freebsd-dev/module/zfs/vdev_raidz.c
Gvozden Neskovic 689f093ebc Build user-space with different gcc optimization levels
This fix resolves warnings reported during compiling of user-space
libraries with different gcc optimization levels.

Tested with gcc versions: 4.9.2 (Debian), and 6.1.1 (Fedora).
The patch enables use of following opt levels: O0, O1, O2, O3, Og, Os, Ofast.

List of warnings:

[GCC 4.9.2 -Os]
libzfs_sendrecv.c:3726:26: error: 'clp' may be used uninitialized in this function [-Werror=maybe-uninitialized]

[GCC 4.9.2 -Og]
fs_fletcher.c:323:26: error: 'idx' may be used uninitialized in this function [-Werror=maybe-uninitialized]
dsl_dataset.c:1290:12: error: 'atp' may be used uninitialized in this function [-Werror=maybe-uninitialized]

[GCC 4.9.2 -Ofast]
u8_textprep.c:1310:9: error: 'tc[3ul]' may be used uninitialized in this function [-Werror=maybe-uninitialized]
u8_textprep.c:177:23: error: 'u8t[0ul]' may be used uninitialized in this function [-Werror=maybe-uninitialized]
dsl_dataset.c:2089:37: error: ‘hds’ may be used uninitialized in this function [-Werror=maybe-uninitialized]
dsl_dataset.c:3216:2: error: ‘ds’ may be used uninitialized in this function [-Werror=maybe-uninitialized]
dsl_dataset.c:1591:2: error: ‘ds’ may be used uninitialized in this function [-Werror=maybe-uninitialized]
dsl_dataset.c:3341:2: error: ‘ds’ may be used uninitialized in this function [-Werror=maybe-uninitialized]
vdev_raidz.c:1153:8: error: 'dcount[2]' may be used uninitialized in this function [-Werror=maybe-uninitialized]
vdev_raidz.c:1167:17: error: 'dst[2]' may be used uninitialized in this function [-Werror=maybe-uninitialized]
kernel.c:1005:2: error: ‘resid’ may be used uninitialized in this function [-Werror=maybe-uninitialized]
libzfs_dataset.c:2826:8: error: ‘val’ may be used uninitialized in this function [-Werror=maybe-uninitialized]
libzfs_dataset.c:3056:35: error: ‘val’ may be used uninitialized in this function [-Werror=maybe-uninitialized]
libzfs_dataset.c:1584:13: error: ‘val’ may be used uninitialized in this function [-Werror=maybe-uninitialized]
libzfs_dataset.c:3056:35: error: ‘val’ may be used uninitialized in this function [-Werror=maybe-uninitialized]
libzfs_dataset.c:1792:66: error: ‘val’ may be used uninitialized in this function [-Werror=maybe-uninitialized]
libzfs_dataset.c:3986:35: error: ‘val’ may be used uninitialized in this function [-Werror=maybe-uninitialized]

[GCC 6.1.1]
Resolved in PR #4907

Signed-off-by: Gvozden Neskovic <neskovic@gmail.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #4937
2016-08-09 14:40:35 -07:00

2105 lines
58 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2012, 2014 by Delphix. All rights reserved.
* Copyright (c) 2016 Gvozden Nešković. All rights reserved.
*/
#include <sys/zfs_context.h>
#include <sys/spa.h>
#include <sys/vdev_impl.h>
#include <sys/zio.h>
#include <sys/zio_checksum.h>
#include <sys/fs/zfs.h>
#include <sys/fm/fs/zfs.h>
#include <sys/vdev_raidz.h>
#include <sys/vdev_raidz_impl.h>
/*
* Virtual device vector for RAID-Z.
*
* This vdev supports single, double, and triple parity. For single parity,
* we use a simple XOR of all the data columns. For double or triple parity,
* we use a special case of Reed-Solomon coding. This extends the
* technique described in "The mathematics of RAID-6" by H. Peter Anvin by
* drawing on the system described in "A Tutorial on Reed-Solomon Coding for
* Fault-Tolerance in RAID-like Systems" by James S. Plank on which the
* former is also based. The latter is designed to provide higher performance
* for writes.
*
* Note that the Plank paper claimed to support arbitrary N+M, but was then
* amended six years later identifying a critical flaw that invalidates its
* claims. Nevertheless, the technique can be adapted to work for up to
* triple parity. For additional parity, the amendment "Note: Correction to
* the 1997 Tutorial on Reed-Solomon Coding" by James S. Plank and Ying Ding
* is viable, but the additional complexity means that write performance will
* suffer.
*
* All of the methods above operate on a Galois field, defined over the
* integers mod 2^N. In our case we choose N=8 for GF(8) so that all elements
* can be expressed with a single byte. Briefly, the operations on the
* field are defined as follows:
*
* o addition (+) is represented by a bitwise XOR
* o subtraction (-) is therefore identical to addition: A + B = A - B
* o multiplication of A by 2 is defined by the following bitwise expression:
*
* (A * 2)_7 = A_6
* (A * 2)_6 = A_5
* (A * 2)_5 = A_4
* (A * 2)_4 = A_3 + A_7
* (A * 2)_3 = A_2 + A_7
* (A * 2)_2 = A_1 + A_7
* (A * 2)_1 = A_0
* (A * 2)_0 = A_7
*
* In C, multiplying by 2 is therefore ((a << 1) ^ ((a & 0x80) ? 0x1d : 0)).
* As an aside, this multiplication is derived from the error correcting
* primitive polynomial x^8 + x^4 + x^3 + x^2 + 1.
*
* Observe that any number in the field (except for 0) can be expressed as a
* power of 2 -- a generator for the field. We store a table of the powers of
* 2 and logs base 2 for quick look ups, and exploit the fact that A * B can
* be rewritten as 2^(log_2(A) + log_2(B)) (where '+' is normal addition rather
* than field addition). The inverse of a field element A (A^-1) is therefore
* A ^ (255 - 1) = A^254.
*
* The up-to-three parity columns, P, Q, R over several data columns,
* D_0, ... D_n-1, can be expressed by field operations:
*
* P = D_0 + D_1 + ... + D_n-2 + D_n-1
* Q = 2^n-1 * D_0 + 2^n-2 * D_1 + ... + 2^1 * D_n-2 + 2^0 * D_n-1
* = ((...((D_0) * 2 + D_1) * 2 + ...) * 2 + D_n-2) * 2 + D_n-1
* R = 4^n-1 * D_0 + 4^n-2 * D_1 + ... + 4^1 * D_n-2 + 4^0 * D_n-1
* = ((...((D_0) * 4 + D_1) * 4 + ...) * 4 + D_n-2) * 4 + D_n-1
*
* We chose 1, 2, and 4 as our generators because 1 corresponds to the trival
* XOR operation, and 2 and 4 can be computed quickly and generate linearly-
* independent coefficients. (There are no additional coefficients that have
* this property which is why the uncorrected Plank method breaks down.)
*
* See the reconstruction code below for how P, Q and R can used individually
* or in concert to recover missing data columns.
*/
#define VDEV_RAIDZ_P 0
#define VDEV_RAIDZ_Q 1
#define VDEV_RAIDZ_R 2
#define VDEV_RAIDZ_MUL_2(x) (((x) << 1) ^ (((x) & 0x80) ? 0x1d : 0))
#define VDEV_RAIDZ_MUL_4(x) (VDEV_RAIDZ_MUL_2(VDEV_RAIDZ_MUL_2(x)))
/*
* We provide a mechanism to perform the field multiplication operation on a
* 64-bit value all at once rather than a byte at a time. This works by
* creating a mask from the top bit in each byte and using that to
* conditionally apply the XOR of 0x1d.
*/
#define VDEV_RAIDZ_64MUL_2(x, mask) \
{ \
(mask) = (x) & 0x8080808080808080ULL; \
(mask) = ((mask) << 1) - ((mask) >> 7); \
(x) = (((x) << 1) & 0xfefefefefefefefeULL) ^ \
((mask) & 0x1d1d1d1d1d1d1d1dULL); \
}
#define VDEV_RAIDZ_64MUL_4(x, mask) \
{ \
VDEV_RAIDZ_64MUL_2((x), mask); \
VDEV_RAIDZ_64MUL_2((x), mask); \
}
void
vdev_raidz_map_free(raidz_map_t *rm)
{
int c;
size_t size;
for (c = 0; c < rm->rm_firstdatacol; c++) {
zio_buf_free(rm->rm_col[c].rc_data, rm->rm_col[c].rc_size);
if (rm->rm_col[c].rc_gdata != NULL)
zio_buf_free(rm->rm_col[c].rc_gdata,
rm->rm_col[c].rc_size);
}
size = 0;
for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++)
size += rm->rm_col[c].rc_size;
if (rm->rm_datacopy != NULL)
zio_buf_free(rm->rm_datacopy, size);
kmem_free(rm, offsetof(raidz_map_t, rm_col[rm->rm_scols]));
}
static void
vdev_raidz_map_free_vsd(zio_t *zio)
{
raidz_map_t *rm = zio->io_vsd;
ASSERT0(rm->rm_freed);
rm->rm_freed = 1;
if (rm->rm_reports == 0)
vdev_raidz_map_free(rm);
}
/*ARGSUSED*/
static void
vdev_raidz_cksum_free(void *arg, size_t ignored)
{
raidz_map_t *rm = arg;
ASSERT3U(rm->rm_reports, >, 0);
if (--rm->rm_reports == 0 && rm->rm_freed != 0)
vdev_raidz_map_free(rm);
}
static void
vdev_raidz_cksum_finish(zio_cksum_report_t *zcr, const void *good_data)
{
raidz_map_t *rm = zcr->zcr_cbdata;
size_t c = zcr->zcr_cbinfo;
size_t x;
const char *good = NULL;
const char *bad = rm->rm_col[c].rc_data;
if (good_data == NULL) {
zfs_ereport_finish_checksum(zcr, NULL, NULL, B_FALSE);
return;
}
if (c < rm->rm_firstdatacol) {
/*
* The first time through, calculate the parity blocks for
* the good data (this relies on the fact that the good
* data never changes for a given logical ZIO)
*/
if (rm->rm_col[0].rc_gdata == NULL) {
char *bad_parity[VDEV_RAIDZ_MAXPARITY];
char *buf;
/*
* Set up the rm_col[]s to generate the parity for
* good_data, first saving the parity bufs and
* replacing them with buffers to hold the result.
*/
for (x = 0; x < rm->rm_firstdatacol; x++) {
bad_parity[x] = rm->rm_col[x].rc_data;
rm->rm_col[x].rc_data = rm->rm_col[x].rc_gdata =
zio_buf_alloc(rm->rm_col[x].rc_size);
}
/* fill in the data columns from good_data */
buf = (char *)good_data;
for (; x < rm->rm_cols; x++) {
rm->rm_col[x].rc_data = buf;
buf += rm->rm_col[x].rc_size;
}
/*
* Construct the parity from the good data.
*/
vdev_raidz_generate_parity(rm);
/* restore everything back to its original state */
for (x = 0; x < rm->rm_firstdatacol; x++)
rm->rm_col[x].rc_data = bad_parity[x];
buf = rm->rm_datacopy;
for (x = rm->rm_firstdatacol; x < rm->rm_cols; x++) {
rm->rm_col[x].rc_data = buf;
buf += rm->rm_col[x].rc_size;
}
}
ASSERT3P(rm->rm_col[c].rc_gdata, !=, NULL);
good = rm->rm_col[c].rc_gdata;
} else {
/* adjust good_data to point at the start of our column */
good = good_data;
for (x = rm->rm_firstdatacol; x < c; x++)
good += rm->rm_col[x].rc_size;
}
/* we drop the ereport if it ends up that the data was good */
zfs_ereport_finish_checksum(zcr, good, bad, B_TRUE);
}
/*
* Invoked indirectly by zfs_ereport_start_checksum(), called
* below when our read operation fails completely. The main point
* is to keep a copy of everything we read from disk, so that at
* vdev_raidz_cksum_finish() time we can compare it with the good data.
*/
static void
vdev_raidz_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *arg)
{
size_t c = (size_t)(uintptr_t)arg;
caddr_t buf;
raidz_map_t *rm = zio->io_vsd;
size_t size;
/* set up the report and bump the refcount */
zcr->zcr_cbdata = rm;
zcr->zcr_cbinfo = c;
zcr->zcr_finish = vdev_raidz_cksum_finish;
zcr->zcr_free = vdev_raidz_cksum_free;
rm->rm_reports++;
ASSERT3U(rm->rm_reports, >, 0);
if (rm->rm_datacopy != NULL)
return;
/*
* It's the first time we're called for this raidz_map_t, so we need
* to copy the data aside; there's no guarantee that our zio's buffer
* won't be re-used for something else.
*
* Our parity data is already in separate buffers, so there's no need
* to copy them.
*/
size = 0;
for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++)
size += rm->rm_col[c].rc_size;
buf = rm->rm_datacopy = zio_buf_alloc(size);
for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
raidz_col_t *col = &rm->rm_col[c];
bcopy(col->rc_data, buf, col->rc_size);
col->rc_data = buf;
buf += col->rc_size;
}
ASSERT3P(buf - (caddr_t)rm->rm_datacopy, ==, size);
}
static const zio_vsd_ops_t vdev_raidz_vsd_ops = {
vdev_raidz_map_free_vsd,
vdev_raidz_cksum_report
};
/*
* Divides the IO evenly across all child vdevs; usually, dcols is
* the number of children in the target vdev.
*
* Avoid inlining the function to keep vdev_raidz_io_start(), which
* is this functions only caller, as small as possible on the stack.
*/
noinline raidz_map_t *
vdev_raidz_map_alloc(zio_t *zio, uint64_t unit_shift, uint64_t dcols,
uint64_t nparity)
{
raidz_map_t *rm;
/* The starting RAIDZ (parent) vdev sector of the block. */
uint64_t b = zio->io_offset >> unit_shift;
/* The zio's size in units of the vdev's minimum sector size. */
uint64_t s = zio->io_size >> unit_shift;
/* The first column for this stripe. */
uint64_t f = b % dcols;
/* The starting byte offset on each child vdev. */
uint64_t o = (b / dcols) << unit_shift;
uint64_t q, r, c, bc, col, acols, scols, coff, devidx, asize, tot;
/*
* "Quotient": The number of data sectors for this stripe on all but
* the "big column" child vdevs that also contain "remainder" data.
*/
q = s / (dcols - nparity);
/*
* "Remainder": The number of partial stripe data sectors in this I/O.
* This will add a sector to some, but not all, child vdevs.
*/
r = s - q * (dcols - nparity);
/* The number of "big columns" - those which contain remainder data. */
bc = (r == 0 ? 0 : r + nparity);
/*
* The total number of data and parity sectors associated with
* this I/O.
*/
tot = s + nparity * (q + (r == 0 ? 0 : 1));
/* acols: The columns that will be accessed. */
/* scols: The columns that will be accessed or skipped. */
if (q == 0) {
/* Our I/O request doesn't span all child vdevs. */
acols = bc;
scols = MIN(dcols, roundup(bc, nparity + 1));
} else {
acols = dcols;
scols = dcols;
}
ASSERT3U(acols, <=, scols);
rm = kmem_alloc(offsetof(raidz_map_t, rm_col[scols]), KM_SLEEP);
rm->rm_cols = acols;
rm->rm_scols = scols;
rm->rm_bigcols = bc;
rm->rm_skipstart = bc;
rm->rm_missingdata = 0;
rm->rm_missingparity = 0;
rm->rm_firstdatacol = nparity;
rm->rm_datacopy = NULL;
rm->rm_reports = 0;
rm->rm_freed = 0;
rm->rm_ecksuminjected = 0;
asize = 0;
for (c = 0; c < scols; c++) {
col = f + c;
coff = o;
if (col >= dcols) {
col -= dcols;
coff += 1ULL << unit_shift;
}
rm->rm_col[c].rc_devidx = col;
rm->rm_col[c].rc_offset = coff;
rm->rm_col[c].rc_data = NULL;
rm->rm_col[c].rc_gdata = NULL;
rm->rm_col[c].rc_error = 0;
rm->rm_col[c].rc_tried = 0;
rm->rm_col[c].rc_skipped = 0;
if (c >= acols)
rm->rm_col[c].rc_size = 0;
else if (c < bc)
rm->rm_col[c].rc_size = (q + 1) << unit_shift;
else
rm->rm_col[c].rc_size = q << unit_shift;
asize += rm->rm_col[c].rc_size;
}
ASSERT3U(asize, ==, tot << unit_shift);
rm->rm_asize = roundup(asize, (nparity + 1) << unit_shift);
rm->rm_nskip = roundup(tot, nparity + 1) - tot;
ASSERT3U(rm->rm_asize - asize, ==, rm->rm_nskip << unit_shift);
ASSERT3U(rm->rm_nskip, <=, nparity);
for (c = 0; c < rm->rm_firstdatacol; c++)
rm->rm_col[c].rc_data = zio_buf_alloc(rm->rm_col[c].rc_size);
rm->rm_col[c].rc_data = zio->io_data;
for (c = c + 1; c < acols; c++)
rm->rm_col[c].rc_data = (char *)rm->rm_col[c - 1].rc_data +
rm->rm_col[c - 1].rc_size;
/*
* If all data stored spans all columns, there's a danger that parity
* will always be on the same device and, since parity isn't read
* during normal operation, that that device's I/O bandwidth won't be
* used effectively. We therefore switch the parity every 1MB.
*
* ... at least that was, ostensibly, the theory. As a practical
* matter unless we juggle the parity between all devices evenly, we
* won't see any benefit. Further, occasional writes that aren't a
* multiple of the LCM of the number of children and the minimum
* stripe width are sufficient to avoid pessimal behavior.
* Unfortunately, this decision created an implicit on-disk format
* requirement that we need to support for all eternity, but only
* for single-parity RAID-Z.
*
* If we intend to skip a sector in the zeroth column for padding
* we must make sure to note this swap. We will never intend to
* skip the first column since at least one data and one parity
* column must appear in each row.
*/
ASSERT(rm->rm_cols >= 2);
ASSERT(rm->rm_col[0].rc_size == rm->rm_col[1].rc_size);
if (rm->rm_firstdatacol == 1 && (zio->io_offset & (1ULL << 20))) {
devidx = rm->rm_col[0].rc_devidx;
o = rm->rm_col[0].rc_offset;
rm->rm_col[0].rc_devidx = rm->rm_col[1].rc_devidx;
rm->rm_col[0].rc_offset = rm->rm_col[1].rc_offset;
rm->rm_col[1].rc_devidx = devidx;
rm->rm_col[1].rc_offset = o;
if (rm->rm_skipstart == 0)
rm->rm_skipstart = 1;
}
zio->io_vsd = rm;
zio->io_vsd_ops = &vdev_raidz_vsd_ops;
/* init RAIDZ parity ops */
rm->rm_ops = vdev_raidz_math_get_ops();
return (rm);
}
static void
vdev_raidz_generate_parity_p(raidz_map_t *rm)
{
uint64_t *p, *src, pcount, ccount, i;
int c;
pcount = rm->rm_col[VDEV_RAIDZ_P].rc_size / sizeof (src[0]);
for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
src = rm->rm_col[c].rc_data;
p = rm->rm_col[VDEV_RAIDZ_P].rc_data;
ccount = rm->rm_col[c].rc_size / sizeof (src[0]);
if (c == rm->rm_firstdatacol) {
ASSERT(ccount == pcount);
for (i = 0; i < ccount; i++, src++, p++) {
*p = *src;
}
} else {
ASSERT(ccount <= pcount);
for (i = 0; i < ccount; i++, src++, p++) {
*p ^= *src;
}
}
}
}
static void
vdev_raidz_generate_parity_pq(raidz_map_t *rm)
{
uint64_t *p, *q, *src, pcnt, ccnt, mask, i;
int c;
pcnt = rm->rm_col[VDEV_RAIDZ_P].rc_size / sizeof (src[0]);
ASSERT(rm->rm_col[VDEV_RAIDZ_P].rc_size ==
rm->rm_col[VDEV_RAIDZ_Q].rc_size);
for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
src = rm->rm_col[c].rc_data;
p = rm->rm_col[VDEV_RAIDZ_P].rc_data;
q = rm->rm_col[VDEV_RAIDZ_Q].rc_data;
ccnt = rm->rm_col[c].rc_size / sizeof (src[0]);
if (c == rm->rm_firstdatacol) {
ASSERT(ccnt == pcnt || ccnt == 0);
for (i = 0; i < ccnt; i++, src++, p++, q++) {
*p = *src;
*q = *src;
}
for (; i < pcnt; i++, src++, p++, q++) {
*p = 0;
*q = 0;
}
} else {
ASSERT(ccnt <= pcnt);
/*
* Apply the algorithm described above by multiplying
* the previous result and adding in the new value.
*/
for (i = 0; i < ccnt; i++, src++, p++, q++) {
*p ^= *src;
VDEV_RAIDZ_64MUL_2(*q, mask);
*q ^= *src;
}
/*
* Treat short columns as though they are full of 0s.
* Note that there's therefore nothing needed for P.
*/
for (; i < pcnt; i++, q++) {
VDEV_RAIDZ_64MUL_2(*q, mask);
}
}
}
}
static void
vdev_raidz_generate_parity_pqr(raidz_map_t *rm)
{
uint64_t *p, *q, *r, *src, pcnt, ccnt, mask, i;
int c;
pcnt = rm->rm_col[VDEV_RAIDZ_P].rc_size / sizeof (src[0]);
ASSERT(rm->rm_col[VDEV_RAIDZ_P].rc_size ==
rm->rm_col[VDEV_RAIDZ_Q].rc_size);
ASSERT(rm->rm_col[VDEV_RAIDZ_P].rc_size ==
rm->rm_col[VDEV_RAIDZ_R].rc_size);
for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
src = rm->rm_col[c].rc_data;
p = rm->rm_col[VDEV_RAIDZ_P].rc_data;
q = rm->rm_col[VDEV_RAIDZ_Q].rc_data;
r = rm->rm_col[VDEV_RAIDZ_R].rc_data;
ccnt = rm->rm_col[c].rc_size / sizeof (src[0]);
if (c == rm->rm_firstdatacol) {
ASSERT(ccnt == pcnt || ccnt == 0);
for (i = 0; i < ccnt; i++, src++, p++, q++, r++) {
*p = *src;
*q = *src;
*r = *src;
}
for (; i < pcnt; i++, src++, p++, q++, r++) {
*p = 0;
*q = 0;
*r = 0;
}
} else {
ASSERT(ccnt <= pcnt);
/*
* Apply the algorithm described above by multiplying
* the previous result and adding in the new value.
*/
for (i = 0; i < ccnt; i++, src++, p++, q++, r++) {
*p ^= *src;
VDEV_RAIDZ_64MUL_2(*q, mask);
*q ^= *src;
VDEV_RAIDZ_64MUL_4(*r, mask);
*r ^= *src;
}
/*
* Treat short columns as though they are full of 0s.
* Note that there's therefore nothing needed for P.
*/
for (; i < pcnt; i++, q++, r++) {
VDEV_RAIDZ_64MUL_2(*q, mask);
VDEV_RAIDZ_64MUL_4(*r, mask);
}
}
}
}
/*
* Generate RAID parity in the first virtual columns according to the number of
* parity columns available.
*/
void
vdev_raidz_generate_parity(raidz_map_t *rm)
{
/* Generate using the new math implementation */
if (vdev_raidz_math_generate(rm) != RAIDZ_ORIGINAL_IMPL)
return;
switch (rm->rm_firstdatacol) {
case 1:
vdev_raidz_generate_parity_p(rm);
break;
case 2:
vdev_raidz_generate_parity_pq(rm);
break;
case 3:
vdev_raidz_generate_parity_pqr(rm);
break;
default:
cmn_err(CE_PANIC, "invalid RAID-Z configuration");
}
}
static int
vdev_raidz_reconstruct_p(raidz_map_t *rm, int *tgts, int ntgts)
{
uint64_t *dst, *src, xcount, ccount, count, i;
int x = tgts[0];
int c;
ASSERT(ntgts == 1);
ASSERT(x >= rm->rm_firstdatacol);
ASSERT(x < rm->rm_cols);
xcount = rm->rm_col[x].rc_size / sizeof (src[0]);
ASSERT(xcount <= rm->rm_col[VDEV_RAIDZ_P].rc_size / sizeof (src[0]));
ASSERT(xcount > 0);
src = rm->rm_col[VDEV_RAIDZ_P].rc_data;
dst = rm->rm_col[x].rc_data;
for (i = 0; i < xcount; i++, dst++, src++) {
*dst = *src;
}
for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
src = rm->rm_col[c].rc_data;
dst = rm->rm_col[x].rc_data;
if (c == x)
continue;
ccount = rm->rm_col[c].rc_size / sizeof (src[0]);
count = MIN(ccount, xcount);
for (i = 0; i < count; i++, dst++, src++) {
*dst ^= *src;
}
}
return (1 << VDEV_RAIDZ_P);
}
static int
vdev_raidz_reconstruct_q(raidz_map_t *rm, int *tgts, int ntgts)
{
uint64_t *dst, *src, xcount, ccount, count, mask, i;
uint8_t *b;
int x = tgts[0];
int c, j, exp;
ASSERT(ntgts == 1);
xcount = rm->rm_col[x].rc_size / sizeof (src[0]);
ASSERT(xcount <= rm->rm_col[VDEV_RAIDZ_Q].rc_size / sizeof (src[0]));
for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
src = rm->rm_col[c].rc_data;
dst = rm->rm_col[x].rc_data;
if (c == x)
ccount = 0;
else
ccount = rm->rm_col[c].rc_size / sizeof (src[0]);
count = MIN(ccount, xcount);
if (c == rm->rm_firstdatacol) {
for (i = 0; i < count; i++, dst++, src++) {
*dst = *src;
}
for (; i < xcount; i++, dst++) {
*dst = 0;
}
} else {
for (i = 0; i < count; i++, dst++, src++) {
VDEV_RAIDZ_64MUL_2(*dst, mask);
*dst ^= *src;
}
for (; i < xcount; i++, dst++) {
VDEV_RAIDZ_64MUL_2(*dst, mask);
}
}
}
src = rm->rm_col[VDEV_RAIDZ_Q].rc_data;
dst = rm->rm_col[x].rc_data;
exp = 255 - (rm->rm_cols - 1 - x);
for (i = 0; i < xcount; i++, dst++, src++) {
*dst ^= *src;
for (j = 0, b = (uint8_t *)dst; j < 8; j++, b++) {
*b = vdev_raidz_exp2(*b, exp);
}
}
return (1 << VDEV_RAIDZ_Q);
}
static int
vdev_raidz_reconstruct_pq(raidz_map_t *rm, int *tgts, int ntgts)
{
uint8_t *p, *q, *pxy, *qxy, *xd, *yd, tmp, a, b, aexp, bexp;
void *pdata, *qdata;
uint64_t xsize, ysize, i;
int x = tgts[0];
int y = tgts[1];
ASSERT(ntgts == 2);
ASSERT(x < y);
ASSERT(x >= rm->rm_firstdatacol);
ASSERT(y < rm->rm_cols);
ASSERT(rm->rm_col[x].rc_size >= rm->rm_col[y].rc_size);
/*
* Move the parity data aside -- we're going to compute parity as
* though columns x and y were full of zeros -- Pxy and Qxy. We want to
* reuse the parity generation mechanism without trashing the actual
* parity so we make those columns appear to be full of zeros by
* setting their lengths to zero.
*/
pdata = rm->rm_col[VDEV_RAIDZ_P].rc_data;
qdata = rm->rm_col[VDEV_RAIDZ_Q].rc_data;
xsize = rm->rm_col[x].rc_size;
ysize = rm->rm_col[y].rc_size;
rm->rm_col[VDEV_RAIDZ_P].rc_data =
zio_buf_alloc(rm->rm_col[VDEV_RAIDZ_P].rc_size);
rm->rm_col[VDEV_RAIDZ_Q].rc_data =
zio_buf_alloc(rm->rm_col[VDEV_RAIDZ_Q].rc_size);
rm->rm_col[x].rc_size = 0;
rm->rm_col[y].rc_size = 0;
vdev_raidz_generate_parity_pq(rm);
rm->rm_col[x].rc_size = xsize;
rm->rm_col[y].rc_size = ysize;
p = pdata;
q = qdata;
pxy = rm->rm_col[VDEV_RAIDZ_P].rc_data;
qxy = rm->rm_col[VDEV_RAIDZ_Q].rc_data;
xd = rm->rm_col[x].rc_data;
yd = rm->rm_col[y].rc_data;
/*
* We now have:
* Pxy = P + D_x + D_y
* Qxy = Q + 2^(ndevs - 1 - x) * D_x + 2^(ndevs - 1 - y) * D_y
*
* We can then solve for D_x:
* D_x = A * (P + Pxy) + B * (Q + Qxy)
* where
* A = 2^(x - y) * (2^(x - y) + 1)^-1
* B = 2^(ndevs - 1 - x) * (2^(x - y) + 1)^-1
*
* With D_x in hand, we can easily solve for D_y:
* D_y = P + Pxy + D_x
*/
a = vdev_raidz_pow2[255 + x - y];
b = vdev_raidz_pow2[255 - (rm->rm_cols - 1 - x)];
tmp = 255 - vdev_raidz_log2[a ^ 1];
aexp = vdev_raidz_log2[vdev_raidz_exp2(a, tmp)];
bexp = vdev_raidz_log2[vdev_raidz_exp2(b, tmp)];
for (i = 0; i < xsize; i++, p++, q++, pxy++, qxy++, xd++, yd++) {
*xd = vdev_raidz_exp2(*p ^ *pxy, aexp) ^
vdev_raidz_exp2(*q ^ *qxy, bexp);
if (i < ysize)
*yd = *p ^ *pxy ^ *xd;
}
zio_buf_free(rm->rm_col[VDEV_RAIDZ_P].rc_data,
rm->rm_col[VDEV_RAIDZ_P].rc_size);
zio_buf_free(rm->rm_col[VDEV_RAIDZ_Q].rc_data,
rm->rm_col[VDEV_RAIDZ_Q].rc_size);
/*
* Restore the saved parity data.
*/
rm->rm_col[VDEV_RAIDZ_P].rc_data = pdata;
rm->rm_col[VDEV_RAIDZ_Q].rc_data = qdata;
return ((1 << VDEV_RAIDZ_P) | (1 << VDEV_RAIDZ_Q));
}
/* BEGIN CSTYLED */
/*
* In the general case of reconstruction, we must solve the system of linear
* equations defined by the coeffecients used to generate parity as well as
* the contents of the data and parity disks. This can be expressed with
* vectors for the original data (D) and the actual data (d) and parity (p)
* and a matrix composed of the identity matrix (I) and a dispersal matrix (V):
*
* __ __ __ __
* | | __ __ | p_0 |
* | V | | D_0 | | p_m-1 |
* | | x | : | = | d_0 |
* | I | | D_n-1 | | : |
* | | ~~ ~~ | d_n-1 |
* ~~ ~~ ~~ ~~
*
* I is simply a square identity matrix of size n, and V is a vandermonde
* matrix defined by the coeffecients we chose for the various parity columns
* (1, 2, 4). Note that these values were chosen both for simplicity, speedy
* computation as well as linear separability.
*
* __ __ __ __
* | 1 .. 1 1 1 | | p_0 |
* | 2^n-1 .. 4 2 1 | __ __ | : |
* | 4^n-1 .. 16 4 1 | | D_0 | | p_m-1 |
* | 1 .. 0 0 0 | | D_1 | | d_0 |
* | 0 .. 0 0 0 | x | D_2 | = | d_1 |
* | : : : : | | : | | d_2 |
* | 0 .. 1 0 0 | | D_n-1 | | : |
* | 0 .. 0 1 0 | ~~ ~~ | : |
* | 0 .. 0 0 1 | | d_n-1 |
* ~~ ~~ ~~ ~~
*
* Note that I, V, d, and p are known. To compute D, we must invert the
* matrix and use the known data and parity values to reconstruct the unknown
* data values. We begin by removing the rows in V|I and d|p that correspond
* to failed or missing columns; we then make V|I square (n x n) and d|p
* sized n by removing rows corresponding to unused parity from the bottom up
* to generate (V|I)' and (d|p)'. We can then generate the inverse of (V|I)'
* using Gauss-Jordan elimination. In the example below we use m=3 parity
* columns, n=8 data columns, with errors in d_1, d_2, and p_1:
* __ __
* | 1 1 1 1 1 1 1 1 |
* | 128 64 32 16 8 4 2 1 | <-----+-+-- missing disks
* | 19 205 116 29 64 16 4 1 | / /
* | 1 0 0 0 0 0 0 0 | / /
* | 0 1 0 0 0 0 0 0 | <--' /
* (V|I) = | 0 0 1 0 0 0 0 0 | <---'
* | 0 0 0 1 0 0 0 0 |
* | 0 0 0 0 1 0 0 0 |
* | 0 0 0 0 0 1 0 0 |
* | 0 0 0 0 0 0 1 0 |
* | 0 0 0 0 0 0 0 1 |
* ~~ ~~
* __ __
* | 1 1 1 1 1 1 1 1 |
* | 128 64 32 16 8 4 2 1 |
* | 19 205 116 29 64 16 4 1 |
* | 1 0 0 0 0 0 0 0 |
* | 0 1 0 0 0 0 0 0 |
* (V|I)' = | 0 0 1 0 0 0 0 0 |
* | 0 0 0 1 0 0 0 0 |
* | 0 0 0 0 1 0 0 0 |
* | 0 0 0 0 0 1 0 0 |
* | 0 0 0 0 0 0 1 0 |
* | 0 0 0 0 0 0 0 1 |
* ~~ ~~
*
* Here we employ Gauss-Jordan elimination to find the inverse of (V|I)'. We
* have carefully chosen the seed values 1, 2, and 4 to ensure that this
* matrix is not singular.
* __ __
* | 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 |
* | 19 205 116 29 64 16 4 1 0 1 0 0 0 0 0 0 |
* | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 |
* | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 |
* | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 |
* | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 |
* | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 |
* | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 |
* ~~ ~~
* __ __
* | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 |
* | 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 |
* | 19 205 116 29 64 16 4 1 0 1 0 0 0 0 0 0 |
* | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 |
* | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 |
* | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 |
* | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 |
* | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 |
* ~~ ~~
* __ __
* | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 |
* | 0 1 1 0 0 0 0 0 1 0 1 1 1 1 1 1 |
* | 0 205 116 0 0 0 0 0 0 1 19 29 64 16 4 1 |
* | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 |
* | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 |
* | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 |
* | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 |
* | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 |
* ~~ ~~
* __ __
* | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 |
* | 0 1 1 0 0 0 0 0 1 0 1 1 1 1 1 1 |
* | 0 0 185 0 0 0 0 0 205 1 222 208 141 221 201 204 |
* | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 |
* | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 |
* | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 |
* | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 |
* | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 |
* ~~ ~~
* __ __
* | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 |
* | 0 1 1 0 0 0 0 0 1 0 1 1 1 1 1 1 |
* | 0 0 1 0 0 0 0 0 166 100 4 40 158 168 216 209 |
* | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 |
* | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 |
* | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 |
* | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 |
* | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 |
* ~~ ~~
* __ __
* | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 |
* | 0 1 0 0 0 0 0 0 167 100 5 41 159 169 217 208 |
* | 0 0 1 0 0 0 0 0 166 100 4 40 158 168 216 209 |
* | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 |
* | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 |
* | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 |
* | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 |
* | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 |
* ~~ ~~
* __ __
* | 0 0 1 0 0 0 0 0 |
* | 167 100 5 41 159 169 217 208 |
* | 166 100 4 40 158 168 216 209 |
* (V|I)'^-1 = | 0 0 0 1 0 0 0 0 |
* | 0 0 0 0 1 0 0 0 |
* | 0 0 0 0 0 1 0 0 |
* | 0 0 0 0 0 0 1 0 |
* | 0 0 0 0 0 0 0 1 |
* ~~ ~~
*
* We can then simply compute D = (V|I)'^-1 x (d|p)' to discover the values
* of the missing data.
*
* As is apparent from the example above, the only non-trivial rows in the
* inverse matrix correspond to the data disks that we're trying to
* reconstruct. Indeed, those are the only rows we need as the others would
* only be useful for reconstructing data known or assumed to be valid. For
* that reason, we only build the coefficients in the rows that correspond to
* targeted columns.
*/
/* END CSTYLED */
static void
vdev_raidz_matrix_init(raidz_map_t *rm, int n, int nmap, int *map,
uint8_t **rows)
{
int i, j;
int pow;
ASSERT(n == rm->rm_cols - rm->rm_firstdatacol);
/*
* Fill in the missing rows of interest.
*/
for (i = 0; i < nmap; i++) {
ASSERT3S(0, <=, map[i]);
ASSERT3S(map[i], <=, 2);
pow = map[i] * n;
if (pow > 255)
pow -= 255;
ASSERT(pow <= 255);
for (j = 0; j < n; j++) {
pow -= map[i];
if (pow < 0)
pow += 255;
rows[i][j] = vdev_raidz_pow2[pow];
}
}
}
static void
vdev_raidz_matrix_invert(raidz_map_t *rm, int n, int nmissing, int *missing,
uint8_t **rows, uint8_t **invrows, const uint8_t *used)
{
int i, j, ii, jj;
uint8_t log;
/*
* Assert that the first nmissing entries from the array of used
* columns correspond to parity columns and that subsequent entries
* correspond to data columns.
*/
for (i = 0; i < nmissing; i++) {
ASSERT3S(used[i], <, rm->rm_firstdatacol);
}
for (; i < n; i++) {
ASSERT3S(used[i], >=, rm->rm_firstdatacol);
}
/*
* First initialize the storage where we'll compute the inverse rows.
*/
for (i = 0; i < nmissing; i++) {
for (j = 0; j < n; j++) {
invrows[i][j] = (i == j) ? 1 : 0;
}
}
/*
* Subtract all trivial rows from the rows of consequence.
*/
for (i = 0; i < nmissing; i++) {
for (j = nmissing; j < n; j++) {
ASSERT3U(used[j], >=, rm->rm_firstdatacol);
jj = used[j] - rm->rm_firstdatacol;
ASSERT3S(jj, <, n);
invrows[i][j] = rows[i][jj];
rows[i][jj] = 0;
}
}
/*
* For each of the rows of interest, we must normalize it and subtract
* a multiple of it from the other rows.
*/
for (i = 0; i < nmissing; i++) {
for (j = 0; j < missing[i]; j++) {
ASSERT0(rows[i][j]);
}
ASSERT3U(rows[i][missing[i]], !=, 0);
/*
* Compute the inverse of the first element and multiply each
* element in the row by that value.
*/
log = 255 - vdev_raidz_log2[rows[i][missing[i]]];
for (j = 0; j < n; j++) {
rows[i][j] = vdev_raidz_exp2(rows[i][j], log);
invrows[i][j] = vdev_raidz_exp2(invrows[i][j], log);
}
for (ii = 0; ii < nmissing; ii++) {
if (i == ii)
continue;
ASSERT3U(rows[ii][missing[i]], !=, 0);
log = vdev_raidz_log2[rows[ii][missing[i]]];
for (j = 0; j < n; j++) {
rows[ii][j] ^=
vdev_raidz_exp2(rows[i][j], log);
invrows[ii][j] ^=
vdev_raidz_exp2(invrows[i][j], log);
}
}
}
/*
* Verify that the data that is left in the rows are properly part of
* an identity matrix.
*/
for (i = 0; i < nmissing; i++) {
for (j = 0; j < n; j++) {
if (j == missing[i]) {
ASSERT3U(rows[i][j], ==, 1);
} else {
ASSERT0(rows[i][j]);
}
}
}
}
static void
vdev_raidz_matrix_reconstruct(raidz_map_t *rm, int n, int nmissing,
int *missing, uint8_t **invrows, const uint8_t *used)
{
int i, j, x, cc, c;
uint8_t *src;
uint64_t ccount;
uint8_t *dst[VDEV_RAIDZ_MAXPARITY] = { NULL };
uint64_t dcount[VDEV_RAIDZ_MAXPARITY] = { 0 };
uint8_t log = 0;
uint8_t val;
int ll;
uint8_t *invlog[VDEV_RAIDZ_MAXPARITY];
uint8_t *p, *pp;
size_t psize;
psize = sizeof (invlog[0][0]) * n * nmissing;
p = kmem_alloc(psize, KM_SLEEP);
for (pp = p, i = 0; i < nmissing; i++) {
invlog[i] = pp;
pp += n;
}
for (i = 0; i < nmissing; i++) {
for (j = 0; j < n; j++) {
ASSERT3U(invrows[i][j], !=, 0);
invlog[i][j] = vdev_raidz_log2[invrows[i][j]];
}
}
for (i = 0; i < n; i++) {
c = used[i];
ASSERT3U(c, <, rm->rm_cols);
src = rm->rm_col[c].rc_data;
ccount = rm->rm_col[c].rc_size;
for (j = 0; j < nmissing; j++) {
cc = missing[j] + rm->rm_firstdatacol;
ASSERT3U(cc, >=, rm->rm_firstdatacol);
ASSERT3U(cc, <, rm->rm_cols);
ASSERT3U(cc, !=, c);
dst[j] = rm->rm_col[cc].rc_data;
dcount[j] = rm->rm_col[cc].rc_size;
}
ASSERT(ccount >= rm->rm_col[missing[0]].rc_size || i > 0);
for (x = 0; x < ccount; x++, src++) {
if (*src != 0)
log = vdev_raidz_log2[*src];
for (cc = 0; cc < nmissing; cc++) {
if (x >= dcount[cc])
continue;
if (*src == 0) {
val = 0;
} else {
if ((ll = log + invlog[cc][i]) >= 255)
ll -= 255;
val = vdev_raidz_pow2[ll];
}
if (i == 0)
dst[cc][x] = val;
else
dst[cc][x] ^= val;
}
}
}
kmem_free(p, psize);
}
static int
vdev_raidz_reconstruct_general(raidz_map_t *rm, int *tgts, int ntgts)
{
int n, i, c, t, tt;
int nmissing_rows;
int missing_rows[VDEV_RAIDZ_MAXPARITY];
int parity_map[VDEV_RAIDZ_MAXPARITY];
uint8_t *p, *pp;
size_t psize;
uint8_t *rows[VDEV_RAIDZ_MAXPARITY];
uint8_t *invrows[VDEV_RAIDZ_MAXPARITY];
uint8_t *used;
int code = 0;
n = rm->rm_cols - rm->rm_firstdatacol;
/*
* Figure out which data columns are missing.
*/
nmissing_rows = 0;
for (t = 0; t < ntgts; t++) {
if (tgts[t] >= rm->rm_firstdatacol) {
missing_rows[nmissing_rows++] =
tgts[t] - rm->rm_firstdatacol;
}
}
/*
* Figure out which parity columns to use to help generate the missing
* data columns.
*/
for (tt = 0, c = 0, i = 0; i < nmissing_rows; c++) {
ASSERT(tt < ntgts);
ASSERT(c < rm->rm_firstdatacol);
/*
* Skip any targeted parity columns.
*/
if (c == tgts[tt]) {
tt++;
continue;
}
code |= 1 << c;
parity_map[i] = c;
i++;
}
ASSERT(code != 0);
ASSERT3U(code, <, 1 << VDEV_RAIDZ_MAXPARITY);
psize = (sizeof (rows[0][0]) + sizeof (invrows[0][0])) *
nmissing_rows * n + sizeof (used[0]) * n;
p = kmem_alloc(psize, KM_SLEEP);
for (pp = p, i = 0; i < nmissing_rows; i++) {
rows[i] = pp;
pp += n;
invrows[i] = pp;
pp += n;
}
used = pp;
for (i = 0; i < nmissing_rows; i++) {
used[i] = parity_map[i];
}
for (tt = 0, c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
if (tt < nmissing_rows &&
c == missing_rows[tt] + rm->rm_firstdatacol) {
tt++;
continue;
}
ASSERT3S(i, <, n);
used[i] = c;
i++;
}
/*
* Initialize the interesting rows of the matrix.
*/
vdev_raidz_matrix_init(rm, n, nmissing_rows, parity_map, rows);
/*
* Invert the matrix.
*/
vdev_raidz_matrix_invert(rm, n, nmissing_rows, missing_rows, rows,
invrows, used);
/*
* Reconstruct the missing data using the generated matrix.
*/
vdev_raidz_matrix_reconstruct(rm, n, nmissing_rows, missing_rows,
invrows, used);
kmem_free(p, psize);
return (code);
}
int
vdev_raidz_reconstruct(raidz_map_t *rm, const int *t, int nt)
{
int tgts[VDEV_RAIDZ_MAXPARITY], *dt;
int ntgts;
int i, c, ret;
int code;
int nbadparity, nbaddata;
int parity_valid[VDEV_RAIDZ_MAXPARITY];
/*
* The tgts list must already be sorted.
*/
for (i = 1; i < nt; i++) {
ASSERT(t[i] > t[i - 1]);
}
nbadparity = rm->rm_firstdatacol;
nbaddata = rm->rm_cols - nbadparity;
ntgts = 0;
for (i = 0, c = 0; c < rm->rm_cols; c++) {
if (c < rm->rm_firstdatacol)
parity_valid[c] = B_FALSE;
if (i < nt && c == t[i]) {
tgts[ntgts++] = c;
i++;
} else if (rm->rm_col[c].rc_error != 0) {
tgts[ntgts++] = c;
} else if (c >= rm->rm_firstdatacol) {
nbaddata--;
} else {
parity_valid[c] = B_TRUE;
nbadparity--;
}
}
ASSERT(ntgts >= nt);
ASSERT(nbaddata >= 0);
ASSERT(nbaddata + nbadparity == ntgts);
dt = &tgts[nbadparity];
/* Reconstruct using the new math implementation */
ret = vdev_raidz_math_reconstruct(rm, parity_valid, dt, nbaddata);
if (ret != RAIDZ_ORIGINAL_IMPL)
return (ret);
/*
* See if we can use any of our optimized reconstruction routines.
*/
switch (nbaddata) {
case 1:
if (parity_valid[VDEV_RAIDZ_P])
return (vdev_raidz_reconstruct_p(rm, dt, 1));
ASSERT(rm->rm_firstdatacol > 1);
if (parity_valid[VDEV_RAIDZ_Q])
return (vdev_raidz_reconstruct_q(rm, dt, 1));
ASSERT(rm->rm_firstdatacol > 2);
break;
case 2:
ASSERT(rm->rm_firstdatacol > 1);
if (parity_valid[VDEV_RAIDZ_P] &&
parity_valid[VDEV_RAIDZ_Q])
return (vdev_raidz_reconstruct_pq(rm, dt, 2));
ASSERT(rm->rm_firstdatacol > 2);
break;
}
code = vdev_raidz_reconstruct_general(rm, tgts, ntgts);
ASSERT(code < (1 << VDEV_RAIDZ_MAXPARITY));
ASSERT(code > 0);
return (code);
}
static int
vdev_raidz_open(vdev_t *vd, uint64_t *asize, uint64_t *max_asize,
uint64_t *ashift)
{
vdev_t *cvd;
uint64_t nparity = vd->vdev_nparity;
int c;
int lasterror = 0;
int numerrors = 0;
ASSERT(nparity > 0);
if (nparity > VDEV_RAIDZ_MAXPARITY ||
vd->vdev_children < nparity + 1) {
vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
return (SET_ERROR(EINVAL));
}
vdev_open_children(vd);
for (c = 0; c < vd->vdev_children; c++) {
cvd = vd->vdev_child[c];
if (cvd->vdev_open_error != 0) {
lasterror = cvd->vdev_open_error;
numerrors++;
continue;
}
*asize = MIN(*asize - 1, cvd->vdev_asize - 1) + 1;
*max_asize = MIN(*max_asize - 1, cvd->vdev_max_asize - 1) + 1;
*ashift = MAX(*ashift, cvd->vdev_ashift);
}
*asize *= vd->vdev_children;
*max_asize *= vd->vdev_children;
if (numerrors > nparity) {
vd->vdev_stat.vs_aux = VDEV_AUX_NO_REPLICAS;
return (lasterror);
}
return (0);
}
static void
vdev_raidz_close(vdev_t *vd)
{
int c;
for (c = 0; c < vd->vdev_children; c++)
vdev_close(vd->vdev_child[c]);
}
static uint64_t
vdev_raidz_asize(vdev_t *vd, uint64_t psize)
{
uint64_t asize;
uint64_t ashift = vd->vdev_top->vdev_ashift;
uint64_t cols = vd->vdev_children;
uint64_t nparity = vd->vdev_nparity;
asize = ((psize - 1) >> ashift) + 1;
asize += nparity * ((asize + cols - nparity - 1) / (cols - nparity));
asize = roundup(asize, nparity + 1) << ashift;
return (asize);
}
static void
vdev_raidz_child_done(zio_t *zio)
{
raidz_col_t *rc = zio->io_private;
rc->rc_error = zio->io_error;
rc->rc_tried = 1;
rc->rc_skipped = 0;
}
/*
* Start an IO operation on a RAIDZ VDev
*
* Outline:
* - For write operations:
* 1. Generate the parity data
* 2. Create child zio write operations to each column's vdev, for both
* data and parity.
* 3. If the column skips any sectors for padding, create optional dummy
* write zio children for those areas to improve aggregation continuity.
* - For read operations:
* 1. Create child zio read operations to each data column's vdev to read
* the range of data required for zio.
* 2. If this is a scrub or resilver operation, or if any of the data
* vdevs have had errors, then create zio read operations to the parity
* columns' VDevs as well.
*/
static void
vdev_raidz_io_start(zio_t *zio)
{
vdev_t *vd = zio->io_vd;
vdev_t *tvd = vd->vdev_top;
vdev_t *cvd;
raidz_map_t *rm;
raidz_col_t *rc;
int c, i;
rm = vdev_raidz_map_alloc(zio, tvd->vdev_ashift, vd->vdev_children,
vd->vdev_nparity);
ASSERT3U(rm->rm_asize, ==, vdev_psize_to_asize(vd, zio->io_size));
if (zio->io_type == ZIO_TYPE_WRITE) {
vdev_raidz_generate_parity(rm);
for (c = 0; c < rm->rm_cols; c++) {
rc = &rm->rm_col[c];
cvd = vd->vdev_child[rc->rc_devidx];
zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
rc->rc_offset, rc->rc_data, rc->rc_size,
zio->io_type, zio->io_priority, 0,
vdev_raidz_child_done, rc));
}
/*
* Generate optional I/Os for any skipped sectors to improve
* aggregation contiguity.
*/
for (c = rm->rm_skipstart, i = 0; i < rm->rm_nskip; c++, i++) {
ASSERT(c <= rm->rm_scols);
if (c == rm->rm_scols)
c = 0;
rc = &rm->rm_col[c];
cvd = vd->vdev_child[rc->rc_devidx];
zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
rc->rc_offset + rc->rc_size, NULL,
1 << tvd->vdev_ashift,
zio->io_type, zio->io_priority,
ZIO_FLAG_NODATA | ZIO_FLAG_OPTIONAL, NULL, NULL));
}
zio_execute(zio);
return;
}
ASSERT(zio->io_type == ZIO_TYPE_READ);
/*
* Iterate over the columns in reverse order so that we hit the parity
* last -- any errors along the way will force us to read the parity.
*/
for (c = rm->rm_cols - 1; c >= 0; c--) {
rc = &rm->rm_col[c];
cvd = vd->vdev_child[rc->rc_devidx];
if (!vdev_readable(cvd)) {
if (c >= rm->rm_firstdatacol)
rm->rm_missingdata++;
else
rm->rm_missingparity++;
rc->rc_error = SET_ERROR(ENXIO);
rc->rc_tried = 1; /* don't even try */
rc->rc_skipped = 1;
continue;
}
if (vdev_dtl_contains(cvd, DTL_MISSING, zio->io_txg, 1)) {
if (c >= rm->rm_firstdatacol)
rm->rm_missingdata++;
else
rm->rm_missingparity++;
rc->rc_error = SET_ERROR(ESTALE);
rc->rc_skipped = 1;
continue;
}
if (c >= rm->rm_firstdatacol || rm->rm_missingdata > 0 ||
(zio->io_flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER))) {
zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
rc->rc_offset, rc->rc_data, rc->rc_size,
zio->io_type, zio->io_priority, 0,
vdev_raidz_child_done, rc));
}
}
zio_execute(zio);
}
/*
* Report a checksum error for a child of a RAID-Z device.
*/
static void
raidz_checksum_error(zio_t *zio, raidz_col_t *rc, void *bad_data)
{
vdev_t *vd = zio->io_vd->vdev_child[rc->rc_devidx];
if (!(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
zio_bad_cksum_t zbc;
raidz_map_t *rm = zio->io_vsd;
mutex_enter(&vd->vdev_stat_lock);
vd->vdev_stat.vs_checksum_errors++;
mutex_exit(&vd->vdev_stat_lock);
zbc.zbc_has_cksum = 0;
zbc.zbc_injected = rm->rm_ecksuminjected;
zfs_ereport_post_checksum(zio->io_spa, vd, zio,
rc->rc_offset, rc->rc_size, rc->rc_data, bad_data,
&zbc);
}
}
/*
* We keep track of whether or not there were any injected errors, so that
* any ereports we generate can note it.
*/
static int
raidz_checksum_verify(zio_t *zio)
{
zio_bad_cksum_t zbc;
raidz_map_t *rm = zio->io_vsd;
int ret;
bzero(&zbc, sizeof (zio_bad_cksum_t));
ret = zio_checksum_error(zio, &zbc);
if (ret != 0 && zbc.zbc_injected != 0)
rm->rm_ecksuminjected = 1;
return (ret);
}
/*
* Generate the parity from the data columns. If we tried and were able to
* read the parity without error, verify that the generated parity matches the
* data we read. If it doesn't, we fire off a checksum error. Return the
* number such failures.
*/
static int
raidz_parity_verify(zio_t *zio, raidz_map_t *rm)
{
void *orig[VDEV_RAIDZ_MAXPARITY];
int c, ret = 0;
raidz_col_t *rc;
for (c = 0; c < rm->rm_firstdatacol; c++) {
rc = &rm->rm_col[c];
if (!rc->rc_tried || rc->rc_error != 0)
continue;
orig[c] = zio_buf_alloc(rc->rc_size);
bcopy(rc->rc_data, orig[c], rc->rc_size);
}
vdev_raidz_generate_parity(rm);
for (c = 0; c < rm->rm_firstdatacol; c++) {
rc = &rm->rm_col[c];
if (!rc->rc_tried || rc->rc_error != 0)
continue;
if (bcmp(orig[c], rc->rc_data, rc->rc_size) != 0) {
raidz_checksum_error(zio, rc, orig[c]);
rc->rc_error = SET_ERROR(ECKSUM);
ret++;
}
zio_buf_free(orig[c], rc->rc_size);
}
return (ret);
}
static int
vdev_raidz_worst_error(raidz_map_t *rm)
{
int c, error = 0;
for (c = 0; c < rm->rm_cols; c++)
error = zio_worst_error(error, rm->rm_col[c].rc_error);
return (error);
}
/*
* Iterate over all combinations of bad data and attempt a reconstruction.
* Note that the algorithm below is non-optimal because it doesn't take into
* account how reconstruction is actually performed. For example, with
* triple-parity RAID-Z the reconstruction procedure is the same if column 4
* is targeted as invalid as if columns 1 and 4 are targeted since in both
* cases we'd only use parity information in column 0.
*/
static int
vdev_raidz_combrec(zio_t *zio, int total_errors, int data_errors)
{
raidz_map_t *rm = zio->io_vsd;
raidz_col_t *rc;
void *orig[VDEV_RAIDZ_MAXPARITY];
int tstore[VDEV_RAIDZ_MAXPARITY + 2];
int *tgts = &tstore[1];
int curr, next, i, c, n;
int code, ret = 0;
ASSERT(total_errors < rm->rm_firstdatacol);
/*
* This simplifies one edge condition.
*/
tgts[-1] = -1;
for (n = 1; n <= rm->rm_firstdatacol - total_errors; n++) {
/*
* Initialize the targets array by finding the first n columns
* that contain no error.
*
* If there were no data errors, we need to ensure that we're
* always explicitly attempting to reconstruct at least one
* data column. To do this, we simply push the highest target
* up into the data columns.
*/
for (c = 0, i = 0; i < n; i++) {
if (i == n - 1 && data_errors == 0 &&
c < rm->rm_firstdatacol) {
c = rm->rm_firstdatacol;
}
while (rm->rm_col[c].rc_error != 0) {
c++;
ASSERT3S(c, <, rm->rm_cols);
}
tgts[i] = c++;
}
/*
* Setting tgts[n] simplifies the other edge condition.
*/
tgts[n] = rm->rm_cols;
/*
* These buffers were allocated in previous iterations.
*/
for (i = 0; i < n - 1; i++) {
ASSERT(orig[i] != NULL);
}
orig[n - 1] = zio_buf_alloc(rm->rm_col[0].rc_size);
curr = 0;
next = tgts[curr];
while (curr != n) {
tgts[curr] = next;
curr = 0;
/*
* Save off the original data that we're going to
* attempt to reconstruct.
*/
for (i = 0; i < n; i++) {
ASSERT(orig[i] != NULL);
c = tgts[i];
ASSERT3S(c, >=, 0);
ASSERT3S(c, <, rm->rm_cols);
rc = &rm->rm_col[c];
bcopy(rc->rc_data, orig[i], rc->rc_size);
}
/*
* Attempt a reconstruction and exit the outer loop on
* success.
*/
code = vdev_raidz_reconstruct(rm, tgts, n);
if (raidz_checksum_verify(zio) == 0) {
for (i = 0; i < n; i++) {
c = tgts[i];
rc = &rm->rm_col[c];
ASSERT(rc->rc_error == 0);
if (rc->rc_tried)
raidz_checksum_error(zio, rc,
orig[i]);
rc->rc_error = SET_ERROR(ECKSUM);
}
ret = code;
goto done;
}
/*
* Restore the original data.
*/
for (i = 0; i < n; i++) {
c = tgts[i];
rc = &rm->rm_col[c];
bcopy(orig[i], rc->rc_data, rc->rc_size);
}
do {
/*
* Find the next valid column after the curr
* position..
*/
for (next = tgts[curr] + 1;
next < rm->rm_cols &&
rm->rm_col[next].rc_error != 0; next++)
continue;
ASSERT(next <= tgts[curr + 1]);
/*
* If that spot is available, we're done here.
*/
if (next != tgts[curr + 1])
break;
/*
* Otherwise, find the next valid column after
* the previous position.
*/
for (c = tgts[curr - 1] + 1;
rm->rm_col[c].rc_error != 0; c++)
continue;
tgts[curr] = c;
curr++;
} while (curr != n);
}
}
n--;
done:
for (i = 0; i < n; i++) {
zio_buf_free(orig[i], rm->rm_col[0].rc_size);
}
return (ret);
}
/*
* Complete an IO operation on a RAIDZ VDev
*
* Outline:
* - For write operations:
* 1. Check for errors on the child IOs.
* 2. Return, setting an error code if too few child VDevs were written
* to reconstruct the data later. Note that partial writes are
* considered successful if they can be reconstructed at all.
* - For read operations:
* 1. Check for errors on the child IOs.
* 2. If data errors occurred:
* a. Try to reassemble the data from the parity available.
* b. If we haven't yet read the parity drives, read them now.
* c. If all parity drives have been read but the data still doesn't
* reassemble with a correct checksum, then try combinatorial
* reconstruction.
* d. If that doesn't work, return an error.
* 3. If there were unexpected errors or this is a resilver operation,
* rewrite the vdevs that had errors.
*/
static void
vdev_raidz_io_done(zio_t *zio)
{
vdev_t *vd = zio->io_vd;
vdev_t *cvd;
raidz_map_t *rm = zio->io_vsd;
raidz_col_t *rc = NULL;
int unexpected_errors = 0;
int parity_errors = 0;
int parity_untried = 0;
int data_errors = 0;
int total_errors = 0;
int n, c;
int tgts[VDEV_RAIDZ_MAXPARITY];
int code;
ASSERT(zio->io_bp != NULL); /* XXX need to add code to enforce this */
ASSERT(rm->rm_missingparity <= rm->rm_firstdatacol);
ASSERT(rm->rm_missingdata <= rm->rm_cols - rm->rm_firstdatacol);
for (c = 0; c < rm->rm_cols; c++) {
rc = &rm->rm_col[c];
if (rc->rc_error) {
ASSERT(rc->rc_error != ECKSUM); /* child has no bp */
if (c < rm->rm_firstdatacol)
parity_errors++;
else
data_errors++;
if (!rc->rc_skipped)
unexpected_errors++;
total_errors++;
} else if (c < rm->rm_firstdatacol && !rc->rc_tried) {
parity_untried++;
}
}
if (zio->io_type == ZIO_TYPE_WRITE) {
/*
* XXX -- for now, treat partial writes as a success.
* (If we couldn't write enough columns to reconstruct
* the data, the I/O failed. Otherwise, good enough.)
*
* Now that we support write reallocation, it would be better
* to treat partial failure as real failure unless there are
* no non-degraded top-level vdevs left, and not update DTLs
* if we intend to reallocate.
*/
/* XXPOLICY */
if (total_errors > rm->rm_firstdatacol)
zio->io_error = vdev_raidz_worst_error(rm);
return;
}
ASSERT(zio->io_type == ZIO_TYPE_READ);
/*
* There are three potential phases for a read:
* 1. produce valid data from the columns read
* 2. read all disks and try again
* 3. perform combinatorial reconstruction
*
* Each phase is progressively both more expensive and less likely to
* occur. If we encounter more errors than we can repair or all phases
* fail, we have no choice but to return an error.
*/
/*
* If the number of errors we saw was correctable -- less than or equal
* to the number of parity disks read -- attempt to produce data that
* has a valid checksum. Naturally, this case applies in the absence of
* any errors.
*/
if (total_errors <= rm->rm_firstdatacol - parity_untried) {
if (data_errors == 0) {
if (raidz_checksum_verify(zio) == 0) {
/*
* If we read parity information (unnecessarily
* as it happens since no reconstruction was
* needed) regenerate and verify the parity.
* We also regenerate parity when resilvering
* so we can write it out to the failed device
* later.
*/
if (parity_errors + parity_untried <
rm->rm_firstdatacol ||
(zio->io_flags & ZIO_FLAG_RESILVER)) {
n = raidz_parity_verify(zio, rm);
unexpected_errors += n;
ASSERT(parity_errors + n <=
rm->rm_firstdatacol);
}
goto done;
}
} else {
/*
* We either attempt to read all the parity columns or
* none of them. If we didn't try to read parity, we
* wouldn't be here in the correctable case. There must
* also have been fewer parity errors than parity
* columns or, again, we wouldn't be in this code path.
*/
ASSERT(parity_untried == 0);
ASSERT(parity_errors < rm->rm_firstdatacol);
/*
* Identify the data columns that reported an error.
*/
n = 0;
for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
rc = &rm->rm_col[c];
if (rc->rc_error != 0) {
ASSERT(n < VDEV_RAIDZ_MAXPARITY);
tgts[n++] = c;
}
}
ASSERT(rm->rm_firstdatacol >= n);
code = vdev_raidz_reconstruct(rm, tgts, n);
if (raidz_checksum_verify(zio) == 0) {
/*
* If we read more parity disks than were used
* for reconstruction, confirm that the other
* parity disks produced correct data. This
* routine is suboptimal in that it regenerates
* the parity that we already used in addition
* to the parity that we're attempting to
* verify, but this should be a relatively
* uncommon case, and can be optimized if it
* becomes a problem. Note that we regenerate
* parity when resilvering so we can write it
* out to failed devices later.
*/
if (parity_errors < rm->rm_firstdatacol - n ||
(zio->io_flags & ZIO_FLAG_RESILVER)) {
n = raidz_parity_verify(zio, rm);
unexpected_errors += n;
ASSERT(parity_errors + n <=
rm->rm_firstdatacol);
}
goto done;
}
}
}
/*
* This isn't a typical situation -- either we got a read error or
* a child silently returned bad data. Read every block so we can
* try again with as much data and parity as we can track down. If
* we've already been through once before, all children will be marked
* as tried so we'll proceed to combinatorial reconstruction.
*/
unexpected_errors = 1;
rm->rm_missingdata = 0;
rm->rm_missingparity = 0;
for (c = 0; c < rm->rm_cols; c++) {
if (rm->rm_col[c].rc_tried)
continue;
zio_vdev_io_redone(zio);
do {
rc = &rm->rm_col[c];
if (rc->rc_tried)
continue;
zio_nowait(zio_vdev_child_io(zio, NULL,
vd->vdev_child[rc->rc_devidx],
rc->rc_offset, rc->rc_data, rc->rc_size,
zio->io_type, zio->io_priority, 0,
vdev_raidz_child_done, rc));
} while (++c < rm->rm_cols);
return;
}
/*
* At this point we've attempted to reconstruct the data given the
* errors we detected, and we've attempted to read all columns. There
* must, therefore, be one or more additional problems -- silent errors
* resulting in invalid data rather than explicit I/O errors resulting
* in absent data. We check if there is enough additional data to
* possibly reconstruct the data and then perform combinatorial
* reconstruction over all possible combinations. If that fails,
* we're cooked.
*/
if (total_errors > rm->rm_firstdatacol) {
zio->io_error = vdev_raidz_worst_error(rm);
} else if (total_errors < rm->rm_firstdatacol &&
(code = vdev_raidz_combrec(zio, total_errors, data_errors)) != 0) {
/*
* If we didn't use all the available parity for the
* combinatorial reconstruction, verify that the remaining
* parity is correct.
*/
if (code != (1 << rm->rm_firstdatacol) - 1)
(void) raidz_parity_verify(zio, rm);
} else {
/*
* We're here because either:
*
* total_errors == rm_first_datacol, or
* vdev_raidz_combrec() failed
*
* In either case, there is enough bad data to prevent
* reconstruction.
*
* Start checksum ereports for all children which haven't
* failed, and the IO wasn't speculative.
*/
zio->io_error = SET_ERROR(ECKSUM);
if (!(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
for (c = 0; c < rm->rm_cols; c++) {
rc = &rm->rm_col[c];
if (rc->rc_error == 0) {
zio_bad_cksum_t zbc;
zbc.zbc_has_cksum = 0;
zbc.zbc_injected =
rm->rm_ecksuminjected;
zfs_ereport_start_checksum(
zio->io_spa,
vd->vdev_child[rc->rc_devidx],
zio, rc->rc_offset, rc->rc_size,
(void *)(uintptr_t)c, &zbc);
}
}
}
}
done:
zio_checksum_verified(zio);
if (zio->io_error == 0 && spa_writeable(zio->io_spa) &&
(unexpected_errors || (zio->io_flags & ZIO_FLAG_RESILVER))) {
/*
* Use the good data we have in hand to repair damaged children.
*/
for (c = 0; c < rm->rm_cols; c++) {
rc = &rm->rm_col[c];
cvd = vd->vdev_child[rc->rc_devidx];
if (rc->rc_error == 0)
continue;
zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
rc->rc_offset, rc->rc_data, rc->rc_size,
ZIO_TYPE_WRITE, ZIO_PRIORITY_ASYNC_WRITE,
ZIO_FLAG_IO_REPAIR | (unexpected_errors ?
ZIO_FLAG_SELF_HEAL : 0), NULL, NULL));
}
}
}
static void
vdev_raidz_state_change(vdev_t *vd, int faulted, int degraded)
{
if (faulted > vd->vdev_nparity)
vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
VDEV_AUX_NO_REPLICAS);
else if (degraded + faulted != 0)
vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, VDEV_AUX_NONE);
else
vdev_set_state(vd, B_FALSE, VDEV_STATE_HEALTHY, VDEV_AUX_NONE);
}
vdev_ops_t vdev_raidz_ops = {
vdev_raidz_open,
vdev_raidz_close,
vdev_raidz_asize,
vdev_raidz_io_start,
vdev_raidz_io_done,
vdev_raidz_state_change,
NULL,
NULL,
VDEV_TYPE_RAIDZ, /* name of this vdev type */
B_FALSE /* not a leaf vdev */
};