freebsd-dev/sys/arm/at91/at91_machdep.c
Ian Lepore b39ec0de86 Call soc_info.soc_data->soc_clock_init() before at91_pmc_init_clock(), so
that the latter correctly fills in the clock data structures based on
proper hardware-specific shift and mask values from the soc_data structure.
2013-03-29 18:47:08 +00:00

693 lines
19 KiB
C

/*-
* Copyright (c) 1994-1998 Mark Brinicombe.
* Copyright (c) 1994 Brini.
* All rights reserved.
*
* This code is derived from software written for Brini by Mark Brinicombe
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Brini.
* 4. The name of the company nor the name of the author may be used to
* endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* RiscBSD kernel project
*
* machdep.c
*
* Machine dependant functions for kernel setup
*
* This file needs a lot of work.
*
* Created : 17/09/94
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#define _ARM32_BUS_DMA_PRIVATE
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sysproto.h>
#include <sys/signalvar.h>
#include <sys/imgact.h>
#include <sys/kernel.h>
#include <sys/ktr.h>
#include <sys/linker.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/pcpu.h>
#include <sys/proc.h>
#include <sys/ptrace.h>
#include <sys/cons.h>
#include <sys/bio.h>
#include <sys/bus.h>
#include <sys/buf.h>
#include <sys/exec.h>
#include <sys/kdb.h>
#include <sys/msgbuf.h>
#include <machine/reg.h>
#include <machine/cpu.h>
#include <machine/board.h>
#include <vm/vm.h>
#include <vm/pmap.h>
#include <vm/vm_object.h>
#include <vm/vm_page.h>
#include <vm/vm_map.h>
#include <machine/vmparam.h>
#include <machine/pcb.h>
#include <machine/undefined.h>
#include <machine/machdep.h>
#include <machine/metadata.h>
#include <machine/armreg.h>
#include <machine/bus.h>
#include <sys/reboot.h>
#include <arm/at91/at91board.h>
#include <arm/at91/at91var.h>
#include <arm/at91/at91soc.h>
#include <arm/at91/at91_usartreg.h>
#include <arm/at91/at91rm92reg.h>
#include <arm/at91/at91sam9g20reg.h>
#include <arm/at91/at91sam9g45reg.h>
#ifndef MAXCPU
#define MAXCPU 1
#endif
/* Page table for mapping proc0 zero page */
#define KERNEL_PT_SYS 0
#define KERNEL_PT_KERN 1
#define KERNEL_PT_KERN_NUM 22
/* L2 table for mapping after kernel */
#define KERNEL_PT_AFKERNEL KERNEL_PT_KERN + KERNEL_PT_KERN_NUM
#define KERNEL_PT_AFKERNEL_NUM 5
/* this should be evenly divisable by PAGE_SIZE / L2_TABLE_SIZE_REAL (or 4) */
#define NUM_KERNEL_PTS (KERNEL_PT_AFKERNEL + KERNEL_PT_AFKERNEL_NUM)
extern u_int data_abort_handler_address;
extern u_int prefetch_abort_handler_address;
extern u_int undefined_handler_address;
struct pv_addr kernel_pt_table[NUM_KERNEL_PTS];
/* Physical and virtual addresses for some global pages */
vm_paddr_t phys_avail[10];
vm_paddr_t dump_avail[4];
struct pv_addr systempage;
struct pv_addr msgbufpv;
struct pv_addr irqstack;
struct pv_addr undstack;
struct pv_addr abtstack;
struct pv_addr kernelstack;
/* Static device mappings. */
const struct pmap_devmap at91_devmap[] = {
/*
* Map the on-board devices VA == PA so that we can access them
* with the MMU on or off.
*/
{
/*
* This at least maps the interrupt controller, the UART
* and the timer. Other devices should use newbus to
* map their memory anyway.
*/
0xdff00000,
0xfff00000,
0x00100000,
VM_PROT_READ|VM_PROT_WRITE,
PTE_NOCACHE,
},
/*
* We can't just map the OHCI registers VA == PA, because
* AT91xx_xxx_BASE belongs to the userland address space.
* We could just choose a different virtual address, but a better
* solution would probably be to just use pmap_mapdev() to allocate
* KVA, as we don't need the OHCI controller before the vm
* initialization is done. However, the AT91 resource allocation
* system doesn't know how to use pmap_mapdev() yet.
* Care must be taken to ensure PA and VM address do not overlap
* between entries.
*/
{
/*
* Add the ohci controller, and anything else that might be
* on this chip select for a VA/PA mapping.
*/
/* Internal Memory 1MB */
AT91RM92_OHCI_BASE,
AT91RM92_OHCI_PA_BASE,
0x00100000,
VM_PROT_READ|VM_PROT_WRITE,
PTE_NOCACHE,
},
{
/* CompactFlash controller. Portion of EBI CS4 1MB */
AT91RM92_CF_BASE,
AT91RM92_CF_PA_BASE,
0x00100000,
VM_PROT_READ|VM_PROT_WRITE,
PTE_NOCACHE,
},
/*
* The next two should be good for the 9260, 9261 and 9G20 since
* addresses mapping is the same.
*/
{
/* Internal Memory 1MB */
AT91SAM9G20_OHCI_BASE,
AT91SAM9G20_OHCI_PA_BASE,
0x00100000,
VM_PROT_READ|VM_PROT_WRITE,
PTE_NOCACHE,
},
{
/* EBI CS3 256MB */
AT91SAM9G20_NAND_BASE,
AT91SAM9G20_NAND_PA_BASE,
AT91SAM9G20_NAND_SIZE,
VM_PROT_READ|VM_PROT_WRITE,
PTE_NOCACHE,
},
/*
* The next should be good for the 9G45.
*/
{
/* Internal Memory 1MB */
AT91SAM9G45_OHCI_BASE,
AT91SAM9G45_OHCI_PA_BASE,
0x00100000,
VM_PROT_READ|VM_PROT_WRITE,
PTE_NOCACHE,
},
{ 0, 0, 0, 0, 0, }
};
#ifdef LINUX_BOOT_ABI
extern int membanks;
extern int memstart[];
extern int memsize[];
#endif
long
at91_ramsize(void)
{
uint32_t cr, mdr, mr, *SDRAMC;
int banks, rows, cols, bw;
#ifdef LINUX_BOOT_ABI
/*
* If we found any ATAGs that were for memory, return the first bank.
*/
if (membanks > 0)
return (memsize[0]);
#endif
if (at91_is_rm92()) {
SDRAMC = (uint32_t *)(AT91_BASE + AT91RM92_SDRAMC_BASE);
cr = SDRAMC[AT91RM92_SDRAMC_CR / 4];
mr = SDRAMC[AT91RM92_SDRAMC_MR / 4];
banks = (cr & AT91RM92_SDRAMC_CR_NB_4) ? 2 : 1;
rows = ((cr & AT91RM92_SDRAMC_CR_NR_MASK) >> 2) + 11;
cols = (cr & AT91RM92_SDRAMC_CR_NC_MASK) + 8;
bw = (mr & AT91RM92_SDRAMC_MR_DBW_16) ? 1 : 2;
} else if (at91_cpu_is(AT91_T_SAM9G45)) {
SDRAMC = (uint32_t *)(AT91_BASE + AT91SAM9G45_DDRSDRC0_BASE);
cr = SDRAMC[AT91SAM9G45_DDRSDRC_CR / 4];
mdr = SDRAMC[AT91SAM9G45_DDRSDRC_MDR / 4];
banks = 0;
rows = ((cr & AT91SAM9G45_DDRSDRC_CR_NR_MASK) >> 2) + 11;
cols = (cr & AT91SAM9G45_DDRSDRC_CR_NC_MASK) + 8;
bw = (mdr & AT91SAM9G45_DDRSDRC_MDR_DBW_16) ? 1 : 2;
/* Fix the calculation for DDR memory */
mdr &= AT91SAM9G45_DDRSDRC_MDR_MASK;
if (mdr & AT91SAM9G45_DDRSDRC_MDR_LPDDR1 ||
mdr & AT91SAM9G45_DDRSDRC_MDR_DDR2) {
/* The cols value is 1 higher for DDR */
cols += 1;
/* DDR has 4 internal banks. */
banks = 2;
}
} else {
/*
* This should be good for the 9260, 9261, 9G20, 9G35 and 9X25
* as addresses and registers are the same.
*/
SDRAMC = (uint32_t *)(AT91_BASE + AT91SAM9G20_SDRAMC_BASE);
cr = SDRAMC[AT91SAM9G20_SDRAMC_CR / 4];
mr = SDRAMC[AT91SAM9G20_SDRAMC_MR / 4];
banks = (cr & AT91SAM9G20_SDRAMC_CR_NB_4) ? 2 : 1;
rows = ((cr & AT91SAM9G20_SDRAMC_CR_NR_MASK) >> 2) + 11;
cols = (cr & AT91SAM9G20_SDRAMC_CR_NC_MASK) + 8;
bw = (cr & AT91SAM9G20_SDRAMC_CR_DBW_16) ? 1 : 2;
}
return (1 << (cols + rows + banks + bw));
}
static const char *soc_type_name[] = {
[AT91_T_CAP9] = "at91cap9",
[AT91_T_RM9200] = "at91rm9200",
[AT91_T_SAM9260] = "at91sam9260",
[AT91_T_SAM9261] = "at91sam9261",
[AT91_T_SAM9263] = "at91sam9263",
[AT91_T_SAM9G10] = "at91sam9g10",
[AT91_T_SAM9G20] = "at91sam9g20",
[AT91_T_SAM9G45] = "at91sam9g45",
[AT91_T_SAM9N12] = "at91sam9n12",
[AT91_T_SAM9RL] = "at91sam9rl",
[AT91_T_SAM9X5] = "at91sam9x5",
[AT91_T_NONE] = "UNKNOWN"
};
static const char *soc_subtype_name[] = {
[AT91_ST_NONE] = "UNKNOWN",
[AT91_ST_RM9200_BGA] = "at91rm9200_bga",
[AT91_ST_RM9200_PQFP] = "at91rm9200_pqfp",
[AT91_ST_SAM9XE] = "at91sam9xe",
[AT91_ST_SAM9G45] = "at91sam9g45",
[AT91_ST_SAM9M10] = "at91sam9m10",
[AT91_ST_SAM9G46] = "at91sam9g46",
[AT91_ST_SAM9M11] = "at91sam9m11",
[AT91_ST_SAM9G15] = "at91sam9g15",
[AT91_ST_SAM9G25] = "at91sam9g25",
[AT91_ST_SAM9G35] = "at91sam9g35",
[AT91_ST_SAM9X25] = "at91sam9x25",
[AT91_ST_SAM9X35] = "at91sam9x35",
};
struct at91_soc_info soc_info;
/*
* Read the SoC ID from the CIDR register and try to match it against the
* values we know. If we find a good one, we return true. If not, we
* return false. When we find a good one, we also find the subtype
* and CPU family.
*/
static int
at91_try_id(uint32_t dbgu_base)
{
uint32_t socid;
soc_info.cidr = *(volatile uint32_t *)(AT91_BASE + dbgu_base +
DBGU_C1R);
socid = soc_info.cidr & ~AT91_CPU_VERSION_MASK;
soc_info.type = AT91_T_NONE;
soc_info.subtype = AT91_ST_NONE;
soc_info.family = (soc_info.cidr & AT91_CPU_FAMILY_MASK) >> 20;
soc_info.exid = *(volatile uint32_t *)(AT91_BASE + dbgu_base +
DBGU_C2R);
switch (socid) {
case AT91_CPU_CAP9:
soc_info.type = AT91_T_CAP9;
break;
case AT91_CPU_RM9200:
soc_info.type = AT91_T_RM9200;
break;
case AT91_CPU_SAM9XE128:
case AT91_CPU_SAM9XE256:
case AT91_CPU_SAM9XE512:
case AT91_CPU_SAM9260:
soc_info.type = AT91_T_SAM9260;
if (soc_info.family == AT91_FAMILY_SAM9XE)
soc_info.subtype = AT91_ST_SAM9XE;
break;
case AT91_CPU_SAM9261:
soc_info.type = AT91_T_SAM9261;
break;
case AT91_CPU_SAM9263:
soc_info.type = AT91_T_SAM9263;
break;
case AT91_CPU_SAM9G10:
soc_info.type = AT91_T_SAM9G10;
break;
case AT91_CPU_SAM9G20:
soc_info.type = AT91_T_SAM9G20;
break;
case AT91_CPU_SAM9G45:
soc_info.type = AT91_T_SAM9G45;
break;
case AT91_CPU_SAM9N12:
soc_info.type = AT91_T_SAM9N12;
break;
case AT91_CPU_SAM9RL64:
soc_info.type = AT91_T_SAM9RL;
break;
case AT91_CPU_SAM9X5:
soc_info.type = AT91_T_SAM9X5;
break;
default:
return (0);
}
switch (soc_info.type) {
case AT91_T_SAM9G45:
switch (soc_info.exid) {
case AT91_EXID_SAM9G45:
soc_info.subtype = AT91_ST_SAM9G45;
break;
case AT91_EXID_SAM9G46:
soc_info.subtype = AT91_ST_SAM9G46;
break;
case AT91_EXID_SAM9M10:
soc_info.subtype = AT91_ST_SAM9M10;
break;
case AT91_EXID_SAM9M11:
soc_info.subtype = AT91_ST_SAM9M11;
break;
}
break;
case AT91_T_SAM9X5:
switch (soc_info.exid) {
case AT91_EXID_SAM9G15:
soc_info.subtype = AT91_ST_SAM9G15;
break;
case AT91_EXID_SAM9G25:
soc_info.subtype = AT91_ST_SAM9G25;
break;
case AT91_EXID_SAM9G35:
soc_info.subtype = AT91_ST_SAM9G35;
break;
case AT91_EXID_SAM9X25:
soc_info.subtype = AT91_ST_SAM9X25;
break;
case AT91_EXID_SAM9X35:
soc_info.subtype = AT91_ST_SAM9X35;
break;
}
break;
default:
break;
}
/*
* Disable interrupts in the DBGU unit...
*/
*(volatile uint32_t *)(AT91_BASE + dbgu_base + USART_IDR) = 0xffffffff;
/*
* Save the name for later...
*/
snprintf(soc_info.name, sizeof(soc_info.name), "%s%s%s",
soc_type_name[soc_info.type],
soc_info.subtype == AT91_ST_NONE ? "" : " subtype ",
soc_info.subtype == AT91_ST_NONE ? "" :
soc_subtype_name[soc_info.subtype]);
/*
* try to get the matching CPU support.
*/
soc_info.soc_data = at91_match_soc(soc_info.type, soc_info.subtype);
soc_info.dbgu_base = AT91_BASE + dbgu_base;
return (1);
}
static void
at91_soc_id(void)
{
if (!at91_try_id(AT91_DBGU0))
at91_try_id(AT91_DBGU1);
}
#ifdef ARM_MANY_BOARD
/* likely belongs in arm/arm/machdep.c, but since board_init is still at91 only... */
SET_DECLARE(arm_board_set, const struct arm_board);
/* Not yet fully functional, but enough to build ATMEL config */
static long
board_init(void)
{
return -1;
}
#endif
void *
initarm(struct arm_boot_params *abp)
{
struct pv_addr kernel_l1pt;
struct pv_addr dpcpu;
int i;
u_int l1pagetable;
vm_offset_t freemempos;
vm_offset_t afterkern;
uint32_t memsize;
vm_offset_t lastaddr;
lastaddr = parse_boot_param(abp);
set_cpufuncs();
pcpu0_init();
/* Do basic tuning, hz etc */
init_param1();
freemempos = (lastaddr + PAGE_MASK) & ~PAGE_MASK;
/* Define a macro to simplify memory allocation */
#define valloc_pages(var, np) \
alloc_pages((var).pv_va, (np)); \
(var).pv_pa = (var).pv_va + (KERNPHYSADDR - KERNVIRTADDR);
#define alloc_pages(var, np) \
(var) = freemempos; \
freemempos += (np * PAGE_SIZE); \
memset((char *)(var), 0, ((np) * PAGE_SIZE));
while (((freemempos - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) != 0)
freemempos += PAGE_SIZE;
valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
for (i = 0; i < NUM_KERNEL_PTS; ++i) {
if (!(i % (PAGE_SIZE / L2_TABLE_SIZE_REAL))) {
valloc_pages(kernel_pt_table[i],
L2_TABLE_SIZE / PAGE_SIZE);
} else {
kernel_pt_table[i].pv_va = freemempos -
(i % (PAGE_SIZE / L2_TABLE_SIZE_REAL)) *
L2_TABLE_SIZE_REAL;
kernel_pt_table[i].pv_pa =
kernel_pt_table[i].pv_va - KERNVIRTADDR +
KERNPHYSADDR;
}
}
/*
* Allocate a page for the system page mapped to 0x00000000
* or 0xffff0000. This page will just contain the system vectors
* and can be shared by all processes.
*/
valloc_pages(systempage, 1);
/* Allocate dynamic per-cpu area. */
valloc_pages(dpcpu, DPCPU_SIZE / PAGE_SIZE);
dpcpu_init((void *)dpcpu.pv_va, 0);
/* Allocate stacks for all modes */
valloc_pages(irqstack, IRQ_STACK_SIZE * MAXCPU);
valloc_pages(abtstack, ABT_STACK_SIZE * MAXCPU);
valloc_pages(undstack, UND_STACK_SIZE * MAXCPU);
valloc_pages(kernelstack, KSTACK_PAGES * MAXCPU);
valloc_pages(msgbufpv, round_page(msgbufsize) / PAGE_SIZE);
/*
* Now we start construction of the L1 page table
* We start by mapping the L2 page tables into the L1.
* This means that we can replace L1 mappings later on if necessary
*/
l1pagetable = kernel_l1pt.pv_va;
/* Map the L2 pages tables in the L1 page table */
pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH,
&kernel_pt_table[KERNEL_PT_SYS]);
for (i = 0; i < KERNEL_PT_KERN_NUM; i++)
pmap_link_l2pt(l1pagetable, KERNBASE + i * L1_S_SIZE,
&kernel_pt_table[KERNEL_PT_KERN + i]);
pmap_map_chunk(l1pagetable, KERNBASE, PHYSADDR,
(((uint32_t)lastaddr - KERNBASE) + PAGE_SIZE) & ~(PAGE_SIZE - 1),
VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
afterkern = round_page((lastaddr + L1_S_SIZE) & ~(L1_S_SIZE - 1));
for (i = 0; i < KERNEL_PT_AFKERNEL_NUM; i++) {
pmap_link_l2pt(l1pagetable, afterkern + i * L1_S_SIZE,
&kernel_pt_table[KERNEL_PT_AFKERNEL + i]);
}
/* Map the vector page. */
pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa,
VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
/* Map the DPCPU pages */
pmap_map_chunk(l1pagetable, dpcpu.pv_va, dpcpu.pv_pa, DPCPU_SIZE,
VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
/* Map the stack pages */
pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
KSTACK_PAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
pmap_map_chunk(l1pagetable, msgbufpv.pv_va, msgbufpv.pv_pa,
msgbufsize, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
for (i = 0; i < NUM_KERNEL_PTS; ++i) {
pmap_map_chunk(l1pagetable, kernel_pt_table[i].pv_va,
kernel_pt_table[i].pv_pa, L2_TABLE_SIZE,
VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
}
pmap_devmap_bootstrap(l1pagetable, at91_devmap);
cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) | DOMAIN_CLIENT);
setttb(kernel_l1pt.pv_pa);
cpu_tlb_flushID();
cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2));
at91_soc_id();
/*
* Initialize all the clocks, so that the console can work. We can only
* do this if at91_soc_id() was able to fill in the support data. Even
* if we can't init the clocks, still try to do a console init so we can
* try to print the error message about missing soc support. There's a
* chance the printf will work if the bootloader set up the DBGU.
*/
if (soc_info.soc_data != NULL) {
soc_info.soc_data->soc_clock_init();
at91_pmc_init_clock();
}
cninit();
if (soc_info.soc_data == NULL)
printf("Warning: No soc support for %s found.\n", soc_info.name);
memsize = board_init();
physmem = memsize / PAGE_SIZE;
/*
* Pages were allocated during the secondary bootstrap for the
* stacks for different CPU modes.
* We must now set the r13 registers in the different CPU modes to
* point to these stacks.
* Since the ARM stacks use STMFD etc. we must set r13 to the top end
* of the stack memory.
*/
cpu_control(CPU_CONTROL_MMU_ENABLE, CPU_CONTROL_MMU_ENABLE);
set_stackptrs(0);
/*
* We must now clean the cache again....
* Cleaning may be done by reading new data to displace any
* dirty data in the cache. This will have happened in setttb()
* but since we are boot strapping the addresses used for the read
* may have just been remapped and thus the cache could be out
* of sync. A re-clean after the switch will cure this.
* After booting there are no gross relocations of the kernel thus
* this problem will not occur after initarm().
*/
cpu_idcache_wbinv_all();
/* Set stack for exception handlers */
data_abort_handler_address = (u_int)data_abort_handler;
prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
undefined_handler_address = (u_int)undefinedinstruction_bounce;
undefined_init();
init_proc0(kernelstack.pv_va);
arm_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);
pmap_curmaxkvaddr = afterkern + L1_S_SIZE * (KERNEL_PT_KERN_NUM - 1);
arm_dump_avail_init(memsize, sizeof(dump_avail)/sizeof(dump_avail[0]));
vm_max_kernel_address = KERNVIRTADDR + 3 * memsize;
pmap_bootstrap(freemempos, &kernel_l1pt);
msgbufp = (void*)msgbufpv.pv_va;
msgbufinit(msgbufp, msgbufsize);
mutex_init();
i = 0;
#if PHYSADDR != KERNPHYSADDR
phys_avail[i++] = PHYSADDR;
phys_avail[i++] = KERNPHYSADDR;
#endif
phys_avail[i++] = virtual_avail - KERNVIRTADDR + KERNPHYSADDR;
phys_avail[i++] = PHYSADDR + memsize;
phys_avail[i++] = 0;
phys_avail[i++] = 0;
init_param2(physmem);
kdb_init();
return ((void *)(kernelstack.pv_va + USPACE_SVC_STACK_TOP -
sizeof(struct pcb)));
}
/*
* These functions are handled elsewhere, so make them nops here.
*/
void
cpu_startprofclock(void)
{
}
void
cpu_stopprofclock(void)
{
}
void
cpu_initclocks(void)
{
}
void
DELAY(int n)
{
if (soc_info.soc_data)
soc_info.soc_data->soc_delay(n);
}
void
cpu_reset(void)
{
if (soc_info.soc_data)
soc_info.soc_data->soc_reset();
while (1)
continue;
}