freebsd-dev/sys/netinet/sctp_pcb.c
Randall Stewart 3c503c28da - Fixed 1-2-1 model to not worry about associd in sockopts
- Fixed RTOinfo for bounding.
- Fixed connect() to return ECONNREFUSED when an ABORT is received.
- Added comments to direct Static Analysis not to look at some things
  it does not understand (comments are /* sa_ignore XXXXX */)
- Bind when colliding was broken, missing not_found = 1 before
  checking to see if the port was in use caused endless bind loop.
- Cookie life needs to be in milliseconds to conform to socket api.
- Cookie life is not supposed to change if its 0, On the assoc
  level set we changed it to 0 opps.
- Two more static analysis issues identified by the cisco
  tool. Null checks needed.
- An issue for sendfile(). Need to validate the correct
  input argument.
- When sending failed due to a no route to host, we leaked
  the mbuf chain failing to call m_freem().
- Fix #ifdef issue for getting hash block len when HAVE_SHA2 is NOT defined
Reviewed by:	gnn
2007-05-17 12:16:24 +00:00

5630 lines
158 KiB
C

/*-
* Copyright (c) 2001-2007, by Cisco Systems, Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* a) Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* b) Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the distribution.
*
* c) Neither the name of Cisco Systems, Inc. nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
/* $KAME: sctp_pcb.c,v 1.38 2005/03/06 16:04:18 itojun Exp $ */
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <netinet/sctp_os.h>
#include <sys/proc.h>
#include <netinet/sctp_var.h>
#include <netinet/sctp_sysctl.h>
#include <netinet/sctp_pcb.h>
#include <netinet/sctputil.h>
#include <netinet/sctp.h>
#include <netinet/sctp_header.h>
#include <netinet/sctp_asconf.h>
#include <netinet/sctp_output.h>
#include <netinet/sctp_timer.h>
#include <netinet/sctp_bsd_addr.h>
struct sctp_epinfo sctppcbinfo;
/* FIX: we don't handle multiple link local scopes */
/* "scopeless" replacement IN6_ARE_ADDR_EQUAL */
int
SCTP6_ARE_ADDR_EQUAL(struct in6_addr *a, struct in6_addr *b)
{
struct in6_addr tmp_a, tmp_b;
/* use a copy of a and b */
tmp_a = *a;
tmp_b = *b;
in6_clearscope(&tmp_a);
in6_clearscope(&tmp_b);
return (IN6_ARE_ADDR_EQUAL(&tmp_a, &tmp_b));
}
void
sctp_fill_pcbinfo(struct sctp_pcbinfo *spcb)
{
/*
* We really don't need to lock this, but I will just because it
* does not hurt.
*/
SCTP_INP_INFO_RLOCK();
spcb->ep_count = sctppcbinfo.ipi_count_ep;
spcb->asoc_count = sctppcbinfo.ipi_count_asoc;
spcb->laddr_count = sctppcbinfo.ipi_count_laddr;
spcb->raddr_count = sctppcbinfo.ipi_count_raddr;
spcb->chk_count = sctppcbinfo.ipi_count_chunk;
spcb->readq_count = sctppcbinfo.ipi_count_readq;
spcb->stream_oque = sctppcbinfo.ipi_count_strmoq;
spcb->free_chunks = sctppcbinfo.ipi_free_chunks;
SCTP_INP_INFO_RUNLOCK();
}
/*
* Addresses are added to VRF's (Virtual Router's). For BSD we
* have only the default VRF 0. We maintain a hash list of
* VRF's. Each VRF has its own list of sctp_ifn's. Each of
* these has a list of addresses. When we add a new address
* to a VRF we lookup the ifn/ifn_index, if the ifn does
* not exist we create it and add it to the list of IFN's
* within the VRF. Once we have the sctp_ifn, we add the
* address to the list. So we look something like:
*
* hash-vrf-table
* vrf-> ifn-> ifn -> ifn
* vrf |
* ... +--ifa-> ifa -> ifa
* vrf
*
* We keep these seperate lists since the SCTP subsystem will
* point to these from its source address selection nets structure.
* When an address is deleted it does not happen right away on
* the SCTP side, it gets scheduled. What we do when a
* delete happens is immediately remove the address from
* the master list and decrement the refcount. As our
* addip iterator works through and frees the src address
* selection pointing to the sctp_ifa, eventually the refcount
* will reach 0 and we will delete it. Note that it is assumed
* that any locking on system level ifn/ifa is done at the
* caller of these functions and these routines will only
* lock the SCTP structures as they add or delete things.
*
* Other notes on VRF concepts.
* - An endpoint can be in multiple VRF's
* - An association lives within a VRF and only one VRF.
* - Any incoming packet we can deduce the VRF for by
* looking at the mbuf/pak inbound (for BSD its VRF=0 :D)
* - Any downward send call or connect call must supply the
* VRF via ancillary data or via some sort of set default
* VRF socket option call (again for BSD no brainer since
* the VRF is always 0).
* - An endpoint may add multiple VRF's to it.
* - Listening sockets can accept associations in any
* of the VRF's they are in but the assoc will end up
* in only one VRF (gotten from the packet or connect/send).
*
*/
struct sctp_vrf *
sctp_allocate_vrf(int vrf_id)
{
struct sctp_vrf *vrf = NULL;
struct sctp_vrflist *bucket;
/* First allocate the VRF structure */
vrf = sctp_find_vrf(vrf_id);
if (vrf) {
/* Already allocated */
return (vrf);
}
SCTP_MALLOC(vrf, struct sctp_vrf *, sizeof(struct sctp_vrf),
"SCTP_VRF");
if (vrf == NULL) {
/* No memory */
#ifdef INVARIANTS
panic("No memory for VRF:%d", vrf_id);
#endif
return (NULL);
}
/* setup the VRF */
memset(vrf, 0, sizeof(struct sctp_vrf));
vrf->vrf_id = vrf_id;
LIST_INIT(&vrf->ifnlist);
vrf->total_ifa_count = 0;
/* Init the HASH of addresses */
vrf->vrf_addr_hash = SCTP_HASH_INIT(SCTP_VRF_ADDR_HASH_SIZE,
&vrf->vrf_addr_hashmark);
if (vrf->vrf_addr_hash == NULL) {
/* No memory */
#ifdef INVARIANTS
panic("No memory for VRF:%d", vrf_id);
#endif
SCTP_FREE(vrf);
return (NULL);
}
vrf->vrf_ifn_hash = SCTP_HASH_INIT(SCTP_VRF_IFN_HASH_SIZE,
&vrf->vrf_ifn_hashmark);
if (vrf->vrf_ifn_hash == NULL) {
/* No memory */
#ifdef INVARIANTS
panic("No memory for VRF:%d", vrf_id);
#endif
SCTP_HASH_FREE(vrf->vrf_addr_hash, vrf->vrf_addr_hashmark);
SCTP_FREE(vrf);
return (NULL);
}
/* Add it to the hash table */
bucket = &sctppcbinfo.sctp_vrfhash[(vrf_id & sctppcbinfo.hashvrfmark)];
LIST_INSERT_HEAD(bucket, vrf, next_vrf);
atomic_add_int(&sctppcbinfo.ipi_count_vrfs, 1);
return (vrf);
}
struct sctp_ifn *
sctp_find_ifn(struct sctp_vrf *vrf, void *ifn, uint32_t ifn_index)
{
struct sctp_ifn *sctp_ifnp;
struct sctp_ifnlist *hash_ifn_head;
/*
* We assume the lock is held for the addresses if thats wrong
* problems could occur :-)
*/
hash_ifn_head = &vrf->vrf_ifn_hash[(ifn_index & vrf->vrf_ifn_hashmark)];
LIST_FOREACH(sctp_ifnp, hash_ifn_head, next_bucket) {
if (sctp_ifnp->ifn_index == ifn_index) {
return (sctp_ifnp);
}
if (sctp_ifnp->ifn_p && ifn && (sctp_ifnp->ifn_p == ifn)) {
return (sctp_ifnp);
}
}
return (NULL);
}
struct sctp_vrf *
sctp_find_vrf(uint32_t vrf_id)
{
struct sctp_vrflist *bucket;
struct sctp_vrf *liste;
bucket = &sctppcbinfo.sctp_vrfhash[(vrf_id & sctppcbinfo.hashvrfmark)];
LIST_FOREACH(liste, bucket, next_vrf) {
if (vrf_id == liste->vrf_id) {
return (liste);
}
}
return (NULL);
}
void
sctp_free_ifn(struct sctp_ifn *sctp_ifnp)
{
int ret;
ret = atomic_fetchadd_int(&sctp_ifnp->refcount, -1);
if (ret == 1) {
/* We zero'd the count */
SCTP_FREE(sctp_ifnp);
atomic_subtract_int(&sctppcbinfo.ipi_count_ifns, 1);
}
}
void
sctp_update_ifn_mtu(uint32_t vrf_id, uint32_t ifn_index, uint32_t mtu)
{
struct sctp_ifn *sctp_ifnp;
struct sctp_vrf *vrf;
vrf = sctp_find_vrf(vrf_id);
if (vrf == NULL)
return;
sctp_ifnp = sctp_find_ifn(vrf, (void *)NULL, ifn_index);
if (sctp_ifnp != NULL) {
sctp_ifnp->ifn_mtu = mtu;
}
}
void
sctp_free_ifa(struct sctp_ifa *sctp_ifap)
{
int ret;
ret = atomic_fetchadd_int(&sctp_ifap->refcount, -1);
if (ret == 1) {
/* We zero'd the count */
SCTP_FREE(sctp_ifap);
atomic_subtract_int(&sctppcbinfo.ipi_count_ifas, 1);
}
}
static void
sctp_delete_ifn(struct sctp_ifn *sctp_ifnp, int hold_addr_lock)
{
struct sctp_ifn *found;
found = sctp_find_ifn(sctp_ifnp->vrf, sctp_ifnp->ifn_p, sctp_ifnp->ifn_index);
if (found == NULL) {
/* Not in the list.. sorry */
return;
}
if (hold_addr_lock == 0)
SCTP_IPI_ADDR_LOCK();
LIST_REMOVE(sctp_ifnp, next_bucket);
LIST_REMOVE(sctp_ifnp, next_ifn);
if (hold_addr_lock == 0)
SCTP_IPI_ADDR_UNLOCK();
/* Take away the reference, and possibly free it */
sctp_free_ifn(sctp_ifnp);
}
struct sctp_ifa *
sctp_add_addr_to_vrf(uint32_t vrf_id, void *ifn, uint32_t ifn_index,
uint32_t ifn_type, const char *if_name,
void *ifa, struct sockaddr *addr, uint32_t ifa_flags,
int dynamic_add)
{
struct sctp_vrf *vrf;
struct sctp_ifn *sctp_ifnp = NULL;
struct sctp_ifa *sctp_ifap = NULL;
struct sctp_ifalist *hash_addr_head;
struct sctp_ifnlist *hash_ifn_head;
uint32_t hash_of_addr;
/* How granular do we need the locks to be here? */
SCTP_IPI_ADDR_LOCK();
vrf = sctp_find_vrf(vrf_id);
if (vrf == NULL) {
vrf = sctp_allocate_vrf(vrf_id);
if (vrf == NULL) {
SCTP_IPI_ADDR_UNLOCK();
return (NULL);
}
}
sctp_ifnp = sctp_find_ifn(vrf, ifn, ifn_index);
if (sctp_ifnp == NULL) {
/*
* build one and add it, can't hold lock until after malloc
* done though.
*/
SCTP_IPI_ADDR_UNLOCK();
SCTP_MALLOC(sctp_ifnp, struct sctp_ifn *, sizeof(struct sctp_ifn), "SCTP_IFN");
if (sctp_ifnp == NULL) {
#ifdef INVARIANTS
panic("No memory for IFN:%u", sctp_ifnp->ifn_index);
#endif
return (NULL);
}
sctp_ifnp->ifn_index = ifn_index;
sctp_ifnp->ifn_p = ifn;
sctp_ifnp->ifn_type = ifn_type;
sctp_ifnp->ifa_count = 0;
sctp_ifnp->refcount = 1;
sctp_ifnp->vrf = vrf;
sctp_ifnp->ifn_mtu = SCTP_GATHER_MTU_FROM_IFN_INFO(ifn, ifn_index);
if (if_name != NULL) {
memcpy(sctp_ifnp->ifn_name, if_name, SCTP_IFNAMSIZ);
} else {
memcpy(sctp_ifnp->ifn_name, "unknown", min(7, SCTP_IFNAMSIZ));
}
hash_ifn_head = &vrf->vrf_ifn_hash[(ifn_index & vrf->vrf_ifn_hashmark)];
LIST_INIT(&sctp_ifnp->ifalist);
SCTP_IPI_ADDR_LOCK();
LIST_INSERT_HEAD(hash_ifn_head, sctp_ifnp, next_bucket);
LIST_INSERT_HEAD(&vrf->ifnlist, sctp_ifnp, next_ifn);
atomic_add_int(&sctppcbinfo.ipi_count_ifns, 1);
}
sctp_ifap = sctp_find_ifa_by_addr(addr, vrf->vrf_id, 1);
if (sctp_ifap) {
/* Hmm, it already exists? */
if ((sctp_ifap->ifn_p) &&
(sctp_ifap->ifn_p->ifn_index == ifn_index)) {
if (sctp_ifap->localifa_flags & SCTP_BEING_DELETED) {
/* easy to solve, just switch back to active */
sctp_ifap->localifa_flags = SCTP_ADDR_VALID;
sctp_ifap->ifn_p = sctp_ifnp;
exit_stage_left:
SCTP_IPI_ADDR_UNLOCK();
return (sctp_ifap);
} else {
goto exit_stage_left;
}
} else {
if (sctp_ifap->ifn_p) {
/*
* The first IFN gets the address,
* duplicates are ignored.
*/
goto exit_stage_left;
} else {
/* repair ifnp which was NULL ? */
sctp_ifap->localifa_flags = SCTP_ADDR_VALID;
sctp_ifap->ifn_p = sctp_ifnp;
atomic_add_int(&sctp_ifap->ifn_p->refcount, 1);
}
goto exit_stage_left;
}
}
SCTP_IPI_ADDR_UNLOCK();
SCTP_MALLOC(sctp_ifap, struct sctp_ifa *, sizeof(struct sctp_ifa), "SCTP_IFA");
if (sctp_ifap == NULL) {
#ifdef INVARIANTS
panic("No memory for IFA");
#endif
return (NULL);
}
memset(sctp_ifap, 0, sizeof(struct sctp_ifa));
sctp_ifap->ifn_p = sctp_ifnp;
atomic_add_int(&sctp_ifnp->refcount, 1);
sctp_ifap->ifa = ifa;
memcpy(&sctp_ifap->address, addr, addr->sa_len);
sctp_ifap->localifa_flags = SCTP_ADDR_VALID | SCTP_ADDR_DEFER_USE;
sctp_ifap->flags = ifa_flags;
/* Set scope */
if (sctp_ifap->address.sa.sa_family == AF_INET) {
struct sockaddr_in *sin;
sin = (struct sockaddr_in *)&sctp_ifap->address.sin;
if (SCTP_IFN_IS_IFT_LOOP(sctp_ifap->ifn_p) ||
(IN4_ISLOOPBACK_ADDRESS(&sin->sin_addr))) {
sctp_ifap->src_is_loop = 1;
}
if ((IN4_ISPRIVATE_ADDRESS(&sin->sin_addr))) {
sctp_ifap->src_is_priv = 1;
}
} else if (sctp_ifap->address.sa.sa_family == AF_INET6) {
/* ok to use deprecated addresses? */
struct sockaddr_in6 *sin6;
sin6 = (struct sockaddr_in6 *)&sctp_ifap->address.sin6;
if (SCTP_IFN_IS_IFT_LOOP(sctp_ifap->ifn_p) ||
(IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr))) {
sctp_ifap->src_is_loop = 1;
}
if (IN6_IS_ADDR_LINKLOCAL(&sin6->sin6_addr)) {
sctp_ifap->src_is_priv = 1;
}
}
hash_of_addr = sctp_get_ifa_hash_val(&sctp_ifap->address.sa);
if ((sctp_ifap->src_is_priv == 0) &&
(sctp_ifap->src_is_loop == 0)) {
sctp_ifap->src_is_glob = 1;
}
SCTP_IPI_ADDR_LOCK();
hash_addr_head = &vrf->vrf_addr_hash[(hash_of_addr & vrf->vrf_addr_hashmark)];
LIST_INSERT_HEAD(hash_addr_head, sctp_ifap, next_bucket);
sctp_ifap->refcount = 1;
LIST_INSERT_HEAD(&sctp_ifnp->ifalist, sctp_ifap, next_ifa);
sctp_ifnp->ifa_count++;
vrf->total_ifa_count++;
atomic_add_int(&sctppcbinfo.ipi_count_ifas, 1);
SCTP_IPI_ADDR_UNLOCK();
if (dynamic_add) {
/*
* Bump up the refcount so that when the timer completes it
* will drop back down.
*/
struct sctp_laddr *wi;
atomic_add_int(&sctp_ifap->refcount, 1);
wi = SCTP_ZONE_GET(sctppcbinfo.ipi_zone_laddr, struct sctp_laddr);
if (wi == NULL) {
/*
* Gak, what can we do? We have lost an address
* change can you say HOSED?
*/
SCTPDBG(SCTP_DEBUG_PCB1, "Lost and address change ???\n");
/* Opps, must decrement the count */
sctp_del_addr_from_vrf(vrf_id, addr, ifn_index);
return (NULL);
}
SCTP_INCR_LADDR_COUNT();
bzero(wi, sizeof(*wi));
wi->ifa = sctp_ifap;
wi->action = SCTP_ADD_IP_ADDRESS;
SCTP_IPI_ITERATOR_WQ_LOCK();
/*
* Should this really be a tailq? As it is we will process
* the newest first :-0
*/
LIST_INSERT_HEAD(&sctppcbinfo.addr_wq, wi, sctp_nxt_addr);
sctp_timer_start(SCTP_TIMER_TYPE_ADDR_WQ,
(struct sctp_inpcb *)NULL,
(struct sctp_tcb *)NULL,
(struct sctp_nets *)NULL);
SCTP_IPI_ITERATOR_WQ_UNLOCK();
} else {
/* it's ready for use */
sctp_ifap->localifa_flags &= ~SCTP_ADDR_DEFER_USE;
}
return (sctp_ifap);
}
void
sctp_del_addr_from_vrf(uint32_t vrf_id, struct sockaddr *addr,
uint32_t ifn_index)
{
struct sctp_vrf *vrf;
struct sctp_ifa *sctp_ifap = NULL;
SCTP_IPI_ADDR_LOCK();
vrf = sctp_find_vrf(vrf_id);
if (vrf == NULL) {
SCTP_PRINTF("Can't find vrf_id:%d\n", vrf_id);
goto out_now;
}
sctp_ifap = sctp_find_ifa_by_addr(addr, vrf->vrf_id, 1);
if (sctp_ifap) {
sctp_ifap->localifa_flags &= SCTP_ADDR_VALID;
sctp_ifap->localifa_flags |= SCTP_BEING_DELETED;
vrf->total_ifa_count--;
LIST_REMOVE(sctp_ifap, next_bucket);
LIST_REMOVE(sctp_ifap, next_ifa);
if (sctp_ifap->ifn_p) {
sctp_ifap->ifn_p->ifa_count--;
if (SCTP_LIST_EMPTY(&sctp_ifap->ifn_p->ifalist)) {
sctp_delete_ifn(sctp_ifap->ifn_p, 1);
}
sctp_free_ifn(sctp_ifap->ifn_p);
sctp_ifap->ifn_p = NULL;
}
}
#ifdef SCTP_DEBUG
else {
SCTPDBG(SCTP_DEBUG_PCB1, "Del Addr-ifn:%d Could not find address:",
ifn_index);
SCTPDBG_ADDR(SCTP_DEBUG_PCB1, addr);
}
#endif
out_now:
SCTP_IPI_ADDR_UNLOCK();
if (sctp_ifap) {
struct sctp_laddr *wi;
wi = SCTP_ZONE_GET(sctppcbinfo.ipi_zone_laddr, struct sctp_laddr);
if (wi == NULL) {
/*
* Gak, what can we do? We have lost an address
* change can you say HOSED?
*/
SCTPDBG(SCTP_DEBUG_PCB1, "Lost and address change ???\n");
/* Opps, must decrement the count */
sctp_free_ifa(sctp_ifap);
return;
}
SCTP_INCR_LADDR_COUNT();
bzero(wi, sizeof(*wi));
wi->ifa = sctp_ifap;
wi->action = SCTP_DEL_IP_ADDRESS;
SCTP_IPI_ITERATOR_WQ_LOCK();
/*
* Should this really be a tailq? As it is we will process
* the newest first :-0
*/
LIST_INSERT_HEAD(&sctppcbinfo.addr_wq, wi, sctp_nxt_addr);
sctp_timer_start(SCTP_TIMER_TYPE_ADDR_WQ,
(struct sctp_inpcb *)NULL,
(struct sctp_tcb *)NULL,
(struct sctp_nets *)NULL);
SCTP_IPI_ITERATOR_WQ_UNLOCK();
}
return;
}
static struct sctp_tcb *
sctp_tcb_special_locate(struct sctp_inpcb **inp_p, struct sockaddr *from,
struct sockaddr *to, struct sctp_nets **netp, uint32_t vrf_id)
{
/**** ASSUMSES THE CALLER holds the INP_INFO_RLOCK */
/*
* If we support the TCP model, then we must now dig through to see
* if we can find our endpoint in the list of tcp ep's.
*/
uint16_t lport, rport;
struct sctppcbhead *ephead;
struct sctp_inpcb *inp;
struct sctp_laddr *laddr;
struct sctp_tcb *stcb;
struct sctp_nets *net;
if ((to == NULL) || (from == NULL)) {
return (NULL);
}
if (to->sa_family == AF_INET && from->sa_family == AF_INET) {
lport = ((struct sockaddr_in *)to)->sin_port;
rport = ((struct sockaddr_in *)from)->sin_port;
} else if (to->sa_family == AF_INET6 && from->sa_family == AF_INET6) {
lport = ((struct sockaddr_in6 *)to)->sin6_port;
rport = ((struct sockaddr_in6 *)from)->sin6_port;
} else {
return NULL;
}
ephead = &sctppcbinfo.sctp_tcpephash[SCTP_PCBHASH_ALLADDR(
(lport + rport), sctppcbinfo.hashtcpmark)];
/*
* Ok now for each of the guys in this bucket we must look and see:
* - Does the remote port match. - Does there single association's
* addresses match this address (to). If so we update p_ep to point
* to this ep and return the tcb from it.
*/
LIST_FOREACH(inp, ephead, sctp_hash) {
SCTP_INP_RLOCK(inp);
if (inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) {
SCTP_INP_RUNLOCK(inp);
continue;
}
if (lport != inp->sctp_lport) {
SCTP_INP_RUNLOCK(inp);
continue;
}
if (inp->def_vrf_id != vrf_id) {
SCTP_INP_RUNLOCK(inp);
continue;
}
/* check to see if the ep has one of the addresses */
if ((inp->sctp_flags & SCTP_PCB_FLAGS_BOUNDALL) == 0) {
/* We are NOT bound all, so look further */
int match = 0;
LIST_FOREACH(laddr, &inp->sctp_addr_list, sctp_nxt_addr) {
if (laddr->ifa == NULL) {
SCTPDBG(SCTP_DEBUG_PCB1, "%s: NULL ifa\n", __FUNCTION__);
continue;
}
if (laddr->ifa->localifa_flags & SCTP_BEING_DELETED) {
SCTPDBG(SCTP_DEBUG_PCB1, "ifa being deleted\n");
continue;
}
if (laddr->ifa->address.sa.sa_family ==
to->sa_family) {
/* see if it matches */
struct sockaddr_in *intf_addr, *sin;
intf_addr = &laddr->ifa->address.sin;
sin = (struct sockaddr_in *)to;
if (from->sa_family == AF_INET) {
if (sin->sin_addr.s_addr ==
intf_addr->sin_addr.s_addr) {
match = 1;
break;
}
} else {
struct sockaddr_in6 *intf_addr6;
struct sockaddr_in6 *sin6;
sin6 = (struct sockaddr_in6 *)
to;
intf_addr6 = &laddr->ifa->address.sin6;
if (SCTP6_ARE_ADDR_EQUAL(&sin6->sin6_addr,
&intf_addr6->sin6_addr)) {
match = 1;
break;
}
}
}
}
if (match == 0) {
/* This endpoint does not have this address */
SCTP_INP_RUNLOCK(inp);
continue;
}
}
/*
* Ok if we hit here the ep has the address, does it hold
* the tcb?
*/
stcb = LIST_FIRST(&inp->sctp_asoc_list);
if (stcb == NULL) {
SCTP_INP_RUNLOCK(inp);
continue;
}
SCTP_TCB_LOCK(stcb);
if (stcb->rport != rport) {
/* remote port does not match. */
SCTP_TCB_UNLOCK(stcb);
SCTP_INP_RUNLOCK(inp);
continue;
}
/* Does this TCB have a matching address? */
TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) {
if (net->ro._l_addr.sa.sa_family != from->sa_family) {
/* not the same family, can't be a match */
continue;
}
if (from->sa_family == AF_INET) {
struct sockaddr_in *sin, *rsin;
sin = (struct sockaddr_in *)&net->ro._l_addr;
rsin = (struct sockaddr_in *)from;
if (sin->sin_addr.s_addr ==
rsin->sin_addr.s_addr) {
/* found it */
if (netp != NULL) {
*netp = net;
}
/* Update the endpoint pointer */
*inp_p = inp;
SCTP_INP_RUNLOCK(inp);
return (stcb);
}
} else {
struct sockaddr_in6 *sin6, *rsin6;
sin6 = (struct sockaddr_in6 *)&net->ro._l_addr;
rsin6 = (struct sockaddr_in6 *)from;
if (SCTP6_ARE_ADDR_EQUAL(&sin6->sin6_addr,
&rsin6->sin6_addr)) {
/* found it */
if (netp != NULL) {
*netp = net;
}
/* Update the endpoint pointer */
*inp_p = inp;
SCTP_INP_RUNLOCK(inp);
return (stcb);
}
}
}
SCTP_TCB_UNLOCK(stcb);
SCTP_INP_RUNLOCK(inp);
}
return (NULL);
}
/*
* rules for use
*
* 1) If I return a NULL you must decrement any INP ref cnt. 2) If I find an
* stcb, both will be locked (locked_tcb and stcb) but decrement will be done
* (if locked == NULL). 3) Decrement happens on return ONLY if locked ==
* NULL.
*/
struct sctp_tcb *
sctp_findassociation_ep_addr(struct sctp_inpcb **inp_p, struct sockaddr *remote,
struct sctp_nets **netp, struct sockaddr *local, struct sctp_tcb *locked_tcb)
{
struct sctpasochead *head;
struct sctp_inpcb *inp;
struct sctp_tcb *stcb = NULL;
struct sctp_nets *net;
uint16_t rport;
inp = *inp_p;
if (remote->sa_family == AF_INET) {
rport = (((struct sockaddr_in *)remote)->sin_port);
} else if (remote->sa_family == AF_INET6) {
rport = (((struct sockaddr_in6 *)remote)->sin6_port);
} else {
return (NULL);
}
if (locked_tcb) {
/*
* UN-lock so we can do proper locking here this occurs when
* called from load_addresses_from_init.
*/
SCTP_TCB_UNLOCK(locked_tcb);
}
SCTP_INP_INFO_RLOCK();
if (inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) {
/*-
* Now either this guy is our listener or it's the
* connector. If it is the one that issued the connect, then
* it's only chance is to be the first TCB in the list. If
* it is the acceptor, then do the special_lookup to hash
* and find the real inp.
*/
if ((inp->sctp_socket) && (inp->sctp_socket->so_qlimit)) {
/* to is peer addr, from is my addr */
stcb = sctp_tcb_special_locate(inp_p, remote, local,
netp, inp->def_vrf_id);
if ((stcb != NULL) && (locked_tcb == NULL)) {
/* we have a locked tcb, lower refcount */
SCTP_INP_WLOCK(inp);
SCTP_INP_DECR_REF(inp);
SCTP_INP_WUNLOCK(inp);
}
if ((locked_tcb != NULL) && (locked_tcb != stcb)) {
SCTP_INP_RLOCK(locked_tcb->sctp_ep);
SCTP_TCB_LOCK(locked_tcb);
SCTP_INP_RUNLOCK(locked_tcb->sctp_ep);
}
SCTP_INP_INFO_RUNLOCK();
return (stcb);
} else {
SCTP_INP_WLOCK(inp);
if (inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) {
goto null_return;
}
stcb = LIST_FIRST(&inp->sctp_asoc_list);
if (stcb == NULL) {
goto null_return;
}
SCTP_TCB_LOCK(stcb);
if (stcb->rport != rport) {
/* remote port does not match. */
SCTP_TCB_UNLOCK(stcb);
goto null_return;
}
/* now look at the list of remote addresses */
TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) {
#ifdef INVARIANTS
if (net == (TAILQ_NEXT(net, sctp_next))) {
panic("Corrupt net list");
}
#endif
if (net->ro._l_addr.sa.sa_family !=
remote->sa_family) {
/* not the same family */
continue;
}
if (remote->sa_family == AF_INET) {
struct sockaddr_in *sin, *rsin;
sin = (struct sockaddr_in *)
&net->ro._l_addr;
rsin = (struct sockaddr_in *)remote;
if (sin->sin_addr.s_addr ==
rsin->sin_addr.s_addr) {
/* found it */
if (netp != NULL) {
*netp = net;
}
if (locked_tcb == NULL) {
SCTP_INP_DECR_REF(inp);
} else if (locked_tcb != stcb) {
SCTP_TCB_LOCK(locked_tcb);
}
SCTP_INP_WUNLOCK(inp);
SCTP_INP_INFO_RUNLOCK();
return (stcb);
}
} else if (remote->sa_family == AF_INET6) {
struct sockaddr_in6 *sin6, *rsin6;
sin6 = (struct sockaddr_in6 *)&net->ro._l_addr;
rsin6 = (struct sockaddr_in6 *)remote;
if (SCTP6_ARE_ADDR_EQUAL(&sin6->sin6_addr,
&rsin6->sin6_addr)) {
/* found it */
if (netp != NULL) {
*netp = net;
}
if (locked_tcb == NULL) {
SCTP_INP_DECR_REF(inp);
} else if (locked_tcb != stcb) {
SCTP_TCB_LOCK(locked_tcb);
}
SCTP_INP_WUNLOCK(inp);
SCTP_INP_INFO_RUNLOCK();
return (stcb);
}
}
}
SCTP_TCB_UNLOCK(stcb);
}
} else {
SCTP_INP_WLOCK(inp);
if (inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) {
goto null_return;
}
head = &inp->sctp_tcbhash[SCTP_PCBHASH_ALLADDR(rport,
inp->sctp_hashmark)];
if (head == NULL) {
goto null_return;
}
LIST_FOREACH(stcb, head, sctp_tcbhash) {
if (stcb->rport != rport) {
/* remote port does not match */
continue;
}
/* now look at the list of remote addresses */
SCTP_TCB_LOCK(stcb);
TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) {
#ifdef INVARIANTS
if (net == (TAILQ_NEXT(net, sctp_next))) {
panic("Corrupt net list");
}
#endif
if (net->ro._l_addr.sa.sa_family !=
remote->sa_family) {
/* not the same family */
continue;
}
if (remote->sa_family == AF_INET) {
struct sockaddr_in *sin, *rsin;
sin = (struct sockaddr_in *)
&net->ro._l_addr;
rsin = (struct sockaddr_in *)remote;
if (sin->sin_addr.s_addr ==
rsin->sin_addr.s_addr) {
/* found it */
if (netp != NULL) {
*netp = net;
}
if (locked_tcb == NULL) {
SCTP_INP_DECR_REF(inp);
} else if (locked_tcb != stcb) {
SCTP_TCB_LOCK(locked_tcb);
}
SCTP_INP_WUNLOCK(inp);
SCTP_INP_INFO_RUNLOCK();
return (stcb);
}
} else if (remote->sa_family == AF_INET6) {
struct sockaddr_in6 *sin6, *rsin6;
sin6 = (struct sockaddr_in6 *)
&net->ro._l_addr;
rsin6 = (struct sockaddr_in6 *)remote;
if (SCTP6_ARE_ADDR_EQUAL(&sin6->sin6_addr,
&rsin6->sin6_addr)) {
/* found it */
if (netp != NULL) {
*netp = net;
}
if (locked_tcb == NULL) {
SCTP_INP_DECR_REF(inp);
} else if (locked_tcb != stcb) {
SCTP_TCB_LOCK(locked_tcb);
}
SCTP_INP_WUNLOCK(inp);
SCTP_INP_INFO_RUNLOCK();
return (stcb);
}
}
}
SCTP_TCB_UNLOCK(stcb);
}
}
null_return:
/* clean up for returning null */
if (locked_tcb) {
SCTP_TCB_LOCK(locked_tcb);
}
SCTP_INP_WUNLOCK(inp);
SCTP_INP_INFO_RUNLOCK();
/* not found */
return (NULL);
}
/*
* Find an association for a specific endpoint using the association id given
* out in the COMM_UP notification
*/
struct sctp_tcb *
sctp_findassociation_ep_asocid(struct sctp_inpcb *inp, sctp_assoc_t asoc_id, int want_lock)
{
/*
* Use my the assoc_id to find a endpoint
*/
struct sctpasochead *head;
struct sctp_tcb *stcb;
uint32_t id;
if (asoc_id == 0 || inp == NULL) {
return (NULL);
}
SCTP_INP_INFO_RLOCK();
id = (uint32_t) asoc_id;
head = &sctppcbinfo.sctp_asochash[SCTP_PCBHASH_ASOC(id,
sctppcbinfo.hashasocmark)];
if (head == NULL) {
/* invalid id TSNH */
SCTP_INP_INFO_RUNLOCK();
return (NULL);
}
LIST_FOREACH(stcb, head, sctp_asocs) {
SCTP_INP_RLOCK(stcb->sctp_ep);
if (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) {
SCTP_INP_RUNLOCK(stcb->sctp_ep);
SCTP_INP_INFO_RUNLOCK();
return (NULL);
}
if (stcb->asoc.assoc_id == id) {
/* candidate */
if (inp != stcb->sctp_ep) {
/*
* some other guy has the same id active (id
* collision ??).
*/
SCTP_INP_RUNLOCK(stcb->sctp_ep);
continue;
}
if (want_lock) {
SCTP_TCB_LOCK(stcb);
}
SCTP_INP_RUNLOCK(stcb->sctp_ep);
SCTP_INP_INFO_RUNLOCK();
return (stcb);
}
SCTP_INP_RUNLOCK(stcb->sctp_ep);
}
/* Ok if we missed here, lets try the restart hash */
head = &sctppcbinfo.sctp_restarthash[SCTP_PCBHASH_ASOC(id, sctppcbinfo.hashrestartmark)];
if (head == NULL) {
/* invalid id TSNH */
SCTP_INP_INFO_RUNLOCK();
return (NULL);
}
LIST_FOREACH(stcb, head, sctp_tcbrestarhash) {
SCTP_INP_RLOCK(stcb->sctp_ep);
if (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) {
SCTP_INP_RUNLOCK(stcb->sctp_ep);
SCTP_INP_INFO_RUNLOCK();
return (NULL);
}
SCTP_TCB_LOCK(stcb);
SCTP_INP_RUNLOCK(stcb->sctp_ep);
if (stcb->asoc.assoc_id == id) {
/* candidate */
if (inp != stcb->sctp_ep) {
/*
* some other guy has the same id active (id
* collision ??).
*/
SCTP_TCB_UNLOCK(stcb);
continue;
}
SCTP_INP_INFO_RUNLOCK();
return (stcb);
}
SCTP_TCB_UNLOCK(stcb);
}
SCTP_INP_INFO_RUNLOCK();
return (NULL);
}
static struct sctp_inpcb *
sctp_endpoint_probe(struct sockaddr *nam, struct sctppcbhead *head,
uint16_t lport, uint32_t vrf_id)
{
struct sctp_inpcb *inp;
struct sockaddr_in *sin;
struct sockaddr_in6 *sin6;
struct sctp_laddr *laddr;
int fnd;
/*
* Endpoing probe expects that the INP_INFO is locked.
*/
if (nam->sa_family == AF_INET) {
sin = (struct sockaddr_in *)nam;
sin6 = NULL;
} else if (nam->sa_family == AF_INET6) {
sin6 = (struct sockaddr_in6 *)nam;
sin = NULL;
} else {
/* unsupported family */
return (NULL);
}
if (head == NULL)
return (NULL);
LIST_FOREACH(inp, head, sctp_hash) {
SCTP_INP_RLOCK(inp);
if (inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) {
SCTP_INP_RUNLOCK(inp);
continue;
}
if ((inp->sctp_flags & SCTP_PCB_FLAGS_BOUNDALL) &&
(inp->sctp_lport == lport)) {
/* got it */
if ((nam->sa_family == AF_INET) &&
(inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) &&
SCTP_IPV6_V6ONLY(inp)) {
/* IPv4 on a IPv6 socket with ONLY IPv6 set */
SCTP_INP_RUNLOCK(inp);
continue;
}
/* A V6 address and the endpoint is NOT bound V6 */
if (nam->sa_family == AF_INET6 &&
(inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) == 0) {
SCTP_INP_RUNLOCK(inp);
continue;
}
/* does a VRF id match? */
fnd = 0;
if (inp->def_vrf_id == vrf_id)
fnd = 1;
SCTP_INP_RUNLOCK(inp);
if (!fnd)
continue;
return (inp);
}
SCTP_INP_RUNLOCK(inp);
}
if ((nam->sa_family == AF_INET) &&
(sin->sin_addr.s_addr == INADDR_ANY)) {
/* Can't hunt for one that has no address specified */
return (NULL);
} else if ((nam->sa_family == AF_INET6) &&
(IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))) {
/* Can't hunt for one that has no address specified */
return (NULL);
}
/*
* ok, not bound to all so see if we can find a EP bound to this
* address.
*/
LIST_FOREACH(inp, head, sctp_hash) {
SCTP_INP_RLOCK(inp);
if (inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) {
SCTP_INP_RUNLOCK(inp);
continue;
}
if ((inp->sctp_flags & SCTP_PCB_FLAGS_BOUNDALL)) {
SCTP_INP_RUNLOCK(inp);
continue;
}
/*
* Ok this could be a likely candidate, look at all of its
* addresses
*/
if (inp->sctp_lport != lport) {
SCTP_INP_RUNLOCK(inp);
continue;
}
/* does a VRF id match? */
fnd = 0;
if (inp->def_vrf_id == vrf_id)
fnd = 1;
if (!fnd) {
SCTP_INP_RUNLOCK(inp);
continue;
}
LIST_FOREACH(laddr, &inp->sctp_addr_list, sctp_nxt_addr) {
if (laddr->ifa == NULL) {
SCTPDBG(SCTP_DEBUG_PCB1, "%s: NULL ifa\n",
__FUNCTION__);
continue;
}
SCTPDBG(SCTP_DEBUG_PCB1, "Ok laddr->ifa:%p is possible, ",
laddr->ifa);
if (laddr->ifa->localifa_flags & SCTP_BEING_DELETED) {
SCTPDBG(SCTP_DEBUG_PCB1, "Huh IFA being deleted\n");
continue;
}
if (laddr->ifa->address.sa.sa_family == nam->sa_family) {
/* possible, see if it matches */
struct sockaddr_in *intf_addr;
intf_addr = &laddr->ifa->address.sin;
if (nam->sa_family == AF_INET) {
if (sin->sin_addr.s_addr ==
intf_addr->sin_addr.s_addr) {
SCTP_INP_RUNLOCK(inp);
return (inp);
}
} else if (nam->sa_family == AF_INET6) {
struct sockaddr_in6 *intf_addr6;
intf_addr6 = &laddr->ifa->address.sin6;
if (SCTP6_ARE_ADDR_EQUAL(&sin6->sin6_addr,
&intf_addr6->sin6_addr)) {
SCTP_INP_RUNLOCK(inp);
return (inp);
}
}
}
}
SCTP_INP_RUNLOCK(inp);
}
return (NULL);
}
struct sctp_inpcb *
sctp_pcb_findep(struct sockaddr *nam, int find_tcp_pool, int have_lock,
uint32_t vrf_id)
{
/*
* First we check the hash table to see if someone has this port
* bound with just the port.
*/
struct sctp_inpcb *inp;
struct sctppcbhead *head;
struct sockaddr_in *sin;
struct sockaddr_in6 *sin6;
int lport;
if (nam->sa_family == AF_INET) {
sin = (struct sockaddr_in *)nam;
lport = ((struct sockaddr_in *)nam)->sin_port;
} else if (nam->sa_family == AF_INET6) {
sin6 = (struct sockaddr_in6 *)nam;
lport = ((struct sockaddr_in6 *)nam)->sin6_port;
} else {
/* unsupported family */
return (NULL);
}
/*
* I could cheat here and just cast to one of the types but we will
* do it right. It also provides the check against an Unsupported
* type too.
*/
/* Find the head of the ALLADDR chain */
if (have_lock == 0) {
SCTP_INP_INFO_RLOCK();
}
head = &sctppcbinfo.sctp_ephash[SCTP_PCBHASH_ALLADDR(lport,
sctppcbinfo.hashmark)];
inp = sctp_endpoint_probe(nam, head, lport, vrf_id);
/*
* If the TCP model exists it could be that the main listening
* endpoint is gone but there exists a connected socket for this guy
* yet. If so we can return the first one that we find. This may NOT
* be the correct one but the sctp_findassociation_ep_addr has
* further code to look at all TCP models.
*/
if (inp == NULL && find_tcp_pool) {
unsigned int i;
for (i = 0; i < sctppcbinfo.hashtblsize; i++) {
/*
* This is real gross, but we do NOT have a remote
* port at this point depending on who is calling.
* We must therefore look for ANY one that matches
* our local port :/
*/
head = &sctppcbinfo.sctp_tcpephash[i];
if (LIST_FIRST(head)) {
inp = sctp_endpoint_probe(nam, head, lport, vrf_id);
if (inp) {
/* Found one */
break;
}
}
}
}
if (inp) {
SCTP_INP_INCR_REF(inp);
}
if (have_lock == 0) {
SCTP_INP_INFO_RUNLOCK();
}
return (inp);
}
/*
* Find an association for an endpoint with the pointer to whom you want to
* send to and the endpoint pointer. The address can be IPv4 or IPv6. We may
* need to change the *to to some other struct like a mbuf...
*/
struct sctp_tcb *
sctp_findassociation_addr_sa(struct sockaddr *to, struct sockaddr *from,
struct sctp_inpcb **inp_p, struct sctp_nets **netp, int find_tcp_pool, uint32_t vrf_id)
{
struct sctp_inpcb *inp = NULL;
struct sctp_tcb *retval;
SCTP_INP_INFO_RLOCK();
if (find_tcp_pool) {
if (inp_p != NULL) {
retval = sctp_tcb_special_locate(inp_p, from, to, netp, vrf_id);
} else {
retval = sctp_tcb_special_locate(&inp, from, to, netp, vrf_id);
}
if (retval != NULL) {
SCTP_INP_INFO_RUNLOCK();
return (retval);
}
}
inp = sctp_pcb_findep(to, 0, 1, vrf_id);
if (inp_p != NULL) {
*inp_p = inp;
}
SCTP_INP_INFO_RUNLOCK();
if (inp == NULL) {
return (NULL);
}
/*
* ok, we have an endpoint, now lets find the assoc for it (if any)
* we now place the source address or from in the to of the find
* endpoint call. Since in reality this chain is used from the
* inbound packet side.
*/
if (inp_p != NULL) {
retval = sctp_findassociation_ep_addr(inp_p, from, netp, to, NULL);
} else {
retval = sctp_findassociation_ep_addr(&inp, from, netp, to, NULL);
}
return retval;
}
/*
* This routine will grub through the mbuf that is a INIT or INIT-ACK and
* find all addresses that the sender has specified in any address list. Each
* address will be used to lookup the TCB and see if one exits.
*/
static struct sctp_tcb *
sctp_findassociation_special_addr(struct mbuf *m, int iphlen, int offset,
struct sctphdr *sh, struct sctp_inpcb **inp_p, struct sctp_nets **netp,
struct sockaddr *dest)
{
struct sockaddr_in sin4;
struct sockaddr_in6 sin6;
struct sctp_paramhdr *phdr, parm_buf;
struct sctp_tcb *retval;
uint32_t ptype, plen;
memset(&sin4, 0, sizeof(sin4));
memset(&sin6, 0, sizeof(sin6));
sin4.sin_len = sizeof(sin4);
sin4.sin_family = AF_INET;
sin4.sin_port = sh->src_port;
sin6.sin6_len = sizeof(sin6);
sin6.sin6_family = AF_INET6;
sin6.sin6_port = sh->src_port;
retval = NULL;
offset += sizeof(struct sctp_init_chunk);
phdr = sctp_get_next_param(m, offset, &parm_buf, sizeof(parm_buf));
while (phdr != NULL) {
/* now we must see if we want the parameter */
ptype = ntohs(phdr->param_type);
plen = ntohs(phdr->param_length);
if (plen == 0) {
break;
}
if (ptype == SCTP_IPV4_ADDRESS &&
plen == sizeof(struct sctp_ipv4addr_param)) {
/* Get the rest of the address */
struct sctp_ipv4addr_param ip4_parm, *p4;
phdr = sctp_get_next_param(m, offset,
(struct sctp_paramhdr *)&ip4_parm, min(plen, sizeof(ip4_parm)));
if (phdr == NULL) {
return (NULL);
}
p4 = (struct sctp_ipv4addr_param *)phdr;
memcpy(&sin4.sin_addr, &p4->addr, sizeof(p4->addr));
/* look it up */
retval = sctp_findassociation_ep_addr(inp_p,
(struct sockaddr *)&sin4, netp, dest, NULL);
if (retval != NULL) {
return (retval);
}
} else if (ptype == SCTP_IPV6_ADDRESS &&
plen == sizeof(struct sctp_ipv6addr_param)) {
/* Get the rest of the address */
struct sctp_ipv6addr_param ip6_parm, *p6;
phdr = sctp_get_next_param(m, offset,
(struct sctp_paramhdr *)&ip6_parm, min(plen, sizeof(ip6_parm)));
if (phdr == NULL) {
return (NULL);
}
p6 = (struct sctp_ipv6addr_param *)phdr;
memcpy(&sin6.sin6_addr, &p6->addr, sizeof(p6->addr));
/* look it up */
retval = sctp_findassociation_ep_addr(inp_p,
(struct sockaddr *)&sin6, netp, dest, NULL);
if (retval != NULL) {
return (retval);
}
}
offset += SCTP_SIZE32(plen);
phdr = sctp_get_next_param(m, offset, &parm_buf,
sizeof(parm_buf));
}
return (NULL);
}
static struct sctp_tcb *
sctp_findassoc_by_vtag(struct sockaddr *from, uint32_t vtag,
struct sctp_inpcb **inp_p, struct sctp_nets **netp, uint16_t rport,
uint16_t lport, int skip_src_check)
{
/*
* Use my vtag to hash. If we find it we then verify the source addr
* is in the assoc. If all goes well we save a bit on rec of a
* packet.
*/
struct sctpasochead *head;
struct sctp_nets *net;
struct sctp_tcb *stcb;
*netp = NULL;
*inp_p = NULL;
SCTP_INP_INFO_RLOCK();
head = &sctppcbinfo.sctp_asochash[SCTP_PCBHASH_ASOC(vtag,
sctppcbinfo.hashasocmark)];
if (head == NULL) {
/* invalid vtag */
SCTP_INP_INFO_RUNLOCK();
return (NULL);
}
LIST_FOREACH(stcb, head, sctp_asocs) {
SCTP_INP_RLOCK(stcb->sctp_ep);
if (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) {
SCTP_INP_RUNLOCK(stcb->sctp_ep);
continue;
}
SCTP_TCB_LOCK(stcb);
SCTP_INP_RUNLOCK(stcb->sctp_ep);
if (stcb->asoc.my_vtag == vtag) {
/* candidate */
if (stcb->rport != rport) {
/*
* we could remove this if vtags are unique
* across the system.
*/
SCTP_TCB_UNLOCK(stcb);
continue;
}
if (stcb->sctp_ep->sctp_lport != lport) {
/*
* we could remove this if vtags are unique
* across the system.
*/
SCTP_TCB_UNLOCK(stcb);
continue;
}
if (skip_src_check) {
*netp = NULL; /* unknown */
if (inp_p)
*inp_p = stcb->sctp_ep;
SCTP_INP_INFO_RUNLOCK();
return (stcb);
}
net = sctp_findnet(stcb, from);
if (net) {
/* yep its him. */
*netp = net;
SCTP_STAT_INCR(sctps_vtagexpress);
*inp_p = stcb->sctp_ep;
SCTP_INP_INFO_RUNLOCK();
return (stcb);
} else {
/*
* not him, this should only happen in rare
* cases so I peg it.
*/
SCTP_STAT_INCR(sctps_vtagbogus);
}
}
SCTP_TCB_UNLOCK(stcb);
}
SCTP_INP_INFO_RUNLOCK();
return (NULL);
}
/*
* Find an association with the pointer to the inbound IP packet. This can be
* a IPv4 or IPv6 packet.
*/
struct sctp_tcb *
sctp_findassociation_addr(struct mbuf *m, int iphlen, int offset,
struct sctphdr *sh, struct sctp_chunkhdr *ch,
struct sctp_inpcb **inp_p, struct sctp_nets **netp, uint32_t vrf_id)
{
int find_tcp_pool;
struct ip *iph;
struct sctp_tcb *retval;
struct sockaddr_storage to_store, from_store;
struct sockaddr *to = (struct sockaddr *)&to_store;
struct sockaddr *from = (struct sockaddr *)&from_store;
struct sctp_inpcb *inp;
iph = mtod(m, struct ip *);
if (iph->ip_v == IPVERSION) {
/* its IPv4 */
struct sockaddr_in *from4;
from4 = (struct sockaddr_in *)&from_store;
bzero(from4, sizeof(*from4));
from4->sin_family = AF_INET;
from4->sin_len = sizeof(struct sockaddr_in);
from4->sin_addr.s_addr = iph->ip_src.s_addr;
from4->sin_port = sh->src_port;
} else if (iph->ip_v == (IPV6_VERSION >> 4)) {
/* its IPv6 */
struct ip6_hdr *ip6;
struct sockaddr_in6 *from6;
ip6 = mtod(m, struct ip6_hdr *);
from6 = (struct sockaddr_in6 *)&from_store;
bzero(from6, sizeof(*from6));
from6->sin6_family = AF_INET6;
from6->sin6_len = sizeof(struct sockaddr_in6);
from6->sin6_addr = ip6->ip6_src;
from6->sin6_port = sh->src_port;
/* Get the scopes in properly to the sin6 addr's */
/* we probably don't need these operations */
(void)sa6_recoverscope(from6);
sa6_embedscope(from6, ip6_use_defzone);
} else {
/* Currently not supported. */
return (NULL);
}
if (sh->v_tag) {
/* we only go down this path if vtag is non-zero */
retval = sctp_findassoc_by_vtag(from, ntohl(sh->v_tag),
inp_p, netp, sh->src_port, sh->dest_port, 0);
if (retval) {
return (retval);
}
}
if (iph->ip_v == IPVERSION) {
/* its IPv4 */
struct sockaddr_in *to4;
to4 = (struct sockaddr_in *)&to_store;
bzero(to4, sizeof(*to4));
to4->sin_family = AF_INET;
to4->sin_len = sizeof(struct sockaddr_in);
to4->sin_addr.s_addr = iph->ip_dst.s_addr;
to4->sin_port = sh->dest_port;
} else if (iph->ip_v == (IPV6_VERSION >> 4)) {
/* its IPv6 */
struct ip6_hdr *ip6;
struct sockaddr_in6 *to6;
ip6 = mtod(m, struct ip6_hdr *);
to6 = (struct sockaddr_in6 *)&to_store;
bzero(to6, sizeof(*to6));
to6->sin6_family = AF_INET6;
to6->sin6_len = sizeof(struct sockaddr_in6);
to6->sin6_addr = ip6->ip6_dst;
to6->sin6_port = sh->dest_port;
/* Get the scopes in properly to the sin6 addr's */
/* we probably don't need these operations */
(void)sa6_recoverscope(to6);
sa6_embedscope(to6, ip6_use_defzone);
}
find_tcp_pool = 0;
if ((ch->chunk_type != SCTP_INITIATION) &&
(ch->chunk_type != SCTP_INITIATION_ACK) &&
(ch->chunk_type != SCTP_COOKIE_ACK) &&
(ch->chunk_type != SCTP_COOKIE_ECHO)) {
/* Other chunk types go to the tcp pool. */
find_tcp_pool = 1;
}
if (inp_p) {
retval = sctp_findassociation_addr_sa(to, from, inp_p, netp,
find_tcp_pool, vrf_id);
inp = *inp_p;
} else {
retval = sctp_findassociation_addr_sa(to, from, &inp, netp,
find_tcp_pool, vrf_id);
}
SCTPDBG(SCTP_DEBUG_PCB1, "retval:%p inp:%p\n", retval, inp);
if (retval == NULL && inp) {
/* Found a EP but not this address */
if ((ch->chunk_type == SCTP_INITIATION) ||
(ch->chunk_type == SCTP_INITIATION_ACK)) {
/*-
* special hook, we do NOT return linp or an
* association that is linked to an existing
* association that is under the TCP pool (i.e. no
* listener exists). The endpoint finding routine
* will always find a listner before examining the
* TCP pool.
*/
if (inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL) {
if (inp_p) {
*inp_p = NULL;
}
return (NULL);
}
retval = sctp_findassociation_special_addr(m, iphlen,
offset, sh, &inp, netp, to);
if (inp_p != NULL) {
*inp_p = inp;
}
}
}
SCTPDBG(SCTP_DEBUG_PCB1, "retval is %p\n", retval);
return (retval);
}
/*
* lookup an association by an ASCONF lookup address.
* if the lookup address is 0.0.0.0 or ::0, use the vtag to do the lookup
*/
struct sctp_tcb *
sctp_findassociation_ep_asconf(struct mbuf *m, int iphlen, int offset,
struct sctphdr *sh, struct sctp_inpcb **inp_p, struct sctp_nets **netp)
{
struct sctp_tcb *stcb;
struct sockaddr_in *sin;
struct sockaddr_in6 *sin6;
struct sockaddr_storage local_store, remote_store;
struct ip *iph;
struct sctp_paramhdr parm_buf, *phdr;
int ptype;
int zero_address = 0;
memset(&local_store, 0, sizeof(local_store));
memset(&remote_store, 0, sizeof(remote_store));
/* First get the destination address setup too. */
iph = mtod(m, struct ip *);
if (iph->ip_v == IPVERSION) {
/* its IPv4 */
sin = (struct sockaddr_in *)&local_store;
sin->sin_family = AF_INET;
sin->sin_len = sizeof(*sin);
sin->sin_port = sh->dest_port;
sin->sin_addr.s_addr = iph->ip_dst.s_addr;
} else if (iph->ip_v == (IPV6_VERSION >> 4)) {
/* its IPv6 */
struct ip6_hdr *ip6;
ip6 = mtod(m, struct ip6_hdr *);
sin6 = (struct sockaddr_in6 *)&local_store;
sin6->sin6_family = AF_INET6;
sin6->sin6_len = sizeof(*sin6);
sin6->sin6_port = sh->dest_port;
sin6->sin6_addr = ip6->ip6_dst;
} else {
return NULL;
}
phdr = sctp_get_next_param(m, offset + sizeof(struct sctp_asconf_chunk),
&parm_buf, sizeof(struct sctp_paramhdr));
if (phdr == NULL) {
SCTPDBG(SCTP_DEBUG_INPUT3, "%s: failed to get asconf lookup addr\n",
__FUNCTION__);
return NULL;
}
ptype = (int)((uint32_t) ntohs(phdr->param_type));
/* get the correlation address */
if (ptype == SCTP_IPV6_ADDRESS) {
/* ipv6 address param */
struct sctp_ipv6addr_param *p6, p6_buf;
if (ntohs(phdr->param_length) != sizeof(struct sctp_ipv6addr_param)) {
return NULL;
}
p6 = (struct sctp_ipv6addr_param *)sctp_get_next_param(m,
offset + sizeof(struct sctp_asconf_chunk),
&p6_buf.ph, sizeof(*p6));
if (p6 == NULL) {
SCTPDBG(SCTP_DEBUG_INPUT3, "%s: failed to get asconf v6 lookup addr\n",
__FUNCTION__);
return (NULL);
}
sin6 = (struct sockaddr_in6 *)&remote_store;
sin6->sin6_family = AF_INET6;
sin6->sin6_len = sizeof(*sin6);
sin6->sin6_port = sh->src_port;
memcpy(&sin6->sin6_addr, &p6->addr, sizeof(struct in6_addr));
if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
zero_address = 1;
} else if (ptype == SCTP_IPV4_ADDRESS) {
/* ipv4 address param */
struct sctp_ipv4addr_param *p4, p4_buf;
if (ntohs(phdr->param_length) != sizeof(struct sctp_ipv4addr_param)) {
return NULL;
}
p4 = (struct sctp_ipv4addr_param *)sctp_get_next_param(m,
offset + sizeof(struct sctp_asconf_chunk),
&p4_buf.ph, sizeof(*p4));
if (p4 == NULL) {
SCTPDBG(SCTP_DEBUG_INPUT3, "%s: failed to get asconf v4 lookup addr\n",
__FUNCTION__);
return (NULL);
}
sin = (struct sockaddr_in *)&remote_store;
sin->sin_family = AF_INET;
sin->sin_len = sizeof(*sin);
sin->sin_port = sh->src_port;
memcpy(&sin->sin_addr, &p4->addr, sizeof(struct in_addr));
if (sin->sin_addr.s_addr == INADDR_ANY)
zero_address = 1;
} else {
/* invalid address param type */
return NULL;
}
if (zero_address) {
stcb = sctp_findassoc_by_vtag(NULL, ntohl(sh->v_tag), inp_p,
netp, sh->src_port, sh->dest_port, 1);
/*
* printf("findassociation_ep_asconf: zero lookup address
* finds stcb 0x%x\n", (uint32_t)stcb);
*/
} else {
stcb = sctp_findassociation_ep_addr(inp_p,
(struct sockaddr *)&remote_store, netp,
(struct sockaddr *)&local_store, NULL);
}
return (stcb);
}
/*
* allocate a sctp_inpcb and setup a temporary binding to a port/all
* addresses. This way if we don't get a bind we by default pick a ephemeral
* port with all addresses bound.
*/
int
sctp_inpcb_alloc(struct socket *so)
{
/*
* we get called when a new endpoint starts up. We need to allocate
* the sctp_inpcb structure from the zone and init it. Mark it as
* unbound and find a port that we can use as an ephemeral with
* INADDR_ANY. If the user binds later no problem we can then add in
* the specific addresses. And setup the default parameters for the
* EP.
*/
int i, error;
struct sctp_inpcb *inp;
struct sctp_pcb *m;
struct timeval time;
sctp_sharedkey_t *null_key;
error = 0;
SCTP_INP_INFO_WLOCK();
inp = SCTP_ZONE_GET(sctppcbinfo.ipi_zone_ep, struct sctp_inpcb);
if (inp == NULL) {
SCTP_PRINTF("Out of SCTP-INPCB structures - no resources\n");
SCTP_INP_INFO_WUNLOCK();
return (ENOBUFS);
}
/* zap it */
bzero(inp, sizeof(*inp));
/* bump generations */
/* setup socket pointers */
inp->sctp_socket = so;
inp->ip_inp.inp.inp_socket = so;
inp->partial_delivery_point = SCTP_SB_LIMIT_RCV(so) >> SCTP_PARTIAL_DELIVERY_SHIFT;
inp->sctp_frag_point = SCTP_DEFAULT_MAXSEGMENT;
#ifdef IPSEC
{
struct inpcbpolicy *pcb_sp = NULL;
error = ipsec_init_pcbpolicy(so, &pcb_sp);
/* Arrange to share the policy */
inp->ip_inp.inp.inp_sp = pcb_sp;
((struct in6pcb *)(&inp->ip_inp.inp))->in6p_sp = pcb_sp;
}
if (error != 0) {
SCTP_ZONE_FREE(sctppcbinfo.ipi_zone_ep, inp);
SCTP_INP_INFO_WUNLOCK();
return error;
}
#endif /* IPSEC */
SCTP_INCR_EP_COUNT();
inp->ip_inp.inp.inp_ip_ttl = ip_defttl;
SCTP_INP_INFO_WUNLOCK();
so->so_pcb = (caddr_t)inp;
if ((SCTP_SO_TYPE(so) == SOCK_DGRAM) ||
(SCTP_SO_TYPE(so) == SOCK_SEQPACKET)) {
/* UDP style socket */
inp->sctp_flags = (SCTP_PCB_FLAGS_UDPTYPE |
SCTP_PCB_FLAGS_UNBOUND);
/* Be sure it is NON-BLOCKING IO for UDP */
/* SCTP_SET_SO_NBIO(so); */
} else if (SCTP_SO_TYPE(so) == SOCK_STREAM) {
/* TCP style socket */
inp->sctp_flags = (SCTP_PCB_FLAGS_TCPTYPE |
SCTP_PCB_FLAGS_UNBOUND);
/* Be sure we have blocking IO by default */
SCTP_CLEAR_SO_NBIO(so);
} else {
/*
* unsupported socket type (RAW, etc)- in case we missed it
* in protosw
*/
SCTP_ZONE_FREE(sctppcbinfo.ipi_zone_ep, inp);
return (EOPNOTSUPP);
}
inp->sctp_tcbhash = SCTP_HASH_INIT(sctp_pcbtblsize,
&inp->sctp_hashmark);
if (inp->sctp_tcbhash == NULL) {
SCTP_PRINTF("Out of SCTP-INPCB->hashinit - no resources\n");
SCTP_ZONE_FREE(sctppcbinfo.ipi_zone_ep, inp);
return (ENOBUFS);
}
inp->def_vrf_id = SCTP_DEFAULT_VRFID;
inp->def_table_id = SCTP_DEFAULT_TABLEID;
SCTP_INP_INFO_WLOCK();
SCTP_INP_LOCK_INIT(inp);
SCTP_INP_READ_INIT(inp);
SCTP_ASOC_CREATE_LOCK_INIT(inp);
/* lock the new ep */
SCTP_INP_WLOCK(inp);
/* add it to the info area */
LIST_INSERT_HEAD(&sctppcbinfo.listhead, inp, sctp_list);
SCTP_INP_INFO_WUNLOCK();
TAILQ_INIT(&inp->read_queue);
LIST_INIT(&inp->sctp_addr_list);
LIST_INIT(&inp->sctp_asoc_list);
#ifdef SCTP_TRACK_FREED_ASOCS
/* TEMP CODE */
LIST_INIT(&inp->sctp_asoc_free_list);
#endif
/* Init the timer structure for signature change */
SCTP_OS_TIMER_INIT(&inp->sctp_ep.signature_change.timer);
inp->sctp_ep.signature_change.type = SCTP_TIMER_TYPE_NEWCOOKIE;
/* now init the actual endpoint default data */
m = &inp->sctp_ep;
/* setup the base timeout information */
m->sctp_timeoutticks[SCTP_TIMER_SEND] = SEC_TO_TICKS(SCTP_SEND_SEC); /* needed ? */
m->sctp_timeoutticks[SCTP_TIMER_INIT] = SEC_TO_TICKS(SCTP_INIT_SEC); /* needed ? */
m->sctp_timeoutticks[SCTP_TIMER_RECV] = MSEC_TO_TICKS(sctp_delayed_sack_time_default);
m->sctp_timeoutticks[SCTP_TIMER_HEARTBEAT] = MSEC_TO_TICKS(sctp_heartbeat_interval_default);
m->sctp_timeoutticks[SCTP_TIMER_PMTU] = SEC_TO_TICKS(sctp_pmtu_raise_time_default);
m->sctp_timeoutticks[SCTP_TIMER_MAXSHUTDOWN] = SEC_TO_TICKS(sctp_shutdown_guard_time_default);
m->sctp_timeoutticks[SCTP_TIMER_SIGNATURE] = SEC_TO_TICKS(sctp_secret_lifetime_default);
/* all max/min max are in ms */
m->sctp_maxrto = sctp_rto_max_default;
m->sctp_minrto = sctp_rto_min_default;
m->initial_rto = sctp_rto_initial_default;
m->initial_init_rto_max = sctp_init_rto_max_default;
m->sctp_sack_freq = sctp_sack_freq_default;
m->max_open_streams_intome = MAX_SCTP_STREAMS;
m->max_init_times = sctp_init_rtx_max_default;
m->max_send_times = sctp_assoc_rtx_max_default;
m->def_net_failure = sctp_path_rtx_max_default;
m->sctp_sws_sender = SCTP_SWS_SENDER_DEF;
m->sctp_sws_receiver = SCTP_SWS_RECEIVER_DEF;
m->max_burst = sctp_max_burst_default;
/* number of streams to pre-open on a association */
m->pre_open_stream_count = sctp_nr_outgoing_streams_default;
/* Add adaptation cookie */
m->adaptation_layer_indicator = 0x504C5253;
/* seed random number generator */
m->random_counter = 1;
m->store_at = SCTP_SIGNATURE_SIZE;
SCTP_READ_RANDOM(m->random_numbers, sizeof(m->random_numbers));
sctp_fill_random_store(m);
/* Minimum cookie size */
m->size_of_a_cookie = (sizeof(struct sctp_init_msg) * 2) +
sizeof(struct sctp_state_cookie);
m->size_of_a_cookie += SCTP_SIGNATURE_SIZE;
/* Setup the initial secret */
(void)SCTP_GETTIME_TIMEVAL(&time);
m->time_of_secret_change = time.tv_sec;
for (i = 0; i < SCTP_NUMBER_OF_SECRETS; i++) {
m->secret_key[0][i] = sctp_select_initial_TSN(m);
}
sctp_timer_start(SCTP_TIMER_TYPE_NEWCOOKIE, inp, NULL, NULL);
/* How long is a cookie good for ? */
m->def_cookie_life = MSEC_TO_TICKS(sctp_valid_cookie_life_default);
/*
* Initialize authentication parameters
*/
m->local_hmacs = sctp_default_supported_hmaclist();
m->local_auth_chunks = sctp_alloc_chunklist();
sctp_auth_set_default_chunks(m->local_auth_chunks);
LIST_INIT(&m->shared_keys);
/* add default NULL key as key id 0 */
null_key = sctp_alloc_sharedkey();
sctp_insert_sharedkey(&m->shared_keys, null_key);
SCTP_INP_WUNLOCK(inp);
#ifdef SCTP_LOG_CLOSING
sctp_log_closing(inp, NULL, 12);
#endif
return (error);
}
void
sctp_move_pcb_and_assoc(struct sctp_inpcb *old_inp, struct sctp_inpcb *new_inp,
struct sctp_tcb *stcb)
{
struct sctp_nets *net;
uint16_t lport, rport;
struct sctppcbhead *head;
struct sctp_laddr *laddr, *oladdr;
SCTP_TCB_UNLOCK(stcb);
SCTP_INP_INFO_WLOCK();
SCTP_INP_WLOCK(old_inp);
SCTP_INP_WLOCK(new_inp);
SCTP_TCB_LOCK(stcb);
new_inp->sctp_ep.time_of_secret_change =
old_inp->sctp_ep.time_of_secret_change;
memcpy(new_inp->sctp_ep.secret_key, old_inp->sctp_ep.secret_key,
sizeof(old_inp->sctp_ep.secret_key));
new_inp->sctp_ep.current_secret_number =
old_inp->sctp_ep.current_secret_number;
new_inp->sctp_ep.last_secret_number =
old_inp->sctp_ep.last_secret_number;
new_inp->sctp_ep.size_of_a_cookie = old_inp->sctp_ep.size_of_a_cookie;
/* make it so new data pours into the new socket */
stcb->sctp_socket = new_inp->sctp_socket;
stcb->sctp_ep = new_inp;
/* Copy the port across */
lport = new_inp->sctp_lport = old_inp->sctp_lport;
rport = stcb->rport;
/* Pull the tcb from the old association */
LIST_REMOVE(stcb, sctp_tcbhash);
LIST_REMOVE(stcb, sctp_tcblist);
/* Now insert the new_inp into the TCP connected hash */
head = &sctppcbinfo.sctp_tcpephash[SCTP_PCBHASH_ALLADDR((lport + rport),
sctppcbinfo.hashtcpmark)];
LIST_INSERT_HEAD(head, new_inp, sctp_hash);
/* Its safe to access */
new_inp->sctp_flags &= ~SCTP_PCB_FLAGS_UNBOUND;
/* Now move the tcb into the endpoint list */
LIST_INSERT_HEAD(&new_inp->sctp_asoc_list, stcb, sctp_tcblist);
/*
* Question, do we even need to worry about the ep-hash since we
* only have one connection? Probably not :> so lets get rid of it
* and not suck up any kernel memory in that.
*/
/* Ok. Let's restart timer. */
TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) {
sctp_timer_start(SCTP_TIMER_TYPE_PATHMTURAISE, new_inp,
stcb, net);
}
SCTP_INP_INFO_WUNLOCK();
if (new_inp->sctp_tcbhash != NULL) {
SCTP_HASH_FREE(new_inp->sctp_tcbhash, new_inp->sctp_hashmark);
new_inp->sctp_tcbhash = NULL;
}
if ((new_inp->sctp_flags & SCTP_PCB_FLAGS_BOUNDALL) == 0) {
/* Subset bound, so copy in the laddr list from the old_inp */
LIST_FOREACH(oladdr, &old_inp->sctp_addr_list, sctp_nxt_addr) {
laddr = SCTP_ZONE_GET(sctppcbinfo.ipi_zone_laddr, struct sctp_laddr);
if (laddr == NULL) {
/*
* Gak, what can we do? This assoc is really
* HOSED. We probably should send an abort
* here.
*/
SCTPDBG(SCTP_DEBUG_PCB1, "Association hosed in TCP model, out of laddr memory\n");
continue;
}
SCTP_INCR_LADDR_COUNT();
bzero(laddr, sizeof(*laddr));
laddr->ifa = oladdr->ifa;
atomic_add_int(&laddr->ifa->refcount, 1);
LIST_INSERT_HEAD(&new_inp->sctp_addr_list, laddr,
sctp_nxt_addr);
new_inp->laddr_count++;
}
}
/*
* Now any running timers need to be adjusted since we really don't
* care if they are running or not just blast in the new_inp into
* all of them.
*/
stcb->asoc.hb_timer.ep = (void *)new_inp;
stcb->asoc.dack_timer.ep = (void *)new_inp;
stcb->asoc.asconf_timer.ep = (void *)new_inp;
stcb->asoc.strreset_timer.ep = (void *)new_inp;
stcb->asoc.shut_guard_timer.ep = (void *)new_inp;
stcb->asoc.autoclose_timer.ep = (void *)new_inp;
stcb->asoc.delayed_event_timer.ep = (void *)new_inp;
/* now what about the nets? */
TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) {
net->pmtu_timer.ep = (void *)new_inp;
net->rxt_timer.ep = (void *)new_inp;
net->fr_timer.ep = (void *)new_inp;
}
SCTP_INP_WUNLOCK(new_inp);
SCTP_INP_WUNLOCK(old_inp);
}
static int
sctp_isport_inuse(struct sctp_inpcb *inp, uint16_t lport, uint32_t vrf_id)
{
struct sctppcbhead *head;
struct sctp_inpcb *t_inp;
int fnd;
head = &sctppcbinfo.sctp_ephash[SCTP_PCBHASH_ALLADDR(lport,
sctppcbinfo.hashmark)];
LIST_FOREACH(t_inp, head, sctp_hash) {
if (t_inp->sctp_lport != lport) {
continue;
}
/* is it in the VRF in question */
fnd = 0;
if (t_inp->def_vrf_id == vrf_id)
fnd = 1;
if (!fnd)
continue;
/* This one is in use. */
/* check the v6/v4 binding issue */
if ((t_inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) &&
SCTP_IPV6_V6ONLY(t_inp)) {
if (inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) {
/* collision in V6 space */
return (1);
} else {
/* inp is BOUND_V4 no conflict */
continue;
}
} else if (t_inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) {
/* t_inp is bound v4 and v6, conflict always */
return (1);
} else {
/* t_inp is bound only V4 */
if ((inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) &&
SCTP_IPV6_V6ONLY(inp)) {
/* no conflict */
continue;
}
/* else fall through to conflict */
}
return (1);
}
return (0);
}
int
sctp_inpcb_bind(struct socket *so, struct sockaddr *addr, struct thread *p)
{
/* bind a ep to a socket address */
struct sctppcbhead *head;
struct sctp_inpcb *inp, *inp_tmp;
struct inpcb *ip_inp;
int bindall;
uint16_t lport;
int error;
uint32_t vrf_id;
lport = 0;
error = 0;
bindall = 1;
inp = (struct sctp_inpcb *)so->so_pcb;
ip_inp = (struct inpcb *)so->so_pcb;
#ifdef SCTP_DEBUG
if (addr) {
SCTPDBG(SCTP_DEBUG_PCB1, "Bind called port:%d\n",
ntohs(((struct sockaddr_in *)addr)->sin_port));
SCTPDBG(SCTP_DEBUG_PCB1, "Addr :");
SCTPDBG_ADDR(SCTP_DEBUG_PCB1, addr);
}
#endif
if ((inp->sctp_flags & SCTP_PCB_FLAGS_UNBOUND) == 0) {
/* already did a bind, subsequent binds NOT allowed ! */
return (EINVAL);
}
if (addr != NULL) {
if (addr->sa_family == AF_INET) {
struct sockaddr_in *sin;
/* IPV6_V6ONLY socket? */
if (SCTP_IPV6_V6ONLY(ip_inp)) {
return (EINVAL);
}
if (addr->sa_len != sizeof(*sin))
return (EINVAL);
sin = (struct sockaddr_in *)addr;
lport = sin->sin_port;
if (sin->sin_addr.s_addr != INADDR_ANY) {
bindall = 0;
}
} else if (addr->sa_family == AF_INET6) {
/* Only for pure IPv6 Address. (No IPv4 Mapped!) */
struct sockaddr_in6 *sin6;
sin6 = (struct sockaddr_in6 *)addr;
if (addr->sa_len != sizeof(*sin6))
return (EINVAL);
lport = sin6->sin6_port;
if (!IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) {
bindall = 0;
/* KAME hack: embed scopeid */
if (sa6_embedscope(sin6, ip6_use_defzone) != 0)
return (EINVAL);
}
/* this must be cleared for ifa_ifwithaddr() */
sin6->sin6_scope_id = 0;
} else {
return (EAFNOSUPPORT);
}
}
/* Setup a vrf_id to be the default for the non-bind-all case. */
vrf_id = inp->def_vrf_id;
SCTP_INP_INFO_WLOCK();
SCTP_INP_WLOCK(inp);
/* increase our count due to the unlock we do */
SCTP_INP_INCR_REF(inp);
if (lport) {
/*
* Did the caller specify a port? if so we must see if a ep
* already has this one bound.
*/
/* got to be root to get at low ports */
if (ntohs(lport) < IPPORT_RESERVED) {
if (p && (error =
priv_check_cred(p->td_ucred,
PRIV_NETINET_RESERVEDPORT,
SUSER_ALLOWJAIL
)
)) {
SCTP_INP_DECR_REF(inp);
SCTP_INP_WUNLOCK(inp);
SCTP_INP_INFO_WUNLOCK();
return (error);
}
}
if (p == NULL) {
SCTP_INP_DECR_REF(inp);
SCTP_INP_WUNLOCK(inp);
SCTP_INP_INFO_WUNLOCK();
return (error);
}
SCTP_INP_WUNLOCK(inp);
if (bindall) {
vrf_id = inp->def_vrf_id;
inp_tmp = sctp_pcb_findep(addr, 0, 1, vrf_id);
if (inp_tmp != NULL) {
/*
* lock guy returned and lower count note
* that we are not bound so inp_tmp should
* NEVER be inp. And it is this inp
* (inp_tmp) that gets the reference bump,
* so we must lower it.
*/
SCTP_INP_DECR_REF(inp_tmp);
SCTP_INP_DECR_REF(inp);
/* unlock info */
SCTP_INP_INFO_WUNLOCK();
return (EADDRNOTAVAIL);
}
} else {
inp_tmp = sctp_pcb_findep(addr, 0, 1, vrf_id);
if (inp_tmp != NULL) {
/*
* lock guy returned and lower count note
* that we are not bound so inp_tmp should
* NEVER be inp. And it is this inp
* (inp_tmp) that gets the reference bump,
* so we must lower it.
*/
SCTP_INP_DECR_REF(inp_tmp);
SCTP_INP_DECR_REF(inp);
/* unlock info */
SCTP_INP_INFO_WUNLOCK();
return (EADDRNOTAVAIL);
}
}
SCTP_INP_WLOCK(inp);
if (bindall) {
/* verify that no lport is not used by a singleton */
if (sctp_isport_inuse(inp, lport, vrf_id)) {
/* Sorry someone already has this one bound */
SCTP_INP_DECR_REF(inp);
SCTP_INP_WUNLOCK(inp);
SCTP_INP_INFO_WUNLOCK();
return (EADDRNOTAVAIL);
}
}
} else {
/*
* get any port but lets make sure no one has any address
* with this port bound
*/
/*
* setup the inp to the top (I could use the union but this
* is just as easy
*/
uint32_t port_guess;
uint16_t port_attempt;
int not_done = 1;
int not_found = 1;
while (not_done) {
port_guess = sctp_select_initial_TSN(&inp->sctp_ep);
port_attempt = (port_guess & 0x0000ffff);
if (port_attempt == 0) {
goto next_half;
}
if (port_attempt < IPPORT_RESERVED) {
port_attempt += IPPORT_RESERVED;
}
not_found = 1;
vrf_id = inp->def_vrf_id;
if (sctp_isport_inuse(inp, htons(port_attempt),
vrf_id) == 1) {
/* got a port we can use */
not_found = 0;
}
if (not_found == 1) {
/* We can use this port */
not_done = 0;
continue;
}
/* try upper half */
next_half:
port_attempt = ((port_guess >> 16) & 0x0000ffff);
if (port_attempt == 0) {
goto last_try;
}
if (port_attempt < IPPORT_RESERVED) {
port_attempt += IPPORT_RESERVED;
}
not_found = 1;
vrf_id = inp->def_vrf_id;
if (sctp_isport_inuse(inp, htons(port_attempt),
vrf_id) == 1) {
/* got a port we can use */
not_found = 0;
}
if (not_found == 1) {
/* We can use this port */
not_done = 0;
continue;
}
/* try two half's added together */
last_try:
port_attempt = (((port_guess >> 16) & 0x0000ffff) +
(port_guess & 0x0000ffff));
if (port_attempt == 0) {
/* get a new random number */
continue;
}
if (port_attempt < IPPORT_RESERVED) {
port_attempt += IPPORT_RESERVED;
}
not_found = 1;
vrf_id = inp->def_vrf_id;
if (sctp_isport_inuse(inp, htons(port_attempt), vrf_id) == 1) {
/* got a port we can use */
not_found = 0;
}
if (not_found == 1) {
/* We can use this port */
not_done = 0;
continue;
}
}
/* we don't get out of the loop until we have a port */
lport = htons(port_attempt);
}
SCTP_INP_DECR_REF(inp);
if (inp->sctp_flags & (SCTP_PCB_FLAGS_SOCKET_GONE |
SCTP_PCB_FLAGS_SOCKET_ALLGONE)) {
/*
* this really should not happen. The guy did a non-blocking
* bind and then did a close at the same time.
*/
SCTP_INP_WUNLOCK(inp);
SCTP_INP_INFO_WUNLOCK();
return (EINVAL);
}
/* ok we look clear to give out this port, so lets setup the binding */
if (bindall) {
/* binding to all addresses, so just set in the proper flags */
inp->sctp_flags |= SCTP_PCB_FLAGS_BOUNDALL;
sctp_feature_on(inp, SCTP_PCB_FLAGS_DO_ASCONF);
/* set the automatic addr changes from kernel flag */
if (sctp_auto_asconf == 0) {
sctp_feature_off(inp, SCTP_PCB_FLAGS_AUTO_ASCONF);
} else {
sctp_feature_on(inp, SCTP_PCB_FLAGS_AUTO_ASCONF);
}
} else {
/*
* bind specific, make sure flags is off and add a new
* address structure to the sctp_addr_list inside the ep
* structure.
*
* We will need to allocate one and insert it at the head. The
* socketopt call can just insert new addresses in there as
* well. It will also have to do the embed scope kame hack
* too (before adding).
*/
struct sctp_ifa *ifa;
struct sockaddr_storage store_sa;
memset(&store_sa, 0, sizeof(store_sa));
if (addr->sa_family == AF_INET) {
struct sockaddr_in *sin;
sin = (struct sockaddr_in *)&store_sa;
memcpy(sin, addr, sizeof(struct sockaddr_in));
sin->sin_port = 0;
} else if (addr->sa_family == AF_INET6) {
struct sockaddr_in6 *sin6;
sin6 = (struct sockaddr_in6 *)&store_sa;
memcpy(sin6, addr, sizeof(struct sockaddr_in6));
sin6->sin6_port = 0;
}
/*
* first find the interface with the bound address need to
* zero out the port to find the address! yuck! can't do
* this earlier since need port for sctp_pcb_findep()
*/
ifa = sctp_find_ifa_by_addr((struct sockaddr *)&store_sa,
vrf_id, 0);
if (ifa == NULL) {
/* Can't find an interface with that address */
SCTP_INP_WUNLOCK(inp);
SCTP_INP_INFO_WUNLOCK();
return (EADDRNOTAVAIL);
}
if (addr->sa_family == AF_INET6) {
/* GAK, more FIXME IFA lock? */
if (ifa->localifa_flags & SCTP_ADDR_IFA_UNUSEABLE) {
/* Can't bind a non-existent addr. */
SCTP_INP_WUNLOCK(inp);
SCTP_INP_INFO_WUNLOCK();
return (EINVAL);
}
}
/* we're not bound all */
inp->sctp_flags &= ~SCTP_PCB_FLAGS_BOUNDALL;
/* allow bindx() to send ASCONF's for binding changes */
sctp_feature_on(inp, SCTP_PCB_FLAGS_DO_ASCONF);
/* set the automatic addr changes from kernel flag */
if (sctp_auto_asconf == 0) {
sctp_feature_off(inp, SCTP_PCB_FLAGS_AUTO_ASCONF);
} else {
sctp_feature_on(inp, SCTP_PCB_FLAGS_AUTO_ASCONF);
}
/* add this address to the endpoint list */
error = sctp_insert_laddr(&inp->sctp_addr_list, ifa, 0);
if (error != 0) {
SCTP_INP_WUNLOCK(inp);
SCTP_INP_INFO_WUNLOCK();
return (error);
}
inp->laddr_count++;
}
/* find the bucket */
head = &sctppcbinfo.sctp_ephash[SCTP_PCBHASH_ALLADDR(lport,
sctppcbinfo.hashmark)];
/* put it in the bucket */
LIST_INSERT_HEAD(head, inp, sctp_hash);
SCTPDBG(SCTP_DEBUG_PCB1, "Main hash to bind at head:%p, bound port:%d\n",
head, ntohs(lport));
/* set in the port */
inp->sctp_lport = lport;
/* turn off just the unbound flag */
inp->sctp_flags &= ~SCTP_PCB_FLAGS_UNBOUND;
SCTP_INP_WUNLOCK(inp);
SCTP_INP_INFO_WUNLOCK();
return (0);
}
static void
sctp_iterator_inp_being_freed(struct sctp_inpcb *inp, struct sctp_inpcb *inp_next)
{
struct sctp_iterator *it;
/*
* We enter with the only the ITERATOR_LOCK in place and a write
* lock on the inp_info stuff.
*/
/*
* Go through all iterators, we must do this since it is possible
* that some iterator does NOT have the lock, but is waiting for it.
* And the one that had the lock has either moved in the last
* iteration or we just cleared it above. We need to find all of
* those guys. The list of iterators should never be very big
* though.
*/
TAILQ_FOREACH(it, &sctppcbinfo.iteratorhead, sctp_nxt_itr) {
if (it == inp->inp_starting_point_for_iterator)
/* skip this guy, he's special */
continue;
if (it->inp == inp) {
/*
* This is tricky and we DON'T lock the iterator.
* Reason is he's running but waiting for me since
* inp->inp_starting_point_for_iterator has the lock
* on me (the guy above we skipped). This tells us
* its is not running but waiting for
* inp->inp_starting_point_for_iterator to be
* released by the guy that does have our INP in a
* lock.
*/
if (it->iterator_flags & SCTP_ITERATOR_DO_SINGLE_INP) {
it->inp = NULL;
it->stcb = NULL;
} else {
/* set him up to do the next guy not me */
it->inp = inp_next;
it->stcb = NULL;
}
}
}
it = inp->inp_starting_point_for_iterator;
if (it) {
if (it->iterator_flags & SCTP_ITERATOR_DO_SINGLE_INP) {
it->inp = NULL;
} else {
it->inp = inp_next;
}
it->stcb = NULL;
}
}
/* release sctp_inpcb unbind the port */
void
sctp_inpcb_free(struct sctp_inpcb *inp, int immediate, int from)
{
/*
* Here we free a endpoint. We must find it (if it is in the Hash
* table) and remove it from there. Then we must also find it in the
* overall list and remove it from there. After all removals are
* complete then any timer has to be stopped. Then start the actual
* freeing. a) Any local lists. b) Any associations. c) The hash of
* all associations. d) finally the ep itself.
*/
struct sctp_pcb *m;
struct sctp_inpcb *inp_save;
struct sctp_tcb *asoc, *nasoc;
struct sctp_laddr *laddr, *nladdr;
struct inpcb *ip_pcb;
struct socket *so;
struct sctp_queued_to_read *sq;
int cnt;
sctp_sharedkey_t *shared_key;
#ifdef SCTP_LOG_CLOSING
sctp_log_closing(inp, NULL, 0);
#endif
SCTP_ITERATOR_LOCK();
so = inp->sctp_socket;
if (inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) {
/* been here before.. eeks.. get out of here */
SCTP_PRINTF("This conflict in free SHOULD not be happening!\n");
SCTP_ITERATOR_UNLOCK();
#ifdef SCTP_LOG_CLOSING
sctp_log_closing(inp, NULL, 1);
#endif
return;
}
SCTP_ASOC_CREATE_LOCK(inp);
SCTP_INP_INFO_WLOCK();
SCTP_INP_WLOCK(inp);
/* First time through we have the socket lock, after that no more. */
if (from == SCTP_CALLED_AFTER_CMPSET_OFCLOSE) {
/*
* Once we are in we can remove the flag from = 1 is only
* passed from the actual closing routines that are called
* via the sockets layer.
*/
inp->sctp_flags &= ~SCTP_PCB_FLAGS_CLOSE_IP;
}
sctp_timer_stop(SCTP_TIMER_TYPE_NEWCOOKIE, inp, NULL, NULL,
SCTP_FROM_SCTP_PCB + SCTP_LOC_1);
if (inp->control) {
sctp_m_freem(inp->control);
inp->control = NULL;
}
if (inp->pkt) {
sctp_m_freem(inp->pkt);
inp->pkt = NULL;
}
m = &inp->sctp_ep;
ip_pcb = &inp->ip_inp.inp; /* we could just cast the main pointer
* here but I will be nice :> (i.e.
* ip_pcb = ep;) */
if (immediate == SCTP_FREE_SHOULD_USE_GRACEFUL_CLOSE) {
int cnt_in_sd;
cnt_in_sd = 0;
for ((asoc = LIST_FIRST(&inp->sctp_asoc_list)); asoc != NULL;
asoc = nasoc) {
nasoc = LIST_NEXT(asoc, sctp_tcblist);
if (asoc->asoc.state & SCTP_STATE_ABOUT_TO_BE_FREED) {
/* Skip guys being freed */
asoc->sctp_socket = NULL;
cnt_in_sd++;
continue;
}
if ((SCTP_GET_STATE(&asoc->asoc) == SCTP_STATE_COOKIE_WAIT) ||
(SCTP_GET_STATE(&asoc->asoc) == SCTP_STATE_COOKIE_ECHOED)) {
/* Just abandon things in the front states */
if (asoc->asoc.total_output_queue_size == 0) {
sctp_free_assoc(inp, asoc, SCTP_PCBFREE_NOFORCE, SCTP_FROM_SCTP_PCB + SCTP_LOC_2);
continue;
}
}
SCTP_TCB_LOCK(asoc);
/* Disconnect the socket please */
asoc->sctp_socket = NULL;
asoc->asoc.state |= SCTP_STATE_CLOSED_SOCKET;
if ((asoc->asoc.size_on_reasm_queue > 0) ||
(asoc->asoc.control_pdapi) ||
(asoc->asoc.size_on_all_streams > 0) ||
(so && (so->so_rcv.sb_cc > 0))
) {
/* Left with Data unread */
struct mbuf *op_err;
op_err = sctp_get_mbuf_for_msg((sizeof(struct sctp_paramhdr) + sizeof(uint32_t)),
0, M_DONTWAIT, 1, MT_DATA);
if (op_err) {
/* Fill in the user initiated abort */
struct sctp_paramhdr *ph;
uint32_t *ippp;
SCTP_BUF_LEN(op_err) =
sizeof(struct sctp_paramhdr) + sizeof(uint32_t);
ph = mtod(op_err,
struct sctp_paramhdr *);
ph->param_type = htons(
SCTP_CAUSE_USER_INITIATED_ABT);
ph->param_length = htons(SCTP_BUF_LEN(op_err));
ippp = (uint32_t *) (ph + 1);
*ippp = htonl(SCTP_FROM_SCTP_PCB + SCTP_LOC_3);
}
asoc->sctp_ep->last_abort_code = SCTP_FROM_SCTP_PCB + SCTP_LOC_3;
sctp_send_abort_tcb(asoc, op_err);
SCTP_STAT_INCR_COUNTER32(sctps_aborted);
if ((SCTP_GET_STATE(&asoc->asoc) == SCTP_STATE_OPEN) ||
(SCTP_GET_STATE(&asoc->asoc) == SCTP_STATE_SHUTDOWN_RECEIVED)) {
SCTP_STAT_DECR_GAUGE32(sctps_currestab);
}
sctp_free_assoc(inp, asoc, SCTP_PCBFREE_NOFORCE, SCTP_FROM_SCTP_PCB + SCTP_LOC_4);
continue;
} else if (TAILQ_EMPTY(&asoc->asoc.send_queue) &&
TAILQ_EMPTY(&asoc->asoc.sent_queue) &&
(asoc->asoc.stream_queue_cnt == 0)
) {
if (asoc->asoc.locked_on_sending) {
goto abort_anyway;
}
if ((SCTP_GET_STATE(&asoc->asoc) != SCTP_STATE_SHUTDOWN_SENT) &&
(SCTP_GET_STATE(&asoc->asoc) != SCTP_STATE_SHUTDOWN_ACK_SENT)) {
/*
* there is nothing queued to send,
* so I send shutdown
*/
sctp_send_shutdown(asoc, asoc->asoc.primary_destination);
if ((SCTP_GET_STATE(&asoc->asoc) == SCTP_STATE_OPEN) ||
(SCTP_GET_STATE(&asoc->asoc) == SCTP_STATE_SHUTDOWN_RECEIVED)) {
SCTP_STAT_DECR_GAUGE32(sctps_currestab);
}
asoc->asoc.state = SCTP_STATE_SHUTDOWN_SENT;
sctp_timer_start(SCTP_TIMER_TYPE_SHUTDOWN, asoc->sctp_ep, asoc,
asoc->asoc.primary_destination);
sctp_timer_start(SCTP_TIMER_TYPE_SHUTDOWNGUARD, asoc->sctp_ep, asoc,
asoc->asoc.primary_destination);
sctp_chunk_output(inp, asoc, SCTP_OUTPUT_FROM_SHUT_TMR);
}
} else {
/* mark into shutdown pending */
struct sctp_stream_queue_pending *sp;
asoc->asoc.state |= SCTP_STATE_SHUTDOWN_PENDING;
sctp_timer_start(SCTP_TIMER_TYPE_SHUTDOWNGUARD, asoc->sctp_ep, asoc,
asoc->asoc.primary_destination);
if (asoc->asoc.locked_on_sending) {
sp = TAILQ_LAST(&((asoc->asoc.locked_on_sending)->outqueue),
sctp_streamhead);
if (sp == NULL) {
SCTP_PRINTF("Error, sp is NULL, locked on sending is %p strm:%d\n",
asoc->asoc.locked_on_sending,
asoc->asoc.locked_on_sending->stream_no);
} else {
if ((sp->length == 0) && (sp->msg_is_complete == 0))
asoc->asoc.state |= SCTP_STATE_PARTIAL_MSG_LEFT;
}
}
if (TAILQ_EMPTY(&asoc->asoc.send_queue) &&
TAILQ_EMPTY(&asoc->asoc.sent_queue) &&
(asoc->asoc.state & SCTP_STATE_PARTIAL_MSG_LEFT)) {
struct mbuf *op_err;
abort_anyway:
op_err = sctp_get_mbuf_for_msg((sizeof(struct sctp_paramhdr) + sizeof(uint32_t)),
0, M_DONTWAIT, 1, MT_DATA);
if (op_err) {
/*
* Fill in the user
* initiated abort
*/
struct sctp_paramhdr *ph;
uint32_t *ippp;
SCTP_BUF_LEN(op_err) =
(sizeof(struct sctp_paramhdr) +
sizeof(uint32_t));
ph = mtod(op_err,
struct sctp_paramhdr *);
ph->param_type = htons(
SCTP_CAUSE_USER_INITIATED_ABT);
ph->param_length = htons(SCTP_BUF_LEN(op_err));
ippp = (uint32_t *) (ph + 1);
*ippp = htonl(SCTP_FROM_SCTP_PCB + SCTP_LOC_5);
}
asoc->sctp_ep->last_abort_code = SCTP_FROM_SCTP_PCB + SCTP_LOC_5;
sctp_send_abort_tcb(asoc, op_err);
SCTP_STAT_INCR_COUNTER32(sctps_aborted);
if ((SCTP_GET_STATE(&asoc->asoc) == SCTP_STATE_OPEN) ||
(SCTP_GET_STATE(&asoc->asoc) == SCTP_STATE_SHUTDOWN_RECEIVED)) {
SCTP_STAT_DECR_GAUGE32(sctps_currestab);
}
sctp_free_assoc(inp, asoc, SCTP_PCBFREE_NOFORCE, SCTP_FROM_SCTP_PCB + SCTP_LOC_6);
continue;
}
}
cnt_in_sd++;
SCTP_TCB_UNLOCK(asoc);
}
/* now is there some left in our SHUTDOWN state? */
if (cnt_in_sd) {
SCTP_INP_WUNLOCK(inp);
SCTP_ASOC_CREATE_UNLOCK(inp);
SCTP_INP_INFO_WUNLOCK();
SCTP_ITERATOR_UNLOCK();
#ifdef SCTP_LOG_CLOSING
sctp_log_closing(inp, NULL, 2);
#endif
return;
}
}
inp->sctp_socket = NULL;
if ((inp->sctp_flags & SCTP_PCB_FLAGS_UNBOUND) !=
SCTP_PCB_FLAGS_UNBOUND) {
/*
* ok, this guy has been bound. It's port is somewhere in
* the sctppcbinfo hash table. Remove it!
*/
LIST_REMOVE(inp, sctp_hash);
inp->sctp_flags |= SCTP_PCB_FLAGS_UNBOUND;
}
/*
* If there is a timer running to kill us, forget it, since it may
* have a contest on the INP lock.. which would cause us to die ...
*/
cnt = 0;
for ((asoc = LIST_FIRST(&inp->sctp_asoc_list)); asoc != NULL;
asoc = nasoc) {
nasoc = LIST_NEXT(asoc, sctp_tcblist);
if (asoc->asoc.state & SCTP_STATE_ABOUT_TO_BE_FREED) {
cnt++;
continue;
}
/* Free associations that are NOT killing us */
SCTP_TCB_LOCK(asoc);
if ((SCTP_GET_STATE(&asoc->asoc) != SCTP_STATE_COOKIE_WAIT) &&
((asoc->asoc.state & SCTP_STATE_ABOUT_TO_BE_FREED) == 0)) {
struct mbuf *op_err;
uint32_t *ippp;
op_err = sctp_get_mbuf_for_msg((sizeof(struct sctp_paramhdr) + sizeof(uint32_t)),
0, M_DONTWAIT, 1, MT_DATA);
if (op_err) {
/* Fill in the user initiated abort */
struct sctp_paramhdr *ph;
SCTP_BUF_LEN(op_err) = (sizeof(struct sctp_paramhdr) +
sizeof(uint32_t));
ph = mtod(op_err, struct sctp_paramhdr *);
ph->param_type = htons(
SCTP_CAUSE_USER_INITIATED_ABT);
ph->param_length = htons(SCTP_BUF_LEN(op_err));
ippp = (uint32_t *) (ph + 1);
*ippp = htonl(SCTP_FROM_SCTP_PCB + SCTP_LOC_7);
}
asoc->sctp_ep->last_abort_code = SCTP_FROM_SCTP_PCB + SCTP_LOC_7;
sctp_send_abort_tcb(asoc, op_err);
SCTP_STAT_INCR_COUNTER32(sctps_aborted);
} else if (asoc->asoc.state & SCTP_STATE_ABOUT_TO_BE_FREED) {
cnt++;
SCTP_TCB_UNLOCK(asoc);
continue;
}
if ((SCTP_GET_STATE(&asoc->asoc) == SCTP_STATE_OPEN) ||
(SCTP_GET_STATE(&asoc->asoc) == SCTP_STATE_SHUTDOWN_RECEIVED)) {
SCTP_STAT_DECR_GAUGE32(sctps_currestab);
}
sctp_free_assoc(inp, asoc, SCTP_PCBFREE_FORCE, SCTP_FROM_SCTP_PCB + SCTP_LOC_8);
}
if (cnt) {
/* Ok we have someone out there that will kill us */
(void)SCTP_OS_TIMER_STOP(&inp->sctp_ep.signature_change.timer);
SCTP_INP_WUNLOCK(inp);
SCTP_ASOC_CREATE_UNLOCK(inp);
SCTP_INP_INFO_WUNLOCK();
SCTP_ITERATOR_UNLOCK();
#ifdef SCTP_LOG_CLOSING
sctp_log_closing(inp, NULL, 3);
#endif
return;
}
if ((inp->refcount) || (inp->sctp_flags & SCTP_PCB_FLAGS_CLOSE_IP)) {
(void)SCTP_OS_TIMER_STOP(&inp->sctp_ep.signature_change.timer);
sctp_timer_start(SCTP_TIMER_TYPE_INPKILL, inp, NULL, NULL);
SCTP_INP_WUNLOCK(inp);
SCTP_ASOC_CREATE_UNLOCK(inp);
SCTP_INP_INFO_WUNLOCK();
SCTP_ITERATOR_UNLOCK();
#ifdef SCTP_LOG_CLOSING
sctp_log_closing(inp, NULL, 4);
#endif
return;
}
(void)SCTP_OS_TIMER_STOP(&inp->sctp_ep.signature_change.timer);
inp->sctp_ep.signature_change.type = 0;
inp->sctp_flags |= SCTP_PCB_FLAGS_SOCKET_ALLGONE;
#ifdef SCTP_LOG_CLOSING
sctp_log_closing(inp, NULL, 5);
#endif
(void)SCTP_OS_TIMER_STOP(&inp->sctp_ep.signature_change.timer);
inp->sctp_ep.signature_change.type = SCTP_TIMER_TYPE_NONE;
/* Clear the read queue */
/* sa_ignore FREED_MEMORY */
while ((sq = TAILQ_FIRST(&inp->read_queue)) != NULL) {
/* Its only abandoned if it had data left */
if (sq->length)
SCTP_STAT_INCR(sctps_left_abandon);
TAILQ_REMOVE(&inp->read_queue, sq, next);
sctp_free_remote_addr(sq->whoFrom);
if (so)
so->so_rcv.sb_cc -= sq->length;
if (sq->data) {
sctp_m_freem(sq->data);
sq->data = NULL;
}
/*
* no need to free the net count, since at this point all
* assoc's are gone.
*/
SCTP_ZONE_FREE(sctppcbinfo.ipi_zone_readq, sq);
SCTP_DECR_READQ_COUNT();
}
/* Now the sctp_pcb things */
/*
* free each asoc if it is not already closed/free. we can't use the
* macro here since le_next will get freed as part of the
* sctp_free_assoc() call.
*/
cnt = 0;
if (so) {
#ifdef IPSEC
ipsec4_delete_pcbpolicy(ip_pcb);
#endif /* IPSEC */
/* Unlocks not needed since the socket is gone now */
}
if (ip_pcb->inp_options) {
(void)sctp_m_free(ip_pcb->inp_options);
ip_pcb->inp_options = 0;
}
if (ip_pcb->inp_moptions) {
ip_freemoptions(ip_pcb->inp_moptions);
ip_pcb->inp_moptions = 0;
}
#ifdef INET6
if (ip_pcb->inp_vflag & INP_IPV6) {
struct in6pcb *in6p;
in6p = (struct in6pcb *)inp;
ip6_freepcbopts(in6p->in6p_outputopts);
}
#endif /* INET6 */
ip_pcb->inp_vflag = 0;
/* free up authentication fields */
if (inp->sctp_ep.local_auth_chunks != NULL)
sctp_free_chunklist(inp->sctp_ep.local_auth_chunks);
if (inp->sctp_ep.local_hmacs != NULL)
sctp_free_hmaclist(inp->sctp_ep.local_hmacs);
shared_key = LIST_FIRST(&inp->sctp_ep.shared_keys);
while (shared_key) {
LIST_REMOVE(shared_key, next);
sctp_free_sharedkey(shared_key);
/* sa_ignore FREED_MEMORY */
shared_key = LIST_FIRST(&inp->sctp_ep.shared_keys);
}
inp_save = LIST_NEXT(inp, sctp_list);
LIST_REMOVE(inp, sctp_list);
/* fix any iterators only after out of the list */
sctp_iterator_inp_being_freed(inp, inp_save);
/*
* if we have an address list the following will free the list of
* ifaddr's that are set into this ep. Again macro limitations here,
* since the LIST_FOREACH could be a bad idea.
*/
for ((laddr = LIST_FIRST(&inp->sctp_addr_list)); laddr != NULL;
laddr = nladdr) {
nladdr = LIST_NEXT(laddr, sctp_nxt_addr);
sctp_remove_laddr(laddr);
}
#ifdef SCTP_TRACK_FREED_ASOCS
/* TEMP CODE */
for ((asoc = LIST_FIRST(&inp->sctp_asoc_free_list)); asoc != NULL;
asoc = nasoc) {
nasoc = LIST_NEXT(asoc, sctp_tcblist);
LIST_REMOVE(asoc, sctp_tcblist);
SCTP_ZONE_FREE(sctppcbinfo.ipi_zone_asoc, asoc);
SCTP_DECR_ASOC_COUNT();
}
/* *** END TEMP CODE *** */
#endif
/* Now lets see about freeing the EP hash table. */
if (inp->sctp_tcbhash != NULL) {
SCTP_HASH_FREE(inp->sctp_tcbhash, inp->sctp_hashmark);
inp->sctp_tcbhash = NULL;
}
/* Now we must put the ep memory back into the zone pool */
SCTP_INP_LOCK_DESTROY(inp);
SCTP_INP_READ_DESTROY(inp);
SCTP_ASOC_CREATE_LOCK_DESTROY(inp);
SCTP_INP_INFO_WUNLOCK();
SCTP_ITERATOR_UNLOCK();
SCTP_ZONE_FREE(sctppcbinfo.ipi_zone_ep, inp);
SCTP_DECR_EP_COUNT();
}
struct sctp_nets *
sctp_findnet(struct sctp_tcb *stcb, struct sockaddr *addr)
{
struct sctp_nets *net;
/* locate the address */
TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) {
if (sctp_cmpaddr(addr, (struct sockaddr *)&net->ro._l_addr))
return (net);
}
return (NULL);
}
int
sctp_is_address_on_local_host(struct sockaddr *addr, uint32_t vrf_id)
{
struct sctp_ifa *sctp_ifa;
sctp_ifa = sctp_find_ifa_by_addr(addr, vrf_id, 0);
if (sctp_ifa) {
return (1);
} else {
return (0);
}
}
void
sctp_set_initial_cc_param(struct sctp_tcb *stcb, struct sctp_nets *net)
{
net->cwnd = min((net->mtu * 4), max((2 * net->mtu), SCTP_INITIAL_CWND));
/* we always get at LEAST 2 MTU's */
if (net->cwnd < (2 * net->mtu)) {
net->cwnd = 2 * net->mtu;
}
net->ssthresh = stcb->asoc.peers_rwnd;
}
/*
* add's a remote endpoint address, done with the INIT/INIT-ACK as well as
* when a ASCONF arrives that adds it. It will also initialize all the cwnd
* stats of stuff.
*/
int
sctp_add_remote_addr(struct sctp_tcb *stcb, struct sockaddr *newaddr,
int set_scope, int from)
{
/*
* The following is redundant to the same lines in the
* sctp_aloc_assoc() but is needed since other's call the add
* address function
*/
struct sctp_nets *net, *netfirst;
int addr_inscope;
SCTPDBG(SCTP_DEBUG_PCB1, "Adding an address (from:%d) to the peer: ",
from);
SCTPDBG_ADDR(SCTP_DEBUG_PCB1, newaddr);
netfirst = sctp_findnet(stcb, newaddr);
if (netfirst) {
/*
* Lie and return ok, we don't want to make the association
* go away for this behavior. It will happen in the TCP
* model in a connected socket. It does not reach the hash
* table until after the association is built so it can't be
* found. Mark as reachable, since the initial creation will
* have been cleared and the NOT_IN_ASSOC flag will have
* been added... and we don't want to end up removing it
* back out.
*/
if (netfirst->dest_state & SCTP_ADDR_UNCONFIRMED) {
netfirst->dest_state = (SCTP_ADDR_REACHABLE |
SCTP_ADDR_UNCONFIRMED);
} else {
netfirst->dest_state = SCTP_ADDR_REACHABLE;
}
return (0);
}
addr_inscope = 1;
if (newaddr->sa_family == AF_INET) {
struct sockaddr_in *sin;
sin = (struct sockaddr_in *)newaddr;
if (sin->sin_addr.s_addr == 0) {
/* Invalid address */
return (-1);
}
/* zero out the bzero area */
memset(&sin->sin_zero, 0, sizeof(sin->sin_zero));
/* assure len is set */
sin->sin_len = sizeof(struct sockaddr_in);
if (set_scope) {
#ifdef SCTP_DONT_DO_PRIVADDR_SCOPE
stcb->ipv4_local_scope = 1;
#else
if (IN4_ISPRIVATE_ADDRESS(&sin->sin_addr)) {
stcb->asoc.ipv4_local_scope = 1;
}
#endif /* SCTP_DONT_DO_PRIVADDR_SCOPE */
} else {
/* Validate the address is in scope */
if ((IN4_ISPRIVATE_ADDRESS(&sin->sin_addr)) &&
(stcb->asoc.ipv4_local_scope == 0)) {
addr_inscope = 0;
}
}
} else if (newaddr->sa_family == AF_INET6) {
struct sockaddr_in6 *sin6;
sin6 = (struct sockaddr_in6 *)newaddr;
if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) {
/* Invalid address */
return (-1);
}
/* assure len is set */
sin6->sin6_len = sizeof(struct sockaddr_in6);
if (set_scope) {
if (sctp_is_address_on_local_host(newaddr, stcb->asoc.vrf_id)) {
stcb->asoc.loopback_scope = 1;
stcb->asoc.local_scope = 0;
stcb->asoc.ipv4_local_scope = 1;
stcb->asoc.site_scope = 1;
} else if (IN6_IS_ADDR_LINKLOCAL(&sin6->sin6_addr)) {
/*
* If the new destination is a LINK_LOCAL we
* must have common site scope. Don't set
* the local scope since we may not share
* all links, only loopback can do this.
* Links on the local network would also be
* on our private network for v4 too.
*/
stcb->asoc.ipv4_local_scope = 1;
stcb->asoc.site_scope = 1;
} else if (IN6_IS_ADDR_SITELOCAL(&sin6->sin6_addr)) {
/*
* If the new destination is SITE_LOCAL then
* we must have site scope in common.
*/
stcb->asoc.site_scope = 1;
}
} else {
/* Validate the address is in scope */
if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr) &&
(stcb->asoc.loopback_scope == 0)) {
addr_inscope = 0;
} else if (IN6_IS_ADDR_LINKLOCAL(&sin6->sin6_addr) &&
(stcb->asoc.local_scope == 0)) {
addr_inscope = 0;
} else if (IN6_IS_ADDR_SITELOCAL(&sin6->sin6_addr) &&
(stcb->asoc.site_scope == 0)) {
addr_inscope = 0;
}
}
} else {
/* not supported family type */
return (-1);
}
net = SCTP_ZONE_GET(sctppcbinfo.ipi_zone_net, struct sctp_nets);
if (net == NULL) {
return (-1);
}
SCTP_INCR_RADDR_COUNT();
bzero(net, sizeof(*net));
(void)SCTP_GETTIME_TIMEVAL(&net->start_time);
memcpy(&net->ro._l_addr, newaddr, newaddr->sa_len);
if (newaddr->sa_family == AF_INET) {
((struct sockaddr_in *)&net->ro._l_addr)->sin_port = stcb->rport;
} else if (newaddr->sa_family == AF_INET6) {
((struct sockaddr_in6 *)&net->ro._l_addr)->sin6_port = stcb->rport;
}
net->addr_is_local = sctp_is_address_on_local_host(newaddr, stcb->asoc.vrf_id);
if (net->addr_is_local && ((set_scope || (from == SCTP_ADDR_IS_CONFIRMED)))) {
stcb->asoc.loopback_scope = 1;
stcb->asoc.ipv4_local_scope = 1;
stcb->asoc.local_scope = 0;
stcb->asoc.site_scope = 1;
addr_inscope = 1;
}
net->failure_threshold = stcb->asoc.def_net_failure;
if (addr_inscope == 0) {
net->dest_state = (SCTP_ADDR_REACHABLE |
SCTP_ADDR_OUT_OF_SCOPE);
} else {
if (from == SCTP_ADDR_IS_CONFIRMED)
/* SCTP_ADDR_IS_CONFIRMED is passed by connect_x */
net->dest_state = SCTP_ADDR_REACHABLE;
else
net->dest_state = SCTP_ADDR_REACHABLE |
SCTP_ADDR_UNCONFIRMED;
}
net->RTO = stcb->asoc.initial_rto;
stcb->asoc.numnets++;
*(&net->ref_count) = 1;
net->tos_flowlabel = 0;
#ifdef INET
if (newaddr->sa_family == AF_INET)
net->tos_flowlabel = stcb->asoc.default_tos;
#endif
#ifdef INET6
if (newaddr->sa_family == AF_INET6)
net->tos_flowlabel = stcb->asoc.default_flowlabel;
#endif
/* Init the timer structure */
SCTP_OS_TIMER_INIT(&net->rxt_timer.timer);
SCTP_OS_TIMER_INIT(&net->fr_timer.timer);
SCTP_OS_TIMER_INIT(&net->pmtu_timer.timer);
/* Now generate a route for this guy */
/* KAME hack: embed scopeid */
if (newaddr->sa_family == AF_INET6) {
struct sockaddr_in6 *sin6;
sin6 = (struct sockaddr_in6 *)&net->ro._l_addr;
(void)sa6_embedscope(sin6, ip6_use_defzone);
sin6->sin6_scope_id = 0;
}
SCTP_RTALLOC((sctp_route_t *) & net->ro, stcb->asoc.vrf_id,
stcb->asoc.table_id);
if (newaddr->sa_family == AF_INET6) {
struct sockaddr_in6 *sin6;
sin6 = (struct sockaddr_in6 *)&net->ro._l_addr;
(void)sa6_recoverscope(sin6);
}
if (SCTP_ROUTE_HAS_VALID_IFN(&net->ro)) {
/* Get source address */
net->ro._s_addr = sctp_source_address_selection(stcb->sctp_ep,
stcb,
(sctp_route_t *) & net->ro,
net,
0,
stcb->asoc.vrf_id);
/* Now get the interface MTU */
if (net->ro._s_addr && net->ro._s_addr->ifn_p) {
net->mtu = SCTP_GATHER_MTU_FROM_INTFC(net->ro._s_addr->ifn_p);
} else {
net->mtu = 0;
}
#ifdef SCTP_PRINT_FOR_B_AND_M
SCTP_PRINTF("We have found an interface mtu of %d\n", net->mtu);
#endif
if (net->mtu == 0) {
/* Huh ?? */
net->mtu = SCTP_DEFAULT_MTU;
} else {
uint32_t rmtu;
rmtu = SCTP_GATHER_MTU_FROM_ROUTE(net->ro._s_addr, &net->ro._l_addr.sa, net->ro.ro_rt);
#ifdef SCTP_PRINT_FOR_B_AND_M
SCTP_PRINTF("The route mtu is %d\n", rmtu);
#endif
if (rmtu == 0) {
/*
* Start things off to match mtu of
* interface please.
*/
SCTP_SET_MTU_OF_ROUTE(&net->ro._l_addr.sa,
net->ro.ro_rt, net->mtu);
} else {
/*
* we take the route mtu over the interface,
* since the route may be leading out the
* loopback, or a different interface.
*/
net->mtu = rmtu;
}
}
if (from == SCTP_ALLOC_ASOC) {
#ifdef SCTP_PRINT_FOR_B_AND_M
SCTP_PRINTF("New assoc sets mtu to :%d\n", net->mtu);
#endif
stcb->asoc.smallest_mtu = net->mtu;
}
} else {
net->mtu = stcb->asoc.smallest_mtu;
}
if (stcb->asoc.smallest_mtu > net->mtu) {
#ifdef SCTP_PRINT_FOR_B_AND_M
SCTP_PRINTF("new address mtu:%d smaller than smallest:%d\n",
net->mtu, stcb->asoc.smallest_mtu);
#endif
stcb->asoc.smallest_mtu = net->mtu;
}
/*
* We take the max of the burst limit times a MTU or the
* INITIAL_CWND. We then limit this to 4 MTU's of sending.
*/
sctp_set_initial_cc_param(stcb, net);
#if defined(SCTP_CWND_MONITOR) || defined(SCTP_CWND_LOGGING)
sctp_log_cwnd(stcb, net, 0, SCTP_CWND_INITIALIZATION);
#endif
/*
* CMT: CUC algo - set find_pseudo_cumack to TRUE (1) at beginning
* of assoc (2005/06/27, iyengar@cis.udel.edu)
*/
net->find_pseudo_cumack = 1;
net->find_rtx_pseudo_cumack = 1;
net->src_addr_selected = 0;
netfirst = TAILQ_FIRST(&stcb->asoc.nets);
if (net->ro.ro_rt == NULL) {
/* Since we have no route put it at the back */
TAILQ_INSERT_TAIL(&stcb->asoc.nets, net, sctp_next);
} else if (netfirst == NULL) {
/* We are the first one in the pool. */
TAILQ_INSERT_HEAD(&stcb->asoc.nets, net, sctp_next);
} else if (netfirst->ro.ro_rt == NULL) {
/*
* First one has NO route. Place this one ahead of the first
* one.
*/
TAILQ_INSERT_HEAD(&stcb->asoc.nets, net, sctp_next);
} else if (net->ro.ro_rt->rt_ifp != netfirst->ro.ro_rt->rt_ifp) {
/*
* This one has a different interface than the one at the
* top of the list. Place it ahead.
*/
TAILQ_INSERT_HEAD(&stcb->asoc.nets, net, sctp_next);
} else {
/*
* Ok we have the same interface as the first one. Move
* forward until we find either a) one with a NULL route...
* insert ahead of that b) one with a different ifp.. insert
* after that. c) end of the list.. insert at the tail.
*/
struct sctp_nets *netlook;
do {
netlook = TAILQ_NEXT(netfirst, sctp_next);
if (netlook == NULL) {
/* End of the list */
TAILQ_INSERT_TAIL(&stcb->asoc.nets, net, sctp_next);
break;
} else if (netlook->ro.ro_rt == NULL) {
/* next one has NO route */
TAILQ_INSERT_BEFORE(netfirst, net, sctp_next);
break;
} else if (netlook->ro.ro_rt->rt_ifp != net->ro.ro_rt->rt_ifp) {
TAILQ_INSERT_AFTER(&stcb->asoc.nets, netlook,
net, sctp_next);
break;
}
/* Shift forward */
netfirst = netlook;
} while (netlook != NULL);
}
/* got to have a primary set */
if (stcb->asoc.primary_destination == 0) {
stcb->asoc.primary_destination = net;
} else if ((stcb->asoc.primary_destination->ro.ro_rt == NULL) &&
(net->ro.ro_rt) &&
((net->dest_state & SCTP_ADDR_UNCONFIRMED) == 0)) {
/* No route to current primary adopt new primary */
stcb->asoc.primary_destination = net;
}
sctp_timer_start(SCTP_TIMER_TYPE_PATHMTURAISE, stcb->sctp_ep, stcb,
net);
/* Validate primary is first */
net = TAILQ_FIRST(&stcb->asoc.nets);
if ((net != stcb->asoc.primary_destination) &&
(stcb->asoc.primary_destination)) {
/*
* first one on the list is NOT the primary sctp_cmpaddr()
* is much more efficent if the primary is the first on the
* list, make it so.
*/
TAILQ_REMOVE(&stcb->asoc.nets,
stcb->asoc.primary_destination, sctp_next);
TAILQ_INSERT_HEAD(&stcb->asoc.nets,
stcb->asoc.primary_destination, sctp_next);
}
return (0);
}
/*
* allocate an association and add it to the endpoint. The caller must be
* careful to add all additional addresses once they are know right away or
* else the assoc will be may experience a blackout scenario.
*/
struct sctp_tcb *
sctp_aloc_assoc(struct sctp_inpcb *inp, struct sockaddr *firstaddr,
int for_a_init, int *error, uint32_t override_tag, uint32_t vrf_id)
{
struct sctp_tcb *stcb;
struct sctp_association *asoc;
struct sctpasochead *head;
uint16_t rport;
int err;
/*
* Assumption made here: Caller has done a
* sctp_findassociation_ep_addr(ep, addr's); to make sure the
* address does not exist already.
*/
if (sctppcbinfo.ipi_count_asoc >= SCTP_MAX_NUM_OF_ASOC) {
/* Hit max assoc, sorry no more */
*error = ENOBUFS;
return (NULL);
}
if (firstaddr == NULL) {
*error = EINVAL;
return (NULL);
}
SCTP_INP_RLOCK(inp);
if (inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL) {
/*
* If its in the TCP pool, its NOT allowed to create an
* association. The parent listener needs to call
* sctp_aloc_assoc.. or the one-2-many socket. If a peeled
* off, or connected one does this.. its an error.
*/
SCTP_INP_RUNLOCK(inp);
*error = EINVAL;
return (NULL);
}
SCTPDBG(SCTP_DEBUG_PCB3, "Allocate an association for peer:");
#ifdef SCTP_DEBUG
if (firstaddr) {
SCTPDBG_ADDR(SCTP_DEBUG_PCB3, firstaddr);
SCTPDBG(SCTP_DEBUG_PCB3, "Port:%d\n",
ntohs(((struct sockaddr_in *)firstaddr)->sin_port));
} else {
SCTPDBG(SCTP_DEBUG_PCB3, "None\n");
}
#endif /* SCTP_DEBUG */
if (firstaddr->sa_family == AF_INET) {
struct sockaddr_in *sin;
sin = (struct sockaddr_in *)firstaddr;
if ((sin->sin_port == 0) || (sin->sin_addr.s_addr == 0)) {
/* Invalid address */
SCTP_INP_RUNLOCK(inp);
*error = EINVAL;
return (NULL);
}
rport = sin->sin_port;
} else if (firstaddr->sa_family == AF_INET6) {
struct sockaddr_in6 *sin6;
sin6 = (struct sockaddr_in6 *)firstaddr;
if ((sin6->sin6_port == 0) ||
(IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))) {
/* Invalid address */
SCTP_INP_RUNLOCK(inp);
*error = EINVAL;
return (NULL);
}
rport = sin6->sin6_port;
} else {
/* not supported family type */
SCTP_INP_RUNLOCK(inp);
*error = EINVAL;
return (NULL);
}
SCTP_INP_RUNLOCK(inp);
if (inp->sctp_flags & SCTP_PCB_FLAGS_UNBOUND) {
/*
* If you have not performed a bind, then we need to do the
* ephemerial bind for you.
*/
if ((err = sctp_inpcb_bind(inp->sctp_socket,
(struct sockaddr *)NULL,
(struct thread *)NULL
))) {
/* bind error, probably perm */
*error = err;
return (NULL);
}
}
stcb = SCTP_ZONE_GET(sctppcbinfo.ipi_zone_asoc, struct sctp_tcb);
if (stcb == NULL) {
/* out of memory? */
*error = ENOMEM;
return (NULL);
}
SCTP_INCR_ASOC_COUNT();
bzero(stcb, sizeof(*stcb));
asoc = &stcb->asoc;
SCTP_TCB_LOCK_INIT(stcb);
SCTP_TCB_SEND_LOCK_INIT(stcb);
/* setup back pointer's */
stcb->sctp_ep = inp;
stcb->sctp_socket = inp->sctp_socket;
if ((err = sctp_init_asoc(inp, asoc, for_a_init, override_tag, vrf_id))) {
/* failed */
SCTP_TCB_LOCK_DESTROY(stcb);
SCTP_TCB_SEND_LOCK_DESTROY(stcb);
SCTP_ZONE_FREE(sctppcbinfo.ipi_zone_asoc, stcb);
SCTP_DECR_ASOC_COUNT();
*error = err;
return (NULL);
}
/* and the port */
stcb->rport = rport;
SCTP_INP_INFO_WLOCK();
SCTP_INP_WLOCK(inp);
if (inp->sctp_flags & (SCTP_PCB_FLAGS_SOCKET_GONE | SCTP_PCB_FLAGS_SOCKET_ALLGONE)) {
/* inpcb freed while alloc going on */
SCTP_TCB_LOCK_DESTROY(stcb);
SCTP_TCB_SEND_LOCK_DESTROY(stcb);
SCTP_ZONE_FREE(sctppcbinfo.ipi_zone_asoc, stcb);
SCTP_INP_WUNLOCK(inp);
SCTP_INP_INFO_WUNLOCK();
SCTP_DECR_ASOC_COUNT();
*error = EINVAL;
return (NULL);
}
SCTP_TCB_LOCK(stcb);
/* now that my_vtag is set, add it to the hash */
head = &sctppcbinfo.sctp_asochash[SCTP_PCBHASH_ASOC(stcb->asoc.my_vtag,
sctppcbinfo.hashasocmark)];
/* put it in the bucket in the vtag hash of assoc's for the system */
LIST_INSERT_HEAD(head, stcb, sctp_asocs);
SCTP_INP_INFO_WUNLOCK();
if ((err = sctp_add_remote_addr(stcb, firstaddr, SCTP_DO_SETSCOPE, SCTP_ALLOC_ASOC))) {
/* failure.. memory error? */
if (asoc->strmout)
SCTP_FREE(asoc->strmout);
if (asoc->mapping_array)
SCTP_FREE(asoc->mapping_array);
SCTP_ZONE_FREE(sctppcbinfo.ipi_zone_asoc, stcb);
SCTP_DECR_ASOC_COUNT();
SCTP_TCB_LOCK_DESTROY(stcb);
SCTP_TCB_SEND_LOCK_DESTROY(stcb);
SCTP_INP_WUNLOCK(inp);
*error = ENOBUFS;
return (NULL);
}
/* Init all the timers */
SCTP_OS_TIMER_INIT(&asoc->hb_timer.timer);
SCTP_OS_TIMER_INIT(&asoc->dack_timer.timer);
SCTP_OS_TIMER_INIT(&asoc->strreset_timer.timer);
SCTP_OS_TIMER_INIT(&asoc->asconf_timer.timer);
SCTP_OS_TIMER_INIT(&asoc->shut_guard_timer.timer);
SCTP_OS_TIMER_INIT(&asoc->autoclose_timer.timer);
SCTP_OS_TIMER_INIT(&asoc->delayed_event_timer.timer);
LIST_INSERT_HEAD(&inp->sctp_asoc_list, stcb, sctp_tcblist);
/* now file the port under the hash as well */
if (inp->sctp_tcbhash != NULL) {
head = &inp->sctp_tcbhash[SCTP_PCBHASH_ALLADDR(stcb->rport,
inp->sctp_hashmark)];
LIST_INSERT_HEAD(head, stcb, sctp_tcbhash);
}
SCTP_INP_WUNLOCK(inp);
SCTPDBG(SCTP_DEBUG_PCB1, "Association %p now allocated\n", stcb);
return (stcb);
}
void
sctp_remove_net(struct sctp_tcb *stcb, struct sctp_nets *net)
{
struct sctp_association *asoc;
asoc = &stcb->asoc;
asoc->numnets--;
TAILQ_REMOVE(&asoc->nets, net, sctp_next);
if (net == asoc->primary_destination) {
/* Reset primary */
struct sctp_nets *lnet;
lnet = TAILQ_FIRST(&asoc->nets);
/* Try to find a confirmed primary */
asoc->primary_destination = sctp_find_alternate_net(stcb, lnet, 0);
}
if (net == asoc->last_data_chunk_from) {
/* Reset primary */
asoc->last_data_chunk_from = TAILQ_FIRST(&asoc->nets);
}
if (net == asoc->last_control_chunk_from) {
/* Clear net */
asoc->last_control_chunk_from = NULL;
}
sctp_free_remote_addr(net);
}
/*
* remove a remote endpoint address from an association, it will fail if the
* address does not exist.
*/
int
sctp_del_remote_addr(struct sctp_tcb *stcb, struct sockaddr *remaddr)
{
/*
* Here we need to remove a remote address. This is quite simple, we
* first find it in the list of address for the association
* (tasoc->asoc.nets) and then if it is there, we do a LIST_REMOVE
* on that item. Note we do not allow it to be removed if there are
* no other addresses.
*/
struct sctp_association *asoc;
struct sctp_nets *net, *net_tmp;
asoc = &stcb->asoc;
/* locate the address */
for (net = TAILQ_FIRST(&asoc->nets); net != NULL; net = net_tmp) {
net_tmp = TAILQ_NEXT(net, sctp_next);
if (net->ro._l_addr.sa.sa_family != remaddr->sa_family) {
continue;
}
if (sctp_cmpaddr((struct sockaddr *)&net->ro._l_addr,
remaddr)) {
/* we found the guy */
if (asoc->numnets < 2) {
/* Must have at LEAST two remote addresses */
return (-1);
} else {
sctp_remove_net(stcb, net);
return (0);
}
}
}
/* not found. */
return (-2);
}
void
sctp_add_vtag_to_timewait(struct sctp_inpcb *inp, uint32_t tag, uint32_t time)
{
struct sctpvtaghead *chain;
struct sctp_tagblock *twait_block;
struct timeval now;
int set, i;
(void)SCTP_GETTIME_TIMEVAL(&now);
chain = &sctppcbinfo.vtag_timewait[(tag % SCTP_STACK_VTAG_HASH_SIZE)];
set = 0;
if (!SCTP_LIST_EMPTY(chain)) {
/* Block(s) present, lets find space, and expire on the fly */
LIST_FOREACH(twait_block, chain, sctp_nxt_tagblock) {
for (i = 0; i < SCTP_NUMBER_IN_VTAG_BLOCK; i++) {
if ((twait_block->vtag_block[i].v_tag == 0) &&
!set) {
twait_block->vtag_block[i].tv_sec_at_expire =
now.tv_sec + time;
twait_block->vtag_block[i].v_tag = tag;
set = 1;
} else if ((twait_block->vtag_block[i].v_tag) &&
((long)twait_block->vtag_block[i].tv_sec_at_expire >
now.tv_sec)) {
/* Audit expires this guy */
twait_block->vtag_block[i].tv_sec_at_expire = 0;
twait_block->vtag_block[i].v_tag = 0;
if (set == 0) {
/* Reuse it for my new tag */
twait_block->vtag_block[0].tv_sec_at_expire = now.tv_sec + SCTP_TIME_WAIT;
twait_block->vtag_block[0].v_tag = tag;
set = 1;
}
}
}
if (set) {
/*
* We only do up to the block where we can
* place our tag for audits
*/
break;
}
}
}
/* Need to add a new block to chain */
if (!set) {
SCTP_MALLOC(twait_block, struct sctp_tagblock *,
sizeof(struct sctp_tagblock), "TimeWait");
if (twait_block == NULL) {
return;
}
memset(twait_block, 0, sizeof(struct sctp_tagblock));
LIST_INSERT_HEAD(chain, twait_block, sctp_nxt_tagblock);
twait_block->vtag_block[0].tv_sec_at_expire = now.tv_sec +
SCTP_TIME_WAIT;
twait_block->vtag_block[0].v_tag = tag;
}
}
static void
sctp_iterator_asoc_being_freed(struct sctp_inpcb *inp, struct sctp_tcb *stcb)
{
struct sctp_iterator *it;
/*
* Unlock the tcb lock we do this so we avoid a dead lock scenario
* where the iterator is waiting on the TCB lock and the TCB lock is
* waiting on the iterator lock.
*/
it = stcb->asoc.stcb_starting_point_for_iterator;
if (it == NULL) {
return;
}
if (it->inp != stcb->sctp_ep) {
/* hmm, focused on the wrong one? */
return;
}
if (it->stcb != stcb) {
return;
}
it->stcb = LIST_NEXT(stcb, sctp_tcblist);
if (it->stcb == NULL) {
/* done with all asoc's in this assoc */
if (it->iterator_flags & SCTP_ITERATOR_DO_SINGLE_INP) {
it->inp = NULL;
} else {
it->inp = LIST_NEXT(inp, sctp_list);
}
}
}
/*
* Free the association after un-hashing the remote port.
*/
int
sctp_free_assoc(struct sctp_inpcb *inp, struct sctp_tcb *stcb, int from_inpcbfree, int from_location)
{
int i;
struct sctp_association *asoc;
struct sctp_nets *net, *prev;
struct sctp_laddr *laddr;
struct sctp_tmit_chunk *chk;
struct sctp_asconf_addr *aparam;
struct sctp_stream_reset_list *liste;
struct sctp_queued_to_read *sq;
struct sctp_stream_queue_pending *sp;
sctp_sharedkey_t *shared_key;
struct socket *so;
int ccnt = 0;
int cnt = 0;
/* first, lets purge the entry from the hash table. */
#ifdef SCTP_LOG_CLOSING
sctp_log_closing(inp, stcb, 6);
#endif
if (stcb->asoc.state == 0) {
#ifdef SCTP_LOG_CLOSING
sctp_log_closing(inp, NULL, 7);
#endif
/* there is no asoc, really TSNH :-0 */
return (1);
}
/* TEMP CODE */
if (stcb->freed_from_where == 0) {
/* Only record the first place free happened from */
stcb->freed_from_where = from_location;
}
/* TEMP CODE */
asoc = &stcb->asoc;
if ((inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) ||
(inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE))
/* nothing around */
so = NULL;
else
so = inp->sctp_socket;
/*
* We used timer based freeing if a reader or writer is in the way.
* So we first check if we are actually being called from a timer,
* if so we abort early if a reader or writer is still in the way.
*/
if ((stcb->asoc.state & SCTP_STATE_ABOUT_TO_BE_FREED) &&
(from_inpcbfree == SCTP_NORMAL_PROC)) {
/*
* is it the timer driving us? if so are the reader/writers
* gone?
*/
if (stcb->asoc.refcnt) {
/* nope, reader or writer in the way */
sctp_timer_start(SCTP_TIMER_TYPE_ASOCKILL, inp, stcb, NULL);
/* no asoc destroyed */
SCTP_TCB_UNLOCK(stcb);
#ifdef SCTP_LOG_CLOSING
sctp_log_closing(inp, stcb, 8);
#endif
return (0);
}
}
/* now clean up any other timers */
(void)SCTP_OS_TIMER_STOP(&asoc->hb_timer.timer);
asoc->hb_timer.self = NULL;
(void)SCTP_OS_TIMER_STOP(&asoc->dack_timer.timer);
asoc->dack_timer.self = NULL;
(void)SCTP_OS_TIMER_STOP(&asoc->strreset_timer.timer);
/*-
* For stream reset we don't blast this unless
* it is a str-reset timer, it might be the
* free-asoc timer which we DON'T want to
* disturb.
*/
if (asoc->strreset_timer.type == SCTP_TIMER_TYPE_STRRESET)
asoc->strreset_timer.self = NULL;
(void)SCTP_OS_TIMER_STOP(&asoc->asconf_timer.timer);
asoc->asconf_timer.self = NULL;
(void)SCTP_OS_TIMER_STOP(&asoc->autoclose_timer.timer);
asoc->autoclose_timer.self = NULL;
(void)SCTP_OS_TIMER_STOP(&asoc->shut_guard_timer.timer);
asoc->shut_guard_timer.self = NULL;
(void)SCTP_OS_TIMER_STOP(&asoc->delayed_event_timer.timer);
asoc->delayed_event_timer.self = NULL;
TAILQ_FOREACH(net, &asoc->nets, sctp_next) {
(void)SCTP_OS_TIMER_STOP(&net->fr_timer.timer);
net->fr_timer.self = NULL;
(void)SCTP_OS_TIMER_STOP(&net->rxt_timer.timer);
net->rxt_timer.self = NULL;
(void)SCTP_OS_TIMER_STOP(&net->pmtu_timer.timer);
net->pmtu_timer.self = NULL;
}
/* Now the read queue needs to be cleaned up (only once) */
cnt = 0;
if ((stcb->asoc.state & SCTP_STATE_ABOUT_TO_BE_FREED) == 0) {
stcb->asoc.state |= SCTP_STATE_ABOUT_TO_BE_FREED;
SCTP_INP_READ_LOCK(inp);
TAILQ_FOREACH(sq, &inp->read_queue, next) {
if (sq->stcb == stcb) {
sq->do_not_ref_stcb = 1;
sq->sinfo_cumtsn = stcb->asoc.cumulative_tsn;
/*
* If there is no end, there never will be
* now.
*/
if (sq->end_added == 0) {
/* Held for PD-API clear that. */
sq->pdapi_aborted = 1;
sq->held_length = 0;
if (sctp_is_feature_on(inp, SCTP_PCB_FLAGS_PDAPIEVNT)) {
/*
* Need to add a PD-API
* aborted indication.
* Setting the control_pdapi
* assures that it will be
* added right after this
* msg.
*/
uint32_t strseq;
stcb->asoc.control_pdapi = sq;
strseq = (sq->sinfo_stream << 16) | sq->sinfo_ssn;
sctp_notify_partial_delivery_indication(stcb,
SCTP_PARTIAL_DELIVERY_ABORTED, 1, strseq);
stcb->asoc.control_pdapi = NULL;
}
}
/* Add an end to wake them */
sq->end_added = 1;
cnt++;
}
}
SCTP_INP_READ_UNLOCK(inp);
if (stcb->block_entry) {
cnt++;
stcb->block_entry->error = ECONNRESET;
stcb->block_entry = NULL;
}
}
if ((from_inpcbfree != SCTP_PCBFREE_FORCE) && (stcb->asoc.refcnt)) {
/*
* reader or writer in the way, we have hopefully given him
* something to chew on above.
*/
sctp_timer_start(SCTP_TIMER_TYPE_ASOCKILL, inp, stcb, NULL);
SCTP_TCB_UNLOCK(stcb);
if (so) {
SCTP_INP_RLOCK(inp);
if ((inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) ||
(inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE))
/* nothing around */
so = NULL;
if (so) {
/* Wake any reader/writers */
sctp_sorwakeup(inp, so);
sctp_sowwakeup(inp, so);
}
SCTP_INP_RUNLOCK(inp);
}
#ifdef SCTP_LOG_CLOSING
sctp_log_closing(inp, stcb, 9);
#endif
/* no asoc destroyed */
return (0);
}
#ifdef SCTP_LOG_CLOSING
sctp_log_closing(inp, stcb, 10);
#endif
/*
* When I reach here, no others want to kill the assoc yet.. and I
* own the lock. Now its possible an abort comes in when I do the
* lock exchange below to grab all the locks to do the final take
* out. to prevent this we increment the count, which will start a
* timer and blow out above thus assuring us that we hold exclusive
* killing of the asoc. Note that after getting back the TCB lock we
* will go ahead and increment the counter back up and stop any
* timer a passing stranger may have started :-S
*/
if (from_inpcbfree == SCTP_NORMAL_PROC) {
atomic_add_int(&stcb->asoc.refcnt, 1);
SCTP_TCB_UNLOCK(stcb);
SCTP_ITERATOR_LOCK();
SCTP_INP_INFO_WLOCK();
SCTP_INP_WLOCK(inp);
SCTP_TCB_LOCK(stcb);
}
/* Double check the GONE flag */
if ((inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) ||
(inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE))
/* nothing around */
so = NULL;
if ((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) ||
(inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL)) {
/*
* For TCP type we need special handling when we are
* connected. We also include the peel'ed off ones to.
*/
if (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) {
inp->sctp_flags &= ~SCTP_PCB_FLAGS_CONNECTED;
inp->sctp_flags |= SCTP_PCB_FLAGS_WAS_CONNECTED;
if (so) {
SOCK_LOCK(so);
if (so->so_rcv.sb_cc == 0) {
so->so_state &= ~(SS_ISCONNECTING |
SS_ISDISCONNECTING |
SS_ISCONFIRMING |
SS_ISCONNECTED);
}
SOCK_UNLOCK(so);
sctp_sowwakeup(inp, so);
sctp_sorwakeup(inp, so);
SCTP_SOWAKEUP(so);
}
}
}
/*
* Make it invalid too, that way if its about to run it will abort
* and return.
*/
sctp_iterator_asoc_being_freed(inp, stcb);
/* re-increment the lock */
if (from_inpcbfree == SCTP_NORMAL_PROC) {
atomic_add_int(&stcb->asoc.refcnt, -1);
}
asoc->state = 0;
if (inp->sctp_tcbhash) {
LIST_REMOVE(stcb, sctp_tcbhash);
}
if (stcb->asoc.in_restart_hash) {
LIST_REMOVE(stcb, sctp_tcbrestarhash);
}
/* Now lets remove it from the list of ALL associations in the EP */
LIST_REMOVE(stcb, sctp_tcblist);
if (from_inpcbfree == SCTP_NORMAL_PROC) {
SCTP_INP_INCR_REF(inp);
SCTP_INP_WUNLOCK(inp);
SCTP_ITERATOR_UNLOCK();
}
/* pull from vtag hash */
LIST_REMOVE(stcb, sctp_asocs);
sctp_add_vtag_to_timewait(inp, asoc->my_vtag, SCTP_TIME_WAIT);
/*
* Now restop the timers to be sure - this is paranoia at is finest!
*/
(void)SCTP_OS_TIMER_STOP(&asoc->strreset_timer.timer);
(void)SCTP_OS_TIMER_STOP(&asoc->hb_timer.timer);
(void)SCTP_OS_TIMER_STOP(&asoc->dack_timer.timer);
(void)SCTP_OS_TIMER_STOP(&asoc->strreset_timer.timer);
(void)SCTP_OS_TIMER_STOP(&asoc->asconf_timer.timer);
(void)SCTP_OS_TIMER_STOP(&asoc->shut_guard_timer.timer);
(void)SCTP_OS_TIMER_STOP(&asoc->autoclose_timer.timer);
(void)SCTP_OS_TIMER_STOP(&asoc->delayed_event_timer.timer);
TAILQ_FOREACH(net, &asoc->nets, sctp_next) {
(void)SCTP_OS_TIMER_STOP(&net->fr_timer.timer);
(void)SCTP_OS_TIMER_STOP(&net->rxt_timer.timer);
(void)SCTP_OS_TIMER_STOP(&net->pmtu_timer.timer);
}
asoc->strreset_timer.type = SCTP_TIMER_TYPE_NONE;
prev = NULL;
/*
* The chunk lists and such SHOULD be empty but we check them just
* in case.
*/
/* anything on the wheel needs to be removed */
for (i = 0; i < asoc->streamoutcnt; i++) {
struct sctp_stream_out *outs;
outs = &asoc->strmout[i];
/* now clean up any chunks here */
sp = TAILQ_FIRST(&outs->outqueue);
while (sp) {
TAILQ_REMOVE(&outs->outqueue, sp, next);
if (sp->data) {
sctp_m_freem(sp->data);
sp->data = NULL;
sp->tail_mbuf = NULL;
}
sctp_free_remote_addr(sp->net);
sctp_free_spbufspace(stcb, asoc, sp);
/* Free the zone stuff */
SCTP_ZONE_FREE(sctppcbinfo.ipi_zone_strmoq, sp);
SCTP_DECR_STRMOQ_COUNT();
/* sa_ignore FREED_MEMORY */
sp = TAILQ_FIRST(&outs->outqueue);
}
}
/* sa_ignore FREED_MEMORY */
while ((liste = TAILQ_FIRST(&asoc->resetHead)) != NULL) {
TAILQ_REMOVE(&asoc->resetHead, liste, next_resp);
SCTP_FREE(liste);
}
sq = TAILQ_FIRST(&asoc->pending_reply_queue);
while (sq) {
TAILQ_REMOVE(&asoc->pending_reply_queue, sq, next);
if (sq->data) {
sctp_m_freem(sq->data);
sq->data = NULL;
}
sctp_free_remote_addr(sq->whoFrom);
sq->whoFrom = NULL;
sq->stcb = NULL;
/* Free the ctl entry */
SCTP_ZONE_FREE(sctppcbinfo.ipi_zone_readq, sq);
SCTP_DECR_READQ_COUNT();
/* sa_ignore FREED_MEMORY */
sq = TAILQ_FIRST(&asoc->pending_reply_queue);
}
chk = TAILQ_FIRST(&asoc->free_chunks);
while (chk) {
TAILQ_REMOVE(&asoc->free_chunks, chk, sctp_next);
if (chk->data) {
sctp_m_freem(chk->data);
chk->data = NULL;
}
ccnt++;
SCTP_ZONE_FREE(sctppcbinfo.ipi_zone_chunk, chk);
SCTP_DECR_CHK_COUNT();
atomic_subtract_int(&sctppcbinfo.ipi_free_chunks, 1);
asoc->free_chunk_cnt--;
/* sa_ignore FREED_MEMORY */
chk = TAILQ_FIRST(&asoc->free_chunks);
}
/* pending send queue SHOULD be empty */
if (!TAILQ_EMPTY(&asoc->send_queue)) {
chk = TAILQ_FIRST(&asoc->send_queue);
while (chk) {
TAILQ_REMOVE(&asoc->send_queue, chk, sctp_next);
if (chk->data) {
sctp_m_freem(chk->data);
chk->data = NULL;
}
ccnt++;
sctp_free_remote_addr(chk->whoTo);
SCTP_ZONE_FREE(sctppcbinfo.ipi_zone_chunk, chk);
SCTP_DECR_CHK_COUNT();
/* sa_ignore FREED_MEMORY */
chk = TAILQ_FIRST(&asoc->send_queue);
}
}
/*
if(ccnt) {
printf("Freed %d from send_queue\n", ccnt);
ccnt = 0;
}
*/
/* sent queue SHOULD be empty */
if (!TAILQ_EMPTY(&asoc->sent_queue)) {
chk = TAILQ_FIRST(&asoc->sent_queue);
while (chk) {
TAILQ_REMOVE(&asoc->sent_queue, chk, sctp_next);
if (chk->data) {
sctp_m_freem(chk->data);
chk->data = NULL;
}
ccnt++;
sctp_free_remote_addr(chk->whoTo);
SCTP_ZONE_FREE(sctppcbinfo.ipi_zone_chunk, chk);
SCTP_DECR_CHK_COUNT();
/* sa_ignore FREED_MEMORY */
chk = TAILQ_FIRST(&asoc->sent_queue);
}
}
/*
if(ccnt) {
printf("Freed %d from sent_queue\n", ccnt);
ccnt = 0;
}
*/
/* control queue MAY not be empty */
if (!TAILQ_EMPTY(&asoc->control_send_queue)) {
chk = TAILQ_FIRST(&asoc->control_send_queue);
while (chk) {
TAILQ_REMOVE(&asoc->control_send_queue, chk, sctp_next);
if (chk->data) {
sctp_m_freem(chk->data);
chk->data = NULL;
}
ccnt++;
sctp_free_remote_addr(chk->whoTo);
SCTP_ZONE_FREE(sctppcbinfo.ipi_zone_chunk, chk);
SCTP_DECR_CHK_COUNT();
/* sa_ignore FREED_MEMORY */
chk = TAILQ_FIRST(&asoc->control_send_queue);
}
}
/*
if(ccnt) {
printf("Freed %d from ctrl_queue\n", ccnt);
ccnt = 0;
}
*/
if (!TAILQ_EMPTY(&asoc->reasmqueue)) {
chk = TAILQ_FIRST(&asoc->reasmqueue);
while (chk) {
TAILQ_REMOVE(&asoc->reasmqueue, chk, sctp_next);
if (chk->data) {
sctp_m_freem(chk->data);
chk->data = NULL;
}
sctp_free_remote_addr(chk->whoTo);
ccnt++;
SCTP_ZONE_FREE(sctppcbinfo.ipi_zone_chunk, chk);
SCTP_DECR_CHK_COUNT();
/* sa_ignore FREED_MEMORY */
chk = TAILQ_FIRST(&asoc->reasmqueue);
}
}
/*
if(ccnt) {
printf("Freed %d from reasm_queue\n", ccnt);
ccnt = 0;
}
*/
if (asoc->mapping_array) {
SCTP_FREE(asoc->mapping_array);
asoc->mapping_array = NULL;
}
/* the stream outs */
if (asoc->strmout) {
SCTP_FREE(asoc->strmout);
asoc->strmout = NULL;
}
asoc->streamoutcnt = 0;
if (asoc->strmin) {
struct sctp_queued_to_read *ctl;
for (i = 0; i < asoc->streamincnt; i++) {
if (!TAILQ_EMPTY(&asoc->strmin[i].inqueue)) {
/* We have somethings on the streamin queue */
ctl = TAILQ_FIRST(&asoc->strmin[i].inqueue);
while (ctl) {
TAILQ_REMOVE(&asoc->strmin[i].inqueue,
ctl, next);
sctp_free_remote_addr(ctl->whoFrom);
if (ctl->data) {
sctp_m_freem(ctl->data);
ctl->data = NULL;
}
/*
* We don't free the address here
* since all the net's were freed
* above.
*/
SCTP_ZONE_FREE(sctppcbinfo.ipi_zone_readq, ctl);
SCTP_DECR_READQ_COUNT();
ctl = TAILQ_FIRST(&asoc->strmin[i].inqueue);
}
}
}
SCTP_FREE(asoc->strmin);
asoc->strmin = NULL;
}
asoc->streamincnt = 0;
while (!TAILQ_EMPTY(&asoc->nets)) {
/* sa_ignore FREED_MEMORY */
net = TAILQ_FIRST(&asoc->nets);
/* pull from list */
if ((sctppcbinfo.ipi_count_raddr == 0) || (prev == net)) {
#ifdef INVARIANTS
panic("no net's left alloc'ed, or list points to itself");
#endif
break;
}
prev = net;
TAILQ_REMOVE(&asoc->nets, net, sctp_next);
sctp_free_remote_addr(net);
}
while (!SCTP_LIST_EMPTY(&asoc->sctp_restricted_addrs)) {
/* sa_ignore FREED_MEMORY */
laddr = LIST_FIRST(&asoc->sctp_restricted_addrs);
sctp_remove_laddr(laddr);
}
/* pending asconf (address) parameters */
while (!TAILQ_EMPTY(&asoc->asconf_queue)) {
/* sa_ignore FREED_MEMORY */
aparam = TAILQ_FIRST(&asoc->asconf_queue);
TAILQ_REMOVE(&asoc->asconf_queue, aparam, next);
SCTP_FREE(aparam);
}
if (asoc->last_asconf_ack_sent != NULL) {
sctp_m_freem(asoc->last_asconf_ack_sent);
asoc->last_asconf_ack_sent = NULL;
}
/* clean up auth stuff */
if (asoc->local_hmacs)
sctp_free_hmaclist(asoc->local_hmacs);
if (asoc->peer_hmacs)
sctp_free_hmaclist(asoc->peer_hmacs);
if (asoc->local_auth_chunks)
sctp_free_chunklist(asoc->local_auth_chunks);
if (asoc->peer_auth_chunks)
sctp_free_chunklist(asoc->peer_auth_chunks);
sctp_free_authinfo(&asoc->authinfo);
shared_key = LIST_FIRST(&asoc->shared_keys);
while (shared_key) {
LIST_REMOVE(shared_key, next);
sctp_free_sharedkey(shared_key);
/* sa_ignore FREED_MEMORY */
shared_key = LIST_FIRST(&asoc->shared_keys);
}
/* Insert new items here :> */
/* Get rid of LOCK */
SCTP_TCB_LOCK_DESTROY(stcb);
SCTP_TCB_SEND_LOCK_DESTROY(stcb);
if (from_inpcbfree == SCTP_NORMAL_PROC) {
SCTP_INP_INFO_WUNLOCK();
SCTP_INP_RLOCK(inp);
}
#ifdef SCTP_TRACK_FREED_ASOCS
if (inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE) {
/* now clean up the tasoc itself */
SCTP_ZONE_FREE(sctppcbinfo.ipi_zone_asoc, stcb);
SCTP_DECR_ASOC_COUNT();
} else {
LIST_INSERT_HEAD(&inp->sctp_asoc_free_list, stcb, sctp_tcblist);
}
#else
SCTP_ZONE_FREE(sctppcbinfo.ipi_zone_asoc, stcb);
SCTP_DECR_ASOC_COUNT();
#endif
if (from_inpcbfree == SCTP_NORMAL_PROC) {
if (inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE) {
/*
* If its NOT the inp_free calling us AND sctp_close
* as been called, we call back...
*/
SCTP_INP_RUNLOCK(inp);
/*
* This will start the kill timer (if we are the
* lastone) since we hold an increment yet. But this
* is the only safe way to do this since otherwise
* if the socket closes at the same time we are here
* we might collide in the cleanup.
*/
sctp_inpcb_free(inp,
SCTP_FREE_SHOULD_USE_GRACEFUL_CLOSE,
SCTP_CALLED_DIRECTLY_NOCMPSET);
SCTP_INP_DECR_REF(inp);
goto out_of;
} else {
/* The socket is still open. */
SCTP_INP_DECR_REF(inp);
}
}
if (from_inpcbfree == SCTP_NORMAL_PROC) {
SCTP_INP_RUNLOCK(inp);
}
out_of:
/* destroyed the asoc */
#ifdef SCTP_LOG_CLOSING
sctp_log_closing(inp, NULL, 11);
#endif
return (1);
}
/*
* determine if a destination is "reachable" based upon the addresses bound
* to the current endpoint (e.g. only v4 or v6 currently bound)
*/
/*
* FIX: if we allow assoc-level bindx(), then this needs to be fixed to use
* assoc level v4/v6 flags, as the assoc *may* not have the same address
* types bound as its endpoint
*/
int
sctp_destination_is_reachable(struct sctp_tcb *stcb, struct sockaddr *destaddr)
{
struct sctp_inpcb *inp;
int answer;
/*
* No locks here, the TCB, in all cases is already locked and an
* assoc is up. There is either a INP lock by the caller applied (in
* asconf case when deleting an address) or NOT in the HB case,
* however if HB then the INP increment is up and the INP will not
* be removed (on top of the fact that we have a TCB lock). So we
* only want to read the sctp_flags, which is either bound-all or
* not.. no protection needed since once an assoc is up you can't be
* changing your binding.
*/
inp = stcb->sctp_ep;
if (inp->sctp_flags & SCTP_PCB_FLAGS_BOUNDALL) {
/* if bound all, destination is not restricted */
/*
* RRS: Question during lock work: Is this correct? If you
* are bound-all you still might need to obey the V4--V6
* flags??? IMO this bound-all stuff needs to be removed!
*/
return (1);
}
/* NOTE: all "scope" checks are done when local addresses are added */
if (destaddr->sa_family == AF_INET6) {
answer = inp->ip_inp.inp.inp_vflag & INP_IPV6;
} else if (destaddr->sa_family == AF_INET) {
answer = inp->ip_inp.inp.inp_vflag & INP_IPV4;
} else {
/* invalid family, so it's unreachable */
answer = 0;
}
return (answer);
}
/*
* update the inp_vflags on an endpoint
*/
static void
sctp_update_ep_vflag(struct sctp_inpcb *inp)
{
struct sctp_laddr *laddr;
/* first clear the flag */
inp->ip_inp.inp.inp_vflag = 0;
/* set the flag based on addresses on the ep list */
LIST_FOREACH(laddr, &inp->sctp_addr_list, sctp_nxt_addr) {
if (laddr->ifa == NULL) {
SCTPDBG(SCTP_DEBUG_PCB1, "%s: NULL ifa\n",
__FUNCTION__);
continue;
}
if (laddr->ifa->localifa_flags & SCTP_BEING_DELETED) {
continue;
}
if (laddr->ifa->address.sa.sa_family == AF_INET6) {
inp->ip_inp.inp.inp_vflag |= INP_IPV6;
} else if (laddr->ifa->address.sa.sa_family == AF_INET) {
inp->ip_inp.inp.inp_vflag |= INP_IPV4;
}
}
}
/*
* Add the address to the endpoint local address list There is nothing to be
* done if we are bound to all addresses
*/
void
sctp_add_local_addr_ep(struct sctp_inpcb *inp, struct sctp_ifa *ifa, uint32_t action)
{
struct sctp_laddr *laddr;
int fnd, error = 0;
fnd = 0;
if (inp->sctp_flags & SCTP_PCB_FLAGS_BOUNDALL) {
/* You are already bound to all. You have it already */
return;
}
if (ifa->address.sa.sa_family == AF_INET6) {
if (ifa->localifa_flags & SCTP_ADDR_IFA_UNUSEABLE) {
/* Can't bind a non-useable addr. */
return;
}
}
/* first, is it already present? */
LIST_FOREACH(laddr, &inp->sctp_addr_list, sctp_nxt_addr) {
if (laddr->ifa == ifa) {
fnd = 1;
break;
}
}
if (fnd == 0) {
/* Not in the ep list */
error = sctp_insert_laddr(&inp->sctp_addr_list, ifa, action);
if (error != 0)
return;
inp->laddr_count++;
/* update inp_vflag flags */
if (ifa->address.sa.sa_family == AF_INET6) {
inp->ip_inp.inp.inp_vflag |= INP_IPV6;
} else if (ifa->address.sa.sa_family == AF_INET) {
inp->ip_inp.inp.inp_vflag |= INP_IPV4;
}
}
return;
}
/*
* select a new (hopefully reachable) destination net (should only be used
* when we deleted an ep addr that is the only usable source address to reach
* the destination net)
*/
static void
sctp_select_primary_destination(struct sctp_tcb *stcb)
{
struct sctp_nets *net;
TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) {
/* for now, we'll just pick the first reachable one we find */
if (net->dest_state & SCTP_ADDR_UNCONFIRMED)
continue;
if (sctp_destination_is_reachable(stcb,
(struct sockaddr *)&net->ro._l_addr)) {
/* found a reachable destination */
stcb->asoc.primary_destination = net;
}
}
/* I can't there from here! ...we're gonna die shortly... */
}
/*
* Delete the address from the endpoint local address list There is nothing
* to be done if we are bound to all addresses
*/
void
sctp_del_local_addr_ep(struct sctp_inpcb *inp, struct sctp_ifa *ifa)
{
struct sctp_laddr *laddr;
int fnd;
fnd = 0;
if (inp->sctp_flags & SCTP_PCB_FLAGS_BOUNDALL) {
/* You are already bound to all. You have it already */
return;
}
LIST_FOREACH(laddr, &inp->sctp_addr_list, sctp_nxt_addr) {
if (laddr->ifa == ifa) {
fnd = 1;
break;
}
}
if (fnd && (inp->laddr_count < 2)) {
/* can't delete unless there are at LEAST 2 addresses */
return;
}
if (fnd) {
/*
* clean up any use of this address go through our
* associations and clear any last_used_address that match
* this one for each assoc, see if a new primary_destination
* is needed
*/
struct sctp_tcb *stcb;
/* clean up "next_addr_touse" */
if (inp->next_addr_touse == laddr)
/* delete this address */
inp->next_addr_touse = NULL;
/* clean up "last_used_address" */
LIST_FOREACH(stcb, &inp->sctp_asoc_list, sctp_tcblist) {
struct sctp_nets *net;
SCTP_TCB_LOCK(stcb);
if (stcb->asoc.last_used_address == laddr)
/* delete this address */
stcb->asoc.last_used_address = NULL;
/*
* Now spin through all the nets and purge any ref
* to laddr
*/
TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) {
if (net->ro._s_addr &&
(net->ro._s_addr->ifa == laddr->ifa)) {
/* Yep, purge src address selected */
sctp_rtentry_t *rt;
/* delete this address if cached */
rt = net->ro.ro_rt;
if (rt != NULL) {
RTFREE(rt);
net->ro.ro_rt = NULL;
}
sctp_free_ifa(net->ro._s_addr);
net->ro._s_addr = NULL;
net->src_addr_selected = 0;
}
}
SCTP_TCB_UNLOCK(stcb);
} /* for each tcb */
/* remove it from the ep list */
sctp_remove_laddr(laddr);
inp->laddr_count--;
/* update inp_vflag flags */
sctp_update_ep_vflag(inp);
}
return;
}
/*
* Add the addr to the TCB local address list For the BOUNDALL or dynamic
* case, this is a "pending" address list (eg. addresses waiting for an
* ASCONF-ACK response) For the subset binding, static case, this is a
* "valid" address list
*/
void
sctp_add_local_addr_assoc(struct sctp_tcb *stcb, struct sctp_ifa *ifa, int restricted_list)
{
struct sctp_inpcb *inp;
struct sctp_laddr *laddr;
struct sctpladdr *list;
/*
* Assumes TCB is locked.. and possibly the INP. May need to
* confirm/fix that if we need it and is not the case.
*/
list = &stcb->asoc.sctp_restricted_addrs;
inp = stcb->sctp_ep;
if (ifa->address.sa.sa_family == AF_INET6) {
if (ifa->localifa_flags & SCTP_ADDR_IFA_UNUSEABLE) {
/* Can't bind a non-existent addr. */
return;
}
}
/* does the address already exist? */
LIST_FOREACH(laddr, list, sctp_nxt_addr) {
if (laddr->ifa == ifa) {
return;
}
}
/* add to the list */
(void)sctp_insert_laddr(list, ifa, 0);
return;
}
/*
* insert an laddr entry with the given ifa for the desired list
*/
int
sctp_insert_laddr(struct sctpladdr *list, struct sctp_ifa *ifa, uint32_t act)
{
struct sctp_laddr *laddr;
laddr = SCTP_ZONE_GET(sctppcbinfo.ipi_zone_laddr, struct sctp_laddr);
if (laddr == NULL) {
/* out of memory? */
return (EINVAL);
}
SCTP_INCR_LADDR_COUNT();
bzero(laddr, sizeof(*laddr));
laddr->ifa = ifa;
laddr->action = act;
atomic_add_int(&ifa->refcount, 1);
/* insert it */
LIST_INSERT_HEAD(list, laddr, sctp_nxt_addr);
return (0);
}
/*
* Remove an laddr entry from the local address list (on an assoc)
*/
void
sctp_remove_laddr(struct sctp_laddr *laddr)
{
/* remove from the list */
LIST_REMOVE(laddr, sctp_nxt_addr);
sctp_free_ifa(laddr->ifa);
SCTP_ZONE_FREE(sctppcbinfo.ipi_zone_laddr, laddr);
SCTP_DECR_LADDR_COUNT();
}
/*
* Remove an address from the TCB local address list
*/
void
sctp_del_local_addr_assoc(struct sctp_tcb *stcb, struct sctp_ifa *ifa)
{
struct sctp_inpcb *inp;
struct sctp_laddr *laddr;
/*
* This is called by asconf work. It is assumed that a) The TCB is
* locked and b) The INP is locked. This is true in as much as I can
* trace through the entry asconf code where I did these locks.
* Again, the ASCONF code is a bit different in that it does lock
* the INP during its work often times. This must be since we don't
* want other proc's looking up things while what they are looking
* up is changing :-D
*/
inp = stcb->sctp_ep;
/* if subset bound and don't allow ASCONF's, can't delete last */
if (((inp->sctp_flags & SCTP_PCB_FLAGS_BOUNDALL) == 0) &&
(sctp_is_feature_off(inp, SCTP_PCB_FLAGS_DO_ASCONF) == 0)) {
if (stcb->asoc.numnets < 2) {
/* can't delete last address */
return;
}
}
LIST_FOREACH(laddr, &stcb->asoc.sctp_restricted_addrs, sctp_nxt_addr) {
/* remove the address if it exists */
if (laddr->ifa == NULL)
continue;
if (laddr->ifa == ifa) {
sctp_remove_laddr(laddr);
return;
}
}
/* address not found! */
return;
}
static char sctp_pcb_initialized = 0;
/*
* Temporarily remove for __APPLE__ until we use the Tiger equivalents
*/
/* sysctl */
static int sctp_max_number_of_assoc = SCTP_MAX_NUM_OF_ASOC;
static int sctp_scale_up_for_address = SCTP_SCALE_FOR_ADDR;
void
sctp_pcb_init()
{
/*
* SCTP initialization for the PCB structures should be called by
* the sctp_init() funciton.
*/
int i;
if (sctp_pcb_initialized != 0) {
/* error I was called twice */
return;
}
sctp_pcb_initialized = 1;
bzero(&sctpstat, sizeof(struct sctpstat));
(void)SCTP_GETTIME_TIMEVAL(&sctpstat.sctps_discontinuitytime);
/* init the empty list of (All) Endpoints */
LIST_INIT(&sctppcbinfo.listhead);
/* init the iterator head */
TAILQ_INIT(&sctppcbinfo.iteratorhead);
/* init the hash table of endpoints */
TUNABLE_INT_FETCH("net.inet.sctp.tcbhashsize", &sctp_hashtblsize);
TUNABLE_INT_FETCH("net.inet.sctp.pcbhashsize", &sctp_pcbtblsize);
TUNABLE_INT_FETCH("net.inet.sctp.chunkscale", &sctp_chunkscale);
sctppcbinfo.sctp_asochash = SCTP_HASH_INIT((sctp_hashtblsize * 31),
&sctppcbinfo.hashasocmark);
sctppcbinfo.sctp_ephash = SCTP_HASH_INIT(sctp_hashtblsize,
&sctppcbinfo.hashmark);
sctppcbinfo.sctp_tcpephash = SCTP_HASH_INIT(sctp_hashtblsize,
&sctppcbinfo.hashtcpmark);
sctppcbinfo.hashtblsize = sctp_hashtblsize;
/* init the small hash table we use to track restarted asoc's */
sctppcbinfo.sctp_restarthash = SCTP_HASH_INIT(SCTP_STACK_VTAG_HASH_SIZE,
&sctppcbinfo.hashrestartmark);
sctppcbinfo.sctp_vrfhash = SCTP_HASH_INIT(SCTP_SIZE_OF_VRF_HASH,
&sctppcbinfo.hashvrfmark);
/* init the zones */
/*
* FIX ME: Should check for NULL returns, but if it does fail we are
* doomed to panic anyways... add later maybe.
*/
SCTP_ZONE_INIT(sctppcbinfo.ipi_zone_ep, "sctp_ep",
sizeof(struct sctp_inpcb), maxsockets);
SCTP_ZONE_INIT(sctppcbinfo.ipi_zone_asoc, "sctp_asoc",
sizeof(struct sctp_tcb), sctp_max_number_of_assoc);
SCTP_ZONE_INIT(sctppcbinfo.ipi_zone_laddr, "sctp_laddr",
sizeof(struct sctp_laddr),
(sctp_max_number_of_assoc * sctp_scale_up_for_address));
SCTP_ZONE_INIT(sctppcbinfo.ipi_zone_net, "sctp_raddr",
sizeof(struct sctp_nets),
(sctp_max_number_of_assoc * sctp_scale_up_for_address));
SCTP_ZONE_INIT(sctppcbinfo.ipi_zone_chunk, "sctp_chunk",
sizeof(struct sctp_tmit_chunk),
(sctp_max_number_of_assoc * sctp_chunkscale));
SCTP_ZONE_INIT(sctppcbinfo.ipi_zone_readq, "sctp_readq",
sizeof(struct sctp_queued_to_read),
(sctp_max_number_of_assoc * sctp_chunkscale));
SCTP_ZONE_INIT(sctppcbinfo.ipi_zone_strmoq, "sctp_stream_msg_out",
sizeof(struct sctp_stream_queue_pending),
(sctp_max_number_of_assoc * sctp_chunkscale));
/* Master Lock INIT for info structure */
SCTP_INP_INFO_LOCK_INIT();
SCTP_STATLOG_INIT_LOCK();
SCTP_ITERATOR_LOCK_INIT();
SCTP_IPI_COUNT_INIT();
SCTP_IPI_ADDR_INIT();
SCTP_IPI_ITERATOR_WQ_INIT();
LIST_INIT(&sctppcbinfo.addr_wq);
/* not sure if we need all the counts */
sctppcbinfo.ipi_count_ep = 0;
/* assoc/tcb zone info */
sctppcbinfo.ipi_count_asoc = 0;
/* local addrlist zone info */
sctppcbinfo.ipi_count_laddr = 0;
/* remote addrlist zone info */
sctppcbinfo.ipi_count_raddr = 0;
/* chunk info */
sctppcbinfo.ipi_count_chunk = 0;
/* socket queue zone info */
sctppcbinfo.ipi_count_readq = 0;
/* stream out queue cont */
sctppcbinfo.ipi_count_strmoq = 0;
sctppcbinfo.ipi_free_strmoq = 0;
sctppcbinfo.ipi_free_chunks = 0;
SCTP_OS_TIMER_INIT(&sctppcbinfo.addr_wq_timer.timer);
/* Init the TIMEWAIT list */
for (i = 0; i < SCTP_STACK_VTAG_HASH_SIZE; i++) {
LIST_INIT(&sctppcbinfo.vtag_timewait[i]);
}
#if defined(SCTP_USE_THREAD_BASED_ITERATOR)
sctppcbinfo.iterator_running = 0;
sctp_startup_iterator();
#endif
/*
* INIT the default VRF which for BSD is the only one, other O/S's
* may have more. But initially they must start with one and then
* add the VRF's as addresses are added.
*/
sctp_init_vrf_list(SCTP_DEFAULT_VRF);
}
int
sctp_load_addresses_from_init(struct sctp_tcb *stcb, struct mbuf *m,
int iphlen, int offset, int limit, struct sctphdr *sh,
struct sockaddr *altsa)
{
/*
* grub through the INIT pulling addresses and loading them to the
* nets structure in the asoc. The from address in the mbuf should
* also be loaded (if it is not already). This routine can be called
* with either INIT or INIT-ACK's as long as the m points to the IP
* packet and the offset points to the beginning of the parameters.
*/
struct sctp_inpcb *inp, *l_inp;
struct sctp_nets *net, *net_tmp;
struct ip *iph;
struct sctp_paramhdr *phdr, parm_buf;
struct sctp_tcb *stcb_tmp;
uint16_t ptype, plen;
struct sockaddr *sa;
struct sockaddr_storage dest_store;
struct sockaddr *local_sa = (struct sockaddr *)&dest_store;
struct sockaddr_in sin;
struct sockaddr_in6 sin6;
uint8_t random_store[SCTP_PARAM_BUFFER_SIZE];
struct sctp_auth_random *p_random = NULL;
uint16_t random_len = 0;
uint8_t hmacs_store[SCTP_PARAM_BUFFER_SIZE];
struct sctp_auth_hmac_algo *hmacs = NULL;
uint16_t hmacs_len = 0;
uint8_t chunks_store[SCTP_PARAM_BUFFER_SIZE];
struct sctp_auth_chunk_list *chunks = NULL;
uint16_t num_chunks = 0;
sctp_key_t *new_key;
uint32_t keylen;
int got_random = 0, got_hmacs = 0, got_chklist = 0;
/* First get the destination address setup too. */
memset(&sin, 0, sizeof(sin));
memset(&sin6, 0, sizeof(sin6));
sin.sin_family = AF_INET;
sin.sin_len = sizeof(sin);
sin.sin_port = stcb->rport;
sin6.sin6_family = AF_INET6;
sin6.sin6_len = sizeof(struct sockaddr_in6);
sin6.sin6_port = stcb->rport;
if (altsa == NULL) {
iph = mtod(m, struct ip *);
if (iph->ip_v == IPVERSION) {
/* its IPv4 */
struct sockaddr_in *sin_2;
sin_2 = (struct sockaddr_in *)(local_sa);
memset(sin_2, 0, sizeof(sin));
sin_2->sin_family = AF_INET;
sin_2->sin_len = sizeof(sin);
sin_2->sin_port = sh->dest_port;
sin_2->sin_addr.s_addr = iph->ip_dst.s_addr;
sin.sin_addr = iph->ip_src;
sa = (struct sockaddr *)&sin;
} else if (iph->ip_v == (IPV6_VERSION >> 4)) {
/* its IPv6 */
struct ip6_hdr *ip6;
struct sockaddr_in6 *sin6_2;
ip6 = mtod(m, struct ip6_hdr *);
sin6_2 = (struct sockaddr_in6 *)(local_sa);
memset(sin6_2, 0, sizeof(sin6));
sin6_2->sin6_family = AF_INET6;
sin6_2->sin6_len = sizeof(struct sockaddr_in6);
sin6_2->sin6_port = sh->dest_port;
sin6.sin6_addr = ip6->ip6_src;
sa = (struct sockaddr *)&sin6;
} else {
sa = NULL;
}
} else {
/*
* For cookies we use the src address NOT from the packet
* but from the original INIT
*/
sa = altsa;
}
/* Turn off ECN until we get through all params */
stcb->asoc.ecn_allowed = 0;
TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) {
/* mark all addresses that we have currently on the list */
net->dest_state |= SCTP_ADDR_NOT_IN_ASSOC;
}
/* does the source address already exist? if so skip it */
l_inp = inp = stcb->sctp_ep;
atomic_add_int(&stcb->asoc.refcnt, 1);
stcb_tmp = sctp_findassociation_ep_addr(&inp, sa, &net_tmp, local_sa, stcb);
atomic_add_int(&stcb->asoc.refcnt, -1);
if ((stcb_tmp == NULL && inp == stcb->sctp_ep) || inp == NULL) {
/* we must add the source address */
/* no scope set here since we have a tcb already. */
if ((sa->sa_family == AF_INET) &&
(stcb->asoc.ipv4_addr_legal)) {
if (sctp_add_remote_addr(stcb, sa, SCTP_DONOT_SETSCOPE, SCTP_LOAD_ADDR_2)) {
return (-1);
}
} else if ((sa->sa_family == AF_INET6) &&
(stcb->asoc.ipv6_addr_legal)) {
if (sctp_add_remote_addr(stcb, sa, SCTP_DONOT_SETSCOPE, SCTP_LOAD_ADDR_3)) {
return (-2);
}
}
} else {
if (net_tmp != NULL && stcb_tmp == stcb) {
net_tmp->dest_state &= ~SCTP_ADDR_NOT_IN_ASSOC;
} else if (stcb_tmp != stcb) {
/* It belongs to another association? */
SCTP_TCB_UNLOCK(stcb_tmp);
return (-3);
}
}
if (stcb->asoc.state == 0) {
/* the assoc was freed? */
return (-4);
}
/* now we must go through each of the params. */
phdr = sctp_get_next_param(m, offset, &parm_buf, sizeof(parm_buf));
while (phdr) {
ptype = ntohs(phdr->param_type);
plen = ntohs(phdr->param_length);
/*
* printf("ptype => %0x, plen => %d\n", (uint32_t)ptype,
* (int)plen);
*/
if (offset + plen > limit) {
break;
}
if (plen == 0) {
break;
}
if (ptype == SCTP_IPV4_ADDRESS) {
if (stcb->asoc.ipv4_addr_legal) {
struct sctp_ipv4addr_param *p4, p4_buf;
/* ok get the v4 address and check/add */
phdr = sctp_get_next_param(m, offset,
(struct sctp_paramhdr *)&p4_buf, sizeof(p4_buf));
if (plen != sizeof(struct sctp_ipv4addr_param) ||
phdr == NULL) {
return (-5);
}
p4 = (struct sctp_ipv4addr_param *)phdr;
sin.sin_addr.s_addr = p4->addr;
if (IN_MULTICAST(sin.sin_addr.s_addr)) {
/* Skip multi-cast addresses */
goto next_param;
}
if ((sin.sin_addr.s_addr == INADDR_BROADCAST) ||
(sin.sin_addr.s_addr == INADDR_ANY)) {
goto next_param;
}
sa = (struct sockaddr *)&sin;
inp = stcb->sctp_ep;
atomic_add_int(&stcb->asoc.refcnt, 1);
stcb_tmp = sctp_findassociation_ep_addr(&inp, sa, &net,
local_sa, stcb);
atomic_add_int(&stcb->asoc.refcnt, -1);
if ((stcb_tmp == NULL && inp == stcb->sctp_ep) ||
inp == NULL) {
/* we must add the source address */
/*
* no scope set since we have a tcb
* already
*/
/*
* we must validate the state again
* here
*/
if (stcb->asoc.state == 0) {
/* the assoc was freed? */
return (-7);
}
if (sctp_add_remote_addr(stcb, sa, SCTP_DONOT_SETSCOPE, SCTP_LOAD_ADDR_4)) {
return (-8);
}
} else if (stcb_tmp == stcb) {
if (stcb->asoc.state == 0) {
/* the assoc was freed? */
return (-10);
}
if (net != NULL) {
/* clear flag */
net->dest_state &=
~SCTP_ADDR_NOT_IN_ASSOC;
}
} else {
/*
* strange, address is in another
* assoc? straighten out locks.
*/
if (stcb->asoc.state == 0) {
/* the assoc was freed? */
return (-12);
}
return (-13);
}
}
} else if (ptype == SCTP_IPV6_ADDRESS) {
if (stcb->asoc.ipv6_addr_legal) {
/* ok get the v6 address and check/add */
struct sctp_ipv6addr_param *p6, p6_buf;
phdr = sctp_get_next_param(m, offset,
(struct sctp_paramhdr *)&p6_buf, sizeof(p6_buf));
if (plen != sizeof(struct sctp_ipv6addr_param) ||
phdr == NULL) {
return (-14);
}
p6 = (struct sctp_ipv6addr_param *)phdr;
memcpy((caddr_t)&sin6.sin6_addr, p6->addr,
sizeof(p6->addr));
if (IN6_IS_ADDR_MULTICAST(&sin6.sin6_addr)) {
/* Skip multi-cast addresses */
goto next_param;
}
if (IN6_IS_ADDR_LINKLOCAL(&sin6.sin6_addr)) {
/*
* Link local make no sense without
* scope
*/
goto next_param;
}
sa = (struct sockaddr *)&sin6;
inp = stcb->sctp_ep;
atomic_add_int(&stcb->asoc.refcnt, 1);
stcb_tmp = sctp_findassociation_ep_addr(&inp, sa, &net,
local_sa, stcb);
atomic_add_int(&stcb->asoc.refcnt, -1);
if (stcb_tmp == NULL && (inp == stcb->sctp_ep ||
inp == NULL)) {
/*
* we must validate the state again
* here
*/
if (stcb->asoc.state == 0) {
/* the assoc was freed? */
return (-16);
}
/*
* we must add the address, no scope
* set
*/
if (sctp_add_remote_addr(stcb, sa, SCTP_DONOT_SETSCOPE, SCTP_LOAD_ADDR_5)) {
return (-17);
}
} else if (stcb_tmp == stcb) {
/*
* we must validate the state again
* here
*/
if (stcb->asoc.state == 0) {
/* the assoc was freed? */
return (-19);
}
if (net != NULL) {
/* clear flag */
net->dest_state &=
~SCTP_ADDR_NOT_IN_ASSOC;
}
} else {
/*
* strange, address is in another
* assoc? straighten out locks.
*/
if (stcb->asoc.state == 0) {
/* the assoc was freed? */
return (-21);
}
return (-22);
}
}
} else if (ptype == SCTP_ECN_CAPABLE) {
stcb->asoc.ecn_allowed = 1;
} else if (ptype == SCTP_ULP_ADAPTATION) {
if (stcb->asoc.state != SCTP_STATE_OPEN) {
struct sctp_adaptation_layer_indication ai,
*aip;
phdr = sctp_get_next_param(m, offset,
(struct sctp_paramhdr *)&ai, sizeof(ai));
aip = (struct sctp_adaptation_layer_indication *)phdr;
if (aip) {
sctp_ulp_notify(SCTP_NOTIFY_ADAPTATION_INDICATION,
stcb, ntohl(aip->indication), NULL);
}
}
} else if (ptype == SCTP_SET_PRIM_ADDR) {
struct sctp_asconf_addr_param lstore, *fee;
struct sctp_asconf_addrv4_param *fii;
int lptype;
struct sockaddr *lsa = NULL;
stcb->asoc.peer_supports_asconf = 1;
if (plen > sizeof(lstore)) {
return (-23);
}
phdr = sctp_get_next_param(m, offset,
(struct sctp_paramhdr *)&lstore, min(plen, sizeof(lstore)));
if (phdr == NULL) {
return (-24);
}
fee = (struct sctp_asconf_addr_param *)phdr;
lptype = ntohs(fee->addrp.ph.param_type);
if (lptype == SCTP_IPV4_ADDRESS) {
if (plen !=
sizeof(struct sctp_asconf_addrv4_param)) {
SCTP_PRINTF("Sizeof setprim in init/init ack not %d but %d - ignored\n",
(int)sizeof(struct sctp_asconf_addrv4_param),
plen);
} else {
fii = (struct sctp_asconf_addrv4_param *)fee;
sin.sin_addr.s_addr = fii->addrp.addr;
lsa = (struct sockaddr *)&sin;
}
} else if (lptype == SCTP_IPV6_ADDRESS) {
if (plen !=
sizeof(struct sctp_asconf_addr_param)) {
SCTP_PRINTF("Sizeof setprim (v6) in init/init ack not %d but %d - ignored\n",
(int)sizeof(struct sctp_asconf_addr_param),
plen);
} else {
memcpy(sin6.sin6_addr.s6_addr,
fee->addrp.addr,
sizeof(fee->addrp.addr));
lsa = (struct sockaddr *)&sin6;
}
}
if (lsa) {
(void)sctp_set_primary_addr(stcb, sa, NULL);
}
} else if (ptype == SCTP_PRSCTP_SUPPORTED) {
/* Peer supports pr-sctp */
stcb->asoc.peer_supports_prsctp = 1;
} else if (ptype == SCTP_SUPPORTED_CHUNK_EXT) {
/* A supported extension chunk */
struct sctp_supported_chunk_types_param *pr_supported;
uint8_t local_store[SCTP_PARAM_BUFFER_SIZE];
int num_ent, i;
phdr = sctp_get_next_param(m, offset,
(struct sctp_paramhdr *)&local_store, min(sizeof(local_store), plen));
if (phdr == NULL) {
return (-25);
}
stcb->asoc.peer_supports_asconf = 0;
stcb->asoc.peer_supports_prsctp = 0;
stcb->asoc.peer_supports_pktdrop = 0;
stcb->asoc.peer_supports_strreset = 0;
stcb->asoc.peer_supports_auth = 0;
pr_supported = (struct sctp_supported_chunk_types_param *)phdr;
num_ent = plen - sizeof(struct sctp_paramhdr);
for (i = 0; i < num_ent; i++) {
switch (pr_supported->chunk_types[i]) {
case SCTP_ASCONF:
case SCTP_ASCONF_ACK:
stcb->asoc.peer_supports_asconf = 1;
break;
case SCTP_FORWARD_CUM_TSN:
stcb->asoc.peer_supports_prsctp = 1;
break;
case SCTP_PACKET_DROPPED:
stcb->asoc.peer_supports_pktdrop = 1;
break;
case SCTP_STREAM_RESET:
stcb->asoc.peer_supports_strreset = 1;
break;
case SCTP_AUTHENTICATION:
stcb->asoc.peer_supports_auth = 1;
break;
default:
/* one I have not learned yet */
break;
}
}
} else if (ptype == SCTP_ECN_NONCE_SUPPORTED) {
/* Peer supports ECN-nonce */
stcb->asoc.peer_supports_ecn_nonce = 1;
stcb->asoc.ecn_nonce_allowed = 1;
} else if (ptype == SCTP_RANDOM) {
if (plen > sizeof(random_store))
break;
if (got_random) {
/* already processed a RANDOM */
goto next_param;
}
phdr = sctp_get_next_param(m, offset,
(struct sctp_paramhdr *)random_store,
min(sizeof(random_store), plen));
if (phdr == NULL)
return (-26);
p_random = (struct sctp_auth_random *)phdr;
random_len = plen - sizeof(*p_random);
/* enforce the random length */
if (random_len != SCTP_AUTH_RANDOM_SIZE_REQUIRED) {
SCTPDBG(SCTP_DEBUG_AUTH1, "SCTP: invalid RANDOM len\n");
return (-27);
}
got_random = 1;
} else if (ptype == SCTP_HMAC_LIST) {
int num_hmacs;
int i;
if (plen > sizeof(hmacs_store))
break;
if (got_hmacs) {
/* already processed a HMAC list */
goto next_param;
}
phdr = sctp_get_next_param(m, offset,
(struct sctp_paramhdr *)hmacs_store,
min(plen, sizeof(hmacs_store)));
if (phdr == NULL)
return (-28);
hmacs = (struct sctp_auth_hmac_algo *)phdr;
hmacs_len = plen - sizeof(*hmacs);
num_hmacs = hmacs_len / sizeof(hmacs->hmac_ids[0]);
/* validate the hmac list */
if (sctp_verify_hmac_param(hmacs, num_hmacs)) {
return (-29);
}
if (stcb->asoc.peer_hmacs != NULL)
sctp_free_hmaclist(stcb->asoc.peer_hmacs);
stcb->asoc.peer_hmacs = sctp_alloc_hmaclist(num_hmacs);
if (stcb->asoc.peer_hmacs != NULL) {
for (i = 0; i < num_hmacs; i++) {
(void)sctp_auth_add_hmacid(stcb->asoc.peer_hmacs,
ntohs(hmacs->hmac_ids[i]));
}
}
got_hmacs = 1;
} else if (ptype == SCTP_CHUNK_LIST) {
int i;
if (plen > sizeof(chunks_store))
break;
if (got_chklist) {
/* already processed a Chunks list */
goto next_param;
}
phdr = sctp_get_next_param(m, offset,
(struct sctp_paramhdr *)chunks_store,
min(plen, sizeof(chunks_store)));
if (phdr == NULL)
return (-30);
chunks = (struct sctp_auth_chunk_list *)phdr;
num_chunks = plen - sizeof(*chunks);
if (stcb->asoc.peer_auth_chunks != NULL)
sctp_clear_chunklist(stcb->asoc.peer_auth_chunks);
else
stcb->asoc.peer_auth_chunks = sctp_alloc_chunklist();
for (i = 0; i < num_chunks; i++) {
(void)sctp_auth_add_chunk(chunks->chunk_types[i],
stcb->asoc.peer_auth_chunks);
}
got_chklist = 1;
} else if ((ptype == SCTP_HEARTBEAT_INFO) ||
(ptype == SCTP_STATE_COOKIE) ||
(ptype == SCTP_UNRECOG_PARAM) ||
(ptype == SCTP_COOKIE_PRESERVE) ||
(ptype == SCTP_SUPPORTED_ADDRTYPE) ||
(ptype == SCTP_ADD_IP_ADDRESS) ||
(ptype == SCTP_DEL_IP_ADDRESS) ||
(ptype == SCTP_ERROR_CAUSE_IND) ||
(ptype == SCTP_SUCCESS_REPORT)) {
/* don't care */ ;
} else {
if ((ptype & 0x8000) == 0x0000) {
/*
* must stop processing the rest of the
* param's. Any report bits were handled
* with the call to
* sctp_arethere_unrecognized_parameters()
* when the INIT or INIT-ACK was first seen.
*/
break;
}
}
next_param:
offset += SCTP_SIZE32(plen);
if (offset >= limit) {
break;
}
phdr = sctp_get_next_param(m, offset, &parm_buf,
sizeof(parm_buf));
}
/* Now check to see if we need to purge any addresses */
for (net = TAILQ_FIRST(&stcb->asoc.nets); net != NULL; net = net_tmp) {
net_tmp = TAILQ_NEXT(net, sctp_next);
if ((net->dest_state & SCTP_ADDR_NOT_IN_ASSOC) ==
SCTP_ADDR_NOT_IN_ASSOC) {
/* This address has been removed from the asoc */
/* remove and free it */
stcb->asoc.numnets--;
TAILQ_REMOVE(&stcb->asoc.nets, net, sctp_next);
sctp_free_remote_addr(net);
if (net == stcb->asoc.primary_destination) {
stcb->asoc.primary_destination = NULL;
sctp_select_primary_destination(stcb);
}
}
}
/* validate authentication required parameters */
if (got_random && got_hmacs) {
stcb->asoc.peer_supports_auth = 1;
} else {
stcb->asoc.peer_supports_auth = 0;
}
if (!stcb->asoc.peer_supports_auth && got_chklist) {
/* peer does not support auth but sent a chunks list? */
return (-31);
}
if (!sctp_asconf_auth_nochk && stcb->asoc.peer_supports_asconf &&
!stcb->asoc.peer_supports_auth) {
/* peer supports asconf but not auth? */
return (-32);
}
/* concatenate the full random key */
#ifdef SCTP_AUTH_DRAFT_04
keylen = random_len;
new_key = sctp_alloc_key(keylen);
if (new_key != NULL) {
/* copy in the RANDOM */
if (p_random != NULL)
bcopy(p_random->random_data, new_key->key, random_len);
}
#else
keylen = sizeof(*p_random) + random_len + sizeof(*chunks) + num_chunks +
sizeof(*hmacs) + hmacs_len;
new_key = sctp_alloc_key(keylen);
if (new_key != NULL) {
/* copy in the RANDOM */
if (p_random != NULL) {
keylen = sizeof(*p_random) + random_len;
bcopy(p_random, new_key->key, keylen);
}
/* append in the AUTH chunks */
if (chunks != NULL) {
bcopy(chunks, new_key->key + keylen,
sizeof(*chunks) + num_chunks);
keylen += sizeof(*chunks) + num_chunks;
}
/* append in the HMACs */
if (hmacs != NULL) {
bcopy(hmacs, new_key->key + keylen,
sizeof(*hmacs) + hmacs_len);
}
}
#endif
else {
/* failed to get memory for the key */
return (-33);
}
if (stcb->asoc.authinfo.peer_random != NULL)
sctp_free_key(stcb->asoc.authinfo.peer_random);
stcb->asoc.authinfo.peer_random = new_key;
#ifdef SCTP_AUTH_DRAFT_04
/* don't include the chunks and hmacs for draft -04 */
stcb->asoc.authinfo.peer_random->keylen = random_len;
#endif
sctp_clear_cachedkeys(stcb, stcb->asoc.authinfo.assoc_keyid);
sctp_clear_cachedkeys(stcb, stcb->asoc.authinfo.recv_keyid);
return (0);
}
int
sctp_set_primary_addr(struct sctp_tcb *stcb, struct sockaddr *sa,
struct sctp_nets *net)
{
/* make sure the requested primary address exists in the assoc */
if (net == NULL && sa)
net = sctp_findnet(stcb, sa);
if (net == NULL) {
/* didn't find the requested primary address! */
return (-1);
} else {
/* set the primary address */
if (net->dest_state & SCTP_ADDR_UNCONFIRMED) {
/* Must be confirmed, so queue to set */
net->dest_state |= SCTP_ADDR_REQ_PRIMARY;
return (0);
}
stcb->asoc.primary_destination = net;
net->dest_state &= ~SCTP_ADDR_WAS_PRIMARY;
net = TAILQ_FIRST(&stcb->asoc.nets);
if (net != stcb->asoc.primary_destination) {
/*
* first one on the list is NOT the primary
* sctp_cmpaddr() is much more efficent if the
* primary is the first on the list, make it so.
*/
TAILQ_REMOVE(&stcb->asoc.nets, stcb->asoc.primary_destination, sctp_next);
TAILQ_INSERT_HEAD(&stcb->asoc.nets, stcb->asoc.primary_destination, sctp_next);
}
return (0);
}
}
int
sctp_is_vtag_good(struct sctp_inpcb *inp, uint32_t tag, struct timeval *now)
{
/*
* This function serves two purposes. It will see if a TAG can be
* re-used and return 1 for yes it is ok and 0 for don't use that
* tag. A secondary function it will do is purge out old tags that
* can be removed.
*/
struct sctpasochead *head;
struct sctpvtaghead *chain;
struct sctp_tagblock *twait_block;
struct sctp_tcb *stcb;
int i;
SCTP_INP_INFO_WLOCK();
chain = &sctppcbinfo.vtag_timewait[(tag % SCTP_STACK_VTAG_HASH_SIZE)];
/* First is the vtag in use ? */
head = &sctppcbinfo.sctp_asochash[SCTP_PCBHASH_ASOC(tag,
sctppcbinfo.hashasocmark)];
if (head == NULL) {
goto check_restart;
}
LIST_FOREACH(stcb, head, sctp_asocs) {
if (stcb->asoc.my_vtag == tag) {
/*
* We should remove this if and return 0 always if
* we want vtags unique across all endpoints. For
* now within a endpoint is ok.
*/
if (inp == stcb->sctp_ep) {
/* bad tag, in use */
SCTP_INP_INFO_WUNLOCK();
return (0);
}
}
}
check_restart:
/* Now lets check the restart hash */
head = &sctppcbinfo.sctp_restarthash[SCTP_PCBHASH_ASOC(tag,
sctppcbinfo.hashrestartmark)];
if (head == NULL) {
goto check_time_wait;
}
LIST_FOREACH(stcb, head, sctp_tcbrestarhash) {
if (stcb->asoc.assoc_id == tag) {
/* candidate */
if (inp == stcb->sctp_ep) {
/* bad tag, in use */
SCTP_INP_INFO_WUNLOCK();
return (0);
}
}
}
check_time_wait:
/* Now what about timed wait ? */
if (!SCTP_LIST_EMPTY(chain)) {
/*
* Block(s) are present, lets see if we have this tag in the
* list
*/
LIST_FOREACH(twait_block, chain, sctp_nxt_tagblock) {
for (i = 0; i < SCTP_NUMBER_IN_VTAG_BLOCK; i++) {
if (twait_block->vtag_block[i].v_tag == 0) {
/* not used */
continue;
} else if ((long)twait_block->vtag_block[i].tv_sec_at_expire >
now->tv_sec) {
/* Audit expires this guy */
twait_block->vtag_block[i].tv_sec_at_expire = 0;
twait_block->vtag_block[i].v_tag = 0;
} else if (twait_block->vtag_block[i].v_tag ==
tag) {
/* Bad tag, sorry :< */
SCTP_INP_INFO_WUNLOCK();
return (0);
}
}
}
}
/* Not found, ok to use the tag */
SCTP_INP_INFO_WUNLOCK();
return (1);
}
static sctp_assoc_t reneged_asoc_ids[256];
static uint8_t reneged_at = 0;
static void
sctp_drain_mbufs(struct sctp_inpcb *inp, struct sctp_tcb *stcb)
{
/*
* We must hunt this association for MBUF's past the cumack (i.e.
* out of order data that we can renege on).
*/
struct sctp_association *asoc;
struct sctp_tmit_chunk *chk, *nchk;
uint32_t cumulative_tsn_p1, tsn;
struct sctp_queued_to_read *ctl, *nctl;
int cnt, strmat, gap;
/* We look for anything larger than the cum-ack + 1 */
SCTP_STAT_INCR(sctps_protocol_drain_calls);
if (sctp_do_drain == 0) {
return;
}
asoc = &stcb->asoc;
if (asoc->cumulative_tsn == asoc->highest_tsn_inside_map) {
/* none we can reneg on. */
return;
}
SCTP_STAT_INCR(sctps_protocol_drains_done);
cumulative_tsn_p1 = asoc->cumulative_tsn + 1;
cnt = 0;
/* First look in the re-assembly queue */
chk = TAILQ_FIRST(&asoc->reasmqueue);
while (chk) {
/* Get the next one */
nchk = TAILQ_NEXT(chk, sctp_next);
if (compare_with_wrap(chk->rec.data.TSN_seq,
cumulative_tsn_p1, MAX_TSN)) {
/* Yep it is above cum-ack */
cnt++;
tsn = chk->rec.data.TSN_seq;
if (tsn >= asoc->mapping_array_base_tsn) {
gap = tsn - asoc->mapping_array_base_tsn;
} else {
gap = (MAX_TSN - asoc->mapping_array_base_tsn) +
tsn + 1;
}
asoc->size_on_reasm_queue = sctp_sbspace_sub(asoc->size_on_reasm_queue, chk->send_size);
sctp_ucount_decr(asoc->cnt_on_reasm_queue);
SCTP_UNSET_TSN_PRESENT(asoc->mapping_array, gap);
TAILQ_REMOVE(&asoc->reasmqueue, chk, sctp_next);
if (chk->data) {
sctp_m_freem(chk->data);
chk->data = NULL;
}
sctp_free_remote_addr(chk->whoTo);
sctp_free_a_chunk(stcb, chk);
}
chk = nchk;
}
/* Ok that was fun, now we will drain all the inbound streams? */
for (strmat = 0; strmat < asoc->streamincnt; strmat++) {
ctl = TAILQ_FIRST(&asoc->strmin[strmat].inqueue);
while (ctl) {
nctl = TAILQ_NEXT(ctl, next);
if (compare_with_wrap(ctl->sinfo_tsn,
cumulative_tsn_p1, MAX_TSN)) {
/* Yep it is above cum-ack */
cnt++;
tsn = ctl->sinfo_tsn;
if (tsn >= asoc->mapping_array_base_tsn) {
gap = tsn -
asoc->mapping_array_base_tsn;
} else {
gap = (MAX_TSN -
asoc->mapping_array_base_tsn) +
tsn + 1;
}
asoc->size_on_all_streams = sctp_sbspace_sub(asoc->size_on_all_streams, ctl->length);
sctp_ucount_decr(asoc->cnt_on_all_streams);
SCTP_UNSET_TSN_PRESENT(asoc->mapping_array,
gap);
TAILQ_REMOVE(&asoc->strmin[strmat].inqueue,
ctl, next);
if (ctl->data) {
sctp_m_freem(ctl->data);
ctl->data = NULL;
}
sctp_free_remote_addr(ctl->whoFrom);
SCTP_ZONE_FREE(sctppcbinfo.ipi_zone_readq, ctl);
SCTP_DECR_READQ_COUNT();
}
ctl = nctl;
}
}
/*
* Question, should we go through the delivery queue? The only
* reason things are on here is the app not reading OR a p-d-api up.
* An attacker COULD send enough in to initiate the PD-API and then
* send a bunch of stuff to other streams... these would wind up on
* the delivery queue.. and then we would not get to them. But in
* order to do this I then have to back-track and un-deliver
* sequence numbers in streams.. el-yucko. I think for now we will
* NOT look at the delivery queue and leave it to be something to
* consider later. An alternative would be to abort the P-D-API with
* a notification and then deliver the data.... Or another method
* might be to keep track of how many times the situation occurs and
* if we see a possible attack underway just abort the association.
*/
#ifdef SCTP_DEBUG
if (cnt) {
SCTPDBG(SCTP_DEBUG_PCB1, "Freed %d chunks from reneg harvest\n", cnt);
}
#endif
if (cnt) {
/*
* Now do we need to find a new
* asoc->highest_tsn_inside_map?
*/
if (asoc->highest_tsn_inside_map >= asoc->mapping_array_base_tsn) {
gap = asoc->highest_tsn_inside_map - asoc->mapping_array_base_tsn;
} else {
gap = (MAX_TSN - asoc->mapping_array_base_tsn) +
asoc->highest_tsn_inside_map + 1;
}
if (gap >= (asoc->mapping_array_size << 3)) {
/*
* Something bad happened or cum-ack and high were
* behind the base, but if so earlier checks should
* have found NO data... wierd... we will start at
* end of mapping array.
*/
SCTP_PRINTF("Gap was larger than array?? %d set to max:%d maparraymax:%x\n",
(int)gap,
(int)(asoc->mapping_array_size << 3),
(int)asoc->highest_tsn_inside_map);
gap = asoc->mapping_array_size << 3;
}
while (gap > 0) {
if (SCTP_IS_TSN_PRESENT(asoc->mapping_array, gap)) {
/* found the new highest */
asoc->highest_tsn_inside_map = asoc->mapping_array_base_tsn + gap;
break;
}
gap--;
}
if (gap == 0) {
/* Nothing left in map */
memset(asoc->mapping_array, 0, asoc->mapping_array_size);
asoc->mapping_array_base_tsn = asoc->cumulative_tsn + 1;
asoc->highest_tsn_inside_map = asoc->cumulative_tsn;
}
asoc->last_revoke_count = cnt;
(void)SCTP_OS_TIMER_STOP(&stcb->asoc.dack_timer.timer);
sctp_send_sack(stcb);
sctp_chunk_output(stcb->sctp_ep, stcb, SCTP_OUTPUT_FROM_DRAIN);
reneged_asoc_ids[reneged_at] = sctp_get_associd(stcb);
reneged_at++;
}
/*
* Another issue, in un-setting the TSN's in the mapping array we
* DID NOT adjust the higest_tsn marker. This will cause one of two
* things to occur. It may cause us to do extra work in checking for
* our mapping array movement. More importantly it may cause us to
* SACK every datagram. This may not be a bad thing though since we
* will recover once we get our cum-ack above and all this stuff we
* dumped recovered.
*/
}
void
sctp_drain()
{
/*
* We must walk the PCB lists for ALL associations here. The system
* is LOW on MBUF's and needs help. This is where reneging will
* occur. We really hope this does NOT happen!
*/
struct sctp_inpcb *inp;
struct sctp_tcb *stcb;
SCTP_INP_INFO_RLOCK();
LIST_FOREACH(inp, &sctppcbinfo.listhead, sctp_list) {
/* For each endpoint */
SCTP_INP_RLOCK(inp);
LIST_FOREACH(stcb, &inp->sctp_asoc_list, sctp_tcblist) {
/* For each association */
SCTP_TCB_LOCK(stcb);
sctp_drain_mbufs(inp, stcb);
SCTP_TCB_UNLOCK(stcb);
}
SCTP_INP_RUNLOCK(inp);
}
SCTP_INP_INFO_RUNLOCK();
}
/*
* start a new iterator
* iterates through all endpoints and associations based on the pcb_state
* flags and asoc_state. "af" (mandatory) is executed for all matching
* assocs and "ef" (optional) is executed when the iterator completes.
* "inpf" (optional) is executed for each new endpoint as it is being
* iterated through. inpe (optional) is called when the inp completes
* its way through all the stcbs.
*/
int
sctp_initiate_iterator(inp_func inpf,
asoc_func af,
inp_func inpe,
uint32_t pcb_state,
uint32_t pcb_features,
uint32_t asoc_state,
void *argp,
uint32_t argi,
end_func ef,
struct sctp_inpcb *s_inp,
uint8_t chunk_output_off)
{
struct sctp_iterator *it = NULL;
if (af == NULL) {
return (-1);
}
SCTP_MALLOC(it, struct sctp_iterator *, sizeof(struct sctp_iterator),
"Iterator");
if (it == NULL) {
return (ENOMEM);
}
memset(it, 0, sizeof(*it));
it->function_assoc = af;
it->function_inp = inpf;
if (inpf)
it->done_current_ep = 0;
else
it->done_current_ep = 1;
it->function_atend = ef;
it->pointer = argp;
it->val = argi;
it->pcb_flags = pcb_state;
it->pcb_features = pcb_features;
it->asoc_state = asoc_state;
it->function_inp_end = inpe;
it->no_chunk_output = chunk_output_off;
if (s_inp) {
it->inp = s_inp;
it->iterator_flags = SCTP_ITERATOR_DO_SINGLE_INP;
} else {
SCTP_INP_INFO_RLOCK();
it->inp = LIST_FIRST(&sctppcbinfo.listhead);
SCTP_INP_INFO_RUNLOCK();
it->iterator_flags = SCTP_ITERATOR_DO_ALL_INP;
}
SCTP_IPI_ITERATOR_WQ_LOCK();
if (it->inp) {
SCTP_INP_INCR_REF(it->inp);
}
TAILQ_INSERT_TAIL(&sctppcbinfo.iteratorhead, it, sctp_nxt_itr);
#if defined(SCTP_USE_THREAD_BASED_ITERATOR)
if (sctppcbinfo.iterator_running == 0) {
sctp_wakeup_iterator();
}
SCTP_IPI_ITERATOR_WQ_UNLOCK();
#else
if (it->inp)
SCTP_INP_DECR_REF(it->inp);
SCTP_IPI_ITERATOR_WQ_UNLOCK();
/* Init the timer */
SCTP_OS_TIMER_INIT(&it->tmr.timer);
/* add to the list of all iterators */
sctp_timer_start(SCTP_TIMER_TYPE_ITERATOR, (struct sctp_inpcb *)it,
NULL, NULL);
#endif
/* sa_ignore MEMLEAK {memory is put on the tailq for the iterator} */
return (0);
}