freebsd-dev/sys/arm64/acpica/acpi_iort.c
Andrew Turner 45951bf0a9 Ignore the SMMUv3 and PMCG interrupt controller in the IORT tables
When mapping MSI/MSI-X interrupts throught he Arm IORT ACPI tables we may
need to ignore an interrupt controller even if it is within the bounds the
entry describes. When the SMMUv3 is not using GSIV (non-MSI/MSI-X)
interrupts we need to read the defined field. The Performance Monitoring
Counter Group always ignores the first table entry.

MFC after:	2 weeks
Sponsored by:	DARPA, AFRL
2020-01-31 09:51:38 +00:00

567 lines
15 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (C) 2018 Marvell International Ltd.
*
* Author: Jayachandran C Nair <jchandra@freebsd.org>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include "opt_acpi.h"
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/bus.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <machine/intr.h>
#include <contrib/dev/acpica/include/acpi.h>
#include <contrib/dev/acpica/include/accommon.h>
#include <contrib/dev/acpica/include/actables.h>
#include <dev/acpica/acpivar.h>
/*
* Track next XREF available for ITS groups.
*/
static u_int acpi_its_xref = ACPI_MSI_XREF;
/*
* Some types of IORT nodes have a set of mappings. Each of them map
* a range of device IDs [base..end] from the current node to another
* node. The corresponding device IDs on destination node starts at
* outbase.
*/
struct iort_map_entry {
u_int base;
u_int end;
u_int outbase;
u_int flags;
u_int out_node_offset;
struct iort_node *out_node;
};
/*
* The ITS group node does not have any outgoing mappings. It has a
* of a list of GIC ITS blocks which can handle the device ID. We
* will store the PIC XREF used by the block and the blocks proximity
* data here, so that it can be retrieved together.
*/
struct iort_its_entry {
u_int its_id;
u_int xref;
int pxm;
};
/*
* IORT node. Each node has some device specific data depending on the
* type of the node. The node can also have a set of mappings, OR in
* case of ITS group nodes a set of ITS entries.
* The nodes are kept in a TAILQ by type.
*/
struct iort_node {
TAILQ_ENTRY(iort_node) next; /* next entry with same type */
enum AcpiIortNodeType type; /* ACPI type */
u_int node_offset; /* offset in IORT - node ID */
u_int nentries; /* items in array below */
u_int usecount; /* for bookkeeping */
u_int revision; /* node revision */
union {
ACPI_IORT_ROOT_COMPLEX pci_rc; /* PCI root complex */
ACPI_IORT_SMMU smmu;
ACPI_IORT_SMMU_V3 smmu_v3;
} data;
union {
struct iort_map_entry *mappings; /* node mappings */
struct iort_its_entry *its; /* ITS IDs array */
} entries;
};
/* Lists for each of the types. */
static TAILQ_HEAD(, iort_node) pci_nodes = TAILQ_HEAD_INITIALIZER(pci_nodes);
static TAILQ_HEAD(, iort_node) smmu_nodes = TAILQ_HEAD_INITIALIZER(smmu_nodes);
static TAILQ_HEAD(, iort_node) its_groups = TAILQ_HEAD_INITIALIZER(its_groups);
static int
iort_entry_get_id_mapping_index(struct iort_node *node)
{
switch(node->type) {
case ACPI_IORT_NODE_SMMU_V3:
/* The ID mapping field was added in version 1 */
if (node->revision < 1)
return (-1);
/*
* If all the control interrupts are GISCV based the ID
* mapping field is ignored.
*/
if (node->data.smmu_v3.EventGsiv != 0 &&
node->data.smmu_v3.PriGsiv != 0 &&
node->data.smmu_v3.GerrGsiv != 0 &&
node->data.smmu_v3.SyncGsiv != 0)
return (-1);
if (node->data.smmu_v3.IdMappingIndex >= node->nentries)
return (-1);
return (node->data.smmu_v3.IdMappingIndex);
case ACPI_IORT_NODE_PMCG:
return (0);
default:
break;
}
return (-1);
}
/*
* Lookup an ID in the mappings array. If successful, map the input ID
* to the output ID and return the output node found.
*/
static struct iort_node *
iort_entry_lookup(struct iort_node *node, u_int id, u_int *outid)
{
struct iort_map_entry *entry;
int i, id_map;
id_map = iort_entry_get_id_mapping_index(node);
entry = node->entries.mappings;
for (i = 0; i < node->nentries; i++, entry++) {
if (i == id_map)
continue;
if (entry->base <= id && id <= entry->end)
break;
}
if (i == node->nentries)
return (NULL);
if ((entry->flags & ACPI_IORT_ID_SINGLE_MAPPING) == 0)
*outid = entry->outbase + (id - entry->base);
else
*outid = entry->outbase;
return (entry->out_node);
}
/*
* Map a PCI RID to a SMMU node or an ITS node, based on outtype.
*/
static struct iort_node *
iort_pci_rc_map(u_int seg, u_int rid, u_int outtype, u_int *outid)
{
struct iort_node *node, *out_node;
u_int nxtid;
out_node = NULL;
TAILQ_FOREACH(node, &pci_nodes, next) {
if (node->data.pci_rc.PciSegmentNumber != seg)
continue;
out_node = iort_entry_lookup(node, rid, &nxtid);
if (out_node != NULL)
break;
}
/* Could not find a PCI RC node with segment and device ID. */
if (out_node == NULL)
return (NULL);
/* Node can be SMMU or ITS. If SMMU, we need another lookup. */
if (outtype == ACPI_IORT_NODE_ITS_GROUP &&
(out_node->type == ACPI_IORT_NODE_SMMU_V3 ||
out_node->type == ACPI_IORT_NODE_SMMU)) {
out_node = iort_entry_lookup(out_node, nxtid, &nxtid);
if (out_node == NULL)
return (NULL);
}
KASSERT(out_node->type == outtype, ("mapping fail"));
*outid = nxtid;
return (out_node);
}
#ifdef notyet
/*
* Not implemented, map a PCIe device to the SMMU it is associated with.
*/
int
acpi_iort_map_smmu(u_int seg, u_int devid, void **smmu, u_int *sid)
{
/* XXX: convert oref to SMMU device */
return (ENXIO);
}
#endif
/*
* Allocate memory for a node, initialize and copy mappings. 'start'
* argument provides the table start used to calculate the node offset.
*/
static void
iort_copy_data(struct iort_node *node, ACPI_IORT_NODE *node_entry)
{
ACPI_IORT_ID_MAPPING *map_entry;
struct iort_map_entry *mapping;
int i;
map_entry = ACPI_ADD_PTR(ACPI_IORT_ID_MAPPING, node_entry,
node_entry->MappingOffset);
node->nentries = node_entry->MappingCount;
node->usecount = 0;
mapping = malloc(sizeof(*mapping) * node->nentries, M_DEVBUF,
M_WAITOK | M_ZERO);
node->entries.mappings = mapping;
for (i = 0; i < node->nentries; i++, mapping++, map_entry++) {
mapping->base = map_entry->InputBase;
mapping->end = map_entry->InputBase + map_entry->IdCount - 1;
mapping->outbase = map_entry->OutputBase;
mapping->out_node_offset = map_entry->OutputReference;
mapping->flags = map_entry->Flags;
mapping->out_node = NULL;
}
}
/*
* Allocate and copy an ITS group.
*/
static void
iort_copy_its(struct iort_node *node, ACPI_IORT_NODE *node_entry)
{
struct iort_its_entry *its;
ACPI_IORT_ITS_GROUP *itsg_entry;
UINT32 *id;
int i;
itsg_entry = (ACPI_IORT_ITS_GROUP *)node_entry->NodeData;
node->nentries = itsg_entry->ItsCount;
node->usecount = 0;
its = malloc(sizeof(*its) * node->nentries, M_DEVBUF, M_WAITOK | M_ZERO);
node->entries.its = its;
id = &itsg_entry->Identifiers[0];
for (i = 0; i < node->nentries; i++, its++, id++) {
its->its_id = *id;
its->pxm = -1;
its->xref = 0;
}
}
/*
* Walk the IORT table and add nodes to corresponding list.
*/
static void
iort_add_nodes(ACPI_IORT_NODE *node_entry, u_int node_offset)
{
ACPI_IORT_ROOT_COMPLEX *pci_rc;
ACPI_IORT_SMMU *smmu;
ACPI_IORT_SMMU_V3 *smmu_v3;
struct iort_node *node;
node = malloc(sizeof(*node), M_DEVBUF, M_WAITOK | M_ZERO);
node->type = node_entry->Type;
node->node_offset = node_offset;
node->revision = node_entry->Revision;
/* copy nodes depending on type */
switch(node_entry->Type) {
case ACPI_IORT_NODE_PCI_ROOT_COMPLEX:
pci_rc = (ACPI_IORT_ROOT_COMPLEX *)node_entry->NodeData;
memcpy(&node->data.pci_rc, pci_rc, sizeof(*pci_rc));
iort_copy_data(node, node_entry);
TAILQ_INSERT_TAIL(&pci_nodes, node, next);
break;
case ACPI_IORT_NODE_SMMU:
smmu = (ACPI_IORT_SMMU *)node_entry->NodeData;
memcpy(&node->data.smmu, smmu, sizeof(*smmu));
iort_copy_data(node, node_entry);
TAILQ_INSERT_TAIL(&smmu_nodes, node, next);
break;
case ACPI_IORT_NODE_SMMU_V3:
smmu_v3 = (ACPI_IORT_SMMU_V3 *)node_entry->NodeData;
memcpy(&node->data.smmu_v3, smmu_v3, sizeof(*smmu_v3));
iort_copy_data(node, node_entry);
TAILQ_INSERT_TAIL(&smmu_nodes, node, next);
break;
case ACPI_IORT_NODE_ITS_GROUP:
iort_copy_its(node, node_entry);
TAILQ_INSERT_TAIL(&its_groups, node, next);
break;
default:
printf("ACPI: IORT: Dropping unhandled type %u\n",
node_entry->Type);
free(node, M_DEVBUF);
break;
}
}
/*
* For the mapping entry given, walk thru all the possible destination
* nodes and resolve the output reference.
*/
static void
iort_resolve_node(struct iort_map_entry *entry, int check_smmu)
{
struct iort_node *node, *np;
node = NULL;
if (check_smmu) {
TAILQ_FOREACH(np, &smmu_nodes, next) {
if (entry->out_node_offset == np->node_offset) {
node = np;
break;
}
}
}
if (node == NULL) {
TAILQ_FOREACH(np, &its_groups, next) {
if (entry->out_node_offset == np->node_offset) {
node = np;
break;
}
}
}
if (node != NULL) {
node->usecount++;
entry->out_node = node;
} else {
printf("ACPI: IORT: Firmware Bug: no mapping for node %u\n",
entry->out_node_offset);
}
}
/*
* Resolve all output node references to node pointers.
*/
static void
iort_post_process_mappings(void)
{
struct iort_node *node;
int i;
TAILQ_FOREACH(node, &pci_nodes, next)
for (i = 0; i < node->nentries; i++)
iort_resolve_node(&node->entries.mappings[i], TRUE);
TAILQ_FOREACH(node, &smmu_nodes, next)
for (i = 0; i < node->nentries; i++)
iort_resolve_node(&node->entries.mappings[i], FALSE);
/* TODO: named nodes */
}
/*
* Walk MADT table, assign PIC xrefs to all ITS entries.
*/
static void
madt_resolve_its_xref(ACPI_SUBTABLE_HEADER *entry, void *arg)
{
ACPI_MADT_GENERIC_TRANSLATOR *gict;
struct iort_node *its_node;
struct iort_its_entry *its_entry;
u_int xref;
int i, matches;
if (entry->Type != ACPI_MADT_TYPE_GENERIC_TRANSLATOR)
return;
gict = (ACPI_MADT_GENERIC_TRANSLATOR *)entry;
matches = 0;
xref = acpi_its_xref++;
TAILQ_FOREACH(its_node, &its_groups, next) {
its_entry = its_node->entries.its;
for (i = 0; i < its_node->nentries; i++, its_entry++) {
if (its_entry->its_id == gict->TranslationId) {
its_entry->xref = xref;
matches++;
}
}
}
if (matches == 0)
printf("ACPI: IORT: Unused ITS block, ID %u\n",
gict->TranslationId);
}
/*
* Walk SRAT, assign proximity to all ITS entries.
*/
static void
srat_resolve_its_pxm(ACPI_SUBTABLE_HEADER *entry, void *arg)
{
ACPI_SRAT_GIC_ITS_AFFINITY *gicits;
struct iort_node *its_node;
struct iort_its_entry *its_entry;
int *map_counts;
int i, matches, dom;
if (entry->Type != ACPI_SRAT_TYPE_GIC_ITS_AFFINITY)
return;
matches = 0;
map_counts = arg;
gicits = (ACPI_SRAT_GIC_ITS_AFFINITY *)entry;
dom = acpi_map_pxm_to_vm_domainid(gicits->ProximityDomain);
/*
* Catch firmware and config errors. map_counts keeps a
* count of ProximityDomain values mapping to a domain ID
*/
#if MAXMEMDOM > 1
if (dom == -1)
printf("Firmware Error: Proximity Domain %d could not be"
" mapped for GIC ITS ID %d!\n",
gicits->ProximityDomain, gicits->ItsId);
#endif
/* use dom + 1 as index to handle the case where dom == -1 */
i = ++map_counts[dom + 1];
if (i > 1) {
#ifdef NUMA
if (dom != -1)
printf("ERROR: Multiple Proximity Domains map to the"
" same NUMA domain %d!\n", dom);
#else
printf("WARNING: multiple Proximity Domains in SRAT but NUMA"
" NOT enabled!\n");
#endif
}
TAILQ_FOREACH(its_node, &its_groups, next) {
its_entry = its_node->entries.its;
for (i = 0; i < its_node->nentries; i++, its_entry++) {
if (its_entry->its_id == gicits->ItsId) {
its_entry->pxm = dom;
matches++;
}
}
}
if (matches == 0)
printf("ACPI: IORT: ITS block %u in SRAT not found in IORT!\n",
gicits->ItsId);
}
/*
* Cross check the ITS Id with MADT and (if available) SRAT.
*/
static int
iort_post_process_its(void)
{
ACPI_TABLE_MADT *madt;
ACPI_TABLE_SRAT *srat;
vm_paddr_t madt_pa, srat_pa;
int map_counts[MAXMEMDOM + 1] = { 0 };
/* Check ITS block in MADT */
madt_pa = acpi_find_table(ACPI_SIG_MADT);
KASSERT(madt_pa != 0, ("no MADT!"));
madt = acpi_map_table(madt_pa, ACPI_SIG_MADT);
KASSERT(madt != NULL, ("can't map MADT!"));
acpi_walk_subtables(madt + 1, (char *)madt + madt->Header.Length,
madt_resolve_its_xref, NULL);
acpi_unmap_table(madt);
/* Get proximtiy if available */
srat_pa = acpi_find_table(ACPI_SIG_SRAT);
if (srat_pa != 0) {
srat = acpi_map_table(srat_pa, ACPI_SIG_SRAT);
KASSERT(srat != NULL, ("can't map SRAT!"));
acpi_walk_subtables(srat + 1, (char *)srat + srat->Header.Length,
srat_resolve_its_pxm, map_counts);
acpi_unmap_table(srat);
}
return (0);
}
/*
* Find, parse, and save IO Remapping Table ("IORT").
*/
static int
acpi_parse_iort(void *dummy __unused)
{
ACPI_TABLE_IORT *iort;
ACPI_IORT_NODE *node_entry;
vm_paddr_t iort_pa;
u_int node_offset;
iort_pa = acpi_find_table(ACPI_SIG_IORT);
if (iort_pa == 0)
return (ENXIO);
iort = acpi_map_table(iort_pa, ACPI_SIG_IORT);
if (iort == NULL) {
printf("ACPI: Unable to map the IORT table!\n");
return (ENXIO);
}
for (node_offset = iort->NodeOffset;
node_offset < iort->Header.Length;
node_offset += node_entry->Length) {
node_entry = ACPI_ADD_PTR(ACPI_IORT_NODE, iort, node_offset);
iort_add_nodes(node_entry, node_offset);
}
acpi_unmap_table(iort);
iort_post_process_mappings();
iort_post_process_its();
return (0);
}
SYSINIT(acpi_parse_iort, SI_SUB_DRIVERS, SI_ORDER_FIRST, acpi_parse_iort, NULL);
/*
* Provide ITS ID to PIC xref mapping.
*/
int
acpi_iort_its_lookup(u_int its_id, u_int *xref, int *pxm)
{
struct iort_node *its_node;
struct iort_its_entry *its_entry;
int i;
TAILQ_FOREACH(its_node, &its_groups, next) {
its_entry = its_node->entries.its;
for (i = 0; i < its_node->nentries; i++, its_entry++) {
if (its_entry->its_id == its_id) {
*xref = its_entry->xref;
*pxm = its_entry->pxm;
return (0);
}
}
}
return (ENOENT);
}
/*
* Find mapping for a PCIe device given segment and device ID
* returns the XREF for MSI interrupt setup and the device ID to
* use for the interrupt setup
*/
int
acpi_iort_map_pci_msi(u_int seg, u_int rid, u_int *xref, u_int *devid)
{
struct iort_node *node;
node = iort_pci_rc_map(seg, rid, ACPI_IORT_NODE_ITS_GROUP, devid);
if (node == NULL)
return (ENOENT);
/* This should be an ITS node */
KASSERT(node->type == ACPI_IORT_NODE_ITS_GROUP, ("bad group"));
/* return first node, we don't handle more than that now. */
*xref = node->entries.its[0].xref;
return (0);
}