freebsd-dev/tests/sys/fs/fusefs/read.cc
2022-02-12 09:27:56 -07:00

1366 lines
37 KiB
C++

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2019 The FreeBSD Foundation
*
* This software was developed by BFF Storage Systems, LLC under sponsorship
* from the FreeBSD Foundation.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
extern "C" {
#include <sys/param.h>
#include <sys/mman.h>
#include <sys/socket.h>
#include <sys/sysctl.h>
#include <sys/uio.h>
#include <aio.h>
#include <fcntl.h>
#include <semaphore.h>
#include <setjmp.h>
#include <signal.h>
#include <unistd.h>
}
#include "mockfs.hh"
#include "utils.hh"
using namespace testing;
class Read: public FuseTest {
public:
void expect_lookup(const char *relpath, uint64_t ino, uint64_t size)
{
FuseTest::expect_lookup(relpath, ino, S_IFREG | 0644, size, 1);
}
};
class Read_7_8: public FuseTest {
public:
virtual void SetUp() {
m_kernel_minor_version = 8;
FuseTest::SetUp();
}
void expect_lookup(const char *relpath, uint64_t ino, uint64_t size)
{
FuseTest::expect_lookup_7_8(relpath, ino, S_IFREG | 0644, size, 1);
}
};
class AioRead: public Read {
public:
virtual void SetUp() {
if (!is_unsafe_aio_enabled())
GTEST_SKIP() <<
"vfs.aio.enable_unsafe must be set for this test";
FuseTest::SetUp();
}
};
class AsyncRead: public AioRead {
virtual void SetUp() {
m_init_flags = FUSE_ASYNC_READ;
AioRead::SetUp();
}
};
class ReadAhead: public Read,
public WithParamInterface<tuple<bool, int>>
{
virtual void SetUp() {
int val;
const char *node = "vfs.maxbcachebuf";
size_t size = sizeof(val);
ASSERT_EQ(0, sysctlbyname(node, &val, &size, NULL, 0))
<< strerror(errno);
m_maxreadahead = val * get<1>(GetParam());
m_noclusterr = get<0>(GetParam());
Read::SetUp();
}
};
class ReadNoatime: public Read {
virtual void SetUp() {
m_noatime = true;
Read::SetUp();
}
};
class ReadSigbus: public Read
{
public:
static jmp_buf s_jmpbuf;
static void *s_si_addr;
void TearDown() {
struct sigaction sa;
bzero(&sa, sizeof(sa));
sa.sa_handler = SIG_DFL;
sigaction(SIGBUS, &sa, NULL);
FuseTest::TearDown();
}
};
static void
handle_sigbus(int signo __unused, siginfo_t *info, void *uap __unused) {
ReadSigbus::s_si_addr = info->si_addr;
longjmp(ReadSigbus::s_jmpbuf, 1);
}
jmp_buf ReadSigbus::s_jmpbuf;
void *ReadSigbus::s_si_addr;
class TimeGran: public Read, public WithParamInterface<unsigned> {
public:
virtual void SetUp() {
m_time_gran = 1 << GetParam();
Read::SetUp();
}
};
/* AIO reads need to set the header's pid field correctly */
/* https://bugs.freebsd.org/bugzilla/show_bug.cgi?id=236379 */
TEST_F(AioRead, aio_read)
{
const char FULLPATH[] = "mountpoint/some_file.txt";
const char RELPATH[] = "some_file.txt";
const char *CONTENTS = "abcdefgh";
uint64_t ino = 42;
int fd;
ssize_t bufsize = strlen(CONTENTS);
uint8_t buf[bufsize];
struct aiocb iocb, *piocb;
expect_lookup(RELPATH, ino, bufsize);
expect_open(ino, 0, 1);
expect_read(ino, 0, bufsize, bufsize, CONTENTS);
fd = open(FULLPATH, O_RDONLY);
ASSERT_LE(0, fd) << strerror(errno);
iocb.aio_nbytes = bufsize;
iocb.aio_fildes = fd;
iocb.aio_buf = buf;
iocb.aio_offset = 0;
iocb.aio_sigevent.sigev_notify = SIGEV_NONE;
ASSERT_EQ(0, aio_read(&iocb)) << strerror(errno);
ASSERT_EQ(bufsize, aio_waitcomplete(&piocb, NULL)) << strerror(errno);
ASSERT_EQ(0, memcmp(buf, CONTENTS, bufsize));
leak(fd);
}
/*
* Without the FUSE_ASYNC_READ mount option, fuse(4) should ensure that there
* is at most one outstanding read operation per file handle
*/
TEST_F(AioRead, async_read_disabled)
{
const char FULLPATH[] = "mountpoint/some_file.txt";
const char RELPATH[] = "some_file.txt";
uint64_t ino = 42;
int fd;
ssize_t bufsize = 50;
char buf0[bufsize], buf1[bufsize];
off_t off0 = 0;
off_t off1 = m_maxbcachebuf;
struct aiocb iocb0, iocb1;
volatile sig_atomic_t read_count = 0;
expect_lookup(RELPATH, ino, 131072);
expect_open(ino, 0, 1);
EXPECT_CALL(*m_mock, process(
ResultOf([=](auto in) {
return (in.header.opcode == FUSE_READ &&
in.header.nodeid == ino &&
in.body.read.fh == FH &&
in.body.read.offset == (uint64_t)off0);
}, Eq(true)),
_)
).WillRepeatedly(Invoke([&](auto in __unused, auto &out __unused) {
read_count++;
/* Filesystem is slow to respond */
}));
EXPECT_CALL(*m_mock, process(
ResultOf([=](auto in) {
return (in.header.opcode == FUSE_READ &&
in.header.nodeid == ino &&
in.body.read.fh == FH &&
in.body.read.offset == (uint64_t)off1);
}, Eq(true)),
_)
).WillRepeatedly(Invoke([&](auto in __unused, auto &out __unused) {
read_count++;
/* Filesystem is slow to respond */
}));
fd = open(FULLPATH, O_RDONLY);
ASSERT_LE(0, fd) << strerror(errno);
/*
* Submit two AIO read requests, and respond to neither. If the
* filesystem ever gets the second read request, then we failed to
* limit outstanding reads.
*/
iocb0.aio_nbytes = bufsize;
iocb0.aio_fildes = fd;
iocb0.aio_buf = buf0;
iocb0.aio_offset = off0;
iocb0.aio_sigevent.sigev_notify = SIGEV_NONE;
ASSERT_EQ(0, aio_read(&iocb0)) << strerror(errno);
iocb1.aio_nbytes = bufsize;
iocb1.aio_fildes = fd;
iocb1.aio_buf = buf1;
iocb1.aio_offset = off1;
iocb1.aio_sigevent.sigev_notify = SIGEV_NONE;
ASSERT_EQ(0, aio_read(&iocb1)) << strerror(errno);
/*
* Sleep for awhile to make sure the kernel has had a chance to issue
* the second read, even though the first has not yet returned
*/
nap();
EXPECT_EQ(read_count, 1);
m_mock->kill_daemon();
/* Wait for AIO activity to complete, but ignore errors */
(void)aio_waitcomplete(NULL, NULL);
leak(fd);
}
/*
* With the FUSE_ASYNC_READ mount option, fuse(4) may issue multiple
* simultaneous read requests on the same file handle.
*/
TEST_F(AsyncRead, async_read)
{
const char FULLPATH[] = "mountpoint/some_file.txt";
const char RELPATH[] = "some_file.txt";
uint64_t ino = 42;
int fd;
ssize_t bufsize = 50;
char buf0[bufsize], buf1[bufsize];
off_t off0 = 0;
off_t off1 = m_maxbcachebuf;
off_t fsize = 2 * m_maxbcachebuf;
struct aiocb iocb0, iocb1;
sem_t sem;
ASSERT_EQ(0, sem_init(&sem, 0, 0)) << strerror(errno);
expect_lookup(RELPATH, ino, fsize);
expect_open(ino, 0, 1);
EXPECT_CALL(*m_mock, process(
ResultOf([=](auto in) {
return (in.header.opcode == FUSE_READ &&
in.header.nodeid == ino &&
in.body.read.fh == FH &&
in.body.read.offset == (uint64_t)off0);
}, Eq(true)),
_)
).WillOnce(Invoke([&](auto in __unused, auto &out __unused) {
sem_post(&sem);
/* Filesystem is slow to respond */
}));
EXPECT_CALL(*m_mock, process(
ResultOf([=](auto in) {
return (in.header.opcode == FUSE_READ &&
in.header.nodeid == ino &&
in.body.read.fh == FH &&
in.body.read.offset == (uint64_t)off1);
}, Eq(true)),
_)
).WillOnce(Invoke([&](auto in __unused, auto &out __unused) {
sem_post(&sem);
/* Filesystem is slow to respond */
}));
fd = open(FULLPATH, O_RDONLY);
ASSERT_LE(0, fd) << strerror(errno);
/*
* Submit two AIO read requests, but respond to neither. Ensure that
* we received both.
*/
iocb0.aio_nbytes = bufsize;
iocb0.aio_fildes = fd;
iocb0.aio_buf = buf0;
iocb0.aio_offset = off0;
iocb0.aio_sigevent.sigev_notify = SIGEV_NONE;
ASSERT_EQ(0, aio_read(&iocb0)) << strerror(errno);
iocb1.aio_nbytes = bufsize;
iocb1.aio_fildes = fd;
iocb1.aio_buf = buf1;
iocb1.aio_offset = off1;
iocb1.aio_sigevent.sigev_notify = SIGEV_NONE;
ASSERT_EQ(0, aio_read(&iocb1)) << strerror(errno);
/* Wait until both reads have reached the daemon */
ASSERT_EQ(0, sem_wait(&sem)) << strerror(errno);
ASSERT_EQ(0, sem_wait(&sem)) << strerror(errno);
m_mock->kill_daemon();
/* Wait for AIO activity to complete, but ignore errors */
(void)aio_waitcomplete(NULL, NULL);
leak(fd);
}
/* The kernel should update the cached atime attribute during a read */
TEST_F(Read, atime)
{
const char FULLPATH[] = "mountpoint/some_file.txt";
const char RELPATH[] = "some_file.txt";
const char *CONTENTS = "abcdefgh";
struct stat sb1, sb2;
uint64_t ino = 42;
int fd;
ssize_t bufsize = strlen(CONTENTS);
uint8_t buf[bufsize];
expect_lookup(RELPATH, ino, bufsize);
expect_open(ino, 0, 1);
expect_read(ino, 0, bufsize, bufsize, CONTENTS);
fd = open(FULLPATH, O_RDONLY);
ASSERT_LE(0, fd) << strerror(errno);
ASSERT_EQ(0, fstat(fd, &sb1));
/* Ensure atime will be different than it was during lookup */
nap();
ASSERT_EQ(bufsize, read(fd, buf, bufsize)) << strerror(errno);
ASSERT_EQ(0, fstat(fd, &sb2));
/* The kernel should automatically update atime during read */
EXPECT_TRUE(timespeccmp(&sb1.st_atim, &sb2.st_atim, <));
EXPECT_TRUE(timespeccmp(&sb1.st_ctim, &sb2.st_ctim, ==));
EXPECT_TRUE(timespeccmp(&sb1.st_mtim, &sb2.st_mtim, ==));
leak(fd);
}
/* The kernel should update the cached atime attribute during a cached read */
TEST_F(Read, atime_cached)
{
const char FULLPATH[] = "mountpoint/some_file.txt";
const char RELPATH[] = "some_file.txt";
const char *CONTENTS = "abcdefgh";
struct stat sb1, sb2;
uint64_t ino = 42;
int fd;
ssize_t bufsize = strlen(CONTENTS);
uint8_t buf[bufsize];
expect_lookup(RELPATH, ino, bufsize);
expect_open(ino, 0, 1);
expect_read(ino, 0, bufsize, bufsize, CONTENTS);
fd = open(FULLPATH, O_RDONLY);
ASSERT_LE(0, fd) << strerror(errno);
ASSERT_EQ(bufsize, pread(fd, buf, bufsize, 0)) << strerror(errno);
ASSERT_EQ(0, fstat(fd, &sb1));
/* Ensure atime will be different than it was during the first read */
nap();
ASSERT_EQ(bufsize, pread(fd, buf, bufsize, 0)) << strerror(errno);
ASSERT_EQ(0, fstat(fd, &sb2));
/* The kernel should automatically update atime during read */
EXPECT_TRUE(timespeccmp(&sb1.st_atim, &sb2.st_atim, <));
EXPECT_TRUE(timespeccmp(&sb1.st_ctim, &sb2.st_ctim, ==));
EXPECT_TRUE(timespeccmp(&sb1.st_mtim, &sb2.st_mtim, ==));
leak(fd);
}
/* dirty atime values should be flushed during close */
TEST_F(Read, atime_during_close)
{
const char FULLPATH[] = "mountpoint/some_file.txt";
const char RELPATH[] = "some_file.txt";
const char *CONTENTS = "abcdefgh";
struct stat sb;
uint64_t ino = 42;
const mode_t newmode = 0755;
int fd;
ssize_t bufsize = strlen(CONTENTS);
uint8_t buf[bufsize];
expect_lookup(RELPATH, ino, bufsize);
expect_open(ino, 0, 1);
expect_read(ino, 0, bufsize, bufsize, CONTENTS);
EXPECT_CALL(*m_mock, process(
ResultOf([&](auto in) {
uint32_t valid = FATTR_ATIME;
return (in.header.opcode == FUSE_SETATTR &&
in.header.nodeid == ino &&
in.body.setattr.valid == valid &&
(time_t)in.body.setattr.atime ==
sb.st_atim.tv_sec &&
(long)in.body.setattr.atimensec ==
sb.st_atim.tv_nsec);
}, Eq(true)),
_)
).WillOnce(Invoke(ReturnImmediate([=](auto in __unused, auto& out) {
SET_OUT_HEADER_LEN(out, attr);
out.body.attr.attr.ino = ino;
out.body.attr.attr.mode = S_IFREG | newmode;
})));
expect_flush(ino, 1, ReturnErrno(0));
expect_release(ino, FuseTest::FH);
fd = open(FULLPATH, O_RDONLY);
ASSERT_LE(0, fd) << strerror(errno);
/* Ensure atime will be different than during lookup */
nap();
ASSERT_EQ(bufsize, read(fd, buf, bufsize)) << strerror(errno);
ASSERT_EQ(0, fstat(fd, &sb));
close(fd);
}
/* A cached atime should be flushed during FUSE_SETATTR */
TEST_F(Read, atime_during_setattr)
{
const char FULLPATH[] = "mountpoint/some_file.txt";
const char RELPATH[] = "some_file.txt";
const char *CONTENTS = "abcdefgh";
struct stat sb;
uint64_t ino = 42;
const mode_t newmode = 0755;
int fd;
ssize_t bufsize = strlen(CONTENTS);
uint8_t buf[bufsize];
expect_lookup(RELPATH, ino, bufsize);
expect_open(ino, 0, 1);
expect_read(ino, 0, bufsize, bufsize, CONTENTS);
EXPECT_CALL(*m_mock, process(
ResultOf([&](auto in) {
uint32_t valid = FATTR_MODE | FATTR_ATIME;
return (in.header.opcode == FUSE_SETATTR &&
in.header.nodeid == ino &&
in.body.setattr.valid == valid &&
(time_t)in.body.setattr.atime ==
sb.st_atim.tv_sec &&
(long)in.body.setattr.atimensec ==
sb.st_atim.tv_nsec);
}, Eq(true)),
_)
).WillOnce(Invoke(ReturnImmediate([=](auto in __unused, auto& out) {
SET_OUT_HEADER_LEN(out, attr);
out.body.attr.attr.ino = ino;
out.body.attr.attr.mode = S_IFREG | newmode;
})));
fd = open(FULLPATH, O_RDONLY);
ASSERT_LE(0, fd) << strerror(errno);
/* Ensure atime will be different than during lookup */
nap();
ASSERT_EQ(bufsize, read(fd, buf, bufsize)) << strerror(errno);
ASSERT_EQ(0, fstat(fd, &sb));
ASSERT_EQ(0, fchmod(fd, newmode)) << strerror(errno);
leak(fd);
}
/* 0-length reads shouldn't cause any confusion */
TEST_F(Read, direct_io_read_nothing)
{
const char FULLPATH[] = "mountpoint/some_file.txt";
const char RELPATH[] = "some_file.txt";
uint64_t ino = 42;
int fd;
uint64_t offset = 100;
char buf[80];
expect_lookup(RELPATH, ino, offset + 1000);
expect_open(ino, FOPEN_DIRECT_IO, 1);
fd = open(FULLPATH, O_RDONLY);
ASSERT_LE(0, fd) << strerror(errno);
ASSERT_EQ(0, pread(fd, buf, 0, offset)) << strerror(errno);
leak(fd);
}
/*
* With direct_io, reads should not fill the cache. They should go straight to
* the daemon
*/
TEST_F(Read, direct_io_pread)
{
const char FULLPATH[] = "mountpoint/some_file.txt";
const char RELPATH[] = "some_file.txt";
const char *CONTENTS = "abcdefgh";
uint64_t ino = 42;
int fd;
uint64_t offset = 100;
ssize_t bufsize = strlen(CONTENTS);
uint8_t buf[bufsize];
expect_lookup(RELPATH, ino, offset + bufsize);
expect_open(ino, FOPEN_DIRECT_IO, 1);
expect_read(ino, offset, bufsize, bufsize, CONTENTS);
fd = open(FULLPATH, O_RDONLY);
ASSERT_LE(0, fd) << strerror(errno);
ASSERT_EQ(bufsize, pread(fd, buf, bufsize, offset)) << strerror(errno);
ASSERT_EQ(0, memcmp(buf, CONTENTS, bufsize));
// With FOPEN_DIRECT_IO, the cache should be bypassed. The server will
// get a 2nd read request.
expect_read(ino, offset, bufsize, bufsize, CONTENTS);
ASSERT_EQ(bufsize, pread(fd, buf, bufsize, offset)) << strerror(errno);
ASSERT_EQ(0, memcmp(buf, CONTENTS, bufsize));
leak(fd);
}
/*
* With direct_io, filesystems are allowed to return less data than is
* requested. fuse(4) should return a short read to userland.
*/
TEST_F(Read, direct_io_short_read)
{
const char FULLPATH[] = "mountpoint/some_file.txt";
const char RELPATH[] = "some_file.txt";
const char *CONTENTS = "abcdefghijklmnop";
uint64_t ino = 42;
int fd;
uint64_t offset = 100;
ssize_t bufsize = strlen(CONTENTS);
ssize_t halfbufsize = bufsize / 2;
uint8_t buf[bufsize];
expect_lookup(RELPATH, ino, offset + bufsize);
expect_open(ino, FOPEN_DIRECT_IO, 1);
expect_read(ino, offset, bufsize, halfbufsize, CONTENTS);
fd = open(FULLPATH, O_RDONLY);
ASSERT_LE(0, fd) << strerror(errno);
ASSERT_EQ(halfbufsize, pread(fd, buf, bufsize, offset))
<< strerror(errno);
ASSERT_EQ(0, memcmp(buf, CONTENTS, halfbufsize));
leak(fd);
}
TEST_F(Read, eio)
{
const char FULLPATH[] = "mountpoint/some_file.txt";
const char RELPATH[] = "some_file.txt";
const char *CONTENTS = "abcdefgh";
uint64_t ino = 42;
int fd;
ssize_t bufsize = strlen(CONTENTS);
uint8_t buf[bufsize];
expect_lookup(RELPATH, ino, bufsize);
expect_open(ino, 0, 1);
EXPECT_CALL(*m_mock, process(
ResultOf([=](auto in) {
return (in.header.opcode == FUSE_READ);
}, Eq(true)),
_)
).WillOnce(Invoke(ReturnErrno(EIO)));
fd = open(FULLPATH, O_RDONLY);
ASSERT_LE(0, fd) << strerror(errno);
ASSERT_EQ(-1, read(fd, buf, bufsize)) << strerror(errno);
ASSERT_EQ(EIO, errno);
leak(fd);
}
/*
* If the server returns a short read when direct io is not in use, that
* indicates EOF, because of a server-side truncation. We should invalidate
* all cached attributes. We may update the file size,
*/
TEST_F(Read, eof)
{
const char FULLPATH[] = "mountpoint/some_file.txt";
const char RELPATH[] = "some_file.txt";
const char *CONTENTS = "abcdefghijklmnop";
uint64_t ino = 42;
int fd;
uint64_t offset = 100;
ssize_t bufsize = strlen(CONTENTS);
ssize_t partbufsize = 3 * bufsize / 4;
ssize_t r;
uint8_t buf[bufsize];
struct stat sb;
expect_lookup(RELPATH, ino, offset + bufsize);
expect_open(ino, 0, 1);
expect_read(ino, 0, offset + bufsize, offset + partbufsize, CONTENTS);
expect_getattr(ino, offset + partbufsize);
fd = open(FULLPATH, O_RDONLY);
ASSERT_LE(0, fd) << strerror(errno);
r = pread(fd, buf, bufsize, offset);
ASSERT_LE(0, r) << strerror(errno);
EXPECT_EQ(partbufsize, r) << strerror(errno);
ASSERT_EQ(0, fstat(fd, &sb));
EXPECT_EQ((off_t)(offset + partbufsize), sb.st_size);
leak(fd);
}
/* Like Read.eof, but causes an entire buffer to be invalidated */
TEST_F(Read, eof_of_whole_buffer)
{
const char FULLPATH[] = "mountpoint/some_file.txt";
const char RELPATH[] = "some_file.txt";
const char *CONTENTS = "abcdefghijklmnop";
uint64_t ino = 42;
int fd;
ssize_t bufsize = strlen(CONTENTS);
off_t old_filesize = m_maxbcachebuf * 2 + bufsize;
uint8_t buf[bufsize];
struct stat sb;
expect_lookup(RELPATH, ino, old_filesize);
expect_open(ino, 0, 1);
expect_read(ino, 2 * m_maxbcachebuf, bufsize, bufsize, CONTENTS);
expect_read(ino, m_maxbcachebuf, m_maxbcachebuf, 0, CONTENTS);
expect_getattr(ino, m_maxbcachebuf);
fd = open(FULLPATH, O_RDONLY);
ASSERT_LE(0, fd) << strerror(errno);
/* Cache the third block */
ASSERT_EQ(bufsize, pread(fd, buf, bufsize, m_maxbcachebuf * 2))
<< strerror(errno);
/* Try to read the 2nd block, but it's past EOF */
ASSERT_EQ(0, pread(fd, buf, bufsize, m_maxbcachebuf))
<< strerror(errno);
ASSERT_EQ(0, fstat(fd, &sb));
EXPECT_EQ((off_t)(m_maxbcachebuf), sb.st_size);
leak(fd);
}
/*
* With the keep_cache option, the kernel may keep its read cache across
* multiple open(2)s.
*/
TEST_F(Read, keep_cache)
{
const char FULLPATH[] = "mountpoint/some_file.txt";
const char RELPATH[] = "some_file.txt";
const char *CONTENTS = "abcdefgh";
uint64_t ino = 42;
int fd0, fd1;
ssize_t bufsize = strlen(CONTENTS);
uint8_t buf[bufsize];
FuseTest::expect_lookup(RELPATH, ino, S_IFREG | 0644, bufsize, 2);
expect_open(ino, FOPEN_KEEP_CACHE, 2);
expect_read(ino, 0, bufsize, bufsize, CONTENTS);
fd0 = open(FULLPATH, O_RDONLY);
ASSERT_LE(0, fd0) << strerror(errno);
ASSERT_EQ(bufsize, read(fd0, buf, bufsize)) << strerror(errno);
fd1 = open(FULLPATH, O_RDWR);
ASSERT_LE(0, fd1) << strerror(errno);
/*
* This read should be serviced by cache, even though it's on the other
* file descriptor
*/
ASSERT_EQ(bufsize, read(fd1, buf, bufsize)) << strerror(errno);
leak(fd0);
leak(fd1);
}
/*
* Without the keep_cache option, the kernel should drop its read caches on
* every open
*/
TEST_F(Read, keep_cache_disabled)
{
const char FULLPATH[] = "mountpoint/some_file.txt";
const char RELPATH[] = "some_file.txt";
const char *CONTENTS = "abcdefgh";
uint64_t ino = 42;
int fd0, fd1;
ssize_t bufsize = strlen(CONTENTS);
uint8_t buf[bufsize];
FuseTest::expect_lookup(RELPATH, ino, S_IFREG | 0644, bufsize, 2);
expect_open(ino, 0, 2);
expect_read(ino, 0, bufsize, bufsize, CONTENTS);
fd0 = open(FULLPATH, O_RDONLY);
ASSERT_LE(0, fd0) << strerror(errno);
ASSERT_EQ(bufsize, read(fd0, buf, bufsize)) << strerror(errno);
fd1 = open(FULLPATH, O_RDWR);
ASSERT_LE(0, fd1) << strerror(errno);
/*
* This read should not be serviced by cache, even though it's on the
* original file descriptor
*/
expect_read(ino, 0, bufsize, bufsize, CONTENTS);
ASSERT_EQ(0, lseek(fd0, 0, SEEK_SET)) << strerror(errno);
ASSERT_EQ(bufsize, read(fd0, buf, bufsize)) << strerror(errno);
leak(fd0);
leak(fd1);
}
TEST_F(Read, mmap)
{
const char FULLPATH[] = "mountpoint/some_file.txt";
const char RELPATH[] = "some_file.txt";
const char *CONTENTS = "abcdefgh";
uint64_t ino = 42;
int fd;
ssize_t len;
size_t bufsize = strlen(CONTENTS);
void *p;
len = getpagesize();
expect_lookup(RELPATH, ino, bufsize);
expect_open(ino, 0, 1);
EXPECT_CALL(*m_mock, process(
ResultOf([=](auto in) {
return (in.header.opcode == FUSE_READ &&
in.header.nodeid == ino &&
in.body.read.fh == Read::FH &&
in.body.read.offset == 0 &&
in.body.read.size == bufsize);
}, Eq(true)),
_)
).WillOnce(Invoke(ReturnImmediate([=](auto in __unused, auto& out) {
out.header.len = sizeof(struct fuse_out_header) + bufsize;
memmove(out.body.bytes, CONTENTS, bufsize);
})));
fd = open(FULLPATH, O_RDONLY);
ASSERT_LE(0, fd) << strerror(errno);
p = mmap(NULL, len, PROT_READ, MAP_SHARED, fd, 0);
ASSERT_NE(MAP_FAILED, p) << strerror(errno);
ASSERT_EQ(0, memcmp(p, CONTENTS, bufsize));
ASSERT_EQ(0, munmap(p, len)) << strerror(errno);
leak(fd);
}
/*
* The kernel should not update the cached atime attribute during a read, if
* MNT_NOATIME is used.
*/
TEST_F(ReadNoatime, atime)
{
const char FULLPATH[] = "mountpoint/some_file.txt";
const char RELPATH[] = "some_file.txt";
const char *CONTENTS = "abcdefgh";
struct stat sb1, sb2;
uint64_t ino = 42;
int fd;
ssize_t bufsize = strlen(CONTENTS);
uint8_t buf[bufsize];
expect_lookup(RELPATH, ino, bufsize);
expect_open(ino, 0, 1);
expect_read(ino, 0, bufsize, bufsize, CONTENTS);
fd = open(FULLPATH, O_RDONLY);
ASSERT_LE(0, fd) << strerror(errno);
ASSERT_EQ(0, fstat(fd, &sb1));
nap();
ASSERT_EQ(bufsize, read(fd, buf, bufsize)) << strerror(errno);
ASSERT_EQ(0, fstat(fd, &sb2));
/* The kernel should not update atime during read */
EXPECT_TRUE(timespeccmp(&sb1.st_atim, &sb2.st_atim, ==));
EXPECT_TRUE(timespeccmp(&sb1.st_ctim, &sb2.st_ctim, ==));
EXPECT_TRUE(timespeccmp(&sb1.st_mtim, &sb2.st_mtim, ==));
leak(fd);
}
/*
* The kernel should not update the cached atime attribute during a cached
* read, if MNT_NOATIME is used.
*/
TEST_F(ReadNoatime, atime_cached)
{
const char FULLPATH[] = "mountpoint/some_file.txt";
const char RELPATH[] = "some_file.txt";
const char *CONTENTS = "abcdefgh";
struct stat sb1, sb2;
uint64_t ino = 42;
int fd;
ssize_t bufsize = strlen(CONTENTS);
uint8_t buf[bufsize];
expect_lookup(RELPATH, ino, bufsize);
expect_open(ino, 0, 1);
expect_read(ino, 0, bufsize, bufsize, CONTENTS);
fd = open(FULLPATH, O_RDONLY);
ASSERT_LE(0, fd) << strerror(errno);
ASSERT_EQ(bufsize, pread(fd, buf, bufsize, 0)) << strerror(errno);
ASSERT_EQ(0, fstat(fd, &sb1));
nap();
ASSERT_EQ(bufsize, pread(fd, buf, bufsize, 0)) << strerror(errno);
ASSERT_EQ(0, fstat(fd, &sb2));
/* The kernel should automatically update atime during read */
EXPECT_TRUE(timespeccmp(&sb1.st_atim, &sb2.st_atim, ==));
EXPECT_TRUE(timespeccmp(&sb1.st_ctim, &sb2.st_ctim, ==));
EXPECT_TRUE(timespeccmp(&sb1.st_mtim, &sb2.st_mtim, ==));
leak(fd);
}
/* Read of an mmap()ed file fails */
TEST_F(ReadSigbus, mmap_eio)
{
const char FULLPATH[] = "mountpoint/some_file.txt";
const char RELPATH[] = "some_file.txt";
const char *CONTENTS = "abcdefgh";
struct sigaction sa;
uint64_t ino = 42;
int fd;
ssize_t len;
size_t bufsize = strlen(CONTENTS);
void *p;
len = getpagesize();
expect_lookup(RELPATH, ino, bufsize);
expect_open(ino, 0, 1);
EXPECT_CALL(*m_mock, process(
ResultOf([=](auto in) {
return (in.header.opcode == FUSE_READ &&
in.header.nodeid == ino &&
in.body.read.fh == Read::FH);
}, Eq(true)),
_)
).WillRepeatedly(Invoke(ReturnErrno(EIO)));
fd = open(FULLPATH, O_RDONLY);
ASSERT_LE(0, fd) << strerror(errno);
p = mmap(NULL, len, PROT_READ, MAP_SHARED, fd, 0);
ASSERT_NE(MAP_FAILED, p) << strerror(errno);
/* Accessing the mapped page should return SIGBUS. */
bzero(&sa, sizeof(sa));
sa.sa_handler = SIG_DFL;
sa.sa_sigaction = handle_sigbus;
sa.sa_flags = SA_RESETHAND | SA_SIGINFO;
ASSERT_EQ(0, sigaction(SIGBUS, &sa, NULL)) << strerror(errno);
if (setjmp(ReadSigbus::s_jmpbuf) == 0) {
atomic_signal_fence(std::memory_order::memory_order_seq_cst);
volatile char x __unused = *(volatile char*)p;
FAIL() << "shouldn't get here";
}
ASSERT_EQ(p, ReadSigbus::s_si_addr);
ASSERT_EQ(0, munmap(p, len)) << strerror(errno);
leak(fd);
}
/*
* A read via mmap comes up short, indicating that the file was truncated
* server-side.
*/
TEST_F(Read, mmap_eof)
{
const char FULLPATH[] = "mountpoint/some_file.txt";
const char RELPATH[] = "some_file.txt";
const char *CONTENTS = "abcdefgh";
uint64_t ino = 42;
int fd;
ssize_t len;
size_t bufsize = strlen(CONTENTS);
struct stat sb;
void *p;
len = getpagesize();
expect_lookup(RELPATH, ino, m_maxbcachebuf);
expect_open(ino, 0, 1);
EXPECT_CALL(*m_mock, process(
ResultOf([=](auto in) {
return (in.header.opcode == FUSE_READ &&
in.header.nodeid == ino &&
in.body.read.fh == Read::FH &&
in.body.read.offset == 0 &&
in.body.read.size == (uint32_t)m_maxbcachebuf);
}, Eq(true)),
_)
).WillOnce(Invoke(ReturnImmediate([=](auto in __unused, auto& out) {
out.header.len = sizeof(struct fuse_out_header) + bufsize;
memmove(out.body.bytes, CONTENTS, bufsize);
})));
expect_getattr(ino, bufsize);
fd = open(FULLPATH, O_RDONLY);
ASSERT_LE(0, fd) << strerror(errno);
p = mmap(NULL, len, PROT_READ, MAP_SHARED, fd, 0);
ASSERT_NE(MAP_FAILED, p) << strerror(errno);
/* The file size should be automatically truncated */
ASSERT_EQ(0, memcmp(p, CONTENTS, bufsize));
ASSERT_EQ(0, fstat(fd, &sb)) << strerror(errno);
EXPECT_EQ((off_t)bufsize, sb.st_size);
ASSERT_EQ(0, munmap(p, len)) << strerror(errno);
leak(fd);
}
/*
* During VOP_GETPAGES, the FUSE server fails a FUSE_GETATTR operation. This
* almost certainly indicates a buggy FUSE server, and our goal should be not
* to panic. Instead, generate SIGBUS.
*/
TEST_F(ReadSigbus, mmap_getblksz_fail)
{
const char FULLPATH[] = "mountpoint/some_file.txt";
const char RELPATH[] = "some_file.txt";
const char *CONTENTS = "abcdefgh";
struct sigaction sa;
Sequence seq;
uint64_t ino = 42;
int fd;
ssize_t len;
size_t bufsize = strlen(CONTENTS);
mode_t mode = S_IFREG | 0644;
void *p;
len = getpagesize();
FuseTest::expect_lookup(RELPATH, ino, mode, bufsize, 1, 0);
/* Expect two GETATTR calls that succeed, followed by one that fail. */
EXPECT_CALL(*m_mock, process(
ResultOf([=](auto in) {
return (in.header.opcode == FUSE_GETATTR &&
in.header.nodeid == ino);
}, Eq(true)),
_)
).Times(2)
.InSequence(seq)
.WillRepeatedly(Invoke(ReturnImmediate([=](auto i __unused, auto& out) {
SET_OUT_HEADER_LEN(out, attr);
out.body.attr.attr.ino = ino;
out.body.attr.attr.mode = mode;
out.body.attr.attr.size = bufsize;
out.body.attr.attr_valid = 0;
})));
EXPECT_CALL(*m_mock, process(
ResultOf([=](auto in) {
return (in.header.opcode == FUSE_GETATTR &&
in.header.nodeid == ino);
}, Eq(true)),
_)
).InSequence(seq)
.WillRepeatedly(Invoke(ReturnErrno(EIO)));
expect_open(ino, 0, 1);
EXPECT_CALL(*m_mock, process(
ResultOf([=](auto in) {
return (in.header.opcode == FUSE_READ);
}, Eq(true)),
_)
).Times(0);
fd = open(FULLPATH, O_RDONLY);
ASSERT_LE(0, fd) << strerror(errno);
p = mmap(NULL, len, PROT_READ, MAP_SHARED, fd, 0);
ASSERT_NE(MAP_FAILED, p) << strerror(errno);
/* Accessing the mapped page should return SIGBUS. */
bzero(&sa, sizeof(sa));
sa.sa_handler = SIG_DFL;
sa.sa_sigaction = handle_sigbus;
sa.sa_flags = SA_RESETHAND | SA_SIGINFO;
ASSERT_EQ(0, sigaction(SIGBUS, &sa, NULL)) << strerror(errno);
if (setjmp(ReadSigbus::s_jmpbuf) == 0) {
atomic_signal_fence(std::memory_order::memory_order_seq_cst);
volatile char x __unused = *(volatile char*)p;
FAIL() << "shouldn't get here";
}
ASSERT_EQ(p, ReadSigbus::s_si_addr);
ASSERT_EQ(0, munmap(p, len)) << strerror(errno);
leak(fd);
}
/*
* Just as when FOPEN_DIRECT_IO is used, reads with O_DIRECT should bypass
* cache and to straight to the daemon
*/
TEST_F(Read, o_direct)
{
const char FULLPATH[] = "mountpoint/some_file.txt";
const char RELPATH[] = "some_file.txt";
const char *CONTENTS = "abcdefgh";
uint64_t ino = 42;
int fd;
ssize_t bufsize = strlen(CONTENTS);
uint8_t buf[bufsize];
expect_lookup(RELPATH, ino, bufsize);
expect_open(ino, 0, 1);
expect_read(ino, 0, bufsize, bufsize, CONTENTS);
fd = open(FULLPATH, O_RDONLY);
ASSERT_LE(0, fd) << strerror(errno);
// Fill the cache
ASSERT_EQ(bufsize, read(fd, buf, bufsize)) << strerror(errno);
ASSERT_EQ(0, memcmp(buf, CONTENTS, bufsize));
// Reads with o_direct should bypass the cache
expect_read(ino, 0, bufsize, bufsize, CONTENTS);
ASSERT_EQ(0, fcntl(fd, F_SETFL, O_DIRECT)) << strerror(errno);
ASSERT_EQ(0, lseek(fd, 0, SEEK_SET)) << strerror(errno);
ASSERT_EQ(bufsize, read(fd, buf, bufsize)) << strerror(errno);
ASSERT_EQ(0, memcmp(buf, CONTENTS, bufsize));
leak(fd);
}
TEST_F(Read, pread)
{
const char FULLPATH[] = "mountpoint/some_file.txt";
const char RELPATH[] = "some_file.txt";
const char *CONTENTS = "abcdefgh";
uint64_t ino = 42;
int fd;
/*
* Set offset to a maxbcachebuf boundary so we'll be sure what offset
* to read from. Without this, the read might start at a lower offset.
*/
uint64_t offset = m_maxbcachebuf;
ssize_t bufsize = strlen(CONTENTS);
uint8_t buf[bufsize];
expect_lookup(RELPATH, ino, offset + bufsize);
expect_open(ino, 0, 1);
expect_read(ino, offset, bufsize, bufsize, CONTENTS);
fd = open(FULLPATH, O_RDONLY);
ASSERT_LE(0, fd) << strerror(errno);
ASSERT_EQ(bufsize, pread(fd, buf, bufsize, offset)) << strerror(errno);
ASSERT_EQ(0, memcmp(buf, CONTENTS, bufsize));
leak(fd);
}
TEST_F(Read, read)
{
const char FULLPATH[] = "mountpoint/some_file.txt";
const char RELPATH[] = "some_file.txt";
const char *CONTENTS = "abcdefgh";
uint64_t ino = 42;
int fd;
ssize_t bufsize = strlen(CONTENTS);
uint8_t buf[bufsize];
expect_lookup(RELPATH, ino, bufsize);
expect_open(ino, 0, 1);
expect_read(ino, 0, bufsize, bufsize, CONTENTS);
fd = open(FULLPATH, O_RDONLY);
ASSERT_LE(0, fd) << strerror(errno);
ASSERT_EQ(bufsize, read(fd, buf, bufsize)) << strerror(errno);
ASSERT_EQ(0, memcmp(buf, CONTENTS, bufsize));
leak(fd);
}
TEST_F(Read_7_8, read)
{
const char FULLPATH[] = "mountpoint/some_file.txt";
const char RELPATH[] = "some_file.txt";
const char *CONTENTS = "abcdefgh";
uint64_t ino = 42;
int fd;
ssize_t bufsize = strlen(CONTENTS);
uint8_t buf[bufsize];
expect_lookup(RELPATH, ino, bufsize);
expect_open(ino, 0, 1);
expect_read(ino, 0, bufsize, bufsize, CONTENTS);
fd = open(FULLPATH, O_RDONLY);
ASSERT_LE(0, fd) << strerror(errno);
ASSERT_EQ(bufsize, read(fd, buf, bufsize)) << strerror(errno);
ASSERT_EQ(0, memcmp(buf, CONTENTS, bufsize));
leak(fd);
}
/*
* If cacheing is enabled, the kernel should try to read an entire cache block
* at a time.
*/
TEST_F(Read, cache_block)
{
const char FULLPATH[] = "mountpoint/some_file.txt";
const char RELPATH[] = "some_file.txt";
const char *CONTENTS0 = "abcdefghijklmnop";
uint64_t ino = 42;
int fd;
ssize_t bufsize = 8;
ssize_t filesize = m_maxbcachebuf * 2;
char *contents;
char buf[bufsize];
const char *contents1 = CONTENTS0 + bufsize;
contents = (char*)calloc(1, filesize);
ASSERT_NE(nullptr, contents);
memmove(contents, CONTENTS0, strlen(CONTENTS0));
expect_lookup(RELPATH, ino, filesize);
expect_open(ino, 0, 1);
expect_read(ino, 0, m_maxbcachebuf, m_maxbcachebuf,
contents);
fd = open(FULLPATH, O_RDONLY);
ASSERT_LE(0, fd) << strerror(errno);
ASSERT_EQ(bufsize, read(fd, buf, bufsize)) << strerror(errno);
ASSERT_EQ(0, memcmp(buf, CONTENTS0, bufsize));
/* A subsequent read should be serviced by cache */
ASSERT_EQ(bufsize, read(fd, buf, bufsize)) << strerror(errno);
ASSERT_EQ(0, memcmp(buf, contents1, bufsize));
leak(fd);
free(contents);
}
/* Reading with sendfile should work (though it obviously won't be 0-copy) */
TEST_F(Read, sendfile)
{
const char FULLPATH[] = "mountpoint/some_file.txt";
const char RELPATH[] = "some_file.txt";
const char *CONTENTS = "abcdefgh";
uint64_t ino = 42;
int fd;
size_t bufsize = strlen(CONTENTS);
uint8_t buf[bufsize];
int sp[2];
off_t sbytes;
expect_lookup(RELPATH, ino, bufsize);
expect_open(ino, 0, 1);
EXPECT_CALL(*m_mock, process(
ResultOf([=](auto in) {
return (in.header.opcode == FUSE_READ &&
in.header.nodeid == ino &&
in.body.read.fh == Read::FH &&
in.body.read.offset == 0 &&
in.body.read.size == bufsize);
}, Eq(true)),
_)
).WillOnce(Invoke(ReturnImmediate([=](auto in __unused, auto& out) {
out.header.len = sizeof(struct fuse_out_header) + bufsize;
memmove(out.body.bytes, CONTENTS, bufsize);
})));
ASSERT_EQ(0, socketpair(PF_LOCAL, SOCK_STREAM, 0, sp))
<< strerror(errno);
fd = open(FULLPATH, O_RDONLY);
ASSERT_LE(0, fd) << strerror(errno);
ASSERT_EQ(0, sendfile(fd, sp[1], 0, bufsize, NULL, &sbytes, 0))
<< strerror(errno);
ASSERT_EQ(static_cast<ssize_t>(bufsize), read(sp[0], buf, bufsize))
<< strerror(errno);
ASSERT_EQ(0, memcmp(buf, CONTENTS, bufsize));
close(sp[1]);
close(sp[0]);
leak(fd);
}
/* sendfile should fail gracefully if fuse declines the read */
/* https://bugs.freebsd.org/bugzilla/show_bug.cgi?id=236466 */
TEST_F(Read, sendfile_eio)
{
const char FULLPATH[] = "mountpoint/some_file.txt";
const char RELPATH[] = "some_file.txt";
const char *CONTENTS = "abcdefgh";
uint64_t ino = 42;
int fd;
ssize_t bufsize = strlen(CONTENTS);
int sp[2];
off_t sbytes;
expect_lookup(RELPATH, ino, bufsize);
expect_open(ino, 0, 1);
EXPECT_CALL(*m_mock, process(
ResultOf([=](auto in) {
return (in.header.opcode == FUSE_READ);
}, Eq(true)),
_)
).WillOnce(Invoke(ReturnErrno(EIO)));
ASSERT_EQ(0, socketpair(PF_LOCAL, SOCK_STREAM, 0, sp))
<< strerror(errno);
fd = open(FULLPATH, O_RDONLY);
ASSERT_LE(0, fd) << strerror(errno);
ASSERT_NE(0, sendfile(fd, sp[1], 0, bufsize, NULL, &sbytes, 0));
close(sp[1]);
close(sp[0]);
leak(fd);
}
/*
* Sequential reads should use readahead. And if allowed, large reads should
* be clustered.
*/
TEST_P(ReadAhead, readahead) {
const char FULLPATH[] = "mountpoint/some_file.txt";
const char RELPATH[] = "some_file.txt";
uint64_t ino = 42;
int fd, maxcontig, clustersize;
ssize_t bufsize = 4 * m_maxbcachebuf;
ssize_t filesize = bufsize;
uint64_t len;
char *rbuf, *contents;
off_t offs;
contents = (char*)malloc(filesize);
ASSERT_NE(nullptr, contents);
memset(contents, 'X', filesize);
rbuf = (char*)calloc(1, bufsize);
expect_lookup(RELPATH, ino, filesize);
expect_open(ino, 0, 1);
maxcontig = m_noclusterr ? m_maxbcachebuf :
m_maxbcachebuf + m_maxreadahead;
clustersize = MIN(maxcontig, m_maxphys);
for (offs = 0; offs < bufsize; offs += clustersize) {
len = std::min((size_t)clustersize, (size_t)(filesize - offs));
expect_read(ino, offs, len, len, contents + offs);
}
fd = open(FULLPATH, O_RDONLY);
ASSERT_LE(0, fd) << strerror(errno);
/* Set the internal readahead counter to a "large" value */
ASSERT_EQ(0, fcntl(fd, F_READAHEAD, 1'000'000'000)) << strerror(errno);
ASSERT_EQ(bufsize, read(fd, rbuf, bufsize)) << strerror(errno);
ASSERT_EQ(0, memcmp(rbuf, contents, bufsize));
leak(fd);
free(rbuf);
free(contents);
}
INSTANTIATE_TEST_CASE_P(RA, ReadAhead,
Values(tuple<bool, int>(false, 0),
tuple<bool, int>(false, 1),
tuple<bool, int>(false, 2),
tuple<bool, int>(false, 3),
tuple<bool, int>(true, 0),
tuple<bool, int>(true, 1),
tuple<bool, int>(true, 2)));
/* fuse_init_out.time_gran controls the granularity of timestamps */
TEST_P(TimeGran, atime_during_setattr)
{
const char FULLPATH[] = "mountpoint/some_file.txt";
const char RELPATH[] = "some_file.txt";
const char *CONTENTS = "abcdefgh";
ssize_t bufsize = strlen(CONTENTS);
uint8_t buf[bufsize];
uint64_t ino = 42;
const mode_t newmode = 0755;
int fd;
expect_lookup(RELPATH, ino, bufsize);
expect_open(ino, 0, 1);
expect_read(ino, 0, bufsize, bufsize, CONTENTS);
EXPECT_CALL(*m_mock, process(
ResultOf([=](auto in) {
uint32_t valid = FATTR_MODE | FATTR_ATIME;
return (in.header.opcode == FUSE_SETATTR &&
in.header.nodeid == ino &&
in.body.setattr.valid == valid &&
in.body.setattr.atimensec % m_time_gran == 0);
}, Eq(true)),
_)
).WillOnce(Invoke(ReturnImmediate([=](auto in __unused, auto& out) {
SET_OUT_HEADER_LEN(out, attr);
out.body.attr.attr.ino = ino;
out.body.attr.attr.mode = S_IFREG | newmode;
})));
fd = open(FULLPATH, O_RDWR);
ASSERT_LE(0, fd) << strerror(errno);
ASSERT_EQ(bufsize, read(fd, buf, bufsize)) << strerror(errno);
ASSERT_EQ(0, fchmod(fd, newmode)) << strerror(errno);
leak(fd);
}
INSTANTIATE_TEST_CASE_P(TG, TimeGran, Range(0u, 10u));