396 lines
12 KiB
C
396 lines
12 KiB
C
/* Copyright (C) 1996, 2000 N.M. Maclaren
|
|
Copyright (C) 1996, 2000 The University of Cambridge
|
|
|
|
This includes all of the code needed to handle Berkeley sockets. It is way
|
|
outside current POSIX, unfortunately. It should be easy to convert to a system
|
|
that uses another mechanism. It does not currently use socklen_t, because
|
|
the only system that the author uses that has it is Linux. */
|
|
|
|
|
|
|
|
#include "header.h"
|
|
#include "internet.h"
|
|
#include <fcntl.h>
|
|
|
|
#define SOCKET
|
|
#include "kludges.h"
|
|
#undef SOCKET
|
|
|
|
|
|
|
|
/* The code needs to set some variables during the open, for use by later
|
|
functions. */
|
|
|
|
static int initial = 1,
|
|
descriptors[MAX_SOCKETS];
|
|
|
|
#ifdef HAVE_IPV6
|
|
static struct sockaddr_storage here[MAX_SOCKETS], there[MAX_SOCKETS];
|
|
#else
|
|
static struct sockaddr_in here[MAX_SOCKETS], there[MAX_SOCKETS];
|
|
#endif
|
|
|
|
|
|
/* There needs to be some disgusting grobble for handling timeouts, that is
|
|
identical to the grobble in internet.c. */
|
|
|
|
static jmp_buf jump_buffer;
|
|
|
|
static void jump_handler (int sig) {
|
|
longjmp(jump_buffer,1);
|
|
}
|
|
|
|
static void clear_alarm (void) {
|
|
int k;
|
|
|
|
k = errno;
|
|
alarm(0);
|
|
errno = 0;
|
|
if (signal(SIGALRM,SIG_DFL) == SIG_ERR)
|
|
fatal(1,"unable to reset signal handler",NULL);
|
|
errno = k;
|
|
}
|
|
|
|
|
|
|
|
void display_in_hex (const void *data, int length) {
|
|
int i;
|
|
|
|
for (i = 0; i < length; ++i)
|
|
fprintf(stderr,"%.2x",((const unsigned char *)data)[i]);
|
|
}
|
|
|
|
#ifdef HAVE_IPV6
|
|
|
|
void display_sock_in_hex (struct sockaddr_storage *sock) {
|
|
int family, len;
|
|
struct sockaddr_in *sin;
|
|
struct sockaddr_in6 *sin6;
|
|
|
|
family = sock->ss_family;
|
|
switch(family) {
|
|
case AF_INET:
|
|
sin = (struct sockaddr_in *)sock;
|
|
display_in_hex(&sin->sin_addr, sizeof(struct in_addr));
|
|
fprintf(stderr,"/");
|
|
display_in_hex(&sin->sin_port, 2);
|
|
break;
|
|
case AF_INET6:
|
|
sin6 = (struct sockaddr_in6 *)sock;
|
|
display_in_hex(&sin6->sin6_addr, sizeof(struct in6_addr));
|
|
fprintf(stderr,"/");
|
|
display_in_hex(&sin6->sin6_port, 2);
|
|
break;
|
|
}
|
|
}
|
|
|
|
#else
|
|
|
|
void display_sock_in_hex (struct sockaddr_in *sock) {
|
|
int family, len;
|
|
struct sockaddr_in *sin;
|
|
|
|
family = sock->sin_family;
|
|
switch(family) {
|
|
case AF_INET:
|
|
sin = (struct sockaddr_in *)sock;
|
|
display_in_hex(&sin->sin_addr, sizeof(struct in_addr));
|
|
fprintf(stderr,"/");
|
|
display_in_hex(&sin->sin_port, 2);
|
|
break;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef HAVE_IPV6
|
|
|
|
void open_socket (int which, char *hostname, int timespan) {
|
|
|
|
/* Locate the specified NTP server, set up a couple of addresses and open a
|
|
socket. */
|
|
|
|
int port, k, sl;
|
|
struct sockaddr_storage address, anywhere, everywhere;
|
|
|
|
/* Initialise and find out the server and port number. Note that the port
|
|
number is in network format. */
|
|
|
|
if (initial)
|
|
for (k = 0; k < MAX_SOCKETS; ++k)
|
|
descriptors[k] = -1;
|
|
initial = 0;
|
|
if (which < 0 || which >= MAX_SOCKETS || descriptors[which] >= 0)
|
|
fatal(0,"socket index out of range or already open",NULL);
|
|
if (verbose > 2)
|
|
fprintf(stderr,"Looking for the socket addresses\n");
|
|
find_address(&address,&anywhere,&everywhere,&port,hostname,timespan);
|
|
if (verbose > 2) {
|
|
fprintf(stderr,"Internet address: address=");
|
|
display_sock_in_hex(&address);
|
|
fprintf(stderr," anywhere=");
|
|
display_sock_in_hex(&anywhere);
|
|
fprintf(stderr," everywhere=");
|
|
display_sock_in_hex(&everywhere);
|
|
fputc('\n',stderr);
|
|
}
|
|
|
|
/* Set up our own and the target addresses. Note that the target address will
|
|
be reset before use in server mode. */
|
|
|
|
memset(&here[which], 0, sizeof(struct sockaddr_storage));
|
|
here[which] = anywhere;
|
|
if (!(operation == op_listen || operation == op_server))
|
|
((struct sockaddr_in6 *)&here[which])->sin6_port = 0;
|
|
memset(&there[which], 0, sizeof(struct sockaddr_storage));
|
|
there[which] = (operation == op_broadcast ? everywhere : address);
|
|
if (verbose > 2) {
|
|
fprintf(stderr,"Initial sockets: here=");
|
|
display_sock_in_hex(&here[which]);
|
|
fprintf(stderr," there=");
|
|
display_sock_in_hex(&there[which]);
|
|
fputc('\n',stderr);
|
|
}
|
|
|
|
/* Allocate a local UDP socket and configure it. */
|
|
|
|
switch(((struct sockaddr_in *)&there[which])->sin_family) {
|
|
case AF_INET:
|
|
sl = sizeof(struct sockaddr_in);
|
|
break;
|
|
#ifdef HAVE_IPV6
|
|
case AF_INET6:
|
|
sl = sizeof(struct sockaddr_in6);
|
|
break;
|
|
#endif
|
|
default:
|
|
sl = 0;
|
|
break;
|
|
}
|
|
errno = 0;
|
|
if ((descriptors[which] = socket(here[which].ss_family,SOCK_DGRAM,0)) < 0
|
|
|| bind(descriptors[which],(struct sockaddr *)&here[which], sl) < 0)
|
|
fatal(1,"unable to allocate socket for NTP",NULL);
|
|
if (operation == op_broadcast) {
|
|
errno = 0;
|
|
k = setsockopt(descriptors[which],SOL_SOCKET,SO_BROADCAST,
|
|
(void *)&k,sizeof(k));
|
|
if (k != 0) fatal(1,"unable to set permission to broadcast",NULL);
|
|
}
|
|
}
|
|
|
|
#else
|
|
|
|
void open_socket (int which, char *hostname, int timespan) {
|
|
|
|
/* Locate the specified NTP server, set up a couple of addresses and open a
|
|
socket. */
|
|
|
|
int port, k;
|
|
struct in_addr address, anywhere, everywhere;
|
|
|
|
/* Initialise and find out the server and port number. Note that the port
|
|
number is in network format. */
|
|
|
|
if (initial) for (k = 0; k < MAX_SOCKETS; ++k) descriptors[k] = -1;
|
|
initial = 0;
|
|
if (which < 0 || which >= MAX_SOCKETS || descriptors[which] >= 0)
|
|
fatal(0,"socket index out of range or already open",NULL);
|
|
if (verbose > 2) fprintf(stderr,"Looking for the socket addresses\n");
|
|
find_address(&address,&anywhere,&everywhere,&port,hostname,timespan);
|
|
if (verbose > 2) {
|
|
fprintf(stderr,"Internet address: address=");
|
|
display_in_hex(&address,sizeof(struct in_addr));
|
|
fprintf(stderr," anywhere=");
|
|
display_in_hex(&anywhere,sizeof(struct in_addr));
|
|
fprintf(stderr," everywhere=");
|
|
display_in_hex(&everywhere,sizeof(struct in_addr));
|
|
fputc('\n',stderr);
|
|
}
|
|
|
|
/* Set up our own and the target addresses. Note that the target address will
|
|
be reset before use in server mode. */
|
|
|
|
memset(&here[which],0,sizeof(struct sockaddr_in));
|
|
here[which].sin_family = AF_INET;
|
|
here[which].sin_port =
|
|
(operation == op_listen || operation == op_server ? port : 0);
|
|
here[which].sin_addr = anywhere;
|
|
memset(&there[which],0,sizeof(struct sockaddr_in));
|
|
there[which].sin_family = AF_INET;
|
|
there[which].sin_port = port;
|
|
there[which].sin_addr = (operation == op_broadcast ? everywhere : address);
|
|
if (verbose > 2) {
|
|
fprintf(stderr,"Initial sockets: here=");
|
|
display_in_hex(&here[which].sin_addr,sizeof(struct in_addr));
|
|
fputc('/',stderr);
|
|
display_in_hex(&here[which].sin_port,sizeof(here[which].sin_port));
|
|
fprintf(stderr," there=");
|
|
display_in_hex(&there[which].sin_addr,sizeof(struct in_addr));
|
|
fputc('/',stderr);
|
|
display_in_hex(&there[which].sin_port,sizeof(there[which].sin_port));
|
|
fputc('\n',stderr);
|
|
}
|
|
|
|
/* Allocate a local UDP socket and configure it. */
|
|
|
|
errno = 0;
|
|
if ((descriptors[which] = socket(AF_INET,SOCK_DGRAM,0)) < 0 ||
|
|
bind(descriptors[which],(struct sockaddr *)&here[which],
|
|
sizeof(here[which])) < 0)
|
|
fatal(1,"unable to allocate socket for NTP",NULL);
|
|
if (operation == op_broadcast) {
|
|
errno = 0;
|
|
k = setsockopt(descriptors[which],SOL_SOCKET,SO_BROADCAST,
|
|
(void *)&k,sizeof(k));
|
|
if (k != 0) fatal(1,"unable to set permission to broadcast",NULL);
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
extern void write_socket (int which, void *packet, int length) {
|
|
|
|
/* Any errors in doing this are fatal - including blocking. Yes, this leaves a
|
|
server vulnerable to a denial of service attack. */
|
|
|
|
int k, sl;
|
|
|
|
switch(((struct sockaddr_in *)&there[which])->sin_family) {
|
|
case AF_INET:
|
|
sl = sizeof(struct sockaddr_in);
|
|
break;
|
|
#ifdef HAVE_IPV6
|
|
case AF_INET6:
|
|
sl = sizeof(struct sockaddr_in6);
|
|
break;
|
|
#endif
|
|
default:
|
|
sl = 0;
|
|
break;
|
|
}
|
|
if (which < 0 || which >= MAX_SOCKETS || descriptors[which] < 0)
|
|
fatal(0,"socket index out of range or not open",NULL);
|
|
errno = 0;
|
|
k = sendto(descriptors[which],packet,(size_t)length,0,
|
|
(struct sockaddr *)&there[which],sl);
|
|
if (k != length) fatal(1,"unable to send NTP packet",NULL);
|
|
}
|
|
|
|
|
|
|
|
extern int read_socket (int which, void *packet, int length, int waiting) {
|
|
|
|
/* Read a packet and return its length or -1 for failure. Only incorrect
|
|
length and timeout are not fatal. */
|
|
|
|
#ifdef HAVE_IPV6
|
|
struct sockaddr_storage scratch, *ptr;
|
|
#else
|
|
struct sockaddr_in scratch, *ptr;
|
|
#endif
|
|
int n;
|
|
int k;
|
|
|
|
/* Under normal circumstances, set up a timeout. */
|
|
|
|
if (which < 0 || which >= MAX_SOCKETS || descriptors[which] < 0)
|
|
fatal(0,"socket index out of range or not open",NULL);
|
|
if (waiting > 0) {
|
|
if (setjmp(jump_buffer)) {
|
|
if (verbose > 2)
|
|
fprintf(stderr,"Receive timed out\n");
|
|
else if (verbose > 1)
|
|
fprintf(stderr,"%s: receive timed out after %d seconds\n",
|
|
argv0,waiting);
|
|
return -1;
|
|
}
|
|
errno = 0;
|
|
if (signal(SIGALRM,jump_handler) == SIG_ERR)
|
|
fatal(1,"unable to set up signal handler",NULL);
|
|
alarm((unsigned int)waiting);
|
|
}
|
|
|
|
/* Get the packet and clear the timeout, if any. */
|
|
|
|
if (operation == op_server)
|
|
memcpy(ptr = &there[which],&here[which],sizeof(scratch));
|
|
else
|
|
memcpy(ptr = &scratch,&there[which],sizeof(scratch));
|
|
n = sizeof(scratch);
|
|
errno = 0;
|
|
k = recvfrom(descriptors[which],packet,(size_t)length,0,
|
|
(struct sockaddr *)ptr,&n);
|
|
if (waiting > 0) clear_alarm();
|
|
|
|
/* Now issue some low-level diagnostics. */
|
|
|
|
if (k <= 0) fatal(1,"unable to receive NTP packet from server",NULL);
|
|
if (verbose > 2) {
|
|
fprintf(stderr,"Packet of length %d received from ",k);
|
|
display_sock_in_hex(ptr);
|
|
fputc('\n',stderr);
|
|
}
|
|
return k;
|
|
}
|
|
|
|
|
|
|
|
extern int flush_socket (int which) {
|
|
|
|
/* Get rid of any outstanding input, because it may have been hanging around
|
|
for a while. Ignore packet length oddities and return the number of packets
|
|
skipped. */
|
|
|
|
#ifdef HAVE_IPV6
|
|
struct sockaddr_storage scratch;
|
|
#else
|
|
struct sockaddr_in scratch;
|
|
#endif
|
|
int n;
|
|
char buffer[256];
|
|
int flags, count = 0, total = 0, k;
|
|
|
|
/* The code is the obvious. */
|
|
|
|
if (which < 0 || which >= MAX_SOCKETS || descriptors[which] < 0)
|
|
fatal(0,"socket index out of range or not open",NULL);
|
|
if (verbose > 2) fprintf(stderr,"Flushing outstanding packets\n");
|
|
errno = 0;
|
|
if ((flags = fcntl(descriptors[which],F_GETFL,0)) < 0 ||
|
|
fcntl(descriptors[which],F_SETFL,flags|O_NONBLOCK) == -1)
|
|
fatal(1,"unable to set non-blocking mode",NULL);
|
|
while (1) {
|
|
n = sizeof(scratch);
|
|
errno = 0;
|
|
k = recvfrom(descriptors[which],buffer,256,0,
|
|
(struct sockaddr *)&scratch,&n);
|
|
if (k < 0) {
|
|
if (errno == EAGAIN || errno == EWOULDBLOCK) break;
|
|
fatal(1,"unable to flush socket",NULL);
|
|
}
|
|
++count;
|
|
total += k;
|
|
}
|
|
errno = 0;
|
|
if (fcntl(descriptors[which],F_SETFL,flags) == -1)
|
|
fatal(1,"unable to restore blocking mode",NULL);
|
|
if (verbose > 2)
|
|
fprintf(stderr,"Flushed %d packets totalling %d bytes\n",count,total);
|
|
return count;
|
|
}
|
|
|
|
|
|
|
|
extern void close_socket (int which) {
|
|
|
|
/* There is little point in shielding this with a timeout, because any hangs
|
|
are unlikely to be interruptible. It can get called when the sockets haven't
|
|
been opened, so ignore that case. */
|
|
|
|
if (which < 0 || which >= MAX_SOCKETS)
|
|
fatal(0,"socket index out of range",NULL);
|
|
if (descriptors[which] < 0) return;
|
|
errno = 0;
|
|
if (close(descriptors[which])) fatal(1,"unable to close NTP socket",NULL);
|
|
}
|