freebsd-dev/sys/kern/kern_proc.c
Tim J. Robbins 913fc94d2b Include altkstack pages in the RSS regardless of whether the process
is swapped out. Pointed out by jhb.
2003-04-25 00:20:40 +00:00

1111 lines
26 KiB
C

/*
* Copyright (c) 1982, 1986, 1989, 1991, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)kern_proc.c 8.7 (Berkeley) 2/14/95
* $FreeBSD$
*/
#include "opt_ktrace.h"
#include "opt_kstack_pages.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/kse.h>
#include <sys/sched.h>
#include <sys/smp.h>
#include <sys/sysctl.h>
#include <sys/filedesc.h>
#include <sys/tty.h>
#include <sys/signalvar.h>
#include <sys/sx.h>
#include <sys/user.h>
#include <sys/jail.h>
#ifdef KTRACE
#include <sys/uio.h>
#include <sys/ktrace.h>
#endif
#include <vm/vm.h>
#include <vm/vm_extern.h>
#include <vm/pmap.h>
#include <vm/vm_map.h>
#include <vm/uma.h>
#include <machine/critical.h>
MALLOC_DEFINE(M_PGRP, "pgrp", "process group header");
MALLOC_DEFINE(M_SESSION, "session", "session header");
static MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
static void doenterpgrp(struct proc *, struct pgrp *);
static void orphanpg(struct pgrp *pg);
static void pgadjustjobc(struct pgrp *pgrp, int entering);
static void pgdelete(struct pgrp *);
static void proc_ctor(void *mem, int size, void *arg);
static void proc_dtor(void *mem, int size, void *arg);
static void proc_init(void *mem, int size);
static void proc_fini(void *mem, int size);
/*
* Other process lists
*/
struct pidhashhead *pidhashtbl;
u_long pidhash;
struct pgrphashhead *pgrphashtbl;
u_long pgrphash;
struct proclist allproc;
struct proclist zombproc;
struct sx allproc_lock;
struct sx proctree_lock;
struct mtx pargs_ref_lock;
struct mtx ppeers_lock;
uma_zone_t proc_zone;
uma_zone_t ithread_zone;
int kstack_pages = KSTACK_PAGES;
int uarea_pages = UAREA_PAGES;
SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0, "");
SYSCTL_INT(_kern, OID_AUTO, uarea_pages, CTLFLAG_RD, &uarea_pages, 0, "");
#define RANGEOF(type, start, end) (offsetof(type, end) - offsetof(type, start))
CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE);
/*
* Initialize global process hashing structures.
*/
void
procinit()
{
sx_init(&allproc_lock, "allproc");
sx_init(&proctree_lock, "proctree");
mtx_init(&pargs_ref_lock, "struct pargs.ref", NULL, MTX_DEF);
mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF);
LIST_INIT(&allproc);
LIST_INIT(&zombproc);
pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash);
pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash);
proc_zone = uma_zcreate("PROC", sched_sizeof_proc(),
proc_ctor, proc_dtor, proc_init, proc_fini,
UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
uihashinit();
}
/*
* Prepare a proc for use.
*/
static void
proc_ctor(void *mem, int size, void *arg)
{
struct proc *p;
p = (struct proc *)mem;
}
/*
* Reclaim a proc after use.
*/
static void
proc_dtor(void *mem, int size, void *arg)
{
struct proc *p;
struct thread *td;
struct ksegrp *kg;
struct kse *ke;
/* INVARIANTS checks go here */
p = (struct proc *)mem;
KASSERT((p->p_numthreads == 1),
("bad number of threads in exiting process"));
td = FIRST_THREAD_IN_PROC(p);
KASSERT((td != NULL), ("proc_dtor: bad thread pointer"));
kg = FIRST_KSEGRP_IN_PROC(p);
KASSERT((kg != NULL), ("proc_dtor: bad kg pointer"));
ke = FIRST_KSE_IN_KSEGRP(kg);
KASSERT((ke != NULL), ("proc_dtor: bad ke pointer"));
/* Dispose of an alternate kstack, if it exists.
* XXX What if there are more than one thread in the proc?
* The first thread in the proc is special and not
* freed, so you gotta do this here.
*/
if (((p->p_flag & P_KTHREAD) != 0) && (td->td_altkstack != 0))
pmap_dispose_altkstack(td);
/*
* We want to make sure we know the initial linkages.
* so for now tear them down and remake them.
* This is probably un-needed as we can probably rely
* on the state coming in here from wait4().
*/
proc_linkup(p, kg, ke, td);
}
/*
* Initialize type-stable parts of a proc (when newly created).
*/
static void
proc_init(void *mem, int size)
{
struct proc *p;
struct thread *td;
struct ksegrp *kg;
struct kse *ke;
p = (struct proc *)mem;
p->p_sched = (struct p_sched *)&p[1];
vm_proc_new(p);
td = thread_alloc();
ke = kse_alloc();
kg = ksegrp_alloc();
proc_linkup(p, kg, ke, td);
}
/*
* Tear down type-stable parts of a proc (just before being discarded)
*/
static void
proc_fini(void *mem, int size)
{
struct proc *p;
struct thread *td;
struct ksegrp *kg;
struct kse *ke;
p = (struct proc *)mem;
KASSERT((p->p_numthreads == 1),
("bad number of threads in freeing process"));
td = FIRST_THREAD_IN_PROC(p);
KASSERT((td != NULL), ("proc_dtor: bad thread pointer"));
kg = FIRST_KSEGRP_IN_PROC(p);
KASSERT((kg != NULL), ("proc_dtor: bad kg pointer"));
ke = FIRST_KSE_IN_KSEGRP(kg);
KASSERT((ke != NULL), ("proc_dtor: bad ke pointer"));
vm_proc_dispose(p);
thread_free(td);
ksegrp_free(kg);
kse_free(ke);
}
/*
* Is p an inferior of the current process?
*/
int
inferior(p)
register struct proc *p;
{
sx_assert(&proctree_lock, SX_LOCKED);
for (; p != curproc; p = p->p_pptr)
if (p->p_pid == 0)
return (0);
return (1);
}
/*
* Locate a process by number
*/
struct proc *
pfind(pid)
register pid_t pid;
{
register struct proc *p;
sx_slock(&allproc_lock);
LIST_FOREACH(p, PIDHASH(pid), p_hash)
if (p->p_pid == pid) {
PROC_LOCK(p);
break;
}
sx_sunlock(&allproc_lock);
return (p);
}
/*
* Locate a process group by number.
* The caller must hold proctree_lock.
*/
struct pgrp *
pgfind(pgid)
register pid_t pgid;
{
register struct pgrp *pgrp;
sx_assert(&proctree_lock, SX_LOCKED);
LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) {
if (pgrp->pg_id == pgid) {
PGRP_LOCK(pgrp);
return (pgrp);
}
}
return (NULL);
}
/*
* Create a new process group.
* pgid must be equal to the pid of p.
* Begin a new session if required.
*/
int
enterpgrp(p, pgid, pgrp, sess)
register struct proc *p;
pid_t pgid;
struct pgrp *pgrp;
struct session *sess;
{
struct pgrp *pgrp2;
sx_assert(&proctree_lock, SX_XLOCKED);
KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL"));
KASSERT(p->p_pid == pgid,
("enterpgrp: new pgrp and pid != pgid"));
pgrp2 = pgfind(pgid);
KASSERT(pgrp2 == NULL,
("enterpgrp: pgrp with pgid exists"));
KASSERT(!SESS_LEADER(p),
("enterpgrp: session leader attempted setpgrp"));
mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK);
if (sess != NULL) {
/*
* new session
*/
mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF);
PROC_LOCK(p);
p->p_flag &= ~P_CONTROLT;
PROC_UNLOCK(p);
PGRP_LOCK(pgrp);
sess->s_leader = p;
sess->s_sid = p->p_pid;
sess->s_count = 1;
sess->s_ttyvp = NULL;
sess->s_ttyp = NULL;
bcopy(p->p_session->s_login, sess->s_login,
sizeof(sess->s_login));
pgrp->pg_session = sess;
KASSERT(p == curproc,
("enterpgrp: mksession and p != curproc"));
} else {
pgrp->pg_session = p->p_session;
SESS_LOCK(pgrp->pg_session);
pgrp->pg_session->s_count++;
SESS_UNLOCK(pgrp->pg_session);
PGRP_LOCK(pgrp);
}
pgrp->pg_id = pgid;
LIST_INIT(&pgrp->pg_members);
/*
* As we have an exclusive lock of proctree_lock,
* this should not deadlock.
*/
LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash);
pgrp->pg_jobc = 0;
SLIST_INIT(&pgrp->pg_sigiolst);
PGRP_UNLOCK(pgrp);
doenterpgrp(p, pgrp);
return (0);
}
/*
* Move p to an existing process group
*/
int
enterthispgrp(p, pgrp)
register struct proc *p;
struct pgrp *pgrp;
{
sx_assert(&proctree_lock, SX_XLOCKED);
PROC_LOCK_ASSERT(p, MA_NOTOWNED);
PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
KASSERT(pgrp->pg_session == p->p_session,
("%s: pgrp's session %p, p->p_session %p.\n",
__func__,
pgrp->pg_session,
p->p_session));
KASSERT(pgrp != p->p_pgrp,
("%s: p belongs to pgrp.", __func__));
doenterpgrp(p, pgrp);
return (0);
}
/*
* Move p to a process group
*/
static void
doenterpgrp(p, pgrp)
struct proc *p;
struct pgrp *pgrp;
{
struct pgrp *savepgrp;
sx_assert(&proctree_lock, SX_XLOCKED);
PROC_LOCK_ASSERT(p, MA_NOTOWNED);
PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
savepgrp = p->p_pgrp;
/*
* Adjust eligibility of affected pgrps to participate in job control.
* Increment eligibility counts before decrementing, otherwise we
* could reach 0 spuriously during the first call.
*/
fixjobc(p, pgrp, 1);
fixjobc(p, p->p_pgrp, 0);
PGRP_LOCK(pgrp);
PGRP_LOCK(savepgrp);
PROC_LOCK(p);
LIST_REMOVE(p, p_pglist);
p->p_pgrp = pgrp;
PROC_UNLOCK(p);
LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
PGRP_UNLOCK(savepgrp);
PGRP_UNLOCK(pgrp);
if (LIST_EMPTY(&savepgrp->pg_members))
pgdelete(savepgrp);
}
/*
* remove process from process group
*/
int
leavepgrp(p)
register struct proc *p;
{
struct pgrp *savepgrp;
sx_assert(&proctree_lock, SX_XLOCKED);
savepgrp = p->p_pgrp;
PGRP_LOCK(savepgrp);
PROC_LOCK(p);
LIST_REMOVE(p, p_pglist);
p->p_pgrp = NULL;
PROC_UNLOCK(p);
PGRP_UNLOCK(savepgrp);
if (LIST_EMPTY(&savepgrp->pg_members))
pgdelete(savepgrp);
return (0);
}
/*
* delete a process group
*/
static void
pgdelete(pgrp)
register struct pgrp *pgrp;
{
struct session *savesess;
sx_assert(&proctree_lock, SX_XLOCKED);
PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
/*
* Reset any sigio structures pointing to us as a result of
* F_SETOWN with our pgid.
*/
funsetownlst(&pgrp->pg_sigiolst);
PGRP_LOCK(pgrp);
if (pgrp->pg_session->s_ttyp != NULL &&
pgrp->pg_session->s_ttyp->t_pgrp == pgrp)
pgrp->pg_session->s_ttyp->t_pgrp = NULL;
LIST_REMOVE(pgrp, pg_hash);
savesess = pgrp->pg_session;
SESS_LOCK(savesess);
savesess->s_count--;
SESS_UNLOCK(savesess);
PGRP_UNLOCK(pgrp);
if (savesess->s_count == 0) {
mtx_destroy(&savesess->s_mtx);
FREE(pgrp->pg_session, M_SESSION);
}
mtx_destroy(&pgrp->pg_mtx);
FREE(pgrp, M_PGRP);
}
static void
pgadjustjobc(pgrp, entering)
struct pgrp *pgrp;
int entering;
{
PGRP_LOCK(pgrp);
if (entering)
pgrp->pg_jobc++;
else {
--pgrp->pg_jobc;
if (pgrp->pg_jobc == 0)
orphanpg(pgrp);
}
PGRP_UNLOCK(pgrp);
}
/*
* Adjust pgrp jobc counters when specified process changes process group.
* We count the number of processes in each process group that "qualify"
* the group for terminal job control (those with a parent in a different
* process group of the same session). If that count reaches zero, the
* process group becomes orphaned. Check both the specified process'
* process group and that of its children.
* entering == 0 => p is leaving specified group.
* entering == 1 => p is entering specified group.
*/
void
fixjobc(p, pgrp, entering)
register struct proc *p;
register struct pgrp *pgrp;
int entering;
{
register struct pgrp *hispgrp;
register struct session *mysession;
sx_assert(&proctree_lock, SX_LOCKED);
PROC_LOCK_ASSERT(p, MA_NOTOWNED);
PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
/*
* Check p's parent to see whether p qualifies its own process
* group; if so, adjust count for p's process group.
*/
mysession = pgrp->pg_session;
if ((hispgrp = p->p_pptr->p_pgrp) != pgrp &&
hispgrp->pg_session == mysession)
pgadjustjobc(pgrp, entering);
/*
* Check this process' children to see whether they qualify
* their process groups; if so, adjust counts for children's
* process groups.
*/
LIST_FOREACH(p, &p->p_children, p_sibling) {
hispgrp = p->p_pgrp;
if (hispgrp == pgrp ||
hispgrp->pg_session != mysession)
continue;
PROC_LOCK(p);
if (p->p_state == PRS_ZOMBIE) {
PROC_UNLOCK(p);
continue;
}
PROC_UNLOCK(p);
pgadjustjobc(hispgrp, entering);
}
}
/*
* A process group has become orphaned;
* if there are any stopped processes in the group,
* hang-up all process in that group.
*/
static void
orphanpg(pg)
struct pgrp *pg;
{
register struct proc *p;
PGRP_LOCK_ASSERT(pg, MA_OWNED);
LIST_FOREACH(p, &pg->pg_members, p_pglist) {
PROC_LOCK(p);
if (P_SHOULDSTOP(p)) {
PROC_UNLOCK(p);
LIST_FOREACH(p, &pg->pg_members, p_pglist) {
PROC_LOCK(p);
psignal(p, SIGHUP);
psignal(p, SIGCONT);
PROC_UNLOCK(p);
}
return;
}
PROC_UNLOCK(p);
}
}
#include "opt_ddb.h"
#ifdef DDB
#include <ddb/ddb.h>
DB_SHOW_COMMAND(pgrpdump, pgrpdump)
{
register struct pgrp *pgrp;
register struct proc *p;
register int i;
for (i = 0; i <= pgrphash; i++) {
if (!LIST_EMPTY(&pgrphashtbl[i])) {
printf("\tindx %d\n", i);
LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) {
printf(
"\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n",
(void *)pgrp, (long)pgrp->pg_id,
(void *)pgrp->pg_session,
pgrp->pg_session->s_count,
(void *)LIST_FIRST(&pgrp->pg_members));
LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
printf("\t\tpid %ld addr %p pgrp %p\n",
(long)p->p_pid, (void *)p,
(void *)p->p_pgrp);
}
}
}
}
}
#endif /* DDB */
/*
* Fill in a kinfo_proc structure for the specified process.
* Must be called with the target process locked.
*/
void
fill_kinfo_proc(p, kp)
struct proc *p;
struct kinfo_proc *kp;
{
struct thread *td;
struct thread *td0;
struct kse *ke;
struct ksegrp *kg;
struct tty *tp;
struct session *sp;
struct timeval tv;
td = FIRST_THREAD_IN_PROC(p);
bzero(kp, sizeof(*kp));
kp->ki_structsize = sizeof(*kp);
kp->ki_paddr = p;
PROC_LOCK_ASSERT(p, MA_OWNED);
kp->ki_addr =/* p->p_addr; */0; /* XXXKSE */
kp->ki_args = p->p_args;
kp->ki_textvp = p->p_textvp;
#ifdef KTRACE
kp->ki_tracep = p->p_tracevp;
mtx_lock(&ktrace_mtx);
kp->ki_traceflag = p->p_traceflag;
mtx_unlock(&ktrace_mtx);
#endif
kp->ki_fd = p->p_fd;
kp->ki_vmspace = p->p_vmspace;
if (p->p_ucred) {
kp->ki_uid = p->p_ucred->cr_uid;
kp->ki_ruid = p->p_ucred->cr_ruid;
kp->ki_svuid = p->p_ucred->cr_svuid;
/* XXX bde doesn't like KI_NGROUPS */
kp->ki_ngroups = min(p->p_ucred->cr_ngroups, KI_NGROUPS);
bcopy(p->p_ucred->cr_groups, kp->ki_groups,
kp->ki_ngroups * sizeof(gid_t));
kp->ki_rgid = p->p_ucred->cr_rgid;
kp->ki_svgid = p->p_ucred->cr_svgid;
}
if (p->p_procsig) {
kp->ki_sigignore = p->p_procsig->ps_sigignore;
kp->ki_sigcatch = p->p_procsig->ps_sigcatch;
}
mtx_lock_spin(&sched_lock);
if (p->p_state != PRS_NEW &&
p->p_state != PRS_ZOMBIE &&
p->p_vmspace != NULL) {
struct vmspace *vm = p->p_vmspace;
kp->ki_size = vm->vm_map.size;
kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/
if (p->p_sflag & PS_INMEM)
kp->ki_rssize += UAREA_PAGES;
FOREACH_THREAD_IN_PROC(p, td0) {
if (!TD_IS_SWAPPED(td0))
kp->ki_rssize += td0->td_kstack_pages;
if (td0->td_altkstack_obj != NULL)
kp->ki_rssize += td0->td_altkstack_pages;
}
kp->ki_swrss = vm->vm_swrss;
kp->ki_tsize = vm->vm_tsize;
kp->ki_dsize = vm->vm_dsize;
kp->ki_ssize = vm->vm_ssize;
}
if ((p->p_sflag & PS_INMEM) && p->p_stats) {
kp->ki_start = p->p_stats->p_start;
if (kp->ki_start.tv_sec < 3600)
kp->ki_start.tv_sec += boottime.tv_sec;
kp->ki_rusage = p->p_stats->p_ru;
kp->ki_childtime.tv_sec = p->p_stats->p_cru.ru_utime.tv_sec +
p->p_stats->p_cru.ru_stime.tv_sec;
kp->ki_childtime.tv_usec = p->p_stats->p_cru.ru_utime.tv_usec +
p->p_stats->p_cru.ru_stime.tv_usec;
}
if (p->p_state != PRS_ZOMBIE) {
if (td == NULL) {
/* XXXKSE: This should never happen. */
printf("fill_kinfo_proc(): pid %d has no threads!\n",
p->p_pid);
mtx_unlock_spin(&sched_lock);
return;
}
if (!(p->p_flag & P_THREADED)) {
if (td->td_wmesg != NULL) {
strlcpy(kp->ki_wmesg, td->td_wmesg,
sizeof(kp->ki_wmesg));
}
if (TD_ON_LOCK(td)) {
kp->ki_kiflag |= KI_LOCKBLOCK;
strlcpy(kp->ki_lockname, td->td_lockname,
sizeof(kp->ki_lockname));
}
}
if (p->p_state == PRS_NORMAL) { /* XXXKSE very approximate */
if (TD_ON_RUNQ(td) ||
TD_CAN_RUN(td) ||
TD_IS_RUNNING(td)) {
kp->ki_stat = SRUN;
} else if (P_SHOULDSTOP(p)) {
kp->ki_stat = SSTOP;
} else if (TD_IS_SLEEPING(td)) {
kp->ki_stat = SSLEEP;
} else if (TD_ON_LOCK(td)) {
kp->ki_stat = SLOCK;
} else {
kp->ki_stat = SWAIT;
}
} else {
kp->ki_stat = SIDL;
}
kp->ki_sflag = p->p_sflag;
kp->ki_swtime = p->p_swtime;
kp->ki_pid = p->p_pid;
/* vvv XXXKSE */
if (!(p->p_flag & P_THREADED)) {
kg = td->td_ksegrp;
ke = td->td_kse;
KASSERT((ke != NULL), ("fill_kinfo_proc: Null KSE"));
bintime2timeval(&p->p_runtime, &tv);
kp->ki_runtime =
tv.tv_sec * (u_int64_t)1000000 + tv.tv_usec;
/* things in the KSE GROUP */
kp->ki_estcpu = kg->kg_estcpu;
kp->ki_slptime = kg->kg_slptime;
kp->ki_pri.pri_user = kg->kg_user_pri;
kp->ki_pri.pri_class = kg->kg_pri_class;
kp->ki_nice = kg->kg_nice;
/* Things in the thread */
kp->ki_wchan = td->td_wchan;
kp->ki_pri.pri_level = td->td_priority;
kp->ki_pri.pri_native = td->td_base_pri;
kp->ki_lastcpu = td->td_lastcpu;
kp->ki_oncpu = td->td_oncpu;
kp->ki_tdflags = td->td_flags;
kp->ki_pcb = td->td_pcb;
kp->ki_kstack = (void *)td->td_kstack;
/* Things in the kse */
kp->ki_rqindex = ke->ke_rqindex;
kp->ki_pctcpu = sched_pctcpu(ke);
} else {
kp->ki_oncpu = -1;
kp->ki_lastcpu = -1;
kp->ki_tdflags = -1;
/* All the rest are 0 for now */
}
/* ^^^ XXXKSE */
} else {
kp->ki_stat = SZOMB;
}
mtx_unlock_spin(&sched_lock);
sp = NULL;
tp = NULL;
if (p->p_pgrp) {
kp->ki_pgid = p->p_pgrp->pg_id;
kp->ki_jobc = p->p_pgrp->pg_jobc;
sp = p->p_pgrp->pg_session;
if (sp != NULL) {
kp->ki_sid = sp->s_sid;
SESS_LOCK(sp);
strlcpy(kp->ki_login, sp->s_login,
sizeof(kp->ki_login));
if (sp->s_ttyvp)
kp->ki_kiflag |= KI_CTTY;
if (SESS_LEADER(p))
kp->ki_kiflag |= KI_SLEADER;
tp = sp->s_ttyp;
SESS_UNLOCK(sp);
}
}
if ((p->p_flag & P_CONTROLT) && tp != NULL) {
kp->ki_tdev = dev2udev(tp->t_dev);
kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
if (tp->t_session)
kp->ki_tsid = tp->t_session->s_sid;
} else
kp->ki_tdev = NOUDEV;
if (p->p_comm[0] != '\0') {
strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm));
strlcpy(kp->ki_ocomm, p->p_comm, sizeof(kp->ki_ocomm));
}
kp->ki_siglist = p->p_siglist;
SIGSETOR(kp->ki_siglist, td->td_siglist);
kp->ki_sigmask = td->td_sigmask;
kp->ki_xstat = p->p_xstat;
kp->ki_acflag = p->p_acflag;
kp->ki_flag = p->p_flag;
/* If jailed(p->p_ucred), emulate the old P_JAILED flag. */
if (jailed(p->p_ucred))
kp->ki_flag |= P_JAILED;
kp->ki_lock = p->p_lock;
if (p->p_pptr)
kp->ki_ppid = p->p_pptr->p_pid;
}
/*
* Locate a zombie process by number
*/
struct proc *
zpfind(pid_t pid)
{
struct proc *p;
sx_slock(&allproc_lock);
LIST_FOREACH(p, &zombproc, p_list)
if (p->p_pid == pid) {
PROC_LOCK(p);
break;
}
sx_sunlock(&allproc_lock);
return (p);
}
/*
* Must be called with the process locked and will return with it unlocked.
*/
static int
sysctl_out_proc(struct proc *p, struct sysctl_req *req, int doingzomb)
{
struct kinfo_proc kinfo_proc;
int error;
struct proc *np;
pid_t pid = p->p_pid;
PROC_LOCK_ASSERT(p, MA_OWNED);
fill_kinfo_proc(p, &kinfo_proc);
PROC_UNLOCK(p);
error = SYSCTL_OUT(req, (caddr_t)&kinfo_proc, sizeof(kinfo_proc));
if (error)
return (error);
if (doingzomb)
np = zpfind(pid);
else {
if (pid == 0)
return (0);
np = pfind(pid);
}
if (np == NULL)
return EAGAIN;
if (np != p) {
PROC_UNLOCK(np);
return EAGAIN;
}
PROC_UNLOCK(np);
return (0);
}
static int
sysctl_kern_proc(SYSCTL_HANDLER_ARGS)
{
int *name = (int*) arg1;
u_int namelen = arg2;
struct proc *p;
int doingzomb;
int error = 0;
if (oidp->oid_number == KERN_PROC_PID) {
if (namelen != 1)
return (EINVAL);
p = pfind((pid_t)name[0]);
if (!p)
return (0);
if (p_cansee(curthread, p)) {
PROC_UNLOCK(p);
return (0);
}
error = sysctl_out_proc(p, req, 0);
return (error);
}
if (oidp->oid_number == KERN_PROC_ALL && !namelen)
;
else if (oidp->oid_number != KERN_PROC_ALL && namelen == 1)
;
else
return (EINVAL);
if (!req->oldptr) {
/* overestimate by 5 procs */
error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5);
if (error)
return (error);
}
sysctl_wire_old_buffer(req, 0);
sx_slock(&allproc_lock);
for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) {
if (!doingzomb)
p = LIST_FIRST(&allproc);
else
p = LIST_FIRST(&zombproc);
for (; p != 0; p = LIST_NEXT(p, p_list)) {
/*
* Skip embryonic processes.
*/
mtx_lock_spin(&sched_lock);
if (p->p_state == PRS_NEW) {
mtx_unlock_spin(&sched_lock);
continue;
}
mtx_unlock_spin(&sched_lock);
PROC_LOCK(p);
/*
* Show a user only appropriate processes.
*/
if (p_cansee(curthread, p)) {
PROC_UNLOCK(p);
continue;
}
/*
* TODO - make more efficient (see notes below).
* do by session.
*/
switch (oidp->oid_number) {
case KERN_PROC_PGRP:
/* could do this by traversing pgrp */
if (p->p_pgrp == NULL ||
p->p_pgrp->pg_id != (pid_t)name[0]) {
PROC_UNLOCK(p);
continue;
}
break;
case KERN_PROC_TTY:
if ((p->p_flag & P_CONTROLT) == 0 ||
p->p_session == NULL) {
PROC_UNLOCK(p);
continue;
}
SESS_LOCK(p->p_session);
if (p->p_session->s_ttyp == NULL ||
dev2udev(p->p_session->s_ttyp->t_dev) !=
(udev_t)name[0]) {
SESS_UNLOCK(p->p_session);
PROC_UNLOCK(p);
continue;
}
SESS_UNLOCK(p->p_session);
break;
case KERN_PROC_UID:
if (p->p_ucred == NULL ||
p->p_ucred->cr_uid != (uid_t)name[0]) {
PROC_UNLOCK(p);
continue;
}
break;
case KERN_PROC_RUID:
if (p->p_ucred == NULL ||
p->p_ucred->cr_ruid != (uid_t)name[0]) {
PROC_UNLOCK(p);
continue;
}
break;
}
error = sysctl_out_proc(p, req, doingzomb);
if (error) {
sx_sunlock(&allproc_lock);
return (error);
}
}
}
sx_sunlock(&allproc_lock);
return (0);
}
struct pargs *
pargs_alloc(int len)
{
struct pargs *pa;
MALLOC(pa, struct pargs *, sizeof(struct pargs) + len, M_PARGS,
M_WAITOK);
pa->ar_ref = 1;
pa->ar_length = len;
return (pa);
}
void
pargs_free(struct pargs *pa)
{
FREE(pa, M_PARGS);
}
void
pargs_hold(struct pargs *pa)
{
if (pa == NULL)
return;
PARGS_LOCK(pa);
pa->ar_ref++;
PARGS_UNLOCK(pa);
}
void
pargs_drop(struct pargs *pa)
{
if (pa == NULL)
return;
PARGS_LOCK(pa);
if (--pa->ar_ref == 0) {
PARGS_UNLOCK(pa);
pargs_free(pa);
} else
PARGS_UNLOCK(pa);
}
/*
* This sysctl allows a process to retrieve the argument list or process
* title for another process without groping around in the address space
* of the other process. It also allow a process to set its own "process
* title to a string of its own choice.
*/
static int
sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS)
{
int *name = (int*) arg1;
u_int namelen = arg2;
struct pargs *newpa, *pa;
struct proc *p;
int error = 0;
if (namelen != 1)
return (EINVAL);
p = pfind((pid_t)name[0]);
if (!p)
return (0);
if ((!ps_argsopen) && p_cansee(curthread, p)) {
PROC_UNLOCK(p);
return (0);
}
if (req->newptr && curproc != p) {
PROC_UNLOCK(p);
return (EPERM);
}
pa = p->p_args;
pargs_hold(pa);
PROC_UNLOCK(p);
if (req->oldptr != NULL && pa != NULL)
error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length);
pargs_drop(pa);
if (error != 0 || req->newptr == NULL)
return (error);
if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit)
return (ENOMEM);
newpa = pargs_alloc(req->newlen);
error = SYSCTL_IN(req, newpa->ar_args, req->newlen);
if (error != 0) {
pargs_free(newpa);
return (error);
}
PROC_LOCK(p);
pa = p->p_args;
p->p_args = newpa;
PROC_UNLOCK(p);
pargs_drop(pa);
return (0);
}
SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD, 0, "Process table");
SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT,
0, 0, sysctl_kern_proc, "S,proc", "Return entire process table");
SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD,
sysctl_kern_proc, "Process table");
SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD,
sysctl_kern_proc, "Process table");
SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD,
sysctl_kern_proc, "Process table");
SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD,
sysctl_kern_proc, "Process table");
SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD,
sysctl_kern_proc, "Process table");
SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args, CTLFLAG_RW | CTLFLAG_ANYBODY,
sysctl_kern_proc_args, "Process argument list");