)
return (ESRCH);
KASSERT((pic->pic_flags & FLAG_PIC) != 0,
("%s: Found a non-PIC controller: %s", __func__,
device_get_name(pic->pic_dev)));
error = PIC_MAP_INTR(pic->pic_dev, data, &isrc);
if (error == 0)
*irqp = isrc->isrc_irq;
return (error);
}
int
intr_alloc_irq(device_t dev, struct resource *res)
{
struct intr_map_data *data;
struct intr_irqsrc *isrc;
KASSERT(rman_get_start(res) == rman_get_end(res),
("%s: more interrupts in resource", __func__));
isrc = intr_ddata_lookup(rman_get_start(res), &data);
if (isrc == NULL)
return (EINVAL);
return (PIC_ALLOC_INTR(isrc->isrc_dev, isrc, res, data));
}
int
intr_release_irq(device_t dev, struct resource *res)
{
struct intr_map_data *data;
struct intr_irqsrc *isrc;
KASSERT(rman_get_start(res) == rman_get_end(res),
("%s: more interrupts in resource", __func__));
isrc = intr_ddata_lookup(rman_get_start(res), &data);
if (isrc == NULL)
return (EINVAL);
return (PIC_RELEASE_INTR(isrc->isrc_dev, isrc, res, data));
}
int
intr_setup_irq(device_t dev, struct resource *res, driver_filter_t filt,
driver_intr_t hand, void *arg, int flags, void **cookiep)
{
int error;
struct intr_map_data *data;
struct intr_irqsrc *isrc;
const char *name;
KASSERT(rman_get_start(res) == rman_get_end(res),
("%s: more interrupts in resource", __func__));
isrc = intr_ddata_lookup(rman_get_start(res), &data);
if (isrc == NULL)
return (EINVAL);
name = device_get_nameunit(dev);
#ifdef INTR_SOLO
/*
* Standard handling is done through MI interrupt framework. However,
* some interrupts could request solely own special handling. This
* non standard handling can be used for interrupt controllers without
* handler (filter only), so in case that interrupt controllers are
* chained, MI interrupt framework is called only in leaf controller.
*
* Note that root interrupt controller routine is served as well,
* however in intr_irq_handler(), i.e. main system dispatch routine.
*/
if (flags & INTR_SOLO && hand != NULL) {
debugf("irq %u cannot solo on %s\n", irq, name);
return (EINVAL);
}
if (flags & INTR_SOLO) {
error = iscr_setup_filter(isrc, name, (intr_irq_filter_t *)filt,
arg, cookiep);
debugf("irq %u setup filter error %d on %s\n", irq, error,
name);
} else
#endif
{
error = isrc_add_handler(isrc, name, filt, hand, arg, flags,
cookiep);
debugf("irq %u add handler error %d on %s\n", irq, error, name);
}
if (error != 0)
return (error);
mtx_lock(&isrc_table_lock);
error = PIC_SETUP_INTR(isrc->isrc_dev, isrc, res, data);
if (error == 0) {
isrc->isrc_handlers++;
if (isrc->isrc_handlers == 1)
PIC_ENABLE_INTR(isrc->isrc_dev, isrc);
}
mtx_unlock(&isrc_table_lock);
if (error != 0)
intr_event_remove_handler(*cookiep);
return (error);
}
int
intr_teardown_irq(device_t dev, struct resource *res, void *cookie)
{
int error;
struct intr_map_data *data;
struct intr_irqsrc *isrc;
KASSERT(rman_get_start(res) == rman_get_end(res),
("%s: more interrupts in resource", __func__));
isrc = intr_ddata_lookup(rman_get_start(res), &data);
if (isrc == NULL || isrc->isrc_handlers == 0)
return (EINVAL);
#ifdef INTR_SOLO
if (isrc->isrc_filter != NULL) {
if (isrc != cookie)
return (EINVAL);
mtx_lock(&isrc_table_lock);
isrc->isrc_filter = NULL;
isrc->isrc_arg = NULL;
isrc->isrc_handlers = 0;
PIC_DISABLE_INTR(isrc->isrc_dev, isrc);
PIC_TEARDOWN_INTR(isrc->isrc_dev, isrc, res, data);
isrc_update_name(isrc, NULL);
mtx_unlock(&isrc_table_lock);
return (0);
}
#endif
if (isrc != intr_handler_source(cookie))
return (EINVAL);
error = intr_event_remove_handler(cookie);
if (error == 0) {
mtx_lock(&isrc_table_lock);
isrc->isrc_handlers--;
if (isrc->isrc_handlers == 0)
PIC_DISABLE_INTR(isrc->isrc_dev, isrc);
PIC_TEARDOWN_INTR(isrc->isrc_dev, isrc, res, data);
intrcnt_updatename(isrc);
mtx_unlock(&isrc_table_lock);
}
return (error);
}
int
intr_describe_irq(device_t dev, struct resource *res, void *cookie,
const char *descr)
{
int error;
struct intr_irqsrc *isrc;
KASSERT(rman_get_start(res) == rman_get_end(res),
("%s: more interrupts in resource", __func__));
isrc = intr_ddata_lookup(rman_get_start(res), NULL);
if (isrc == NULL || isrc->isrc_handlers == 0)
return (EINVAL);
#ifdef INTR_SOLO
if (isrc->isrc_filter != NULL) {
if (isrc != cookie)
return (EINVAL);
mtx_lock(&isrc_table_lock);
isrc_update_name(isrc, descr);
mtx_unlock(&isrc_table_lock);
return (0);
}
#endif
error = intr_event_describe_handler(isrc->isrc_event, cookie, descr);
if (error == 0) {
mtx_lock(&isrc_table_lock);
intrcnt_updatename(isrc);
mtx_unlock(&isrc_table_lock);
}
return (error);
}
#ifdef SMP
int
intr_bind_irq(device_t dev, struct resource *res, int cpu)
{
struct intr_irqsrc *isrc;
KASSERT(rman_get_start(res) == rman_get_end(res),
("%s: more interrupts in resource", __func__));
isrc = intr_ddata_lookup(rman_get_start(res), NULL);
if (isrc == NULL || isrc->isrc_handlers == 0)
return (EINVAL);
#ifdef INTR_SOLO
if (isrc->isrc_filter != NULL)
return (intr_isrc_assign_cpu(isrc, cpu));
#endif
return (intr_event_bind(isrc->isrc_event, cpu));
}
/*
* Return the CPU that the next interrupt source should use.
* For now just returns the next CPU according to round-robin.
*/
u_int
intr_irq_next_cpu(u_int last_cpu, cpuset_t *cpumask)
{
if (!irq_assign_cpu || mp_ncpus == 1)
return (PCPU_GET(cpuid));
do {
last_cpu++;
if (last_cpu > mp_maxid)
last_cpu = 0;
} while (!CPU_ISSET(last_cpu, cpumask));
return (last_cpu);
}
/*
* Distribute all the interrupt sources among the available
* CPUs once the AP's have been launched.
*/
static void
intr_irq_shuffle(void *arg __unused)
{
struct intr_irqsrc *isrc;
u_int i;
if (mp_ncpus == 1)
return;
mtx_lock(&isrc_table_lock);
irq_assign_cpu = TRUE;
for (i = 0; i < NIRQ; i++) {
isrc = irq_sources[i];
if (isrc == NULL || isrc->isrc_handlers == 0 ||
isrc->isrc_flags & (INTR_ISRCF_PPI | INTR_ISRCF_IPI))
continue;
if (isrc->isrc_event != NULL &&
isrc->isrc_flags & INTR_ISRCF_BOUND &&
isrc->isrc_event->ie_cpu != CPU_FFS(&isrc->isrc_cpu) - 1)
panic("%s: CPU inconsistency", __func__);
if ((isrc->isrc_flags & INTR_ISRCF_BOUND) == 0)
CPU_ZERO(&isrc->isrc_cpu); /* start again */
/*
* We are in wicked position here if the following call fails
* for bound ISRC. The best thing we can do is to clear
* isrc_cpu so inconsistency with ie_cpu will be detectable.
*/
if (PIC_BIND_INTR(isrc->isrc_dev, isrc) != 0)
CPU_ZERO(&isrc->isrc_cpu);
}
mtx_unlock(&isrc_table_lock);
}
SYSINIT(intr_irq_shuffle, SI_SUB_SMP, SI_ORDER_SECOND, intr_irq_shuffle, NULL);
#else
u_int
intr_irq_next_cpu(u_int current_cpu, cpuset_t *cpumask)
{
return (PCPU_GET(cpuid));
}
#endif
/*
* Register a MSI/MSI-X interrupt controller
*/
int
intr_msi_register(device_t dev, intptr_t xref)
{
struct intr_pic *pic;
if (dev == NULL)
return (EINVAL);
pic = pic_create(dev, xref);
if (pic == NULL)
return (ENOMEM);
pic->pic_flags |= FLAG_MSI;
debugf("PIC %p registered for %s <dev %p, xref %jx>\n", pic,
device_get_nameunit(dev), dev, (uintmax_t)xref);
return (0);
}
int
intr_alloc_msi(device_t pci, device_t child, intptr_t xref, int count,
int maxcount, int *irqs)
{
struct intr_irqsrc **isrc;
struct intr_pic *pic;
device_t pdev;
int err, i;
pic = pic_lookup(NULL, xref);
if (pic == NULL)
return (ESRCH);
KASSERT((pic->pic_flags & FLAG_MSI) != 0,
("%s: Found a non-MSI controller: %s", __func__,
device_get_name(pic->pic_dev)));
isrc = malloc(sizeof(*isrc) * count, M_INTRNG, M_WAITOK);
err = MSI_ALLOC_MSI(pic->pic_dev, child, count, maxcount, &pdev, isrc);
if (err == 0) {
for (i = 0; i < count; i++) {
irqs[i] = isrc[i]->isrc_irq;
}
}
free(isrc, M_INTRNG);
return (err);
}
int
intr_release_msi(device_t pci, device_t child, intptr_t xref, int count,
int *irqs)
{
struct intr_irqsrc **isrc;
struct intr_pic *pic;
int i, err;
pic = pic_lookup(NULL, xref);
if (pic == NULL)
return (ESRCH);
KASSERT((pic->pic_flags & FLAG_MSI) != 0,
("%s: Found a non-MSI controller: %s", __func__,
device_get_name(pic->pic_dev)));
isrc = malloc(sizeof(*isrc) * count, M_INTRNG, M_WAITOK);
for (i = 0; i < count; i++) {
isrc[i] = isrc_lookup(irqs[i]);
if (isrc == NULL) {
free(isrc, M_INTRNG);
return (EINVAL);
}
}
err = MSI_RELEASE_MSI(pic->pic_dev, child, count, isrc);
free(isrc, M_INTRNG);
return (err);
}
int
intr_alloc_msix(device_t pci, device_t child, intptr_t xref, int *irq)
{
struct intr_irqsrc *isrc;
struct intr_pic *pic;
device_t pdev;
int err;
pic = pic_lookup(NULL, xref);
if (pic == NULL)
return (ESRCH);
KASSERT((pic->pic_flags & FLAG_MSI) != 0,
("%s: Found a non-MSI controller: %s", __func__,
device_get_name(pic->pic_dev)));
err = MSI_ALLOC_MSIX(pic->pic_dev, child, &pdev, &isrc);
if (err != 0)
return (err);
*irq = isrc->isrc_irq;
return (0);
}
int
intr_release_msix(device_t pci, device_t child, intptr_t xref, int irq)
{
struct intr_irqsrc *isrc;
struct intr_pic *pic;
int err;
pic = pic_lookup(NULL, xref);
if (pic == NULL)
return (ESRCH);
KASSERT((pic->pic_flags & FLAG_MSI) != 0,
("%s: Found a non-MSI controller: %s", __func__,
device_get_name(pic->pic_dev)));
isrc = isrc_lookup(irq);
if (isrc == NULL)
return (EINVAL);
err = MSI_RELEASE_MSIX(pic->pic_dev, child, isrc);
return (err);
}
int
intr_map_msi(device_t pci, device_t child, intptr_t xref, int irq,
uint64_t *addr, uint32_t *data)
{
struct intr_irqsrc *isrc;
struct intr_pic *pic;
int err;
pic = pic_lookup(NULL, xref);
if (pic == NULL)
return (ESRCH);
KASSERT((pic->pic_flags & FLAG_MSI) != 0,
("%s: Found a non-MSI controller: %s", __func__,
device_get_name(pic->pic_dev)));
isrc = isrc_lookup(irq);
if (isrc == NULL)
return (EINVAL);
err = MSI_MAP_MSI(pic->pic_dev, child, isrc, addr, data);
return (err);
}
void dosoftints(void);
void
dosoftints(void)
{
}
#ifdef SMP
/*
* Init interrupt controller on another CPU.
*/
void
intr_pic_init_secondary(void)
{
/*
* QQQ: Only root PIC is aware of other CPUs ???
*/
KASSERT(intr_irq_root_dev != NULL, ("%s: no root attached", __func__));
//mtx_lock(&isrc_table_lock);
PIC_INIT_SECONDARY(intr_irq_root_dev);
//mtx_unlock(&isrc_table_lock);
}
#endif
#ifdef DDB
DB_SHOW_COMMAND(irqs, db_show_irqs)
{
u_int i, irqsum;
u_long num;
struct intr_irqsrc *isrc;
for (irqsum = 0, i = 0; i < NIRQ; i++) {
isrc = irq_sources[i];
if (isrc == NULL)
continue;
num = isrc->isrc_count != NULL ? isrc->isrc_count[0] : 0;
db_printf("irq%-3u <%s>: cpu %02lx%s cnt %lu\n", i,
isrc->isrc_name, isrc->isrc_cpu.__bits[0],
isrc->isrc_flags & INTR_ISRCF_BOUND ? " (bound)" : "", num);
irqsum += num;
}
db_printf("irq total %u\n", irqsum);
}
#endif