freebsd-dev/sys/dev/ath/ath_hal/ar5416/ar5416_xmit.c
Rui Paulo 256796db58 Couple of suggestions from Sam regarding latest commit:
o rename the new variables to comply with the naming scheme
o move the new variables to an AR5212 specific struct
o use ahp when available
o revert to previous ts_flags check
2010-03-02 12:59:42 +00:00

696 lines
20 KiB
C

/*
* Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
* Copyright (c) 2002-2008 Atheros Communications, Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
* $FreeBSD$
*/
#include "opt_ah.h"
#include "ah.h"
#include "ah_desc.h"
#include "ah_internal.h"
#include "ar5416/ar5416.h"
#include "ar5416/ar5416reg.h"
#include "ar5416/ar5416phy.h"
#include "ar5416/ar5416desc.h"
/*
* Stop transmit on the specified queue
*/
HAL_BOOL
ar5416StopTxDma(struct ath_hal *ah, u_int q)
{
#define STOP_DMA_TIMEOUT 4000 /* us */
#define STOP_DMA_ITER 100 /* us */
u_int i;
HALASSERT(q < AH_PRIVATE(ah)->ah_caps.halTotalQueues);
HALASSERT(AH5212(ah)->ah_txq[q].tqi_type != HAL_TX_QUEUE_INACTIVE);
OS_REG_WRITE(ah, AR_Q_TXD, 1 << q);
for (i = STOP_DMA_TIMEOUT/STOP_DMA_ITER; i != 0; i--) {
if (ar5212NumTxPending(ah, q) == 0)
break;
OS_DELAY(STOP_DMA_ITER);
}
#ifdef AH_DEBUG
if (i == 0) {
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: queue %u DMA did not stop in 400 msec\n", __func__, q);
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: QSTS 0x%x Q_TXE 0x%x Q_TXD 0x%x Q_CBR 0x%x\n", __func__,
OS_REG_READ(ah, AR_QSTS(q)), OS_REG_READ(ah, AR_Q_TXE),
OS_REG_READ(ah, AR_Q_TXD), OS_REG_READ(ah, AR_QCBRCFG(q)));
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: Q_MISC 0x%x Q_RDYTIMECFG 0x%x Q_RDYTIMESHDN 0x%x\n",
__func__, OS_REG_READ(ah, AR_QMISC(q)),
OS_REG_READ(ah, AR_QRDYTIMECFG(q)),
OS_REG_READ(ah, AR_Q_RDYTIMESHDN));
}
#endif /* AH_DEBUG */
/* ar5416 and up can kill packets at the PCU level */
if (ar5212NumTxPending(ah, q)) {
uint32_t j;
HALDEBUG(ah, HAL_DEBUG_TXQUEUE,
"%s: Num of pending TX Frames %d on Q %d\n",
__func__, ar5212NumTxPending(ah, q), q);
/* Kill last PCU Tx Frame */
/* TODO - save off and restore current values of Q1/Q2? */
for (j = 0; j < 2; j++) {
uint32_t tsfLow = OS_REG_READ(ah, AR_TSF_L32);
OS_REG_WRITE(ah, AR_QUIET2,
SM(10, AR_QUIET2_QUIET_DUR));
OS_REG_WRITE(ah, AR_QUIET_PERIOD, 100);
OS_REG_WRITE(ah, AR_NEXT_QUIET, tsfLow >> 10);
OS_REG_SET_BIT(ah, AR_TIMER_MODE, AR_TIMER_MODE_QUIET);
if ((OS_REG_READ(ah, AR_TSF_L32)>>10) == (tsfLow>>10))
break;
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: TSF moved while trying to set quiet time "
"TSF: 0x%08x\n", __func__, tsfLow);
HALASSERT(j < 1); /* TSF shouldn't count twice or reg access is taking forever */
}
OS_REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_CHAN_IDLE);
/* Allow the quiet mechanism to do its work */
OS_DELAY(200);
OS_REG_CLR_BIT(ah, AR_TIMER_MODE, AR_TIMER_MODE_QUIET);
/* Verify the transmit q is empty */
for (i = STOP_DMA_TIMEOUT/STOP_DMA_ITER; i != 0; i--) {
if (ar5212NumTxPending(ah, q) == 0)
break;
OS_DELAY(STOP_DMA_ITER);
}
if (i == 0) {
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: Failed to stop Tx DMA in %d msec after killing"
" last frame\n", __func__, STOP_DMA_TIMEOUT / 1000);
}
OS_REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_CHAN_IDLE);
}
OS_REG_WRITE(ah, AR_Q_TXD, 0);
return (i != 0);
#undef STOP_DMA_ITER
#undef STOP_DMA_TIMEOUT
}
#define VALID_KEY_TYPES \
((1 << HAL_KEY_TYPE_CLEAR) | (1 << HAL_KEY_TYPE_WEP)|\
(1 << HAL_KEY_TYPE_AES) | (1 << HAL_KEY_TYPE_TKIP))
#define isValidKeyType(_t) ((1 << (_t)) & VALID_KEY_TYPES)
#define set11nTries(_series, _index) \
(SM((_series)[_index].Tries, AR_XmitDataTries##_index))
#define set11nRate(_series, _index) \
(SM((_series)[_index].Rate, AR_XmitRate##_index))
#define set11nPktDurRTSCTS(_series, _index) \
(SM((_series)[_index].PktDuration, AR_PacketDur##_index) |\
((_series)[_index].RateFlags & HAL_RATESERIES_RTS_CTS ?\
AR_RTSCTSQual##_index : 0))
#define set11nRateFlags(_series, _index) \
((_series)[_index].RateFlags & HAL_RATESERIES_2040 ? AR_2040_##_index : 0) \
|((_series)[_index].RateFlags & HAL_RATESERIES_HALFGI ? AR_GI##_index : 0) \
|SM((_series)[_index].ChSel, AR_ChainSel##_index)
/*
* Descriptor Access Functions
*/
#define VALID_PKT_TYPES \
((1<<HAL_PKT_TYPE_NORMAL)|(1<<HAL_PKT_TYPE_ATIM)|\
(1<<HAL_PKT_TYPE_PSPOLL)|(1<<HAL_PKT_TYPE_PROBE_RESP)|\
(1<<HAL_PKT_TYPE_BEACON)|(1<<HAL_PKT_TYPE_AMPDU))
#define isValidPktType(_t) ((1<<(_t)) & VALID_PKT_TYPES)
#define VALID_TX_RATES \
((1<<0x0b)|(1<<0x0f)|(1<<0x0a)|(1<<0x0e)|(1<<0x09)|(1<<0x0d)|\
(1<<0x08)|(1<<0x0c)|(1<<0x1b)|(1<<0x1a)|(1<<0x1e)|(1<<0x19)|\
(1<<0x1d)|(1<<0x18)|(1<<0x1c))
#define isValidTxRate(_r) ((1<<(_r)) & VALID_TX_RATES)
HAL_BOOL
ar5416SetupTxDesc(struct ath_hal *ah, struct ath_desc *ds,
u_int pktLen,
u_int hdrLen,
HAL_PKT_TYPE type,
u_int txPower,
u_int txRate0, u_int txTries0,
u_int keyIx,
u_int antMode,
u_int flags,
u_int rtsctsRate,
u_int rtsctsDuration,
u_int compicvLen,
u_int compivLen,
u_int comp)
{
#define RTSCTS (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)
struct ar5416_desc *ads = AR5416DESC(ds);
struct ath_hal_5416 *ahp = AH5416(ah);
(void) hdrLen;
HALASSERT(txTries0 != 0);
HALASSERT(isValidPktType(type));
HALASSERT(isValidTxRate(txRate0));
HALASSERT((flags & RTSCTS) != RTSCTS);
/* XXX validate antMode */
txPower = (txPower + AH5212(ah)->ah_txPowerIndexOffset);
if (txPower > 63)
txPower = 63;
ads->ds_ctl0 = (pktLen & AR_FrameLen)
| (txPower << AR_XmitPower_S)
| (flags & HAL_TXDESC_VEOL ? AR_VEOL : 0)
| (flags & HAL_TXDESC_CLRDMASK ? AR_ClrDestMask : 0)
| (flags & HAL_TXDESC_INTREQ ? AR_TxIntrReq : 0)
;
ads->ds_ctl1 = (type << AR_FrameType_S)
| (flags & HAL_TXDESC_NOACK ? AR_NoAck : 0)
;
ads->ds_ctl2 = SM(txTries0, AR_XmitDataTries0)
| (flags & HAL_TXDESC_DURENA ? AR_DurUpdateEn : 0)
;
ads->ds_ctl3 = (txRate0 << AR_XmitRate0_S)
;
ads->ds_ctl4 = 0;
ads->ds_ctl5 = 0;
ads->ds_ctl6 = 0;
ads->ds_ctl7 = SM(ahp->ah_tx_chainmask, AR_ChainSel0)
| SM(ahp->ah_tx_chainmask, AR_ChainSel1)
| SM(ahp->ah_tx_chainmask, AR_ChainSel2)
| SM(ahp->ah_tx_chainmask, AR_ChainSel3)
;
ads->ds_ctl8 = 0;
ads->ds_ctl9 = (txPower << 24); /* XXX? */
ads->ds_ctl10 = (txPower << 24); /* XXX? */
ads->ds_ctl11 = (txPower << 24); /* XXX? */
if (keyIx != HAL_TXKEYIX_INVALID) {
/* XXX validate key index */
ads->ds_ctl1 |= SM(keyIx, AR_DestIdx);
ads->ds_ctl0 |= AR_DestIdxValid;
ads->ds_ctl6 |= SM(ahp->ah_keytype[keyIx], AR_EncrType);
}
if (flags & RTSCTS) {
if (!isValidTxRate(rtsctsRate)) {
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: invalid rts/cts rate 0x%x\n",
__func__, rtsctsRate);
return AH_FALSE;
}
/* XXX validate rtsctsDuration */
ads->ds_ctl0 |= (flags & HAL_TXDESC_CTSENA ? AR_CTSEnable : 0)
| (flags & HAL_TXDESC_RTSENA ? AR_RTSEnable : 0)
;
ads->ds_ctl2 |= SM(rtsctsDuration, AR_BurstDur);
ads->ds_ctl7 |= (rtsctsRate << AR_RTSCTSRate_S);
}
return AH_TRUE;
#undef RTSCTS
}
HAL_BOOL
ar5416SetupXTxDesc(struct ath_hal *ah, struct ath_desc *ds,
u_int txRate1, u_int txTries1,
u_int txRate2, u_int txTries2,
u_int txRate3, u_int txTries3)
{
struct ar5416_desc *ads = AR5416DESC(ds);
if (txTries1) {
HALASSERT(isValidTxRate(txRate1));
ads->ds_ctl2 |= SM(txTries1, AR_XmitDataTries1);
ads->ds_ctl3 |= (txRate1 << AR_XmitRate1_S);
}
if (txTries2) {
HALASSERT(isValidTxRate(txRate2));
ads->ds_ctl2 |= SM(txTries2, AR_XmitDataTries2);
ads->ds_ctl3 |= (txRate2 << AR_XmitRate2_S);
}
if (txTries3) {
HALASSERT(isValidTxRate(txRate3));
ads->ds_ctl2 |= SM(txTries3, AR_XmitDataTries3);
ads->ds_ctl3 |= (txRate3 << AR_XmitRate3_S);
}
return AH_TRUE;
}
HAL_BOOL
ar5416FillTxDesc(struct ath_hal *ah, struct ath_desc *ds,
u_int segLen, HAL_BOOL firstSeg, HAL_BOOL lastSeg,
const struct ath_desc *ds0)
{
struct ar5416_desc *ads = AR5416DESC(ds);
HALASSERT((segLen &~ AR_BufLen) == 0);
if (firstSeg) {
/*
* First descriptor, don't clobber xmit control data
* setup by ar5212SetupTxDesc.
*/
ads->ds_ctl1 |= segLen | (lastSeg ? 0 : AR_TxMore);
} else if (lastSeg) { /* !firstSeg && lastSeg */
/*
* Last descriptor in a multi-descriptor frame,
* copy the multi-rate transmit parameters from
* the first frame for processing on completion.
*/
ads->ds_ctl0 = 0;
ads->ds_ctl1 = segLen;
#ifdef AH_NEED_DESC_SWAP
ads->ds_ctl2 = __bswap32(AR5416DESC_CONST(ds0)->ds_ctl2);
ads->ds_ctl3 = __bswap32(AR5416DESC_CONST(ds0)->ds_ctl3);
#else
ads->ds_ctl2 = AR5416DESC_CONST(ds0)->ds_ctl2;
ads->ds_ctl3 = AR5416DESC_CONST(ds0)->ds_ctl3;
#endif
} else { /* !firstSeg && !lastSeg */
/*
* Intermediate descriptor in a multi-descriptor frame.
*/
ads->ds_ctl0 = 0;
ads->ds_ctl1 = segLen | AR_TxMore;
ads->ds_ctl2 = 0;
ads->ds_ctl3 = 0;
}
/* XXX only on last descriptor? */
OS_MEMZERO(ads->u.tx.status, sizeof(ads->u.tx.status));
return AH_TRUE;
}
#if 0
HAL_BOOL
ar5416ChainTxDesc(struct ath_hal *ah, struct ath_desc *ds,
u_int pktLen,
u_int hdrLen,
HAL_PKT_TYPE type,
u_int keyIx,
HAL_CIPHER cipher,
uint8_t delims,
u_int segLen,
HAL_BOOL firstSeg,
HAL_BOOL lastSeg)
{
struct ar5416_desc *ads = AR5416DESC(ds);
uint32_t *ds_txstatus = AR5416_DS_TXSTATUS(ah,ads);
int isaggr = 0;
(void) hdrLen;
(void) ah;
HALASSERT((segLen &~ AR_BufLen) == 0);
HALASSERT(isValidPktType(type));
if (type == HAL_PKT_TYPE_AMPDU) {
type = HAL_PKT_TYPE_NORMAL;
isaggr = 1;
}
if (!firstSeg) {
ath_hal_memzero(ds->ds_hw, AR5416_DESC_TX_CTL_SZ);
}
ads->ds_ctl0 = (pktLen & AR_FrameLen);
ads->ds_ctl1 = (type << AR_FrameType_S)
| (isaggr ? (AR_IsAggr | AR_MoreAggr) : 0);
ads->ds_ctl2 = 0;
ads->ds_ctl3 = 0;
if (keyIx != HAL_TXKEYIX_INVALID) {
/* XXX validate key index */
ads->ds_ctl1 |= SM(keyIx, AR_DestIdx);
ads->ds_ctl0 |= AR_DestIdxValid;
}
ads->ds_ctl6 = SM(keyType[cipher], AR_EncrType);
if (isaggr) {
ads->ds_ctl6 |= SM(delims, AR_PadDelim);
}
if (firstSeg) {
ads->ds_ctl1 |= segLen | (lastSeg ? 0 : AR_TxMore);
} else if (lastSeg) { /* !firstSeg && lastSeg */
ads->ds_ctl0 = 0;
ads->ds_ctl1 |= segLen;
} else { /* !firstSeg && !lastSeg */
/*
* Intermediate descriptor in a multi-descriptor frame.
*/
ads->ds_ctl0 = 0;
ads->ds_ctl1 |= segLen | AR_TxMore;
}
ds_txstatus[0] = ds_txstatus[1] = 0;
ds_txstatus[9] &= ~AR_TxDone;
return AH_TRUE;
}
HAL_BOOL
ar5416SetupFirstTxDesc(struct ath_hal *ah, struct ath_desc *ds,
u_int aggrLen, u_int flags, u_int txPower,
u_int txRate0, u_int txTries0, u_int antMode,
u_int rtsctsRate, u_int rtsctsDuration)
{
#define RTSCTS (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)
struct ar5416_desc *ads = AR5416DESC(ds);
struct ath_hal_5212 *ahp = AH5212(ah);
HALASSERT(txTries0 != 0);
HALASSERT(isValidTxRate(txRate0));
HALASSERT((flags & RTSCTS) != RTSCTS);
/* XXX validate antMode */
txPower = (txPower + ahp->ah_txPowerIndexOffset );
if(txPower > 63) txPower=63;
ads->ds_ctl0 |= (txPower << AR_XmitPower_S)
| (flags & HAL_TXDESC_VEOL ? AR_VEOL : 0)
| (flags & HAL_TXDESC_CLRDMASK ? AR_ClrDestMask : 0)
| (flags & HAL_TXDESC_INTREQ ? AR_TxIntrReq : 0);
ads->ds_ctl1 |= (flags & HAL_TXDESC_NOACK ? AR_NoAck : 0);
ads->ds_ctl2 |= SM(txTries0, AR_XmitDataTries0);
ads->ds_ctl3 |= (txRate0 << AR_XmitRate0_S);
ads->ds_ctl7 = SM(AH5416(ah)->ah_tx_chainmask, AR_ChainSel0)
| SM(AH5416(ah)->ah_tx_chainmask, AR_ChainSel1)
| SM(AH5416(ah)->ah_tx_chainmask, AR_ChainSel2)
| SM(AH5416(ah)->ah_tx_chainmask, AR_ChainSel3);
/* NB: no V1 WAR */
ads->ds_ctl8 = 0;
ads->ds_ctl9 = (txPower << 24);
ads->ds_ctl10 = (txPower << 24);
ads->ds_ctl11 = (txPower << 24);
ads->ds_ctl6 &= ~(0xffff);
ads->ds_ctl6 |= SM(aggrLen, AR_AggrLen);
if (flags & RTSCTS) {
/* XXX validate rtsctsDuration */
ads->ds_ctl0 |= (flags & HAL_TXDESC_CTSENA ? AR_CTSEnable : 0)
| (flags & HAL_TXDESC_RTSENA ? AR_RTSEnable : 0);
ads->ds_ctl2 |= SM(rtsctsDuration, AR_BurstDur);
}
return AH_TRUE;
#undef RTSCTS
}
HAL_BOOL
ar5416SetupLastTxDesc(struct ath_hal *ah, struct ath_desc *ds,
const struct ath_desc *ds0)
{
struct ar5416_desc *ads = AR5416DESC(ds);
ads->ds_ctl1 &= ~AR_MoreAggr;
ads->ds_ctl6 &= ~AR_PadDelim;
/* hack to copy rate info to last desc for later processing */
#ifdef AH_NEED_DESC_SWAP
ads->ds_ctl2 = __bswap32(AR5416DESC_CONST(ds0)->ds_ctl2);
ads->ds_ctl3 = __bswap32(AR5416DESC_CONST(ds0)->ds_ctl3);
#else
ads->ds_ctl2 = AR5416DESC_CONST(ds0)->ds_ctl2;
ads->ds_ctl3 = AR5416DESC_CONST(ds0)->ds_ctl3;
#endif
return AH_TRUE;
}
#endif /* 0 */
#ifdef AH_NEED_DESC_SWAP
/* Swap transmit descriptor */
static __inline void
ar5416SwapTxDesc(struct ath_desc *ds)
{
ds->ds_data = __bswap32(ds->ds_data);
ds->ds_ctl0 = __bswap32(ds->ds_ctl0);
ds->ds_ctl1 = __bswap32(ds->ds_ctl1);
ds->ds_hw[0] = __bswap32(ds->ds_hw[0]);
ds->ds_hw[1] = __bswap32(ds->ds_hw[1]);
ds->ds_hw[2] = __bswap32(ds->ds_hw[2]);
ds->ds_hw[3] = __bswap32(ds->ds_hw[3]);
}
#endif
/*
* Processing of HW TX descriptor.
*/
HAL_STATUS
ar5416ProcTxDesc(struct ath_hal *ah,
struct ath_desc *ds, struct ath_tx_status *ts)
{
struct ar5416_desc *ads = AR5416DESC(ds);
uint32_t *ds_txstatus = AR5416_DS_TXSTATUS(ah,ads);
#ifdef AH_NEED_DESC_SWAP
if ((ds_txstatus[9] & __bswap32(AR_TxDone)) == 0)
return HAL_EINPROGRESS;
ar5416SwapTxDesc(ds);
#else
if ((ds_txstatus[9] & AR_TxDone) == 0)
return HAL_EINPROGRESS;
#endif
/* Update software copies of the HW status */
ts->ts_seqnum = MS(ds_txstatus[9], AR_SeqNum);
ts->ts_tstamp = AR_SendTimestamp(ds_txstatus);
ts->ts_status = 0;
if (ds_txstatus[1] & AR_ExcessiveRetries)
ts->ts_status |= HAL_TXERR_XRETRY;
if (ds_txstatus[1] & AR_Filtered)
ts->ts_status |= HAL_TXERR_FILT;
if (ds_txstatus[1] & AR_FIFOUnderrun)
ts->ts_status |= HAL_TXERR_FIFO;
if (ds_txstatus[9] & AR_TxOpExceeded)
ts->ts_status |= HAL_TXERR_XTXOP;
if (ds_txstatus[1] & AR_TxTimerExpired)
ts->ts_status |= HAL_TXERR_TIMER_EXPIRED;
ts->ts_flags = 0;
if (ds_txstatus[0] & AR_TxBaStatus) {
ts->ts_flags |= HAL_TX_BA;
ts->ts_ba_low = AR_BaBitmapLow(ds_txstatus);
ts->ts_ba_high = AR_BaBitmapHigh(ds_txstatus);
}
if (ds->ds_ctl1 & AR_IsAggr)
ts->ts_flags |= HAL_TX_AGGR;
if (ds_txstatus[1] & AR_DescCfgErr)
ts->ts_flags |= HAL_TX_DESC_CFG_ERR;
if (ds_txstatus[1] & AR_TxDataUnderrun)
ts->ts_flags |= HAL_TX_DATA_UNDERRUN;
if (ds_txstatus[1] & AR_TxDelimUnderrun)
ts->ts_flags |= HAL_TX_DELIM_UNDERRUN;
/*
* Extract the transmit rate used and mark the rate as
* ``alternate'' if it wasn't the series 0 rate.
*/
ts->ts_finaltsi = MS(ds_txstatus[9], AR_FinalTxIdx);
switch (ts->ts_finaltsi) {
case 0:
ts->ts_rate = MS(ads->ds_ctl3, AR_XmitRate0);
break;
case 1:
ts->ts_rate = MS(ads->ds_ctl3, AR_XmitRate1);
break;
case 2:
ts->ts_rate = MS(ads->ds_ctl3, AR_XmitRate2);
break;
case 3:
ts->ts_rate = MS(ads->ds_ctl3, AR_XmitRate3);
break;
}
ts->ts_rssi = MS(ds_txstatus[5], AR_TxRSSICombined);
ts->ts_rssi_ctl[0] = MS(ds_txstatus[0], AR_TxRSSIAnt00);
ts->ts_rssi_ctl[1] = MS(ds_txstatus[0], AR_TxRSSIAnt01);
ts->ts_rssi_ctl[2] = MS(ds_txstatus[0], AR_TxRSSIAnt02);
ts->ts_rssi_ext[0] = MS(ds_txstatus[5], AR_TxRSSIAnt10);
ts->ts_rssi_ext[1] = MS(ds_txstatus[5], AR_TxRSSIAnt11);
ts->ts_rssi_ext[2] = MS(ds_txstatus[5], AR_TxRSSIAnt12);
ts->ts_evm0 = AR_TxEVM0(ds_txstatus);
ts->ts_evm1 = AR_TxEVM1(ds_txstatus);
ts->ts_evm2 = AR_TxEVM2(ds_txstatus);
ts->ts_shortretry = MS(ds_txstatus[1], AR_RTSFailCnt);
ts->ts_longretry = MS(ds_txstatus[1], AR_DataFailCnt);
/*
* The retry count has the number of un-acked tries for the
* final series used. When doing multi-rate retry we must
* fixup the retry count by adding in the try counts for
* each series that was fully-processed. Beware that this
* takes values from the try counts in the final descriptor.
* These are not required by the hardware. We assume they
* are placed there by the driver as otherwise we have no
* access and the driver can't do the calculation because it
* doesn't know the descriptor format.
*/
switch (ts->ts_finaltsi) {
case 3: ts->ts_longretry += MS(ads->ds_ctl2, AR_XmitDataTries2);
case 2: ts->ts_longretry += MS(ads->ds_ctl2, AR_XmitDataTries1);
case 1: ts->ts_longretry += MS(ads->ds_ctl2, AR_XmitDataTries0);
}
/*
* These fields are not used. Zero these to preserve compatability
* with existing drivers.
*/
ts->ts_virtcol = MS(ads->ds_ctl1, AR_VirtRetryCnt);
ts->ts_antenna = 0; /* We don't switch antennas on Owl*/
/* handle tx trigger level changes internally */
if ((ts->ts_status & HAL_TXERR_FIFO) ||
(ts->ts_flags & (HAL_TX_DATA_UNDERRUN | HAL_TX_DELIM_UNDERRUN)))
ar5212UpdateTxTrigLevel(ah, AH_TRUE);
return HAL_OK;
}
#if 0
HAL_BOOL
ar5416SetGlobalTxTimeout(struct ath_hal *ah, u_int tu)
{
struct ath_hal_5416 *ahp = AH5416(ah);
if (tu > 0xFFFF) {
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad global tx timeout %u\n",
__func__, tu);
/* restore default handling */
ahp->ah_globaltxtimeout = (u_int) -1;
return AH_FALSE;
}
OS_REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
ahp->ah_globaltxtimeout = tu;
return AH_TRUE;
}
u_int
ar5416GetGlobalTxTimeout(struct ath_hal *ah)
{
return MS(OS_REG_READ(ah, AR_GTXTO), AR_GTXTO_TIMEOUT_LIMIT);
}
void
ar5416Set11nRateScenario(struct ath_hal *ah, struct ath_desc *ds,
u_int durUpdateEn, u_int rtsctsRate,
HAL_11N_RATE_SERIES series[], u_int nseries)
{
struct ar5416_desc *ads = AR5416DESC(ds);
HALASSERT(nseries == 4);
(void)nseries;
ads->ds_ctl2 = set11nTries(series, 0)
| set11nTries(series, 1)
| set11nTries(series, 2)
| set11nTries(series, 3)
| (durUpdateEn ? AR_DurUpdateEn : 0);
ads->ds_ctl3 = set11nRate(series, 0)
| set11nRate(series, 1)
| set11nRate(series, 2)
| set11nRate(series, 3);
ads->ds_ctl4 = set11nPktDurRTSCTS(series, 0)
| set11nPktDurRTSCTS(series, 1);
ads->ds_ctl5 = set11nPktDurRTSCTS(series, 2)
| set11nPktDurRTSCTS(series, 3);
ads->ds_ctl7 = set11nRateFlags(series, 0)
| set11nRateFlags(series, 1)
| set11nRateFlags(series, 2)
| set11nRateFlags(series, 3)
| SM(rtsctsRate, AR_RTSCTSRate);
/*
* Enable RTSCTS if any of the series is flagged for RTSCTS,
* but only if CTS is not enabled.
*/
/*
* FIXME : the entire RTS/CTS handling should be moved to this
* function (by passing the global RTS/CTS flags to this function).
* currently it is split between this function and the
* setupFiirstDescriptor. with this current implementation there
* is an implicit assumption that setupFirstDescriptor is called
* before this function.
*/
if (((series[0].RateFlags & HAL_RATESERIES_RTS_CTS) ||
(series[1].RateFlags & HAL_RATESERIES_RTS_CTS) ||
(series[2].RateFlags & HAL_RATESERIES_RTS_CTS) ||
(series[3].RateFlags & HAL_RATESERIES_RTS_CTS) ) &&
(ads->ds_ctl0 & AR_CTSEnable) == 0) {
ads->ds_ctl0 |= AR_RTSEnable;
ads->ds_ctl0 &= ~AR_CTSEnable;
}
}
void
ar5416Set11nAggrMiddle(struct ath_hal *ah, struct ath_desc *ds, u_int numDelims)
{
struct ar5416_desc *ads = AR5416DESC(ds);
uint32_t *ds_txstatus = AR5416_DS_TXSTATUS(ah,ads);
ads->ds_ctl1 |= (AR_IsAggr | AR_MoreAggr);
ads->ds_ctl6 &= ~AR_PadDelim;
ads->ds_ctl6 |= SM(numDelims, AR_PadDelim);
ads->ds_ctl6 &= ~AR_AggrLen;
/*
* Clear the TxDone status here, may need to change
* func name to reflect this
*/
ds_txstatus[9] &= ~AR_TxDone;
}
void
ar5416Clr11nAggr(struct ath_hal *ah, struct ath_desc *ds)
{
struct ar5416_desc *ads = AR5416DESC(ds);
ads->ds_ctl1 &= (~AR_IsAggr & ~AR_MoreAggr);
ads->ds_ctl6 &= ~AR_PadDelim;
ads->ds_ctl6 &= ~AR_AggrLen;
}
void
ar5416Set11nBurstDuration(struct ath_hal *ah, struct ath_desc *ds,
u_int burstDuration)
{
struct ar5416_desc *ads = AR5416DESC(ds);
ads->ds_ctl2 &= ~AR_BurstDur;
ads->ds_ctl2 |= SM(burstDuration, AR_BurstDur);
}
#endif