freebsd-dev/sys/dev/ath/ath_hal/ar5416/ar2133.c
Adrian Chadd 37931a3544 Break out most of the HAL related tweaks into a per-HAL instance,
rather than global variables.

This specifically allows for debugging to be enabled per-NIC, rather
than globally.

Since the ath driver doesn't know about AH_DEBUG, and to keep the ABI
consistent regardless of whether AH_DEBUG is enabled or not, enable the
debug parameter always but only conditionally compile in the debug
methods if needed.

The ALQ support is currently still global pending some brainstorming.

Submitted by:	ssgriffonuser@gmail.com
Reviewed by:	adrian, bschmidt
2011-06-23 02:38:36 +00:00

552 lines
16 KiB
C

/*
* Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
* Copyright (c) 2002-2008 Atheros Communications, Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
* $FreeBSD$
*/
#include "opt_ah.h"
#include "ah.h"
#include "ah_internal.h"
#include "ah_eeprom_v14.h"
#include "ar5416/ar5416.h"
#include "ar5416/ar5416reg.h"
#include "ar5416/ar5416phy.h"
#define N(a) (sizeof(a)/sizeof(a[0]))
struct ar2133State {
RF_HAL_FUNCS base; /* public state, must be first */
uint16_t pcdacTable[1];
uint32_t *Bank0Data;
uint32_t *Bank1Data;
uint32_t *Bank2Data;
uint32_t *Bank3Data;
uint32_t *Bank6Data;
uint32_t *Bank7Data;
/* NB: Bank*Data storage follows */
};
#define AR2133(ah) ((struct ar2133State *) AH5212(ah)->ah_rfHal)
#define ar5416ModifyRfBuffer ar5212ModifyRfBuffer /*XXX*/
void ar5416ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
uint32_t numBits, uint32_t firstBit, uint32_t column);
static void
ar2133WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
int writes)
{
(void) ath_hal_ini_write(ah, &AH5416(ah)->ah_ini_bb_rfgain,
freqIndex, writes);
}
/*
* Fix on 2.4 GHz band for orientation sensitivity issue by increasing
* rf_pwd_icsyndiv.
*
* Theoretical Rules:
* if 2 GHz band
* if forceBiasAuto
* if synth_freq < 2412
* bias = 0
* else if 2412 <= synth_freq <= 2422
* bias = 1
* else // synth_freq > 2422
* bias = 2
* else if forceBias > 0
* bias = forceBias & 7
* else
* no change, use value from ini file
* else
* no change, invalid band
*
* 1st Mod:
* 2422 also uses value of 2
* <approved>
*
* 2nd Mod:
* Less than 2412 uses value of 0, 2412 and above uses value of 2
*/
static void
ar2133ForceBias(struct ath_hal *ah, uint16_t synth_freq)
{
uint32_t tmp_reg;
int reg_writes = 0;
uint32_t new_bias = 0;
struct ar2133State *priv = AR2133(ah);
/* XXX this is a bit of a silly check for 2.4ghz channels -adrian */
if (synth_freq >= 3000)
return;
if (synth_freq < 2412)
new_bias = 0;
else if (synth_freq < 2422)
new_bias = 1;
else
new_bias = 2;
/* pre-reverse this field */
tmp_reg = ath_hal_reverseBits(new_bias, 3);
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: Force rf_pwd_icsyndiv to %1d on %4d\n",
__func__, new_bias, synth_freq);
/* swizzle rf_pwd_icsyndiv */
ar5416ModifyRfBuffer(priv->Bank6Data, tmp_reg, 3, 181, 3);
/* write Bank 6 with new params */
ath_hal_ini_bank_write(ah, &AH5416(ah)->ah_ini_bank6, priv->Bank6Data, reg_writes);
}
/*
* Take the MHz channel value and set the Channel value
*
* ASSUMES: Writes enabled to analog bus
*/
static HAL_BOOL
ar2133SetChannel(struct ath_hal *ah, const struct ieee80211_channel *chan)
{
uint32_t channelSel = 0;
uint32_t bModeSynth = 0;
uint32_t aModeRefSel = 0;
uint32_t reg32 = 0;
uint16_t freq;
CHAN_CENTERS centers;
OS_MARK(ah, AH_MARK_SETCHANNEL, chan->ic_freq);
ar5416GetChannelCenters(ah, chan, &centers);
freq = centers.synth_center;
if (freq < 4800) {
uint32_t txctl;
if (((freq - 2192) % 5) == 0) {
channelSel = ((freq - 672) * 2 - 3040)/10;
bModeSynth = 0;
} else if (((freq - 2224) % 5) == 0) {
channelSel = ((freq - 704) * 2 - 3040) / 10;
bModeSynth = 1;
} else {
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: invalid channel %u MHz\n", __func__, freq);
return AH_FALSE;
}
channelSel = (channelSel << 2) & 0xff;
channelSel = ath_hal_reverseBits(channelSel, 8);
txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
if (freq == 2484) {
/* Enable channel spreading for channel 14 */
OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
} else {
OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
}
} else if ((freq % 20) == 0 && freq >= 5120) {
channelSel = ath_hal_reverseBits(((freq - 4800) / 20 << 2), 8);
if (AR_SREV_HOWL(ah) || AR_SREV_SOWL_10_OR_LATER(ah))
aModeRefSel = ath_hal_reverseBits(3, 2);
else
aModeRefSel = ath_hal_reverseBits(1, 2);
} else if ((freq % 10) == 0) {
channelSel = ath_hal_reverseBits(((freq - 4800) / 10 << 1), 8);
if (AR_SREV_HOWL(ah) || AR_SREV_SOWL_10_OR_LATER(ah))
aModeRefSel = ath_hal_reverseBits(2, 2);
else
aModeRefSel = ath_hal_reverseBits(1, 2);
} else if ((freq % 5) == 0) {
channelSel = ath_hal_reverseBits((freq - 4800) / 5, 8);
aModeRefSel = ath_hal_reverseBits(1, 2);
} else {
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n",
__func__, freq);
return AH_FALSE;
}
/* Workaround for hw bug - AR5416 specific */
if (AR_SREV_OWL(ah) && ah->ah_config.ah_ar5416_biasadj)
ar2133ForceBias(ah, freq);
reg32 = (channelSel << 8) | (aModeRefSel << 2) | (bModeSynth << 1) |
(1 << 5) | 0x1;
OS_REG_WRITE(ah, AR_PHY(0x37), reg32);
AH_PRIVATE(ah)->ah_curchan = chan;
return AH_TRUE;
}
/*
* Return a reference to the requested RF Bank.
*/
static uint32_t *
ar2133GetRfBank(struct ath_hal *ah, int bank)
{
struct ar2133State *priv = AR2133(ah);
HALASSERT(priv != AH_NULL);
switch (bank) {
case 1: return priv->Bank1Data;
case 2: return priv->Bank2Data;
case 3: return priv->Bank3Data;
case 6: return priv->Bank6Data;
case 7: return priv->Bank7Data;
}
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
__func__, bank);
return AH_NULL;
}
/*
* Reads EEPROM header info from device structure and programs
* all rf registers
*
* REQUIRES: Access to the analog rf device
*/
static HAL_BOOL
ar2133SetRfRegs(struct ath_hal *ah, const struct ieee80211_channel *chan,
uint16_t modesIndex, uint16_t *rfXpdGain)
{
struct ar2133State *priv = AR2133(ah);
int writes;
HALASSERT(priv);
/* Setup Bank 0 Write */
ath_hal_ini_bank_setup(priv->Bank0Data, &AH5416(ah)->ah_ini_bank0, 1);
/* Setup Bank 1 Write */
ath_hal_ini_bank_setup(priv->Bank1Data, &AH5416(ah)->ah_ini_bank1, 1);
/* Setup Bank 2 Write */
ath_hal_ini_bank_setup(priv->Bank2Data, &AH5416(ah)->ah_ini_bank2, 1);
/* Setup Bank 3 Write */
ath_hal_ini_bank_setup(priv->Bank3Data, &AH5416(ah)->ah_ini_bank3, modesIndex);
/* Setup Bank 6 Write */
ath_hal_ini_bank_setup(priv->Bank6Data, &AH5416(ah)->ah_ini_bank6, modesIndex);
/* Only the 5 or 2 GHz OB/DB need to be set for a mode */
if (IEEE80211_IS_CHAN_2GHZ(chan)) {
HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: 2ghz: OB_2:%d, DB_2:%d\n",
__func__,
ath_hal_eepromGet(ah, AR_EEP_OB_2, AH_NULL),
ath_hal_eepromGet(ah, AR_EEP_DB_2, AH_NULL));
ar5416ModifyRfBuffer(priv->Bank6Data,
ath_hal_eepromGet(ah, AR_EEP_OB_2, AH_NULL), 3, 197, 0);
ar5416ModifyRfBuffer(priv->Bank6Data,
ath_hal_eepromGet(ah, AR_EEP_DB_2, AH_NULL), 3, 194, 0);
} else {
HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: 5ghz: OB_5:%d, DB_5:%d\n",
__func__,
ath_hal_eepromGet(ah, AR_EEP_OB_5, AH_NULL),
ath_hal_eepromGet(ah, AR_EEP_DB_5, AH_NULL));
ar5416ModifyRfBuffer(priv->Bank6Data,
ath_hal_eepromGet(ah, AR_EEP_OB_5, AH_NULL), 3, 203, 0);
ar5416ModifyRfBuffer(priv->Bank6Data,
ath_hal_eepromGet(ah, AR_EEP_DB_5, AH_NULL), 3, 200, 0);
}
/* Setup Bank 7 Setup */
ath_hal_ini_bank_setup(priv->Bank7Data, &AH5416(ah)->ah_ini_bank7, 1);
/* Write Analog registers */
writes = ath_hal_ini_bank_write(ah, &AH5416(ah)->ah_ini_bank0,
priv->Bank0Data, 0);
writes = ath_hal_ini_bank_write(ah, &AH5416(ah)->ah_ini_bank1,
priv->Bank1Data, writes);
writes = ath_hal_ini_bank_write(ah, &AH5416(ah)->ah_ini_bank2,
priv->Bank2Data, writes);
writes = ath_hal_ini_bank_write(ah, &AH5416(ah)->ah_ini_bank3,
priv->Bank3Data, writes);
writes = ath_hal_ini_bank_write(ah, &AH5416(ah)->ah_ini_bank6,
priv->Bank6Data, writes);
(void) ath_hal_ini_bank_write(ah, &AH5416(ah)->ah_ini_bank7,
priv->Bank7Data, writes);
return AH_TRUE;
#undef RF_BANK_SETUP
}
/*
* Read the transmit power levels from the structures taken from EEPROM
* Interpolate read transmit power values for this channel
* Organize the transmit power values into a table for writing into the hardware
*/
static HAL_BOOL
ar2133SetPowerTable(struct ath_hal *ah, int16_t *pPowerMin, int16_t *pPowerMax,
const struct ieee80211_channel *chan, uint16_t *rfXpdGain)
{
return AH_TRUE;
}
#if 0
static int16_t
ar2133GetMinPower(struct ath_hal *ah, EXPN_DATA_PER_CHANNEL_5112 *data)
{
int i, minIndex;
int16_t minGain,minPwr,minPcdac,retVal;
/* Assume NUM_POINTS_XPD0 > 0 */
minGain = data->pDataPerXPD[0].xpd_gain;
for (minIndex=0,i=1; i<NUM_XPD_PER_CHANNEL; i++) {
if (data->pDataPerXPD[i].xpd_gain < minGain) {
minIndex = i;
minGain = data->pDataPerXPD[i].xpd_gain;
}
}
minPwr = data->pDataPerXPD[minIndex].pwr_t4[0];
minPcdac = data->pDataPerXPD[minIndex].pcdac[0];
for (i=1; i<NUM_POINTS_XPD0; i++) {
if (data->pDataPerXPD[minIndex].pwr_t4[i] < minPwr) {
minPwr = data->pDataPerXPD[minIndex].pwr_t4[i];
minPcdac = data->pDataPerXPD[minIndex].pcdac[i];
}
}
retVal = minPwr - (minPcdac*2);
return(retVal);
}
#endif
static HAL_BOOL
ar2133GetChannelMaxMinPower(struct ath_hal *ah,
const struct ieee80211_channel *chan,
int16_t *maxPow, int16_t *minPow)
{
#if 0
struct ath_hal_5212 *ahp = AH5212(ah);
int numChannels=0,i,last;
int totalD, totalF,totalMin;
EXPN_DATA_PER_CHANNEL_5112 *data=AH_NULL;
EEPROM_POWER_EXPN_5112 *powerArray=AH_NULL;
*maxPow = 0;
if (IS_CHAN_A(chan)) {
powerArray = ahp->ah_modePowerArray5112;
data = powerArray[headerInfo11A].pDataPerChannel;
numChannels = powerArray[headerInfo11A].numChannels;
} else if (IS_CHAN_G(chan) || IS_CHAN_108G(chan)) {
/* XXX - is this correct? Should we also use the same power for turbo G? */
powerArray = ahp->ah_modePowerArray5112;
data = powerArray[headerInfo11G].pDataPerChannel;
numChannels = powerArray[headerInfo11G].numChannels;
} else if (IS_CHAN_B(chan)) {
powerArray = ahp->ah_modePowerArray5112;
data = powerArray[headerInfo11B].pDataPerChannel;
numChannels = powerArray[headerInfo11B].numChannels;
} else {
return (AH_TRUE);
}
/* Make sure the channel is in the range of the TP values
* (freq piers)
*/
if ((numChannels < 1) ||
(chan->channel < data[0].channelValue) ||
(chan->channel > data[numChannels-1].channelValue))
return(AH_FALSE);
/* Linearly interpolate the power value now */
for (last=0,i=0;
(i<numChannels) && (chan->channel > data[i].channelValue);
last=i++);
totalD = data[i].channelValue - data[last].channelValue;
if (totalD > 0) {
totalF = data[i].maxPower_t4 - data[last].maxPower_t4;
*maxPow = (int8_t) ((totalF*(chan->channel-data[last].channelValue) + data[last].maxPower_t4*totalD)/totalD);
totalMin = ar2133GetMinPower(ah,&data[i]) - ar2133GetMinPower(ah, &data[last]);
*minPow = (int8_t) ((totalMin*(chan->channel-data[last].channelValue) + ar2133GetMinPower(ah, &data[last])*totalD)/totalD);
return (AH_TRUE);
} else {
if (chan->channel == data[i].channelValue) {
*maxPow = data[i].maxPower_t4;
*minPow = ar2133GetMinPower(ah, &data[i]);
return(AH_TRUE);
} else
return(AH_FALSE);
}
#else
*maxPow = *minPow = 0;
return AH_FALSE;
#endif
}
/*
* The ordering of nfarray is thus:
*
* nfarray[0]: Chain 0 ctl
* nfarray[1]: Chain 1 ctl
* nfarray[2]: Chain 2 ctl
* nfarray[3]: Chain 0 ext
* nfarray[4]: Chain 1 ext
* nfarray[5]: Chain 2 ext
*/
static void
ar2133GetNoiseFloor(struct ath_hal *ah, int16_t nfarray[])
{
struct ath_hal_5416 *ahp = AH5416(ah);
int16_t nf;
/*
* Blank nf array - some chips may only
* have one or two RX chainmasks enabled.
*/
nfarray[0] = nfarray[1] = nfarray[2] = 0;
nfarray[3] = nfarray[4] = nfarray[5] = 0;
switch (ahp->ah_rx_chainmask) {
case 0x7:
nf = MS(OS_REG_READ(ah, AR_PHY_CH2_CCA), AR_PHY_CH2_MINCCA_PWR);
if (nf & 0x100)
nf = 0 - ((nf ^ 0x1ff) + 1);
HALDEBUG(ah, HAL_DEBUG_NFCAL,
"NF calibrated [ctl] [chain 2] is %d\n", nf);
nfarray[2] = nf;
nf = MS(OS_REG_READ(ah, AR_PHY_CH2_EXT_CCA), AR_PHY_CH2_EXT_MINCCA_PWR);
if (nf & 0x100)
nf = 0 - ((nf ^ 0x1ff) + 1);
HALDEBUG(ah, HAL_DEBUG_NFCAL,
"NF calibrated [ext] [chain 2] is %d\n", nf);
nfarray[5] = nf;
/* fall thru... */
case 0x3:
case 0x5:
nf = MS(OS_REG_READ(ah, AR_PHY_CH1_CCA), AR_PHY_CH1_MINCCA_PWR);
if (nf & 0x100)
nf = 0 - ((nf ^ 0x1ff) + 1);
HALDEBUG(ah, HAL_DEBUG_NFCAL,
"NF calibrated [ctl] [chain 1] is %d\n", nf);
nfarray[1] = nf;
nf = MS(OS_REG_READ(ah, AR_PHY_CH1_EXT_CCA), AR_PHY_CH1_EXT_MINCCA_PWR);
if (nf & 0x100)
nf = 0 - ((nf ^ 0x1ff) + 1);
HALDEBUG(ah, HAL_DEBUG_NFCAL,
"NF calibrated [ext] [chain 1] is %d\n", nf);
nfarray[4] = nf;
/* fall thru... */
case 0x1:
nf = MS(OS_REG_READ(ah, AR_PHY_CCA), AR_PHY_MINCCA_PWR);
if (nf & 0x100)
nf = 0 - ((nf ^ 0x1ff) + 1);
HALDEBUG(ah, HAL_DEBUG_NFCAL,
"NF calibrated [ctl] [chain 0] is %d\n", nf);
nfarray[0] = nf;
nf = MS(OS_REG_READ(ah, AR_PHY_EXT_CCA), AR_PHY_EXT_MINCCA_PWR);
if (nf & 0x100)
nf = 0 - ((nf ^ 0x1ff) + 1);
HALDEBUG(ah, HAL_DEBUG_NFCAL,
"NF calibrated [ext] [chain 0] is %d\n", nf);
nfarray[3] = nf;
break;
}
}
/*
* Adjust NF based on statistical values for 5GHz frequencies.
* Stubbed:Not used by Fowl
*/
static int16_t
ar2133GetNfAdjust(struct ath_hal *ah, const HAL_CHANNEL_INTERNAL *c)
{
return 0;
}
/*
* Free memory for analog bank scratch buffers
*/
static void
ar2133RfDetach(struct ath_hal *ah)
{
struct ath_hal_5212 *ahp = AH5212(ah);
HALASSERT(ahp->ah_rfHal != AH_NULL);
ath_hal_free(ahp->ah_rfHal);
ahp->ah_rfHal = AH_NULL;
}
/*
* Allocate memory for analog bank scratch buffers
* Scratch Buffer will be reinitialized every reset so no need to zero now
*/
HAL_BOOL
ar2133RfAttach(struct ath_hal *ah, HAL_STATUS *status)
{
struct ath_hal_5212 *ahp = AH5212(ah);
struct ar2133State *priv;
uint32_t *bankData;
HALDEBUG(ah, HAL_DEBUG_ATTACH, "%s: attach AR2133 radio\n", __func__);
HALASSERT(ahp->ah_rfHal == AH_NULL);
priv = ath_hal_malloc(sizeof(struct ar2133State)
+ AH5416(ah)->ah_ini_bank0.rows * sizeof(uint32_t)
+ AH5416(ah)->ah_ini_bank1.rows * sizeof(uint32_t)
+ AH5416(ah)->ah_ini_bank2.rows * sizeof(uint32_t)
+ AH5416(ah)->ah_ini_bank3.rows * sizeof(uint32_t)
+ AH5416(ah)->ah_ini_bank6.rows * sizeof(uint32_t)
+ AH5416(ah)->ah_ini_bank7.rows * sizeof(uint32_t)
);
if (priv == AH_NULL) {
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: cannot allocate private state\n", __func__);
*status = HAL_ENOMEM; /* XXX */
return AH_FALSE;
}
priv->base.rfDetach = ar2133RfDetach;
priv->base.writeRegs = ar2133WriteRegs;
priv->base.getRfBank = ar2133GetRfBank;
priv->base.setChannel = ar2133SetChannel;
priv->base.setRfRegs = ar2133SetRfRegs;
priv->base.setPowerTable = ar2133SetPowerTable;
priv->base.getChannelMaxMinPower = ar2133GetChannelMaxMinPower;
priv->base.getNfAdjust = ar2133GetNfAdjust;
bankData = (uint32_t *) &priv[1];
priv->Bank0Data = bankData, bankData += AH5416(ah)->ah_ini_bank0.rows;
priv->Bank1Data = bankData, bankData += AH5416(ah)->ah_ini_bank1.rows;
priv->Bank2Data = bankData, bankData += AH5416(ah)->ah_ini_bank2.rows;
priv->Bank3Data = bankData, bankData += AH5416(ah)->ah_ini_bank3.rows;
priv->Bank6Data = bankData, bankData += AH5416(ah)->ah_ini_bank6.rows;
priv->Bank7Data = bankData, bankData += AH5416(ah)->ah_ini_bank7.rows;
ahp->ah_pcdacTable = priv->pcdacTable;
ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
ahp->ah_rfHal = &priv->base;
/*
* Set noise floor adjust method; we arrange a
* direct call instead of thunking.
*/
AH_PRIVATE(ah)->ah_getNfAdjust = priv->base.getNfAdjust;
AH_PRIVATE(ah)->ah_getNoiseFloor = ar2133GetNoiseFloor;
return AH_TRUE;
}