6472761966
Sponsored by: Juniper Networks, Inc.
1763 lines
45 KiB
C
1763 lines
45 KiB
C
/*-
|
|
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
|
|
*
|
|
* Copyright (c) 2004, 2005,
|
|
* Bosko Milekic <bmilekic@FreeBSD.org>. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice unmodified, this list of conditions and the following
|
|
* disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include "opt_param.h"
|
|
#include "opt_kern_tls.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/conf.h>
|
|
#include <sys/domainset.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/eventhandler.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/ktls.h>
|
|
#include <sys/limits.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/refcount.h>
|
|
#include <sys/sf_buf.h>
|
|
#include <sys/smp.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/sysctl.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/if_var.h>
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_extern.h>
|
|
#include <vm/vm_kern.h>
|
|
#include <vm/vm_page.h>
|
|
#include <vm/vm_pageout.h>
|
|
#include <vm/vm_map.h>
|
|
#include <vm/uma.h>
|
|
#include <vm/uma_dbg.h>
|
|
|
|
_Static_assert(MJUMPAGESIZE > MCLBYTES,
|
|
"Cluster must be smaller than a jumbo page");
|
|
|
|
/*
|
|
* In FreeBSD, Mbufs and Mbuf Clusters are allocated from UMA
|
|
* Zones.
|
|
*
|
|
* Mbuf Clusters (2K, contiguous) are allocated from the Cluster
|
|
* Zone. The Zone can be capped at kern.ipc.nmbclusters, if the
|
|
* administrator so desires.
|
|
*
|
|
* Mbufs are allocated from a UMA Primary Zone called the Mbuf
|
|
* Zone.
|
|
*
|
|
* Additionally, FreeBSD provides a Packet Zone, which it
|
|
* configures as a Secondary Zone to the Mbuf Primary Zone,
|
|
* thus sharing backend Slab kegs with the Mbuf Primary Zone.
|
|
*
|
|
* Thus common-case allocations and locking are simplified:
|
|
*
|
|
* m_clget() m_getcl()
|
|
* | |
|
|
* | .------------>[(Packet Cache)] m_get(), m_gethdr()
|
|
* | | [ Packet ] |
|
|
* [(Cluster Cache)] [ Secondary ] [ (Mbuf Cache) ]
|
|
* [ Cluster Zone ] [ Zone ] [ Mbuf Primary Zone ]
|
|
* | \________ |
|
|
* [ Cluster Keg ] \ /
|
|
* | [ Mbuf Keg ]
|
|
* [ Cluster Slabs ] |
|
|
* | [ Mbuf Slabs ]
|
|
* \____________(VM)_________________/
|
|
*
|
|
*
|
|
* Whenever an object is allocated with uma_zalloc() out of
|
|
* one of the Zones its _ctor_ function is executed. The same
|
|
* for any deallocation through uma_zfree() the _dtor_ function
|
|
* is executed.
|
|
*
|
|
* Caches are per-CPU and are filled from the Primary Zone.
|
|
*
|
|
* Whenever an object is allocated from the underlying global
|
|
* memory pool it gets pre-initialized with the _zinit_ functions.
|
|
* When the Keg's are overfull objects get decommissioned with
|
|
* _zfini_ functions and free'd back to the global memory pool.
|
|
*
|
|
*/
|
|
|
|
int nmbufs; /* limits number of mbufs */
|
|
int nmbclusters; /* limits number of mbuf clusters */
|
|
int nmbjumbop; /* limits number of page size jumbo clusters */
|
|
int nmbjumbo9; /* limits number of 9k jumbo clusters */
|
|
int nmbjumbo16; /* limits number of 16k jumbo clusters */
|
|
|
|
bool mb_use_ext_pgs = false; /* use M_EXTPG mbufs for sendfile & TLS */
|
|
|
|
static int
|
|
sysctl_mb_use_ext_pgs(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
int error, extpg;
|
|
|
|
extpg = mb_use_ext_pgs;
|
|
error = sysctl_handle_int(oidp, &extpg, 0, req);
|
|
if (error == 0 && req->newptr != NULL) {
|
|
if (extpg != 0 && !PMAP_HAS_DMAP)
|
|
error = EOPNOTSUPP;
|
|
else
|
|
mb_use_ext_pgs = extpg != 0;
|
|
}
|
|
return (error);
|
|
}
|
|
SYSCTL_PROC(_kern_ipc, OID_AUTO, mb_use_ext_pgs, CTLTYPE_INT | CTLFLAG_RW,
|
|
&mb_use_ext_pgs, 0,
|
|
sysctl_mb_use_ext_pgs, "IU",
|
|
"Use unmapped mbufs for sendfile(2) and TLS offload");
|
|
|
|
static quad_t maxmbufmem; /* overall real memory limit for all mbufs */
|
|
|
|
SYSCTL_QUAD(_kern_ipc, OID_AUTO, maxmbufmem, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &maxmbufmem, 0,
|
|
"Maximum real memory allocatable to various mbuf types");
|
|
|
|
static counter_u64_t snd_tag_count;
|
|
SYSCTL_COUNTER_U64(_kern_ipc, OID_AUTO, num_snd_tags, CTLFLAG_RW,
|
|
&snd_tag_count, "# of active mbuf send tags");
|
|
|
|
/*
|
|
* tunable_mbinit() has to be run before any mbuf allocations are done.
|
|
*/
|
|
static void
|
|
tunable_mbinit(void *dummy)
|
|
{
|
|
quad_t realmem;
|
|
int extpg;
|
|
|
|
/*
|
|
* The default limit for all mbuf related memory is 1/2 of all
|
|
* available kernel memory (physical or kmem).
|
|
* At most it can be 3/4 of available kernel memory.
|
|
*/
|
|
realmem = qmin((quad_t)physmem * PAGE_SIZE, vm_kmem_size);
|
|
maxmbufmem = realmem / 2;
|
|
TUNABLE_QUAD_FETCH("kern.ipc.maxmbufmem", &maxmbufmem);
|
|
if (maxmbufmem > realmem / 4 * 3)
|
|
maxmbufmem = realmem / 4 * 3;
|
|
|
|
TUNABLE_INT_FETCH("kern.ipc.nmbclusters", &nmbclusters);
|
|
if (nmbclusters == 0)
|
|
nmbclusters = maxmbufmem / MCLBYTES / 4;
|
|
|
|
TUNABLE_INT_FETCH("kern.ipc.nmbjumbop", &nmbjumbop);
|
|
if (nmbjumbop == 0)
|
|
nmbjumbop = maxmbufmem / MJUMPAGESIZE / 4;
|
|
|
|
TUNABLE_INT_FETCH("kern.ipc.nmbjumbo9", &nmbjumbo9);
|
|
if (nmbjumbo9 == 0)
|
|
nmbjumbo9 = maxmbufmem / MJUM9BYTES / 6;
|
|
|
|
TUNABLE_INT_FETCH("kern.ipc.nmbjumbo16", &nmbjumbo16);
|
|
if (nmbjumbo16 == 0)
|
|
nmbjumbo16 = maxmbufmem / MJUM16BYTES / 6;
|
|
|
|
/*
|
|
* We need at least as many mbufs as we have clusters of
|
|
* the various types added together.
|
|
*/
|
|
TUNABLE_INT_FETCH("kern.ipc.nmbufs", &nmbufs);
|
|
if (nmbufs < nmbclusters + nmbjumbop + nmbjumbo9 + nmbjumbo16)
|
|
nmbufs = lmax(maxmbufmem / MSIZE / 5,
|
|
nmbclusters + nmbjumbop + nmbjumbo9 + nmbjumbo16);
|
|
|
|
/*
|
|
* Unmapped mbufs can only safely be used on platforms with a direct
|
|
* map.
|
|
*/
|
|
if (PMAP_HAS_DMAP) {
|
|
extpg = 1;
|
|
TUNABLE_INT_FETCH("kern.ipc.mb_use_ext_pgs", &extpg);
|
|
mb_use_ext_pgs = extpg != 0;
|
|
}
|
|
}
|
|
SYSINIT(tunable_mbinit, SI_SUB_KMEM, SI_ORDER_MIDDLE, tunable_mbinit, NULL);
|
|
|
|
static int
|
|
sysctl_nmbclusters(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
int error, newnmbclusters;
|
|
|
|
newnmbclusters = nmbclusters;
|
|
error = sysctl_handle_int(oidp, &newnmbclusters, 0, req);
|
|
if (error == 0 && req->newptr && newnmbclusters != nmbclusters) {
|
|
if (newnmbclusters > nmbclusters &&
|
|
nmbufs >= nmbclusters + nmbjumbop + nmbjumbo9 + nmbjumbo16) {
|
|
nmbclusters = newnmbclusters;
|
|
nmbclusters = uma_zone_set_max(zone_clust, nmbclusters);
|
|
EVENTHANDLER_INVOKE(nmbclusters_change);
|
|
} else
|
|
error = EINVAL;
|
|
}
|
|
return (error);
|
|
}
|
|
SYSCTL_PROC(_kern_ipc, OID_AUTO, nmbclusters,
|
|
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, &nmbclusters, 0,
|
|
sysctl_nmbclusters, "IU",
|
|
"Maximum number of mbuf clusters allowed");
|
|
|
|
static int
|
|
sysctl_nmbjumbop(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
int error, newnmbjumbop;
|
|
|
|
newnmbjumbop = nmbjumbop;
|
|
error = sysctl_handle_int(oidp, &newnmbjumbop, 0, req);
|
|
if (error == 0 && req->newptr && newnmbjumbop != nmbjumbop) {
|
|
if (newnmbjumbop > nmbjumbop &&
|
|
nmbufs >= nmbclusters + nmbjumbop + nmbjumbo9 + nmbjumbo16) {
|
|
nmbjumbop = newnmbjumbop;
|
|
nmbjumbop = uma_zone_set_max(zone_jumbop, nmbjumbop);
|
|
} else
|
|
error = EINVAL;
|
|
}
|
|
return (error);
|
|
}
|
|
SYSCTL_PROC(_kern_ipc, OID_AUTO, nmbjumbop,
|
|
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, &nmbjumbop, 0,
|
|
sysctl_nmbjumbop, "IU",
|
|
"Maximum number of mbuf page size jumbo clusters allowed");
|
|
|
|
static int
|
|
sysctl_nmbjumbo9(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
int error, newnmbjumbo9;
|
|
|
|
newnmbjumbo9 = nmbjumbo9;
|
|
error = sysctl_handle_int(oidp, &newnmbjumbo9, 0, req);
|
|
if (error == 0 && req->newptr && newnmbjumbo9 != nmbjumbo9) {
|
|
if (newnmbjumbo9 > nmbjumbo9 &&
|
|
nmbufs >= nmbclusters + nmbjumbop + nmbjumbo9 + nmbjumbo16) {
|
|
nmbjumbo9 = newnmbjumbo9;
|
|
nmbjumbo9 = uma_zone_set_max(zone_jumbo9, nmbjumbo9);
|
|
} else
|
|
error = EINVAL;
|
|
}
|
|
return (error);
|
|
}
|
|
SYSCTL_PROC(_kern_ipc, OID_AUTO, nmbjumbo9,
|
|
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, &nmbjumbo9, 0,
|
|
sysctl_nmbjumbo9, "IU",
|
|
"Maximum number of mbuf 9k jumbo clusters allowed");
|
|
|
|
static int
|
|
sysctl_nmbjumbo16(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
int error, newnmbjumbo16;
|
|
|
|
newnmbjumbo16 = nmbjumbo16;
|
|
error = sysctl_handle_int(oidp, &newnmbjumbo16, 0, req);
|
|
if (error == 0 && req->newptr && newnmbjumbo16 != nmbjumbo16) {
|
|
if (newnmbjumbo16 > nmbjumbo16 &&
|
|
nmbufs >= nmbclusters + nmbjumbop + nmbjumbo9 + nmbjumbo16) {
|
|
nmbjumbo16 = newnmbjumbo16;
|
|
nmbjumbo16 = uma_zone_set_max(zone_jumbo16, nmbjumbo16);
|
|
} else
|
|
error = EINVAL;
|
|
}
|
|
return (error);
|
|
}
|
|
SYSCTL_PROC(_kern_ipc, OID_AUTO, nmbjumbo16,
|
|
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, &nmbjumbo16, 0,
|
|
sysctl_nmbjumbo16, "IU",
|
|
"Maximum number of mbuf 16k jumbo clusters allowed");
|
|
|
|
static int
|
|
sysctl_nmbufs(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
int error, newnmbufs;
|
|
|
|
newnmbufs = nmbufs;
|
|
error = sysctl_handle_int(oidp, &newnmbufs, 0, req);
|
|
if (error == 0 && req->newptr && newnmbufs != nmbufs) {
|
|
if (newnmbufs > nmbufs) {
|
|
nmbufs = newnmbufs;
|
|
nmbufs = uma_zone_set_max(zone_mbuf, nmbufs);
|
|
EVENTHANDLER_INVOKE(nmbufs_change);
|
|
} else
|
|
error = EINVAL;
|
|
}
|
|
return (error);
|
|
}
|
|
SYSCTL_PROC(_kern_ipc, OID_AUTO, nmbufs,
|
|
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
|
|
&nmbufs, 0, sysctl_nmbufs, "IU",
|
|
"Maximum number of mbufs allowed");
|
|
|
|
/*
|
|
* Zones from which we allocate.
|
|
*/
|
|
uma_zone_t zone_mbuf;
|
|
uma_zone_t zone_clust;
|
|
uma_zone_t zone_pack;
|
|
uma_zone_t zone_jumbop;
|
|
uma_zone_t zone_jumbo9;
|
|
uma_zone_t zone_jumbo16;
|
|
|
|
/*
|
|
* Local prototypes.
|
|
*/
|
|
static int mb_ctor_mbuf(void *, int, void *, int);
|
|
static int mb_ctor_clust(void *, int, void *, int);
|
|
static int mb_ctor_pack(void *, int, void *, int);
|
|
static void mb_dtor_mbuf(void *, int, void *);
|
|
static void mb_dtor_pack(void *, int, void *);
|
|
static int mb_zinit_pack(void *, int, int);
|
|
static void mb_zfini_pack(void *, int);
|
|
static void mb_reclaim(uma_zone_t, int);
|
|
|
|
/* Ensure that MSIZE is a power of 2. */
|
|
CTASSERT((((MSIZE - 1) ^ MSIZE) + 1) >> 1 == MSIZE);
|
|
|
|
_Static_assert(sizeof(struct mbuf) <= MSIZE,
|
|
"size of mbuf exceeds MSIZE");
|
|
/*
|
|
* Initialize FreeBSD Network buffer allocation.
|
|
*/
|
|
static void
|
|
mbuf_init(void *dummy)
|
|
{
|
|
|
|
/*
|
|
* Configure UMA zones for Mbufs, Clusters, and Packets.
|
|
*/
|
|
zone_mbuf = uma_zcreate(MBUF_MEM_NAME, MSIZE,
|
|
mb_ctor_mbuf, mb_dtor_mbuf, NULL, NULL,
|
|
MSIZE - 1, UMA_ZONE_CONTIG | UMA_ZONE_MAXBUCKET);
|
|
if (nmbufs > 0)
|
|
nmbufs = uma_zone_set_max(zone_mbuf, nmbufs);
|
|
uma_zone_set_warning(zone_mbuf, "kern.ipc.nmbufs limit reached");
|
|
uma_zone_set_maxaction(zone_mbuf, mb_reclaim);
|
|
|
|
zone_clust = uma_zcreate(MBUF_CLUSTER_MEM_NAME, MCLBYTES,
|
|
mb_ctor_clust, NULL, NULL, NULL,
|
|
UMA_ALIGN_PTR, UMA_ZONE_CONTIG);
|
|
if (nmbclusters > 0)
|
|
nmbclusters = uma_zone_set_max(zone_clust, nmbclusters);
|
|
uma_zone_set_warning(zone_clust, "kern.ipc.nmbclusters limit reached");
|
|
uma_zone_set_maxaction(zone_clust, mb_reclaim);
|
|
|
|
zone_pack = uma_zsecond_create(MBUF_PACKET_MEM_NAME, mb_ctor_pack,
|
|
mb_dtor_pack, mb_zinit_pack, mb_zfini_pack, zone_mbuf);
|
|
|
|
/* Make jumbo frame zone too. Page size, 9k and 16k. */
|
|
zone_jumbop = uma_zcreate(MBUF_JUMBOP_MEM_NAME, MJUMPAGESIZE,
|
|
mb_ctor_clust, NULL, NULL, NULL,
|
|
UMA_ALIGN_PTR, UMA_ZONE_CONTIG);
|
|
if (nmbjumbop > 0)
|
|
nmbjumbop = uma_zone_set_max(zone_jumbop, nmbjumbop);
|
|
uma_zone_set_warning(zone_jumbop, "kern.ipc.nmbjumbop limit reached");
|
|
uma_zone_set_maxaction(zone_jumbop, mb_reclaim);
|
|
|
|
zone_jumbo9 = uma_zcreate(MBUF_JUMBO9_MEM_NAME, MJUM9BYTES,
|
|
mb_ctor_clust, NULL, NULL, NULL,
|
|
UMA_ALIGN_PTR, UMA_ZONE_CONTIG);
|
|
if (nmbjumbo9 > 0)
|
|
nmbjumbo9 = uma_zone_set_max(zone_jumbo9, nmbjumbo9);
|
|
uma_zone_set_warning(zone_jumbo9, "kern.ipc.nmbjumbo9 limit reached");
|
|
uma_zone_set_maxaction(zone_jumbo9, mb_reclaim);
|
|
|
|
zone_jumbo16 = uma_zcreate(MBUF_JUMBO16_MEM_NAME, MJUM16BYTES,
|
|
mb_ctor_clust, NULL, NULL, NULL,
|
|
UMA_ALIGN_PTR, UMA_ZONE_CONTIG);
|
|
if (nmbjumbo16 > 0)
|
|
nmbjumbo16 = uma_zone_set_max(zone_jumbo16, nmbjumbo16);
|
|
uma_zone_set_warning(zone_jumbo16, "kern.ipc.nmbjumbo16 limit reached");
|
|
uma_zone_set_maxaction(zone_jumbo16, mb_reclaim);
|
|
|
|
snd_tag_count = counter_u64_alloc(M_WAITOK);
|
|
}
|
|
SYSINIT(mbuf, SI_SUB_MBUF, SI_ORDER_FIRST, mbuf_init, NULL);
|
|
|
|
#ifdef DEBUGNET
|
|
/*
|
|
* debugnet makes use of a pre-allocated pool of mbufs and clusters. When
|
|
* debugnet is configured, we initialize a set of UMA cache zones which return
|
|
* items from this pool. At panic-time, the regular UMA zone pointers are
|
|
* overwritten with those of the cache zones so that drivers may allocate and
|
|
* free mbufs and clusters without attempting to allocate physical memory.
|
|
*
|
|
* We keep mbufs and clusters in a pair of mbuf queues. In particular, for
|
|
* the purpose of caching clusters, we treat them as mbufs.
|
|
*/
|
|
static struct mbufq dn_mbufq =
|
|
{ STAILQ_HEAD_INITIALIZER(dn_mbufq.mq_head), 0, INT_MAX };
|
|
static struct mbufq dn_clustq =
|
|
{ STAILQ_HEAD_INITIALIZER(dn_clustq.mq_head), 0, INT_MAX };
|
|
|
|
static int dn_clsize;
|
|
static uma_zone_t dn_zone_mbuf;
|
|
static uma_zone_t dn_zone_clust;
|
|
static uma_zone_t dn_zone_pack;
|
|
|
|
static struct debugnet_saved_zones {
|
|
uma_zone_t dsz_mbuf;
|
|
uma_zone_t dsz_clust;
|
|
uma_zone_t dsz_pack;
|
|
uma_zone_t dsz_jumbop;
|
|
uma_zone_t dsz_jumbo9;
|
|
uma_zone_t dsz_jumbo16;
|
|
bool dsz_debugnet_zones_enabled;
|
|
} dn_saved_zones;
|
|
|
|
static int
|
|
dn_buf_import(void *arg, void **store, int count, int domain __unused,
|
|
int flags)
|
|
{
|
|
struct mbufq *q;
|
|
struct mbuf *m;
|
|
int i;
|
|
|
|
q = arg;
|
|
|
|
for (i = 0; i < count; i++) {
|
|
m = mbufq_dequeue(q);
|
|
if (m == NULL)
|
|
break;
|
|
trash_init(m, q == &dn_mbufq ? MSIZE : dn_clsize, flags);
|
|
store[i] = m;
|
|
}
|
|
KASSERT((flags & M_WAITOK) == 0 || i == count,
|
|
("%s: ran out of pre-allocated mbufs", __func__));
|
|
return (i);
|
|
}
|
|
|
|
static void
|
|
dn_buf_release(void *arg, void **store, int count)
|
|
{
|
|
struct mbufq *q;
|
|
struct mbuf *m;
|
|
int i;
|
|
|
|
q = arg;
|
|
|
|
for (i = 0; i < count; i++) {
|
|
m = store[i];
|
|
(void)mbufq_enqueue(q, m);
|
|
}
|
|
}
|
|
|
|
static int
|
|
dn_pack_import(void *arg __unused, void **store, int count, int domain __unused,
|
|
int flags __unused)
|
|
{
|
|
struct mbuf *m;
|
|
void *clust;
|
|
int i;
|
|
|
|
for (i = 0; i < count; i++) {
|
|
m = m_get(M_NOWAIT, MT_DATA);
|
|
if (m == NULL)
|
|
break;
|
|
clust = uma_zalloc(dn_zone_clust, M_NOWAIT);
|
|
if (clust == NULL) {
|
|
m_free(m);
|
|
break;
|
|
}
|
|
mb_ctor_clust(clust, dn_clsize, m, 0);
|
|
store[i] = m;
|
|
}
|
|
KASSERT((flags & M_WAITOK) == 0 || i == count,
|
|
("%s: ran out of pre-allocated mbufs", __func__));
|
|
return (i);
|
|
}
|
|
|
|
static void
|
|
dn_pack_release(void *arg __unused, void **store, int count)
|
|
{
|
|
struct mbuf *m;
|
|
void *clust;
|
|
int i;
|
|
|
|
for (i = 0; i < count; i++) {
|
|
m = store[i];
|
|
clust = m->m_ext.ext_buf;
|
|
uma_zfree(dn_zone_clust, clust);
|
|
uma_zfree(dn_zone_mbuf, m);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Free the pre-allocated mbufs and clusters reserved for debugnet, and destroy
|
|
* the corresponding UMA cache zones.
|
|
*/
|
|
void
|
|
debugnet_mbuf_drain(void)
|
|
{
|
|
struct mbuf *m;
|
|
void *item;
|
|
|
|
if (dn_zone_mbuf != NULL) {
|
|
uma_zdestroy(dn_zone_mbuf);
|
|
dn_zone_mbuf = NULL;
|
|
}
|
|
if (dn_zone_clust != NULL) {
|
|
uma_zdestroy(dn_zone_clust);
|
|
dn_zone_clust = NULL;
|
|
}
|
|
if (dn_zone_pack != NULL) {
|
|
uma_zdestroy(dn_zone_pack);
|
|
dn_zone_pack = NULL;
|
|
}
|
|
|
|
while ((m = mbufq_dequeue(&dn_mbufq)) != NULL)
|
|
m_free(m);
|
|
while ((item = mbufq_dequeue(&dn_clustq)) != NULL)
|
|
uma_zfree(m_getzone(dn_clsize), item);
|
|
}
|
|
|
|
/*
|
|
* Callback invoked immediately prior to starting a debugnet connection.
|
|
*/
|
|
void
|
|
debugnet_mbuf_start(void)
|
|
{
|
|
|
|
MPASS(!dn_saved_zones.dsz_debugnet_zones_enabled);
|
|
|
|
/* Save the old zone pointers to restore when debugnet is closed. */
|
|
dn_saved_zones = (struct debugnet_saved_zones) {
|
|
.dsz_debugnet_zones_enabled = true,
|
|
.dsz_mbuf = zone_mbuf,
|
|
.dsz_clust = zone_clust,
|
|
.dsz_pack = zone_pack,
|
|
.dsz_jumbop = zone_jumbop,
|
|
.dsz_jumbo9 = zone_jumbo9,
|
|
.dsz_jumbo16 = zone_jumbo16,
|
|
};
|
|
|
|
/*
|
|
* All cluster zones return buffers of the size requested by the
|
|
* drivers. It's up to the driver to reinitialize the zones if the
|
|
* MTU of a debugnet-enabled interface changes.
|
|
*/
|
|
printf("debugnet: overwriting mbuf zone pointers\n");
|
|
zone_mbuf = dn_zone_mbuf;
|
|
zone_clust = dn_zone_clust;
|
|
zone_pack = dn_zone_pack;
|
|
zone_jumbop = dn_zone_clust;
|
|
zone_jumbo9 = dn_zone_clust;
|
|
zone_jumbo16 = dn_zone_clust;
|
|
}
|
|
|
|
/*
|
|
* Callback invoked when a debugnet connection is closed/finished.
|
|
*/
|
|
void
|
|
debugnet_mbuf_finish(void)
|
|
{
|
|
|
|
MPASS(dn_saved_zones.dsz_debugnet_zones_enabled);
|
|
|
|
printf("debugnet: restoring mbuf zone pointers\n");
|
|
zone_mbuf = dn_saved_zones.dsz_mbuf;
|
|
zone_clust = dn_saved_zones.dsz_clust;
|
|
zone_pack = dn_saved_zones.dsz_pack;
|
|
zone_jumbop = dn_saved_zones.dsz_jumbop;
|
|
zone_jumbo9 = dn_saved_zones.dsz_jumbo9;
|
|
zone_jumbo16 = dn_saved_zones.dsz_jumbo16;
|
|
|
|
memset(&dn_saved_zones, 0, sizeof(dn_saved_zones));
|
|
}
|
|
|
|
/*
|
|
* Reinitialize the debugnet mbuf+cluster pool and cache zones.
|
|
*/
|
|
void
|
|
debugnet_mbuf_reinit(int nmbuf, int nclust, int clsize)
|
|
{
|
|
struct mbuf *m;
|
|
void *item;
|
|
|
|
debugnet_mbuf_drain();
|
|
|
|
dn_clsize = clsize;
|
|
|
|
dn_zone_mbuf = uma_zcache_create("debugnet_" MBUF_MEM_NAME,
|
|
MSIZE, mb_ctor_mbuf, mb_dtor_mbuf, NULL, NULL,
|
|
dn_buf_import, dn_buf_release,
|
|
&dn_mbufq, UMA_ZONE_NOBUCKET);
|
|
|
|
dn_zone_clust = uma_zcache_create("debugnet_" MBUF_CLUSTER_MEM_NAME,
|
|
clsize, mb_ctor_clust, NULL, NULL, NULL,
|
|
dn_buf_import, dn_buf_release,
|
|
&dn_clustq, UMA_ZONE_NOBUCKET);
|
|
|
|
dn_zone_pack = uma_zcache_create("debugnet_" MBUF_PACKET_MEM_NAME,
|
|
MCLBYTES, mb_ctor_pack, mb_dtor_pack, NULL, NULL,
|
|
dn_pack_import, dn_pack_release,
|
|
NULL, UMA_ZONE_NOBUCKET);
|
|
|
|
while (nmbuf-- > 0) {
|
|
m = m_get(M_WAITOK, MT_DATA);
|
|
uma_zfree(dn_zone_mbuf, m);
|
|
}
|
|
while (nclust-- > 0) {
|
|
item = uma_zalloc(m_getzone(dn_clsize), M_WAITOK);
|
|
uma_zfree(dn_zone_clust, item);
|
|
}
|
|
}
|
|
#endif /* DEBUGNET */
|
|
|
|
/*
|
|
* Constructor for Mbuf primary zone.
|
|
*
|
|
* The 'arg' pointer points to a mb_args structure which
|
|
* contains call-specific information required to support the
|
|
* mbuf allocation API. See mbuf.h.
|
|
*/
|
|
static int
|
|
mb_ctor_mbuf(void *mem, int size, void *arg, int how)
|
|
{
|
|
struct mbuf *m;
|
|
struct mb_args *args;
|
|
int error;
|
|
int flags;
|
|
short type;
|
|
|
|
args = (struct mb_args *)arg;
|
|
type = args->type;
|
|
|
|
/*
|
|
* The mbuf is initialized later. The caller has the
|
|
* responsibility to set up any MAC labels too.
|
|
*/
|
|
if (type == MT_NOINIT)
|
|
return (0);
|
|
|
|
m = (struct mbuf *)mem;
|
|
flags = args->flags;
|
|
MPASS((flags & M_NOFREE) == 0);
|
|
|
|
error = m_init(m, how, type, flags);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* The Mbuf primary zone destructor.
|
|
*/
|
|
static void
|
|
mb_dtor_mbuf(void *mem, int size, void *arg)
|
|
{
|
|
struct mbuf *m;
|
|
unsigned long flags __diagused;
|
|
|
|
m = (struct mbuf *)mem;
|
|
flags = (unsigned long)arg;
|
|
|
|
KASSERT((m->m_flags & M_NOFREE) == 0, ("%s: M_NOFREE set", __func__));
|
|
KASSERT((flags & 0x1) == 0, ("%s: obsolete MB_DTOR_SKIP passed", __func__));
|
|
if ((m->m_flags & M_PKTHDR) && !SLIST_EMPTY(&m->m_pkthdr.tags))
|
|
m_tag_delete_chain(m, NULL);
|
|
}
|
|
|
|
/*
|
|
* The Mbuf Packet zone destructor.
|
|
*/
|
|
static void
|
|
mb_dtor_pack(void *mem, int size, void *arg)
|
|
{
|
|
struct mbuf *m;
|
|
|
|
m = (struct mbuf *)mem;
|
|
if ((m->m_flags & M_PKTHDR) != 0)
|
|
m_tag_delete_chain(m, NULL);
|
|
|
|
/* Make sure we've got a clean cluster back. */
|
|
KASSERT((m->m_flags & M_EXT) == M_EXT, ("%s: M_EXT not set", __func__));
|
|
KASSERT(m->m_ext.ext_buf != NULL, ("%s: ext_buf == NULL", __func__));
|
|
KASSERT(m->m_ext.ext_free == NULL, ("%s: ext_free != NULL", __func__));
|
|
KASSERT(m->m_ext.ext_arg1 == NULL, ("%s: ext_arg1 != NULL", __func__));
|
|
KASSERT(m->m_ext.ext_arg2 == NULL, ("%s: ext_arg2 != NULL", __func__));
|
|
KASSERT(m->m_ext.ext_size == MCLBYTES, ("%s: ext_size != MCLBYTES", __func__));
|
|
KASSERT(m->m_ext.ext_type == EXT_PACKET, ("%s: ext_type != EXT_PACKET", __func__));
|
|
#if defined(INVARIANTS) && !defined(KMSAN)
|
|
trash_dtor(m->m_ext.ext_buf, MCLBYTES, arg);
|
|
#endif
|
|
/*
|
|
* If there are processes blocked on zone_clust, waiting for pages
|
|
* to be freed up, cause them to be woken up by draining the
|
|
* packet zone. We are exposed to a race here (in the check for
|
|
* the UMA_ZFLAG_FULL) where we might miss the flag set, but that
|
|
* is deliberate. We don't want to acquire the zone lock for every
|
|
* mbuf free.
|
|
*/
|
|
if (uma_zone_exhausted(zone_clust))
|
|
uma_zone_reclaim(zone_pack, UMA_RECLAIM_DRAIN);
|
|
}
|
|
|
|
/*
|
|
* The Cluster and Jumbo[PAGESIZE|9|16] zone constructor.
|
|
*
|
|
* Here the 'arg' pointer points to the Mbuf which we
|
|
* are configuring cluster storage for. If 'arg' is
|
|
* empty we allocate just the cluster without setting
|
|
* the mbuf to it. See mbuf.h.
|
|
*/
|
|
static int
|
|
mb_ctor_clust(void *mem, int size, void *arg, int how)
|
|
{
|
|
struct mbuf *m;
|
|
|
|
m = (struct mbuf *)arg;
|
|
if (m != NULL) {
|
|
m->m_ext.ext_buf = (char *)mem;
|
|
m->m_data = m->m_ext.ext_buf;
|
|
m->m_flags |= M_EXT;
|
|
m->m_ext.ext_free = NULL;
|
|
m->m_ext.ext_arg1 = NULL;
|
|
m->m_ext.ext_arg2 = NULL;
|
|
m->m_ext.ext_size = size;
|
|
m->m_ext.ext_type = m_gettype(size);
|
|
m->m_ext.ext_flags = EXT_FLAG_EMBREF;
|
|
m->m_ext.ext_count = 1;
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* The Packet secondary zone's init routine, executed on the
|
|
* object's transition from mbuf keg slab to zone cache.
|
|
*/
|
|
static int
|
|
mb_zinit_pack(void *mem, int size, int how)
|
|
{
|
|
struct mbuf *m;
|
|
|
|
m = (struct mbuf *)mem; /* m is virgin. */
|
|
if (uma_zalloc_arg(zone_clust, m, how) == NULL ||
|
|
m->m_ext.ext_buf == NULL)
|
|
return (ENOMEM);
|
|
m->m_ext.ext_type = EXT_PACKET; /* Override. */
|
|
#if defined(INVARIANTS) && !defined(KMSAN)
|
|
trash_init(m->m_ext.ext_buf, MCLBYTES, how);
|
|
#endif
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* The Packet secondary zone's fini routine, executed on the
|
|
* object's transition from zone cache to keg slab.
|
|
*/
|
|
static void
|
|
mb_zfini_pack(void *mem, int size)
|
|
{
|
|
struct mbuf *m;
|
|
|
|
m = (struct mbuf *)mem;
|
|
#if defined(INVARIANTS) && !defined(KMSAN)
|
|
trash_fini(m->m_ext.ext_buf, MCLBYTES);
|
|
#endif
|
|
uma_zfree_arg(zone_clust, m->m_ext.ext_buf, NULL);
|
|
#if defined(INVARIANTS) && !defined(KMSAN)
|
|
trash_dtor(mem, size, NULL);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* The "packet" keg constructor.
|
|
*/
|
|
static int
|
|
mb_ctor_pack(void *mem, int size, void *arg, int how)
|
|
{
|
|
struct mbuf *m;
|
|
struct mb_args *args;
|
|
int error, flags;
|
|
short type;
|
|
|
|
m = (struct mbuf *)mem;
|
|
args = (struct mb_args *)arg;
|
|
flags = args->flags;
|
|
type = args->type;
|
|
MPASS((flags & M_NOFREE) == 0);
|
|
|
|
#if defined(INVARIANTS) && !defined(KMSAN)
|
|
trash_ctor(m->m_ext.ext_buf, MCLBYTES, arg, how);
|
|
#endif
|
|
|
|
error = m_init(m, how, type, flags);
|
|
|
|
/* m_ext is already initialized. */
|
|
m->m_data = m->m_ext.ext_buf;
|
|
m->m_flags = (flags | M_EXT);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* This is the protocol drain routine. Called by UMA whenever any of the
|
|
* mbuf zones is closed to its limit.
|
|
*/
|
|
static void
|
|
mb_reclaim(uma_zone_t zone __unused, int pending __unused)
|
|
{
|
|
|
|
EVENTHANDLER_INVOKE(mbuf_lowmem, VM_LOW_MBUFS);
|
|
}
|
|
|
|
/*
|
|
* Free "count" units of I/O from an mbuf chain. They could be held
|
|
* in M_EXTPG or just as a normal mbuf. This code is intended to be
|
|
* called in an error path (I/O error, closed connection, etc).
|
|
*/
|
|
void
|
|
mb_free_notready(struct mbuf *m, int count)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < count && m != NULL; i++) {
|
|
if ((m->m_flags & M_EXTPG) != 0) {
|
|
m->m_epg_nrdy--;
|
|
if (m->m_epg_nrdy != 0)
|
|
continue;
|
|
}
|
|
m = m_free(m);
|
|
}
|
|
KASSERT(i == count, ("Removed only %d items from %p", i, m));
|
|
}
|
|
|
|
/*
|
|
* Compress an unmapped mbuf into a simple mbuf when it holds a small
|
|
* amount of data. This is used as a DOS defense to avoid having
|
|
* small packets tie up wired pages, an ext_pgs structure, and an
|
|
* mbuf. Since this converts the existing mbuf in place, it can only
|
|
* be used if there are no other references to 'm'.
|
|
*/
|
|
int
|
|
mb_unmapped_compress(struct mbuf *m)
|
|
{
|
|
volatile u_int *refcnt;
|
|
char buf[MLEN];
|
|
|
|
/*
|
|
* Assert that 'm' does not have a packet header. If 'm' had
|
|
* a packet header, it would only be able to hold MHLEN bytes
|
|
* and m_data would have to be initialized differently.
|
|
*/
|
|
KASSERT((m->m_flags & M_PKTHDR) == 0 && (m->m_flags & M_EXTPG),
|
|
("%s: m %p !M_EXTPG or M_PKTHDR", __func__, m));
|
|
KASSERT(m->m_len <= MLEN, ("m_len too large %p", m));
|
|
|
|
if (m->m_ext.ext_flags & EXT_FLAG_EMBREF) {
|
|
refcnt = &m->m_ext.ext_count;
|
|
} else {
|
|
KASSERT(m->m_ext.ext_cnt != NULL,
|
|
("%s: no refcounting pointer on %p", __func__, m));
|
|
refcnt = m->m_ext.ext_cnt;
|
|
}
|
|
|
|
if (*refcnt != 1)
|
|
return (EBUSY);
|
|
|
|
m_copydata(m, 0, m->m_len, buf);
|
|
|
|
/* Free the backing pages. */
|
|
m->m_ext.ext_free(m);
|
|
|
|
/* Turn 'm' into a "normal" mbuf. */
|
|
m->m_flags &= ~(M_EXT | M_RDONLY | M_EXTPG);
|
|
m->m_data = m->m_dat;
|
|
|
|
/* Copy data back into m. */
|
|
bcopy(buf, mtod(m, char *), m->m_len);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* These next few routines are used to permit downgrading an unmapped
|
|
* mbuf to a chain of mapped mbufs. This is used when an interface
|
|
* doesn't supported unmapped mbufs or if checksums need to be
|
|
* computed in software.
|
|
*
|
|
* Each unmapped mbuf is converted to a chain of mbufs. First, any
|
|
* TLS header data is stored in a regular mbuf. Second, each page of
|
|
* unmapped data is stored in an mbuf with an EXT_SFBUF external
|
|
* cluster. These mbufs use an sf_buf to provide a valid KVA for the
|
|
* associated physical page. They also hold a reference on the
|
|
* original M_EXTPG mbuf to ensure the physical page doesn't go away.
|
|
* Finally, any TLS trailer data is stored in a regular mbuf.
|
|
*
|
|
* mb_unmapped_free_mext() is the ext_free handler for the EXT_SFBUF
|
|
* mbufs. It frees the associated sf_buf and releases its reference
|
|
* on the original M_EXTPG mbuf.
|
|
*
|
|
* _mb_unmapped_to_ext() is a helper function that converts a single
|
|
* unmapped mbuf into a chain of mbufs.
|
|
*
|
|
* mb_unmapped_to_ext() is the public function that walks an mbuf
|
|
* chain converting any unmapped mbufs to mapped mbufs. It returns
|
|
* the new chain of unmapped mbufs on success. On failure it frees
|
|
* the original mbuf chain and returns NULL.
|
|
*/
|
|
static void
|
|
mb_unmapped_free_mext(struct mbuf *m)
|
|
{
|
|
struct sf_buf *sf;
|
|
struct mbuf *old_m;
|
|
|
|
sf = m->m_ext.ext_arg1;
|
|
sf_buf_free(sf);
|
|
|
|
/* Drop the reference on the backing M_EXTPG mbuf. */
|
|
old_m = m->m_ext.ext_arg2;
|
|
mb_free_extpg(old_m);
|
|
}
|
|
|
|
static struct mbuf *
|
|
_mb_unmapped_to_ext(struct mbuf *m)
|
|
{
|
|
struct mbuf *m_new, *top, *prev, *mref;
|
|
struct sf_buf *sf;
|
|
vm_page_t pg;
|
|
int i, len, off, pglen, pgoff, seglen, segoff;
|
|
volatile u_int *refcnt;
|
|
u_int ref_inc = 0;
|
|
|
|
M_ASSERTEXTPG(m);
|
|
len = m->m_len;
|
|
KASSERT(m->m_epg_tls == NULL, ("%s: can't convert TLS mbuf %p",
|
|
__func__, m));
|
|
|
|
/* See if this is the mbuf that holds the embedded refcount. */
|
|
if (m->m_ext.ext_flags & EXT_FLAG_EMBREF) {
|
|
refcnt = &m->m_ext.ext_count;
|
|
mref = m;
|
|
} else {
|
|
KASSERT(m->m_ext.ext_cnt != NULL,
|
|
("%s: no refcounting pointer on %p", __func__, m));
|
|
refcnt = m->m_ext.ext_cnt;
|
|
mref = __containerof(refcnt, struct mbuf, m_ext.ext_count);
|
|
}
|
|
|
|
/* Skip over any data removed from the front. */
|
|
off = mtod(m, vm_offset_t);
|
|
|
|
top = NULL;
|
|
if (m->m_epg_hdrlen != 0) {
|
|
if (off >= m->m_epg_hdrlen) {
|
|
off -= m->m_epg_hdrlen;
|
|
} else {
|
|
seglen = m->m_epg_hdrlen - off;
|
|
segoff = off;
|
|
seglen = min(seglen, len);
|
|
off = 0;
|
|
len -= seglen;
|
|
m_new = m_get(M_NOWAIT, MT_DATA);
|
|
if (m_new == NULL)
|
|
goto fail;
|
|
m_new->m_len = seglen;
|
|
prev = top = m_new;
|
|
memcpy(mtod(m_new, void *), &m->m_epg_hdr[segoff],
|
|
seglen);
|
|
}
|
|
}
|
|
pgoff = m->m_epg_1st_off;
|
|
for (i = 0; i < m->m_epg_npgs && len > 0; i++) {
|
|
pglen = m_epg_pagelen(m, i, pgoff);
|
|
if (off >= pglen) {
|
|
off -= pglen;
|
|
pgoff = 0;
|
|
continue;
|
|
}
|
|
seglen = pglen - off;
|
|
segoff = pgoff + off;
|
|
off = 0;
|
|
seglen = min(seglen, len);
|
|
len -= seglen;
|
|
|
|
pg = PHYS_TO_VM_PAGE(m->m_epg_pa[i]);
|
|
m_new = m_get(M_NOWAIT, MT_DATA);
|
|
if (m_new == NULL)
|
|
goto fail;
|
|
if (top == NULL) {
|
|
top = prev = m_new;
|
|
} else {
|
|
prev->m_next = m_new;
|
|
prev = m_new;
|
|
}
|
|
sf = sf_buf_alloc(pg, SFB_NOWAIT);
|
|
if (sf == NULL)
|
|
goto fail;
|
|
|
|
ref_inc++;
|
|
m_extadd(m_new, (char *)sf_buf_kva(sf), PAGE_SIZE,
|
|
mb_unmapped_free_mext, sf, mref, M_RDONLY, EXT_SFBUF);
|
|
m_new->m_data += segoff;
|
|
m_new->m_len = seglen;
|
|
|
|
pgoff = 0;
|
|
};
|
|
if (len != 0) {
|
|
KASSERT((off + len) <= m->m_epg_trllen,
|
|
("off + len > trail (%d + %d > %d)", off, len,
|
|
m->m_epg_trllen));
|
|
m_new = m_get(M_NOWAIT, MT_DATA);
|
|
if (m_new == NULL)
|
|
goto fail;
|
|
if (top == NULL)
|
|
top = m_new;
|
|
else
|
|
prev->m_next = m_new;
|
|
m_new->m_len = len;
|
|
memcpy(mtod(m_new, void *), &m->m_epg_trail[off], len);
|
|
}
|
|
|
|
if (ref_inc != 0) {
|
|
/*
|
|
* Obtain an additional reference on the old mbuf for
|
|
* each created EXT_SFBUF mbuf. They will be dropped
|
|
* in mb_unmapped_free_mext().
|
|
*/
|
|
if (*refcnt == 1)
|
|
*refcnt += ref_inc;
|
|
else
|
|
atomic_add_int(refcnt, ref_inc);
|
|
}
|
|
m_free(m);
|
|
return (top);
|
|
|
|
fail:
|
|
if (ref_inc != 0) {
|
|
/*
|
|
* Obtain an additional reference on the old mbuf for
|
|
* each created EXT_SFBUF mbuf. They will be
|
|
* immediately dropped when these mbufs are freed
|
|
* below.
|
|
*/
|
|
if (*refcnt == 1)
|
|
*refcnt += ref_inc;
|
|
else
|
|
atomic_add_int(refcnt, ref_inc);
|
|
}
|
|
m_free(m);
|
|
m_freem(top);
|
|
return (NULL);
|
|
}
|
|
|
|
struct mbuf *
|
|
mb_unmapped_to_ext(struct mbuf *top)
|
|
{
|
|
struct mbuf *m, *next, *prev = NULL;
|
|
|
|
prev = NULL;
|
|
for (m = top; m != NULL; m = next) {
|
|
/* m might be freed, so cache the next pointer. */
|
|
next = m->m_next;
|
|
if (m->m_flags & M_EXTPG) {
|
|
if (prev != NULL) {
|
|
/*
|
|
* Remove 'm' from the new chain so
|
|
* that the 'top' chain terminates
|
|
* before 'm' in case 'top' is freed
|
|
* due to an error.
|
|
*/
|
|
prev->m_next = NULL;
|
|
}
|
|
m = _mb_unmapped_to_ext(m);
|
|
if (m == NULL) {
|
|
m_freem(top);
|
|
m_freem(next);
|
|
return (NULL);
|
|
}
|
|
if (prev == NULL) {
|
|
top = m;
|
|
} else {
|
|
prev->m_next = m;
|
|
}
|
|
|
|
/*
|
|
* Replaced one mbuf with a chain, so we must
|
|
* find the end of chain.
|
|
*/
|
|
prev = m_last(m);
|
|
} else {
|
|
if (prev != NULL) {
|
|
prev->m_next = m;
|
|
}
|
|
prev = m;
|
|
}
|
|
}
|
|
return (top);
|
|
}
|
|
|
|
/*
|
|
* Allocate an empty M_EXTPG mbuf. The ext_free routine is
|
|
* responsible for freeing any pages backing this mbuf when it is
|
|
* freed.
|
|
*/
|
|
struct mbuf *
|
|
mb_alloc_ext_pgs(int how, m_ext_free_t ext_free)
|
|
{
|
|
struct mbuf *m;
|
|
|
|
m = m_get(how, MT_DATA);
|
|
if (m == NULL)
|
|
return (NULL);
|
|
|
|
m->m_epg_npgs = 0;
|
|
m->m_epg_nrdy = 0;
|
|
m->m_epg_1st_off = 0;
|
|
m->m_epg_last_len = 0;
|
|
m->m_epg_flags = 0;
|
|
m->m_epg_hdrlen = 0;
|
|
m->m_epg_trllen = 0;
|
|
m->m_epg_tls = NULL;
|
|
m->m_epg_so = NULL;
|
|
m->m_data = NULL;
|
|
m->m_flags |= (M_EXT | M_RDONLY | M_EXTPG);
|
|
m->m_ext.ext_flags = EXT_FLAG_EMBREF;
|
|
m->m_ext.ext_count = 1;
|
|
m->m_ext.ext_size = 0;
|
|
m->m_ext.ext_free = ext_free;
|
|
return (m);
|
|
}
|
|
|
|
/*
|
|
* Clean up after mbufs with M_EXT storage attached to them if the
|
|
* reference count hits 1.
|
|
*/
|
|
void
|
|
mb_free_ext(struct mbuf *m)
|
|
{
|
|
volatile u_int *refcnt;
|
|
struct mbuf *mref;
|
|
int freembuf;
|
|
|
|
KASSERT(m->m_flags & M_EXT, ("%s: M_EXT not set on %p", __func__, m));
|
|
|
|
/* See if this is the mbuf that holds the embedded refcount. */
|
|
if (m->m_ext.ext_flags & EXT_FLAG_EMBREF) {
|
|
refcnt = &m->m_ext.ext_count;
|
|
mref = m;
|
|
} else {
|
|
KASSERT(m->m_ext.ext_cnt != NULL,
|
|
("%s: no refcounting pointer on %p", __func__, m));
|
|
refcnt = m->m_ext.ext_cnt;
|
|
mref = __containerof(refcnt, struct mbuf, m_ext.ext_count);
|
|
}
|
|
|
|
/*
|
|
* Check if the header is embedded in the cluster. It is
|
|
* important that we can't touch any of the mbuf fields
|
|
* after we have freed the external storage, since mbuf
|
|
* could have been embedded in it. For now, the mbufs
|
|
* embedded into the cluster are always of type EXT_EXTREF,
|
|
* and for this type we won't free the mref.
|
|
*/
|
|
if (m->m_flags & M_NOFREE) {
|
|
freembuf = 0;
|
|
KASSERT(m->m_ext.ext_type == EXT_EXTREF ||
|
|
m->m_ext.ext_type == EXT_RXRING,
|
|
("%s: no-free mbuf %p has wrong type", __func__, m));
|
|
} else
|
|
freembuf = 1;
|
|
|
|
/* Free attached storage if this mbuf is the only reference to it. */
|
|
if (*refcnt == 1 || atomic_fetchadd_int(refcnt, -1) == 1) {
|
|
switch (m->m_ext.ext_type) {
|
|
case EXT_PACKET:
|
|
/* The packet zone is special. */
|
|
if (*refcnt == 0)
|
|
*refcnt = 1;
|
|
uma_zfree(zone_pack, mref);
|
|
break;
|
|
case EXT_CLUSTER:
|
|
uma_zfree(zone_clust, m->m_ext.ext_buf);
|
|
m_free_raw(mref);
|
|
break;
|
|
case EXT_JUMBOP:
|
|
uma_zfree(zone_jumbop, m->m_ext.ext_buf);
|
|
m_free_raw(mref);
|
|
break;
|
|
case EXT_JUMBO9:
|
|
uma_zfree(zone_jumbo9, m->m_ext.ext_buf);
|
|
m_free_raw(mref);
|
|
break;
|
|
case EXT_JUMBO16:
|
|
uma_zfree(zone_jumbo16, m->m_ext.ext_buf);
|
|
m_free_raw(mref);
|
|
break;
|
|
case EXT_SFBUF:
|
|
case EXT_NET_DRV:
|
|
case EXT_MOD_TYPE:
|
|
case EXT_DISPOSABLE:
|
|
KASSERT(mref->m_ext.ext_free != NULL,
|
|
("%s: ext_free not set", __func__));
|
|
mref->m_ext.ext_free(mref);
|
|
m_free_raw(mref);
|
|
break;
|
|
case EXT_EXTREF:
|
|
KASSERT(m->m_ext.ext_free != NULL,
|
|
("%s: ext_free not set", __func__));
|
|
m->m_ext.ext_free(m);
|
|
break;
|
|
case EXT_RXRING:
|
|
KASSERT(m->m_ext.ext_free == NULL,
|
|
("%s: ext_free is set", __func__));
|
|
break;
|
|
default:
|
|
KASSERT(m->m_ext.ext_type == 0,
|
|
("%s: unknown ext_type", __func__));
|
|
}
|
|
}
|
|
|
|
if (freembuf && m != mref)
|
|
m_free_raw(m);
|
|
}
|
|
|
|
/*
|
|
* Clean up after mbufs with M_EXTPG storage attached to them if the
|
|
* reference count hits 1.
|
|
*/
|
|
void
|
|
mb_free_extpg(struct mbuf *m)
|
|
{
|
|
volatile u_int *refcnt;
|
|
struct mbuf *mref;
|
|
|
|
M_ASSERTEXTPG(m);
|
|
|
|
/* See if this is the mbuf that holds the embedded refcount. */
|
|
if (m->m_ext.ext_flags & EXT_FLAG_EMBREF) {
|
|
refcnt = &m->m_ext.ext_count;
|
|
mref = m;
|
|
} else {
|
|
KASSERT(m->m_ext.ext_cnt != NULL,
|
|
("%s: no refcounting pointer on %p", __func__, m));
|
|
refcnt = m->m_ext.ext_cnt;
|
|
mref = __containerof(refcnt, struct mbuf, m_ext.ext_count);
|
|
}
|
|
|
|
/* Free attached storage if this mbuf is the only reference to it. */
|
|
if (*refcnt == 1 || atomic_fetchadd_int(refcnt, -1) == 1) {
|
|
KASSERT(mref->m_ext.ext_free != NULL,
|
|
("%s: ext_free not set", __func__));
|
|
|
|
mref->m_ext.ext_free(mref);
|
|
#ifdef KERN_TLS
|
|
if (mref->m_epg_tls != NULL &&
|
|
!refcount_release_if_not_last(&mref->m_epg_tls->refcount))
|
|
ktls_enqueue_to_free(mref);
|
|
else
|
|
#endif
|
|
m_free_raw(mref);
|
|
}
|
|
|
|
if (m != mref)
|
|
m_free_raw(m);
|
|
}
|
|
|
|
/*
|
|
* Official mbuf(9) allocation KPI for stack and drivers:
|
|
*
|
|
* m_get() - a single mbuf without any attachments, sys/mbuf.h.
|
|
* m_gethdr() - a single mbuf initialized as M_PKTHDR, sys/mbuf.h.
|
|
* m_getcl() - an mbuf + 2k cluster, sys/mbuf.h.
|
|
* m_clget() - attach cluster to already allocated mbuf.
|
|
* m_cljget() - attach jumbo cluster to already allocated mbuf.
|
|
* m_get2() - allocate minimum mbuf that would fit size argument.
|
|
* m_getm2() - allocate a chain of mbufs/clusters.
|
|
* m_extadd() - attach external cluster to mbuf.
|
|
*
|
|
* m_free() - free single mbuf with its tags and ext, sys/mbuf.h.
|
|
* m_freem() - free chain of mbufs.
|
|
*/
|
|
|
|
int
|
|
m_clget(struct mbuf *m, int how)
|
|
{
|
|
|
|
KASSERT((m->m_flags & M_EXT) == 0, ("%s: mbuf %p has M_EXT",
|
|
__func__, m));
|
|
m->m_ext.ext_buf = (char *)NULL;
|
|
uma_zalloc_arg(zone_clust, m, how);
|
|
/*
|
|
* On a cluster allocation failure, drain the packet zone and retry,
|
|
* we might be able to loosen a few clusters up on the drain.
|
|
*/
|
|
if ((how & M_NOWAIT) && (m->m_ext.ext_buf == NULL)) {
|
|
uma_zone_reclaim(zone_pack, UMA_RECLAIM_DRAIN);
|
|
uma_zalloc_arg(zone_clust, m, how);
|
|
}
|
|
MBUF_PROBE2(m__clget, m, how);
|
|
return (m->m_flags & M_EXT);
|
|
}
|
|
|
|
/*
|
|
* m_cljget() is different from m_clget() as it can allocate clusters without
|
|
* attaching them to an mbuf. In that case the return value is the pointer
|
|
* to the cluster of the requested size. If an mbuf was specified, it gets
|
|
* the cluster attached to it and the return value can be safely ignored.
|
|
* For size it takes MCLBYTES, MJUMPAGESIZE, MJUM9BYTES, MJUM16BYTES.
|
|
*/
|
|
void *
|
|
m_cljget(struct mbuf *m, int how, int size)
|
|
{
|
|
uma_zone_t zone;
|
|
void *retval;
|
|
|
|
if (m != NULL) {
|
|
KASSERT((m->m_flags & M_EXT) == 0, ("%s: mbuf %p has M_EXT",
|
|
__func__, m));
|
|
m->m_ext.ext_buf = NULL;
|
|
}
|
|
|
|
zone = m_getzone(size);
|
|
retval = uma_zalloc_arg(zone, m, how);
|
|
|
|
MBUF_PROBE4(m__cljget, m, how, size, retval);
|
|
|
|
return (retval);
|
|
}
|
|
|
|
/*
|
|
* m_get2() allocates minimum mbuf that would fit "size" argument.
|
|
*/
|
|
struct mbuf *
|
|
m_get2(int size, int how, short type, int flags)
|
|
{
|
|
struct mb_args args;
|
|
struct mbuf *m, *n;
|
|
|
|
args.flags = flags;
|
|
args.type = type;
|
|
|
|
if (size <= MHLEN || (size <= MLEN && (flags & M_PKTHDR) == 0))
|
|
return (uma_zalloc_arg(zone_mbuf, &args, how));
|
|
if (size <= MCLBYTES)
|
|
return (uma_zalloc_arg(zone_pack, &args, how));
|
|
|
|
if (size > MJUMPAGESIZE)
|
|
return (NULL);
|
|
|
|
m = uma_zalloc_arg(zone_mbuf, &args, how);
|
|
if (m == NULL)
|
|
return (NULL);
|
|
|
|
n = uma_zalloc_arg(zone_jumbop, m, how);
|
|
if (n == NULL) {
|
|
m_free_raw(m);
|
|
return (NULL);
|
|
}
|
|
|
|
return (m);
|
|
}
|
|
|
|
/*
|
|
* m_get3() allocates minimum mbuf that would fit "size" argument.
|
|
* Unlike m_get2() it can allocate clusters up to MJUM16BYTES.
|
|
*/
|
|
struct mbuf *
|
|
m_get3(int size, int how, short type, int flags)
|
|
{
|
|
struct mb_args args;
|
|
struct mbuf *m, *n;
|
|
uma_zone_t zone;
|
|
|
|
if (size <= MJUMPAGESIZE)
|
|
return (m_get2(size, how, type, flags));
|
|
|
|
if (size > MJUM16BYTES)
|
|
return (NULL);
|
|
|
|
args.flags = flags;
|
|
args.type = type;
|
|
|
|
m = uma_zalloc_arg(zone_mbuf, &args, how);
|
|
if (m == NULL)
|
|
return (NULL);
|
|
|
|
if (size <= MJUM9BYTES)
|
|
zone = zone_jumbo9;
|
|
else
|
|
zone = zone_jumbo16;
|
|
|
|
n = uma_zalloc_arg(zone, m, how);
|
|
if (n == NULL) {
|
|
m_free_raw(m);
|
|
return (NULL);
|
|
}
|
|
|
|
return (m);
|
|
}
|
|
|
|
/*
|
|
* m_getjcl() returns an mbuf with a cluster of the specified size attached.
|
|
* For size it takes MCLBYTES, MJUMPAGESIZE, MJUM9BYTES, MJUM16BYTES.
|
|
*/
|
|
struct mbuf *
|
|
m_getjcl(int how, short type, int flags, int size)
|
|
{
|
|
struct mb_args args;
|
|
struct mbuf *m, *n;
|
|
uma_zone_t zone;
|
|
|
|
if (size == MCLBYTES)
|
|
return m_getcl(how, type, flags);
|
|
|
|
args.flags = flags;
|
|
args.type = type;
|
|
|
|
m = uma_zalloc_arg(zone_mbuf, &args, how);
|
|
if (m == NULL)
|
|
return (NULL);
|
|
|
|
zone = m_getzone(size);
|
|
n = uma_zalloc_arg(zone, m, how);
|
|
if (n == NULL) {
|
|
m_free_raw(m);
|
|
return (NULL);
|
|
}
|
|
MBUF_PROBE5(m__getjcl, how, type, flags, size, m);
|
|
return (m);
|
|
}
|
|
|
|
/*
|
|
* Allocate a given length worth of mbufs and/or clusters (whatever fits
|
|
* best) and return a pointer to the top of the allocated chain. If an
|
|
* existing mbuf chain is provided, then we will append the new chain
|
|
* to the existing one and return a pointer to the provided mbuf.
|
|
*/
|
|
struct mbuf *
|
|
m_getm2(struct mbuf *m, int len, int how, short type, int flags)
|
|
{
|
|
struct mbuf *mb, *nm = NULL, *mtail = NULL;
|
|
|
|
KASSERT(len >= 0, ("%s: len is < 0", __func__));
|
|
|
|
/* Validate flags. */
|
|
flags &= (M_PKTHDR | M_EOR);
|
|
|
|
/* Packet header mbuf must be first in chain. */
|
|
if ((flags & M_PKTHDR) && m != NULL)
|
|
flags &= ~M_PKTHDR;
|
|
|
|
/* Loop and append maximum sized mbufs to the chain tail. */
|
|
while (len > 0) {
|
|
mb = NULL;
|
|
if (len > MCLBYTES) {
|
|
mb = m_getjcl(M_NOWAIT, type, (flags & M_PKTHDR),
|
|
MJUMPAGESIZE);
|
|
}
|
|
if (mb == NULL) {
|
|
if (len >= MINCLSIZE)
|
|
mb = m_getcl(how, type, (flags & M_PKTHDR));
|
|
else if (flags & M_PKTHDR)
|
|
mb = m_gethdr(how, type);
|
|
else
|
|
mb = m_get(how, type);
|
|
|
|
/*
|
|
* Fail the whole operation if one mbuf can't be
|
|
* allocated.
|
|
*/
|
|
if (mb == NULL) {
|
|
m_freem(nm);
|
|
return (NULL);
|
|
}
|
|
}
|
|
|
|
/* Book keeping. */
|
|
len -= M_SIZE(mb);
|
|
if (mtail != NULL)
|
|
mtail->m_next = mb;
|
|
else
|
|
nm = mb;
|
|
mtail = mb;
|
|
flags &= ~M_PKTHDR; /* Only valid on the first mbuf. */
|
|
}
|
|
if (flags & M_EOR)
|
|
mtail->m_flags |= M_EOR; /* Only valid on the last mbuf. */
|
|
|
|
/* If mbuf was supplied, append new chain to the end of it. */
|
|
if (m != NULL) {
|
|
for (mtail = m; mtail->m_next != NULL; mtail = mtail->m_next)
|
|
;
|
|
mtail->m_next = nm;
|
|
mtail->m_flags &= ~M_EOR;
|
|
} else
|
|
m = nm;
|
|
|
|
return (m);
|
|
}
|
|
|
|
/*-
|
|
* Configure a provided mbuf to refer to the provided external storage
|
|
* buffer and setup a reference count for said buffer.
|
|
*
|
|
* Arguments:
|
|
* mb The existing mbuf to which to attach the provided buffer.
|
|
* buf The address of the provided external storage buffer.
|
|
* size The size of the provided buffer.
|
|
* freef A pointer to a routine that is responsible for freeing the
|
|
* provided external storage buffer.
|
|
* args A pointer to an argument structure (of any type) to be passed
|
|
* to the provided freef routine (may be NULL).
|
|
* flags Any other flags to be passed to the provided mbuf.
|
|
* type The type that the external storage buffer should be
|
|
* labeled with.
|
|
*
|
|
* Returns:
|
|
* Nothing.
|
|
*/
|
|
void
|
|
m_extadd(struct mbuf *mb, char *buf, u_int size, m_ext_free_t freef,
|
|
void *arg1, void *arg2, int flags, int type)
|
|
{
|
|
|
|
KASSERT(type != EXT_CLUSTER, ("%s: EXT_CLUSTER not allowed", __func__));
|
|
|
|
mb->m_flags |= (M_EXT | flags);
|
|
mb->m_ext.ext_buf = buf;
|
|
mb->m_data = mb->m_ext.ext_buf;
|
|
mb->m_ext.ext_size = size;
|
|
mb->m_ext.ext_free = freef;
|
|
mb->m_ext.ext_arg1 = arg1;
|
|
mb->m_ext.ext_arg2 = arg2;
|
|
mb->m_ext.ext_type = type;
|
|
|
|
if (type != EXT_EXTREF) {
|
|
mb->m_ext.ext_count = 1;
|
|
mb->m_ext.ext_flags = EXT_FLAG_EMBREF;
|
|
} else
|
|
mb->m_ext.ext_flags = 0;
|
|
}
|
|
|
|
/*
|
|
* Free an entire chain of mbufs and associated external buffers, if
|
|
* applicable.
|
|
*/
|
|
void
|
|
m_freem(struct mbuf *mb)
|
|
{
|
|
|
|
MBUF_PROBE1(m__freem, mb);
|
|
while (mb != NULL)
|
|
mb = m_free(mb);
|
|
}
|
|
|
|
/*
|
|
* Temporary primitive to allow freeing without going through m_free.
|
|
*/
|
|
void
|
|
m_free_raw(struct mbuf *mb)
|
|
{
|
|
|
|
uma_zfree(zone_mbuf, mb);
|
|
}
|
|
|
|
int
|
|
m_snd_tag_alloc(struct ifnet *ifp, union if_snd_tag_alloc_params *params,
|
|
struct m_snd_tag **mstp)
|
|
{
|
|
|
|
return (if_snd_tag_alloc(ifp, params, mstp));
|
|
}
|
|
|
|
void
|
|
m_snd_tag_init(struct m_snd_tag *mst, struct ifnet *ifp,
|
|
const struct if_snd_tag_sw *sw)
|
|
{
|
|
|
|
if_ref(ifp);
|
|
mst->ifp = ifp;
|
|
refcount_init(&mst->refcount, 1);
|
|
mst->sw = sw;
|
|
counter_u64_add(snd_tag_count, 1);
|
|
}
|
|
|
|
void
|
|
m_snd_tag_destroy(struct m_snd_tag *mst)
|
|
{
|
|
struct ifnet *ifp;
|
|
|
|
ifp = mst->ifp;
|
|
mst->sw->snd_tag_free(mst);
|
|
if_rele(ifp);
|
|
counter_u64_add(snd_tag_count, -1);
|
|
}
|
|
|
|
void
|
|
m_rcvif_serialize(struct mbuf *m)
|
|
{
|
|
u_short idx, gen;
|
|
|
|
M_ASSERTPKTHDR(m);
|
|
idx = if_getindex(m->m_pkthdr.rcvif);
|
|
gen = if_getidxgen(m->m_pkthdr.rcvif);
|
|
m->m_pkthdr.rcvidx = idx;
|
|
m->m_pkthdr.rcvgen = gen;
|
|
if (__predict_false(m->m_pkthdr.leaf_rcvif != NULL)) {
|
|
idx = if_getindex(m->m_pkthdr.leaf_rcvif);
|
|
gen = if_getidxgen(m->m_pkthdr.leaf_rcvif);
|
|
} else {
|
|
idx = -1;
|
|
gen = 0;
|
|
}
|
|
m->m_pkthdr.leaf_rcvidx = idx;
|
|
m->m_pkthdr.leaf_rcvgen = gen;
|
|
}
|
|
|
|
struct ifnet *
|
|
m_rcvif_restore(struct mbuf *m)
|
|
{
|
|
struct ifnet *ifp, *leaf_ifp;
|
|
|
|
M_ASSERTPKTHDR(m);
|
|
NET_EPOCH_ASSERT();
|
|
|
|
ifp = ifnet_byindexgen(m->m_pkthdr.rcvidx, m->m_pkthdr.rcvgen);
|
|
if (ifp == NULL || (if_getflags(ifp) & IFF_DYING))
|
|
return (NULL);
|
|
|
|
if (__predict_true(m->m_pkthdr.leaf_rcvidx == (u_short)-1)) {
|
|
leaf_ifp = NULL;
|
|
} else {
|
|
leaf_ifp = ifnet_byindexgen(m->m_pkthdr.leaf_rcvidx,
|
|
m->m_pkthdr.leaf_rcvgen);
|
|
if (__predict_false(leaf_ifp != NULL && (if_getflags(leaf_ifp) & IFF_DYING)))
|
|
leaf_ifp = NULL;
|
|
}
|
|
|
|
m->m_pkthdr.leaf_rcvif = leaf_ifp;
|
|
m->m_pkthdr.rcvif = ifp;
|
|
|
|
return (ifp);
|
|
}
|
|
|
|
/*
|
|
* Allocate an mbuf with anonymous external pages.
|
|
*/
|
|
struct mbuf *
|
|
mb_alloc_ext_plus_pages(int len, int how)
|
|
{
|
|
struct mbuf *m;
|
|
vm_page_t pg;
|
|
int i, npgs;
|
|
|
|
m = mb_alloc_ext_pgs(how, mb_free_mext_pgs);
|
|
if (m == NULL)
|
|
return (NULL);
|
|
m->m_epg_flags |= EPG_FLAG_ANON;
|
|
npgs = howmany(len, PAGE_SIZE);
|
|
for (i = 0; i < npgs; i++) {
|
|
do {
|
|
pg = vm_page_alloc_noobj(VM_ALLOC_NODUMP |
|
|
VM_ALLOC_WIRED);
|
|
if (pg == NULL) {
|
|
if (how == M_NOWAIT) {
|
|
m->m_epg_npgs = i;
|
|
m_free(m);
|
|
return (NULL);
|
|
}
|
|
vm_wait(NULL);
|
|
}
|
|
} while (pg == NULL);
|
|
m->m_epg_pa[i] = VM_PAGE_TO_PHYS(pg);
|
|
}
|
|
m->m_epg_npgs = npgs;
|
|
return (m);
|
|
}
|
|
|
|
/*
|
|
* Copy the data in the mbuf chain to a chain of mbufs with anonymous external
|
|
* unmapped pages.
|
|
* len is the length of data in the input mbuf chain.
|
|
* mlen is the maximum number of bytes put into each ext_page mbuf.
|
|
*/
|
|
struct mbuf *
|
|
mb_mapped_to_unmapped(struct mbuf *mp, int len, int mlen, int how,
|
|
struct mbuf **mlast)
|
|
{
|
|
struct mbuf *m, *mout;
|
|
char *pgpos, *mbpos;
|
|
int i, mblen, mbufsiz, pglen, xfer;
|
|
|
|
if (len == 0)
|
|
return (NULL);
|
|
mbufsiz = min(mlen, len);
|
|
m = mout = mb_alloc_ext_plus_pages(mbufsiz, how);
|
|
if (m == NULL)
|
|
return (m);
|
|
pgpos = (char *)(void *)PHYS_TO_DMAP(m->m_epg_pa[0]);
|
|
pglen = PAGE_SIZE;
|
|
mblen = 0;
|
|
i = 0;
|
|
do {
|
|
if (pglen == 0) {
|
|
if (++i == m->m_epg_npgs) {
|
|
m->m_epg_last_len = PAGE_SIZE;
|
|
mbufsiz = min(mlen, len);
|
|
m->m_next = mb_alloc_ext_plus_pages(mbufsiz,
|
|
how);
|
|
m = m->m_next;
|
|
if (m == NULL) {
|
|
m_freem(mout);
|
|
return (m);
|
|
}
|
|
i = 0;
|
|
}
|
|
pgpos = (char *)(void *)PHYS_TO_DMAP(m->m_epg_pa[i]);
|
|
pglen = PAGE_SIZE;
|
|
}
|
|
while (mblen == 0) {
|
|
if (mp == NULL) {
|
|
m_freem(mout);
|
|
return (NULL);
|
|
}
|
|
KASSERT((mp->m_flags & M_EXTPG) == 0,
|
|
("mb_copym_ext_pgs: ext_pgs input mbuf"));
|
|
mbpos = mtod(mp, char *);
|
|
mblen = mp->m_len;
|
|
mp = mp->m_next;
|
|
}
|
|
xfer = min(mblen, pglen);
|
|
memcpy(pgpos, mbpos, xfer);
|
|
pgpos += xfer;
|
|
mbpos += xfer;
|
|
pglen -= xfer;
|
|
mblen -= xfer;
|
|
len -= xfer;
|
|
m->m_len += xfer;
|
|
} while (len > 0);
|
|
m->m_epg_last_len = PAGE_SIZE - pglen;
|
|
if (mlast != NULL)
|
|
*mlast = m;
|
|
return (mout);
|
|
}
|