ecb2b7dc7f
Update many return and assignment statements to follow the convention of using the SET_ERROR macro when returning a hard-coded non-zero value from a function. This aids debugging by recording the error codes in the debug log. Reviewed-by: George Melikov <mail@gmelikov.ru> Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Signed-off-by: Ned Bass <bass6@llnl.gov> Closes #6441
880 lines
23 KiB
C
880 lines
23 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
|
|
* Copyright (c) 2013, 2015 by Delphix. All rights reserved.
|
|
* Copyright 2017 Nexenta Systems, Inc.
|
|
*/
|
|
|
|
/*
|
|
* The 512-byte leaf is broken into 32 16-byte chunks.
|
|
* chunk number n means l_chunk[n], even though the header precedes it.
|
|
* the names are stored null-terminated.
|
|
*/
|
|
|
|
#include <sys/zio.h>
|
|
#include <sys/spa.h>
|
|
#include <sys/dmu.h>
|
|
#include <sys/zfs_context.h>
|
|
#include <sys/fs/zfs.h>
|
|
#include <sys/zap.h>
|
|
#include <sys/zap_impl.h>
|
|
#include <sys/zap_leaf.h>
|
|
#include <sys/arc.h>
|
|
|
|
static uint16_t *zap_leaf_rehash_entry(zap_leaf_t *l, uint16_t entry);
|
|
|
|
#define CHAIN_END 0xffff /* end of the chunk chain */
|
|
|
|
/* half the (current) minimum block size */
|
|
#define MAX_ARRAY_BYTES (8<<10)
|
|
|
|
#define LEAF_HASH(l, h) \
|
|
((ZAP_LEAF_HASH_NUMENTRIES(l)-1) & \
|
|
((h) >> \
|
|
(64 - ZAP_LEAF_HASH_SHIFT(l) - zap_leaf_phys(l)->l_hdr.lh_prefix_len)))
|
|
|
|
#define LEAF_HASH_ENTPTR(l, h) (&zap_leaf_phys(l)->l_hash[LEAF_HASH(l, h)])
|
|
|
|
extern inline zap_leaf_phys_t *zap_leaf_phys(zap_leaf_t *l);
|
|
|
|
static void
|
|
zap_memset(void *a, int c, size_t n)
|
|
{
|
|
char *cp = a;
|
|
char *cpend = cp + n;
|
|
|
|
while (cp < cpend)
|
|
*cp++ = c;
|
|
}
|
|
|
|
static void
|
|
stv(int len, void *addr, uint64_t value)
|
|
{
|
|
switch (len) {
|
|
case 1:
|
|
*(uint8_t *)addr = value;
|
|
return;
|
|
case 2:
|
|
*(uint16_t *)addr = value;
|
|
return;
|
|
case 4:
|
|
*(uint32_t *)addr = value;
|
|
return;
|
|
case 8:
|
|
*(uint64_t *)addr = value;
|
|
return;
|
|
default:
|
|
cmn_err(CE_PANIC, "bad int len %d", len);
|
|
}
|
|
}
|
|
|
|
static uint64_t
|
|
ldv(int len, const void *addr)
|
|
{
|
|
switch (len) {
|
|
case 1:
|
|
return (*(uint8_t *)addr);
|
|
case 2:
|
|
return (*(uint16_t *)addr);
|
|
case 4:
|
|
return (*(uint32_t *)addr);
|
|
case 8:
|
|
return (*(uint64_t *)addr);
|
|
default:
|
|
cmn_err(CE_PANIC, "bad int len %d", len);
|
|
}
|
|
return (0xFEEDFACEDEADBEEFULL);
|
|
}
|
|
|
|
void
|
|
zap_leaf_byteswap(zap_leaf_phys_t *buf, int size)
|
|
{
|
|
int i;
|
|
zap_leaf_t l;
|
|
dmu_buf_t l_dbuf;
|
|
|
|
l_dbuf.db_data = buf;
|
|
l.l_bs = highbit64(size) - 1;
|
|
l.l_dbuf = &l_dbuf;
|
|
|
|
buf->l_hdr.lh_block_type = BSWAP_64(buf->l_hdr.lh_block_type);
|
|
buf->l_hdr.lh_prefix = BSWAP_64(buf->l_hdr.lh_prefix);
|
|
buf->l_hdr.lh_magic = BSWAP_32(buf->l_hdr.lh_magic);
|
|
buf->l_hdr.lh_nfree = BSWAP_16(buf->l_hdr.lh_nfree);
|
|
buf->l_hdr.lh_nentries = BSWAP_16(buf->l_hdr.lh_nentries);
|
|
buf->l_hdr.lh_prefix_len = BSWAP_16(buf->l_hdr.lh_prefix_len);
|
|
buf->l_hdr.lh_freelist = BSWAP_16(buf->l_hdr.lh_freelist);
|
|
|
|
for (i = 0; i < ZAP_LEAF_HASH_NUMENTRIES(&l); i++)
|
|
buf->l_hash[i] = BSWAP_16(buf->l_hash[i]);
|
|
|
|
for (i = 0; i < ZAP_LEAF_NUMCHUNKS(&l); i++) {
|
|
zap_leaf_chunk_t *lc = &ZAP_LEAF_CHUNK(&l, i);
|
|
struct zap_leaf_entry *le;
|
|
|
|
switch (lc->l_free.lf_type) {
|
|
case ZAP_CHUNK_ENTRY:
|
|
le = &lc->l_entry;
|
|
|
|
le->le_type = BSWAP_8(le->le_type);
|
|
le->le_value_intlen = BSWAP_8(le->le_value_intlen);
|
|
le->le_next = BSWAP_16(le->le_next);
|
|
le->le_name_chunk = BSWAP_16(le->le_name_chunk);
|
|
le->le_name_numints = BSWAP_16(le->le_name_numints);
|
|
le->le_value_chunk = BSWAP_16(le->le_value_chunk);
|
|
le->le_value_numints = BSWAP_16(le->le_value_numints);
|
|
le->le_cd = BSWAP_32(le->le_cd);
|
|
le->le_hash = BSWAP_64(le->le_hash);
|
|
break;
|
|
case ZAP_CHUNK_FREE:
|
|
lc->l_free.lf_type = BSWAP_8(lc->l_free.lf_type);
|
|
lc->l_free.lf_next = BSWAP_16(lc->l_free.lf_next);
|
|
break;
|
|
case ZAP_CHUNK_ARRAY:
|
|
lc->l_array.la_type = BSWAP_8(lc->l_array.la_type);
|
|
lc->l_array.la_next = BSWAP_16(lc->l_array.la_next);
|
|
/* la_array doesn't need swapping */
|
|
break;
|
|
default:
|
|
cmn_err(CE_PANIC, "bad leaf type %d",
|
|
lc->l_free.lf_type);
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
zap_leaf_init(zap_leaf_t *l, boolean_t sort)
|
|
{
|
|
int i;
|
|
|
|
l->l_bs = highbit64(l->l_dbuf->db_size) - 1;
|
|
zap_memset(&zap_leaf_phys(l)->l_hdr, 0,
|
|
sizeof (struct zap_leaf_header));
|
|
zap_memset(zap_leaf_phys(l)->l_hash, CHAIN_END,
|
|
2*ZAP_LEAF_HASH_NUMENTRIES(l));
|
|
for (i = 0; i < ZAP_LEAF_NUMCHUNKS(l); i++) {
|
|
ZAP_LEAF_CHUNK(l, i).l_free.lf_type = ZAP_CHUNK_FREE;
|
|
ZAP_LEAF_CHUNK(l, i).l_free.lf_next = i+1;
|
|
}
|
|
ZAP_LEAF_CHUNK(l, ZAP_LEAF_NUMCHUNKS(l)-1).l_free.lf_next = CHAIN_END;
|
|
zap_leaf_phys(l)->l_hdr.lh_block_type = ZBT_LEAF;
|
|
zap_leaf_phys(l)->l_hdr.lh_magic = ZAP_LEAF_MAGIC;
|
|
zap_leaf_phys(l)->l_hdr.lh_nfree = ZAP_LEAF_NUMCHUNKS(l);
|
|
if (sort)
|
|
zap_leaf_phys(l)->l_hdr.lh_flags |= ZLF_ENTRIES_CDSORTED;
|
|
}
|
|
|
|
/*
|
|
* Routines which manipulate leaf chunks (l_chunk[]).
|
|
*/
|
|
|
|
static uint16_t
|
|
zap_leaf_chunk_alloc(zap_leaf_t *l)
|
|
{
|
|
int chunk;
|
|
|
|
ASSERT(zap_leaf_phys(l)->l_hdr.lh_nfree > 0);
|
|
|
|
chunk = zap_leaf_phys(l)->l_hdr.lh_freelist;
|
|
ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
|
|
ASSERT3U(ZAP_LEAF_CHUNK(l, chunk).l_free.lf_type, ==, ZAP_CHUNK_FREE);
|
|
|
|
zap_leaf_phys(l)->l_hdr.lh_freelist =
|
|
ZAP_LEAF_CHUNK(l, chunk).l_free.lf_next;
|
|
|
|
zap_leaf_phys(l)->l_hdr.lh_nfree--;
|
|
|
|
return (chunk);
|
|
}
|
|
|
|
static void
|
|
zap_leaf_chunk_free(zap_leaf_t *l, uint16_t chunk)
|
|
{
|
|
struct zap_leaf_free *zlf = &ZAP_LEAF_CHUNK(l, chunk).l_free;
|
|
ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_nfree, <, ZAP_LEAF_NUMCHUNKS(l));
|
|
ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
|
|
ASSERT(zlf->lf_type != ZAP_CHUNK_FREE);
|
|
|
|
zlf->lf_type = ZAP_CHUNK_FREE;
|
|
zlf->lf_next = zap_leaf_phys(l)->l_hdr.lh_freelist;
|
|
bzero(zlf->lf_pad, sizeof (zlf->lf_pad)); /* help it to compress */
|
|
zap_leaf_phys(l)->l_hdr.lh_freelist = chunk;
|
|
|
|
zap_leaf_phys(l)->l_hdr.lh_nfree++;
|
|
}
|
|
|
|
/*
|
|
* Routines which manipulate leaf arrays (zap_leaf_array type chunks).
|
|
*/
|
|
|
|
static uint16_t
|
|
zap_leaf_array_create(zap_leaf_t *l, const char *buf,
|
|
int integer_size, int num_integers)
|
|
{
|
|
uint16_t chunk_head;
|
|
uint16_t *chunkp = &chunk_head;
|
|
int byten = 0;
|
|
uint64_t value = 0;
|
|
int shift = (integer_size-1)*8;
|
|
int len = num_integers;
|
|
|
|
ASSERT3U(num_integers * integer_size, <, MAX_ARRAY_BYTES);
|
|
|
|
while (len > 0) {
|
|
uint16_t chunk = zap_leaf_chunk_alloc(l);
|
|
struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array;
|
|
int i;
|
|
|
|
la->la_type = ZAP_CHUNK_ARRAY;
|
|
for (i = 0; i < ZAP_LEAF_ARRAY_BYTES; i++) {
|
|
if (byten == 0)
|
|
value = ldv(integer_size, buf);
|
|
la->la_array[i] = value >> shift;
|
|
value <<= 8;
|
|
if (++byten == integer_size) {
|
|
byten = 0;
|
|
buf += integer_size;
|
|
if (--len == 0)
|
|
break;
|
|
}
|
|
}
|
|
|
|
*chunkp = chunk;
|
|
chunkp = &la->la_next;
|
|
}
|
|
*chunkp = CHAIN_END;
|
|
|
|
return (chunk_head);
|
|
}
|
|
|
|
static void
|
|
zap_leaf_array_free(zap_leaf_t *l, uint16_t *chunkp)
|
|
{
|
|
uint16_t chunk = *chunkp;
|
|
|
|
*chunkp = CHAIN_END;
|
|
|
|
while (chunk != CHAIN_END) {
|
|
int nextchunk = ZAP_LEAF_CHUNK(l, chunk).l_array.la_next;
|
|
ASSERT3U(ZAP_LEAF_CHUNK(l, chunk).l_array.la_type, ==,
|
|
ZAP_CHUNK_ARRAY);
|
|
zap_leaf_chunk_free(l, chunk);
|
|
chunk = nextchunk;
|
|
}
|
|
}
|
|
|
|
/* array_len and buf_len are in integers, not bytes */
|
|
static void
|
|
zap_leaf_array_read(zap_leaf_t *l, uint16_t chunk,
|
|
int array_int_len, int array_len, int buf_int_len, uint64_t buf_len,
|
|
void *buf)
|
|
{
|
|
int len = MIN(array_len, buf_len);
|
|
int byten = 0;
|
|
uint64_t value = 0;
|
|
char *p = buf;
|
|
|
|
ASSERT3U(array_int_len, <=, buf_int_len);
|
|
|
|
/* Fast path for one 8-byte integer */
|
|
if (array_int_len == 8 && buf_int_len == 8 && len == 1) {
|
|
struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array;
|
|
uint8_t *ip = la->la_array;
|
|
uint64_t *buf64 = buf;
|
|
|
|
*buf64 = (uint64_t)ip[0] << 56 | (uint64_t)ip[1] << 48 |
|
|
(uint64_t)ip[2] << 40 | (uint64_t)ip[3] << 32 |
|
|
(uint64_t)ip[4] << 24 | (uint64_t)ip[5] << 16 |
|
|
(uint64_t)ip[6] << 8 | (uint64_t)ip[7];
|
|
return;
|
|
}
|
|
|
|
/* Fast path for an array of 1-byte integers (eg. the entry name) */
|
|
if (array_int_len == 1 && buf_int_len == 1 &&
|
|
buf_len > array_len + ZAP_LEAF_ARRAY_BYTES) {
|
|
while (chunk != CHAIN_END) {
|
|
struct zap_leaf_array *la =
|
|
&ZAP_LEAF_CHUNK(l, chunk).l_array;
|
|
bcopy(la->la_array, p, ZAP_LEAF_ARRAY_BYTES);
|
|
p += ZAP_LEAF_ARRAY_BYTES;
|
|
chunk = la->la_next;
|
|
}
|
|
return;
|
|
}
|
|
|
|
while (len > 0) {
|
|
struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array;
|
|
int i;
|
|
|
|
ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
|
|
for (i = 0; i < ZAP_LEAF_ARRAY_BYTES && len > 0; i++) {
|
|
value = (value << 8) | la->la_array[i];
|
|
byten++;
|
|
if (byten == array_int_len) {
|
|
stv(buf_int_len, p, value);
|
|
byten = 0;
|
|
len--;
|
|
if (len == 0)
|
|
return;
|
|
p += buf_int_len;
|
|
}
|
|
}
|
|
chunk = la->la_next;
|
|
}
|
|
}
|
|
|
|
static boolean_t
|
|
zap_leaf_array_match(zap_leaf_t *l, zap_name_t *zn,
|
|
int chunk, int array_numints)
|
|
{
|
|
int bseen = 0;
|
|
|
|
if (zap_getflags(zn->zn_zap) & ZAP_FLAG_UINT64_KEY) {
|
|
uint64_t *thiskey;
|
|
boolean_t match;
|
|
|
|
ASSERT(zn->zn_key_intlen == sizeof (*thiskey));
|
|
thiskey = kmem_alloc(array_numints * sizeof (*thiskey),
|
|
KM_SLEEP);
|
|
|
|
zap_leaf_array_read(l, chunk, sizeof (*thiskey), array_numints,
|
|
sizeof (*thiskey), array_numints, thiskey);
|
|
match = bcmp(thiskey, zn->zn_key_orig,
|
|
array_numints * sizeof (*thiskey)) == 0;
|
|
kmem_free(thiskey, array_numints * sizeof (*thiskey));
|
|
return (match);
|
|
}
|
|
|
|
ASSERT(zn->zn_key_intlen == 1);
|
|
if (zn->zn_matchtype & MT_NORMALIZE) {
|
|
char *thisname = kmem_alloc(array_numints, KM_SLEEP);
|
|
boolean_t match;
|
|
|
|
zap_leaf_array_read(l, chunk, sizeof (char), array_numints,
|
|
sizeof (char), array_numints, thisname);
|
|
match = zap_match(zn, thisname);
|
|
kmem_free(thisname, array_numints);
|
|
return (match);
|
|
}
|
|
|
|
/*
|
|
* Fast path for exact matching.
|
|
* First check that the lengths match, so that we don't read
|
|
* past the end of the zn_key_orig array.
|
|
*/
|
|
if (array_numints != zn->zn_key_orig_numints)
|
|
return (B_FALSE);
|
|
while (bseen < array_numints) {
|
|
struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array;
|
|
int toread = MIN(array_numints - bseen, ZAP_LEAF_ARRAY_BYTES);
|
|
ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
|
|
if (bcmp(la->la_array, (char *)zn->zn_key_orig + bseen, toread))
|
|
break;
|
|
chunk = la->la_next;
|
|
bseen += toread;
|
|
}
|
|
return (bseen == array_numints);
|
|
}
|
|
|
|
/*
|
|
* Routines which manipulate leaf entries.
|
|
*/
|
|
|
|
int
|
|
zap_leaf_lookup(zap_leaf_t *l, zap_name_t *zn, zap_entry_handle_t *zeh)
|
|
{
|
|
uint16_t *chunkp;
|
|
struct zap_leaf_entry *le;
|
|
|
|
ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_magic, ==, ZAP_LEAF_MAGIC);
|
|
|
|
for (chunkp = LEAF_HASH_ENTPTR(l, zn->zn_hash);
|
|
*chunkp != CHAIN_END; chunkp = &le->le_next) {
|
|
uint16_t chunk = *chunkp;
|
|
le = ZAP_LEAF_ENTRY(l, chunk);
|
|
|
|
ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
|
|
ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
|
|
|
|
if (le->le_hash != zn->zn_hash)
|
|
continue;
|
|
|
|
/*
|
|
* NB: the entry chain is always sorted by cd on
|
|
* normalized zap objects, so this will find the
|
|
* lowest-cd match for MT_NORMALIZE.
|
|
*/
|
|
ASSERT((zn->zn_matchtype == 0) ||
|
|
(zap_leaf_phys(l)->l_hdr.lh_flags & ZLF_ENTRIES_CDSORTED));
|
|
if (zap_leaf_array_match(l, zn, le->le_name_chunk,
|
|
le->le_name_numints)) {
|
|
zeh->zeh_num_integers = le->le_value_numints;
|
|
zeh->zeh_integer_size = le->le_value_intlen;
|
|
zeh->zeh_cd = le->le_cd;
|
|
zeh->zeh_hash = le->le_hash;
|
|
zeh->zeh_chunkp = chunkp;
|
|
zeh->zeh_leaf = l;
|
|
return (0);
|
|
}
|
|
}
|
|
|
|
return (SET_ERROR(ENOENT));
|
|
}
|
|
|
|
/* Return (h1,cd1 >= h2,cd2) */
|
|
#define HCD_GTEQ(h1, cd1, h2, cd2) \
|
|
((h1 > h2) ? TRUE : ((h1 == h2 && cd1 >= cd2) ? TRUE : FALSE))
|
|
|
|
int
|
|
zap_leaf_lookup_closest(zap_leaf_t *l,
|
|
uint64_t h, uint32_t cd, zap_entry_handle_t *zeh)
|
|
{
|
|
uint16_t chunk;
|
|
uint64_t besth = -1ULL;
|
|
uint32_t bestcd = -1U;
|
|
uint16_t bestlh = ZAP_LEAF_HASH_NUMENTRIES(l)-1;
|
|
uint16_t lh;
|
|
struct zap_leaf_entry *le;
|
|
|
|
ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_magic, ==, ZAP_LEAF_MAGIC);
|
|
|
|
for (lh = LEAF_HASH(l, h); lh <= bestlh; lh++) {
|
|
for (chunk = zap_leaf_phys(l)->l_hash[lh];
|
|
chunk != CHAIN_END; chunk = le->le_next) {
|
|
le = ZAP_LEAF_ENTRY(l, chunk);
|
|
|
|
ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
|
|
ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
|
|
|
|
if (HCD_GTEQ(le->le_hash, le->le_cd, h, cd) &&
|
|
HCD_GTEQ(besth, bestcd, le->le_hash, le->le_cd)) {
|
|
ASSERT3U(bestlh, >=, lh);
|
|
bestlh = lh;
|
|
besth = le->le_hash;
|
|
bestcd = le->le_cd;
|
|
|
|
zeh->zeh_num_integers = le->le_value_numints;
|
|
zeh->zeh_integer_size = le->le_value_intlen;
|
|
zeh->zeh_cd = le->le_cd;
|
|
zeh->zeh_hash = le->le_hash;
|
|
zeh->zeh_fakechunk = chunk;
|
|
zeh->zeh_chunkp = &zeh->zeh_fakechunk;
|
|
zeh->zeh_leaf = l;
|
|
}
|
|
}
|
|
}
|
|
|
|
return (bestcd == -1U ? ENOENT : 0);
|
|
}
|
|
|
|
int
|
|
zap_entry_read(const zap_entry_handle_t *zeh,
|
|
uint8_t integer_size, uint64_t num_integers, void *buf)
|
|
{
|
|
struct zap_leaf_entry *le =
|
|
ZAP_LEAF_ENTRY(zeh->zeh_leaf, *zeh->zeh_chunkp);
|
|
ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
|
|
|
|
if (le->le_value_intlen > integer_size)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
zap_leaf_array_read(zeh->zeh_leaf, le->le_value_chunk,
|
|
le->le_value_intlen, le->le_value_numints,
|
|
integer_size, num_integers, buf);
|
|
|
|
if (zeh->zeh_num_integers > num_integers)
|
|
return (SET_ERROR(EOVERFLOW));
|
|
return (0);
|
|
|
|
}
|
|
|
|
int
|
|
zap_entry_read_name(zap_t *zap, const zap_entry_handle_t *zeh, uint16_t buflen,
|
|
char *buf)
|
|
{
|
|
struct zap_leaf_entry *le =
|
|
ZAP_LEAF_ENTRY(zeh->zeh_leaf, *zeh->zeh_chunkp);
|
|
ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
|
|
|
|
if (zap_getflags(zap) & ZAP_FLAG_UINT64_KEY) {
|
|
zap_leaf_array_read(zeh->zeh_leaf, le->le_name_chunk, 8,
|
|
le->le_name_numints, 8, buflen / 8, buf);
|
|
} else {
|
|
zap_leaf_array_read(zeh->zeh_leaf, le->le_name_chunk, 1,
|
|
le->le_name_numints, 1, buflen, buf);
|
|
}
|
|
if (le->le_name_numints > buflen)
|
|
return (SET_ERROR(EOVERFLOW));
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
zap_entry_update(zap_entry_handle_t *zeh,
|
|
uint8_t integer_size, uint64_t num_integers, const void *buf)
|
|
{
|
|
int delta_chunks;
|
|
zap_leaf_t *l = zeh->zeh_leaf;
|
|
struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, *zeh->zeh_chunkp);
|
|
|
|
delta_chunks = ZAP_LEAF_ARRAY_NCHUNKS(num_integers * integer_size) -
|
|
ZAP_LEAF_ARRAY_NCHUNKS(le->le_value_numints * le->le_value_intlen);
|
|
|
|
if ((int)zap_leaf_phys(l)->l_hdr.lh_nfree < delta_chunks)
|
|
return (SET_ERROR(EAGAIN));
|
|
|
|
zap_leaf_array_free(l, &le->le_value_chunk);
|
|
le->le_value_chunk =
|
|
zap_leaf_array_create(l, buf, integer_size, num_integers);
|
|
le->le_value_numints = num_integers;
|
|
le->le_value_intlen = integer_size;
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
zap_entry_remove(zap_entry_handle_t *zeh)
|
|
{
|
|
uint16_t entry_chunk;
|
|
struct zap_leaf_entry *le;
|
|
zap_leaf_t *l = zeh->zeh_leaf;
|
|
|
|
ASSERT3P(zeh->zeh_chunkp, !=, &zeh->zeh_fakechunk);
|
|
|
|
entry_chunk = *zeh->zeh_chunkp;
|
|
le = ZAP_LEAF_ENTRY(l, entry_chunk);
|
|
ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
|
|
|
|
zap_leaf_array_free(l, &le->le_name_chunk);
|
|
zap_leaf_array_free(l, &le->le_value_chunk);
|
|
|
|
*zeh->zeh_chunkp = le->le_next;
|
|
zap_leaf_chunk_free(l, entry_chunk);
|
|
|
|
zap_leaf_phys(l)->l_hdr.lh_nentries--;
|
|
}
|
|
|
|
int
|
|
zap_entry_create(zap_leaf_t *l, zap_name_t *zn, uint32_t cd,
|
|
uint8_t integer_size, uint64_t num_integers, const void *buf,
|
|
zap_entry_handle_t *zeh)
|
|
{
|
|
uint16_t chunk;
|
|
uint16_t *chunkp;
|
|
struct zap_leaf_entry *le;
|
|
uint64_t valuelen;
|
|
int numchunks;
|
|
uint64_t h = zn->zn_hash;
|
|
|
|
valuelen = integer_size * num_integers;
|
|
|
|
numchunks = 1 + ZAP_LEAF_ARRAY_NCHUNKS(zn->zn_key_orig_numints *
|
|
zn->zn_key_intlen) + ZAP_LEAF_ARRAY_NCHUNKS(valuelen);
|
|
if (numchunks > ZAP_LEAF_NUMCHUNKS(l))
|
|
return (SET_ERROR(E2BIG));
|
|
|
|
if (cd == ZAP_NEED_CD) {
|
|
/* find the lowest unused cd */
|
|
if (zap_leaf_phys(l)->l_hdr.lh_flags & ZLF_ENTRIES_CDSORTED) {
|
|
cd = 0;
|
|
|
|
for (chunk = *LEAF_HASH_ENTPTR(l, h);
|
|
chunk != CHAIN_END; chunk = le->le_next) {
|
|
le = ZAP_LEAF_ENTRY(l, chunk);
|
|
if (le->le_cd > cd)
|
|
break;
|
|
if (le->le_hash == h) {
|
|
ASSERT3U(cd, ==, le->le_cd);
|
|
cd++;
|
|
}
|
|
}
|
|
} else {
|
|
/* old unsorted format; do it the O(n^2) way */
|
|
for (cd = 0; ; cd++) {
|
|
for (chunk = *LEAF_HASH_ENTPTR(l, h);
|
|
chunk != CHAIN_END; chunk = le->le_next) {
|
|
le = ZAP_LEAF_ENTRY(l, chunk);
|
|
if (le->le_hash == h &&
|
|
le->le_cd == cd) {
|
|
break;
|
|
}
|
|
}
|
|
/* If this cd is not in use, we are good. */
|
|
if (chunk == CHAIN_END)
|
|
break;
|
|
}
|
|
}
|
|
/*
|
|
* We would run out of space in a block before we could
|
|
* store enough entries to run out of CD values.
|
|
*/
|
|
ASSERT3U(cd, <, zap_maxcd(zn->zn_zap));
|
|
}
|
|
|
|
if (zap_leaf_phys(l)->l_hdr.lh_nfree < numchunks)
|
|
return (SET_ERROR(EAGAIN));
|
|
|
|
/* make the entry */
|
|
chunk = zap_leaf_chunk_alloc(l);
|
|
le = ZAP_LEAF_ENTRY(l, chunk);
|
|
le->le_type = ZAP_CHUNK_ENTRY;
|
|
le->le_name_chunk = zap_leaf_array_create(l, zn->zn_key_orig,
|
|
zn->zn_key_intlen, zn->zn_key_orig_numints);
|
|
le->le_name_numints = zn->zn_key_orig_numints;
|
|
le->le_value_chunk =
|
|
zap_leaf_array_create(l, buf, integer_size, num_integers);
|
|
le->le_value_numints = num_integers;
|
|
le->le_value_intlen = integer_size;
|
|
le->le_hash = h;
|
|
le->le_cd = cd;
|
|
|
|
/* link it into the hash chain */
|
|
/* XXX if we did the search above, we could just use that */
|
|
chunkp = zap_leaf_rehash_entry(l, chunk);
|
|
|
|
zap_leaf_phys(l)->l_hdr.lh_nentries++;
|
|
|
|
zeh->zeh_leaf = l;
|
|
zeh->zeh_num_integers = num_integers;
|
|
zeh->zeh_integer_size = le->le_value_intlen;
|
|
zeh->zeh_cd = le->le_cd;
|
|
zeh->zeh_hash = le->le_hash;
|
|
zeh->zeh_chunkp = chunkp;
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Determine if there is another entry with the same normalized form.
|
|
* For performance purposes, either zn or name must be provided (the
|
|
* other can be NULL). Note, there usually won't be any hash
|
|
* conflicts, in which case we don't need the concatenated/normalized
|
|
* form of the name. But all callers have one of these on hand anyway,
|
|
* so might as well take advantage. A cleaner but slower interface
|
|
* would accept neither argument, and compute the normalized name as
|
|
* needed (using zap_name_alloc(zap_entry_read_name(zeh))).
|
|
*/
|
|
boolean_t
|
|
zap_entry_normalization_conflict(zap_entry_handle_t *zeh, zap_name_t *zn,
|
|
const char *name, zap_t *zap)
|
|
{
|
|
uint64_t chunk;
|
|
struct zap_leaf_entry *le;
|
|
boolean_t allocdzn = B_FALSE;
|
|
|
|
if (zap->zap_normflags == 0)
|
|
return (B_FALSE);
|
|
|
|
for (chunk = *LEAF_HASH_ENTPTR(zeh->zeh_leaf, zeh->zeh_hash);
|
|
chunk != CHAIN_END; chunk = le->le_next) {
|
|
le = ZAP_LEAF_ENTRY(zeh->zeh_leaf, chunk);
|
|
if (le->le_hash != zeh->zeh_hash)
|
|
continue;
|
|
if (le->le_cd == zeh->zeh_cd)
|
|
continue;
|
|
|
|
if (zn == NULL) {
|
|
zn = zap_name_alloc(zap, name, MT_NORMALIZE);
|
|
allocdzn = B_TRUE;
|
|
}
|
|
if (zap_leaf_array_match(zeh->zeh_leaf, zn,
|
|
le->le_name_chunk, le->le_name_numints)) {
|
|
if (allocdzn)
|
|
zap_name_free(zn);
|
|
return (B_TRUE);
|
|
}
|
|
}
|
|
if (allocdzn)
|
|
zap_name_free(zn);
|
|
return (B_FALSE);
|
|
}
|
|
|
|
/*
|
|
* Routines for transferring entries between leafs.
|
|
*/
|
|
|
|
static uint16_t *
|
|
zap_leaf_rehash_entry(zap_leaf_t *l, uint16_t entry)
|
|
{
|
|
struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, entry);
|
|
struct zap_leaf_entry *le2;
|
|
uint16_t *chunkp;
|
|
|
|
/*
|
|
* keep the entry chain sorted by cd
|
|
* NB: this will not cause problems for unsorted leafs, though
|
|
* it is unnecessary there.
|
|
*/
|
|
for (chunkp = LEAF_HASH_ENTPTR(l, le->le_hash);
|
|
*chunkp != CHAIN_END; chunkp = &le2->le_next) {
|
|
le2 = ZAP_LEAF_ENTRY(l, *chunkp);
|
|
if (le2->le_cd > le->le_cd)
|
|
break;
|
|
}
|
|
|
|
le->le_next = *chunkp;
|
|
*chunkp = entry;
|
|
return (chunkp);
|
|
}
|
|
|
|
static uint16_t
|
|
zap_leaf_transfer_array(zap_leaf_t *l, uint16_t chunk, zap_leaf_t *nl)
|
|
{
|
|
uint16_t new_chunk;
|
|
uint16_t *nchunkp = &new_chunk;
|
|
|
|
while (chunk != CHAIN_END) {
|
|
uint16_t nchunk = zap_leaf_chunk_alloc(nl);
|
|
struct zap_leaf_array *nla =
|
|
&ZAP_LEAF_CHUNK(nl, nchunk).l_array;
|
|
struct zap_leaf_array *la =
|
|
&ZAP_LEAF_CHUNK(l, chunk).l_array;
|
|
int nextchunk = la->la_next;
|
|
|
|
ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
|
|
ASSERT3U(nchunk, <, ZAP_LEAF_NUMCHUNKS(l));
|
|
|
|
*nla = *la; /* structure assignment */
|
|
|
|
zap_leaf_chunk_free(l, chunk);
|
|
chunk = nextchunk;
|
|
*nchunkp = nchunk;
|
|
nchunkp = &nla->la_next;
|
|
}
|
|
*nchunkp = CHAIN_END;
|
|
return (new_chunk);
|
|
}
|
|
|
|
static void
|
|
zap_leaf_transfer_entry(zap_leaf_t *l, int entry, zap_leaf_t *nl)
|
|
{
|
|
struct zap_leaf_entry *le, *nle;
|
|
uint16_t chunk;
|
|
|
|
le = ZAP_LEAF_ENTRY(l, entry);
|
|
ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
|
|
|
|
chunk = zap_leaf_chunk_alloc(nl);
|
|
nle = ZAP_LEAF_ENTRY(nl, chunk);
|
|
*nle = *le; /* structure assignment */
|
|
|
|
(void) zap_leaf_rehash_entry(nl, chunk);
|
|
|
|
nle->le_name_chunk = zap_leaf_transfer_array(l, le->le_name_chunk, nl);
|
|
nle->le_value_chunk =
|
|
zap_leaf_transfer_array(l, le->le_value_chunk, nl);
|
|
|
|
zap_leaf_chunk_free(l, entry);
|
|
|
|
zap_leaf_phys(l)->l_hdr.lh_nentries--;
|
|
zap_leaf_phys(nl)->l_hdr.lh_nentries++;
|
|
}
|
|
|
|
/*
|
|
* Transfer the entries whose hash prefix ends in 1 to the new leaf.
|
|
*/
|
|
void
|
|
zap_leaf_split(zap_leaf_t *l, zap_leaf_t *nl, boolean_t sort)
|
|
{
|
|
int i;
|
|
int bit = 64 - 1 - zap_leaf_phys(l)->l_hdr.lh_prefix_len;
|
|
|
|
/* set new prefix and prefix_len */
|
|
zap_leaf_phys(l)->l_hdr.lh_prefix <<= 1;
|
|
zap_leaf_phys(l)->l_hdr.lh_prefix_len++;
|
|
zap_leaf_phys(nl)->l_hdr.lh_prefix =
|
|
zap_leaf_phys(l)->l_hdr.lh_prefix | 1;
|
|
zap_leaf_phys(nl)->l_hdr.lh_prefix_len =
|
|
zap_leaf_phys(l)->l_hdr.lh_prefix_len;
|
|
|
|
/* break existing hash chains */
|
|
zap_memset(zap_leaf_phys(l)->l_hash, CHAIN_END,
|
|
2*ZAP_LEAF_HASH_NUMENTRIES(l));
|
|
|
|
if (sort)
|
|
zap_leaf_phys(l)->l_hdr.lh_flags |= ZLF_ENTRIES_CDSORTED;
|
|
|
|
/*
|
|
* Transfer entries whose hash bit 'bit' is set to nl; rehash
|
|
* the remaining entries
|
|
*
|
|
* NB: We could find entries via the hashtable instead. That
|
|
* would be O(hashents+numents) rather than O(numblks+numents),
|
|
* but this accesses memory more sequentially, and when we're
|
|
* called, the block is usually pretty full.
|
|
*/
|
|
for (i = 0; i < ZAP_LEAF_NUMCHUNKS(l); i++) {
|
|
struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, i);
|
|
if (le->le_type != ZAP_CHUNK_ENTRY)
|
|
continue;
|
|
|
|
if (le->le_hash & (1ULL << bit))
|
|
zap_leaf_transfer_entry(l, i, nl);
|
|
else
|
|
(void) zap_leaf_rehash_entry(l, i);
|
|
}
|
|
}
|
|
|
|
void
|
|
zap_leaf_stats(zap_t *zap, zap_leaf_t *l, zap_stats_t *zs)
|
|
{
|
|
int i, n;
|
|
|
|
n = zap_f_phys(zap)->zap_ptrtbl.zt_shift -
|
|
zap_leaf_phys(l)->l_hdr.lh_prefix_len;
|
|
n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
|
|
zs->zs_leafs_with_2n_pointers[n]++;
|
|
|
|
|
|
n = zap_leaf_phys(l)->l_hdr.lh_nentries/5;
|
|
n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
|
|
zs->zs_blocks_with_n5_entries[n]++;
|
|
|
|
n = ((1<<FZAP_BLOCK_SHIFT(zap)) -
|
|
zap_leaf_phys(l)->l_hdr.lh_nfree * (ZAP_LEAF_ARRAY_BYTES+1))*10 /
|
|
(1<<FZAP_BLOCK_SHIFT(zap));
|
|
n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
|
|
zs->zs_blocks_n_tenths_full[n]++;
|
|
|
|
for (i = 0; i < ZAP_LEAF_HASH_NUMENTRIES(l); i++) {
|
|
int nentries = 0;
|
|
int chunk = zap_leaf_phys(l)->l_hash[i];
|
|
|
|
while (chunk != CHAIN_END) {
|
|
struct zap_leaf_entry *le =
|
|
ZAP_LEAF_ENTRY(l, chunk);
|
|
|
|
n = 1 + ZAP_LEAF_ARRAY_NCHUNKS(le->le_name_numints) +
|
|
ZAP_LEAF_ARRAY_NCHUNKS(le->le_value_numints *
|
|
le->le_value_intlen);
|
|
n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
|
|
zs->zs_entries_using_n_chunks[n]++;
|
|
|
|
chunk = le->le_next;
|
|
nentries++;
|
|
}
|
|
|
|
n = nentries;
|
|
n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
|
|
zs->zs_buckets_with_n_entries[n]++;
|
|
}
|
|
}
|