freebsd-dev/usr.sbin/bhyve/pci_nvme.c
Marcelo Araujo ec89307fb1 Fix a resource leak when using strdup(3) and also fix few style(9).
Reported by:	Coverity
CID:		1394929
MFC after:	1 week
Sponsored by:	iXsystems Inc.
2018-08-16 06:38:01 +00:00

1854 lines
48 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2017 Shunsuke Mie
* Copyright (c) 2018 Leon Dang
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* bhyve PCIe-NVMe device emulation.
*
* options:
* -s <n>,nvme,devpath,maxq=#,qsz=#,ioslots=#,sectsz=#,ser=A-Z
*
* accepted devpath:
* /dev/blockdev
* /path/to/image
* ram=size_in_MiB
*
* maxq = max number of queues
* qsz = max elements in each queue
* ioslots = max number of concurrent io requests
* sectsz = sector size (defaults to blockif sector size)
* ser = serial number (20-chars max)
*
*/
/* TODO:
- create async event for smart and log
- intr coalesce
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/types.h>
#include <assert.h>
#include <pthread.h>
#include <semaphore.h>
#include <stdbool.h>
#include <stddef.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <machine/atomic.h>
#include <machine/vmm.h>
#include <vmmapi.h>
#include <dev/nvme/nvme.h>
#include "bhyverun.h"
#include "block_if.h"
#include "pci_emul.h"
static int nvme_debug = 0;
#define DPRINTF(params) if (nvme_debug) printf params
#define WPRINTF(params) printf params
/* defaults; can be overridden */
#define NVME_MSIX_BAR 4
#define NVME_IOSLOTS 8
#define NVME_QUEUES 16
#define NVME_MAX_QENTRIES 2048
#define NVME_PRP2_ITEMS (PAGE_SIZE/sizeof(uint64_t))
#define NVME_MAX_BLOCKIOVS 512
/* helpers */
#define NVME_DOORBELL_OFFSET offsetof(struct nvme_registers, doorbell)
enum nvme_controller_register_offsets {
NVME_CR_CAP_LOW = 0x00,
NVME_CR_CAP_HI = 0x04,
NVME_CR_VS = 0x08,
NVME_CR_INTMS = 0x0c,
NVME_CR_INTMC = 0x10,
NVME_CR_CC = 0x14,
NVME_CR_CSTS = 0x1c,
NVME_CR_NSSR = 0x20,
NVME_CR_AQA = 0x24,
NVME_CR_ASQ_LOW = 0x28,
NVME_CR_ASQ_HI = 0x2c,
NVME_CR_ACQ_LOW = 0x30,
NVME_CR_ACQ_HI = 0x34,
};
enum nvme_cmd_cdw11 {
NVME_CMD_CDW11_PC = 0x0001,
NVME_CMD_CDW11_IEN = 0x0002,
NVME_CMD_CDW11_IV = 0xFFFF0000,
};
#define NVME_CMD_GET_OPC(opc) \
((opc) >> NVME_CMD_OPC_SHIFT & NVME_CMD_OPC_MASK)
#define NVME_CQ_INTEN 0x01
#define NVME_CQ_INTCOAL 0x02
struct nvme_completion_queue {
struct nvme_completion *qbase;
uint32_t size;
uint16_t tail; /* nvme progress */
uint16_t head; /* guest progress */
uint16_t intr_vec;
uint32_t intr_en;
pthread_mutex_t mtx;
};
struct nvme_submission_queue {
struct nvme_command *qbase;
uint32_t size;
uint16_t head; /* nvme progress */
uint16_t tail; /* guest progress */
uint16_t cqid; /* completion queue id */
int busy; /* queue is being processed */
int qpriority;
};
enum nvme_storage_type {
NVME_STOR_BLOCKIF = 0,
NVME_STOR_RAM = 1,
};
struct pci_nvme_blockstore {
enum nvme_storage_type type;
void *ctx;
uint64_t size;
uint32_t sectsz;
uint32_t sectsz_bits;
};
struct pci_nvme_ioreq {
struct pci_nvme_softc *sc;
struct pci_nvme_ioreq *next;
struct nvme_submission_queue *nvme_sq;
uint16_t sqid;
/* command information */
uint16_t opc;
uint16_t cid;
uint32_t nsid;
uint64_t prev_gpaddr;
size_t prev_size;
/*
* lock if all iovs consumed (big IO);
* complete transaction before continuing
*/
pthread_mutex_t mtx;
pthread_cond_t cv;
struct blockif_req io_req;
/* pad to fit up to 512 page descriptors from guest IO request */
struct iovec iovpadding[NVME_MAX_BLOCKIOVS-BLOCKIF_IOV_MAX];
};
struct pci_nvme_softc {
struct pci_devinst *nsc_pi;
pthread_mutex_t mtx;
struct nvme_registers regs;
struct nvme_namespace_data nsdata;
struct nvme_controller_data ctrldata;
struct pci_nvme_blockstore nvstore;
uint16_t max_qentries; /* max entries per queue */
uint32_t max_queues;
uint32_t num_cqueues;
uint32_t num_squeues;
struct pci_nvme_ioreq *ioreqs;
struct pci_nvme_ioreq *ioreqs_free; /* free list of ioreqs */
uint32_t pending_ios;
uint32_t ioslots;
sem_t iosemlock;
/* status and guest memory mapped queues */
struct nvme_completion_queue *compl_queues;
struct nvme_submission_queue *submit_queues;
/* controller features */
uint32_t intr_coales_aggr_time; /* 0x08: uS to delay intr */
uint32_t intr_coales_aggr_thresh; /* 0x08: compl-Q entries */
uint32_t async_ev_config; /* 0x0B: async event config */
};
static void pci_nvme_io_partial(struct blockif_req *br, int err);
/* Controller Configuration utils */
#define NVME_CC_GET_EN(cc) \
((cc) >> NVME_CC_REG_EN_SHIFT & NVME_CC_REG_EN_MASK)
#define NVME_CC_GET_CSS(cc) \
((cc) >> NVME_CC_REG_CSS_SHIFT & NVME_CC_REG_CSS_MASK)
#define NVME_CC_GET_SHN(cc) \
((cc) >> NVME_CC_REG_SHN_SHIFT & NVME_CC_REG_SHN_MASK)
#define NVME_CC_GET_IOSQES(cc) \
((cc) >> NVME_CC_REG_IOSQES_SHIFT & NVME_CC_REG_IOSQES_MASK)
#define NVME_CC_GET_IOCQES(cc) \
((cc) >> NVME_CC_REG_IOCQES_SHIFT & NVME_CC_REG_IOCQES_MASK)
#define NVME_CC_WRITE_MASK \
((NVME_CC_REG_EN_MASK << NVME_CC_REG_EN_SHIFT) | \
(NVME_CC_REG_IOSQES_MASK << NVME_CC_REG_IOSQES_SHIFT) | \
(NVME_CC_REG_IOCQES_MASK << NVME_CC_REG_IOCQES_SHIFT))
#define NVME_CC_NEN_WRITE_MASK \
((NVME_CC_REG_CSS_MASK << NVME_CC_REG_CSS_SHIFT) | \
(NVME_CC_REG_MPS_MASK << NVME_CC_REG_MPS_SHIFT) | \
(NVME_CC_REG_AMS_MASK << NVME_CC_REG_AMS_SHIFT))
/* Controller Status utils */
#define NVME_CSTS_GET_RDY(sts) \
((sts) >> NVME_CSTS_REG_RDY_SHIFT & NVME_CSTS_REG_RDY_MASK)
#define NVME_CSTS_RDY (1 << NVME_CSTS_REG_RDY_SHIFT)
/* Completion Queue status word utils */
#define NVME_STATUS_P (1 << NVME_STATUS_P_SHIFT)
#define NVME_STATUS_MASK \
((NVME_STATUS_SCT_MASK << NVME_STATUS_SCT_SHIFT) |\
(NVME_STATUS_SC_MASK << NVME_STATUS_SC_SHIFT))
static __inline void
pci_nvme_status_tc(uint16_t *status, uint16_t type, uint16_t code)
{
*status &= ~NVME_STATUS_MASK;
*status |= (type & NVME_STATUS_SCT_MASK) << NVME_STATUS_SCT_SHIFT |
(code & NVME_STATUS_SC_MASK) << NVME_STATUS_SC_SHIFT;
}
static __inline void
pci_nvme_status_genc(uint16_t *status, uint16_t code)
{
pci_nvme_status_tc(status, NVME_SCT_GENERIC, code);
}
static __inline void
pci_nvme_toggle_phase(uint16_t *status, int prev)
{
if (prev)
*status &= ~NVME_STATUS_P;
else
*status |= NVME_STATUS_P;
}
static void
pci_nvme_init_ctrldata(struct pci_nvme_softc *sc)
{
struct nvme_controller_data *cd = &sc->ctrldata;
cd->vid = 0xFB5D;
cd->ssvid = 0x0000;
cd->mn[0] = 'b';
cd->mn[1] = 'h';
cd->mn[2] = 'y';
cd->mn[3] = 'v';
cd->mn[4] = 'e';
cd->mn[5] = '-';
cd->mn[6] = 'N';
cd->mn[7] = 'V';
cd->mn[8] = 'M';
cd->mn[9] = 'e';
cd->fr[0] = '1';
cd->fr[1] = '.';
cd->fr[2] = '0';
/* Num of submission commands that we can handle at a time (2^rab) */
cd->rab = 4;
/* FreeBSD OUI */
cd->ieee[0] = 0x58;
cd->ieee[1] = 0x9c;
cd->ieee[2] = 0xfc;
cd->mic = 0;
cd->mdts = 9; /* max data transfer size (2^mdts * CAP.MPSMIN) */
cd->ver = 0x00010300;
cd->oacs = 1 << NVME_CTRLR_DATA_OACS_FORMAT_SHIFT;
cd->acl = 2;
cd->aerl = 4;
cd->lpa = 0; /* TODO: support some simple things like SMART */
cd->elpe = 0; /* max error log page entries */
cd->npss = 1; /* number of power states support */
/* Warning Composite Temperature Threshold */
cd->wctemp = 0x0157;
cd->sqes = (6 << NVME_CTRLR_DATA_SQES_MAX_SHIFT) |
(6 << NVME_CTRLR_DATA_SQES_MIN_SHIFT);
cd->cqes = (4 << NVME_CTRLR_DATA_CQES_MAX_SHIFT) |
(4 << NVME_CTRLR_DATA_CQES_MIN_SHIFT);
cd->nn = 1; /* number of namespaces */
cd->fna = 0x03;
cd->power_state[0].mp = 10;
}
static void
pci_nvme_init_nsdata(struct pci_nvme_softc *sc)
{
struct nvme_namespace_data *nd;
nd = &sc->nsdata;
nd->nsze = sc->nvstore.size / sc->nvstore.sectsz;
nd->ncap = nd->nsze;
nd->nuse = nd->nsze;
/* Get LBA and backstore information from backing store */
nd->nlbaf = 1;
/* LBA data-sz = 2^lbads */
nd->lbaf[0] = sc->nvstore.sectsz_bits << NVME_NS_DATA_LBAF_LBADS_SHIFT;
nd->flbas = 0;
}
static void
pci_nvme_reset(struct pci_nvme_softc *sc)
{
DPRINTF(("%s\r\n", __func__));
sc->regs.cap_lo = (sc->max_qentries & NVME_CAP_LO_REG_MQES_MASK) |
(1 << NVME_CAP_LO_REG_CQR_SHIFT) |
(60 << NVME_CAP_LO_REG_TO_SHIFT);
sc->regs.cap_hi = 1 << NVME_CAP_HI_REG_CSS_NVM_SHIFT;
sc->regs.vs = 0x00010300; /* NVMe v1.3 */
sc->regs.cc = 0;
sc->regs.csts = 0;
if (sc->submit_queues != NULL) {
pthread_mutex_lock(&sc->mtx);
sc->num_cqueues = sc->num_squeues = sc->max_queues;
for (int i = 0; i <= sc->max_queues; i++) {
/*
* The Admin Submission Queue is at index 0.
* It must not be changed at reset otherwise the
* emulation will be out of sync with the guest.
*/
if (i != 0) {
sc->submit_queues[i].qbase = NULL;
sc->submit_queues[i].size = 0;
sc->submit_queues[i].cqid = 0;
sc->compl_queues[i].qbase = NULL;
sc->compl_queues[i].size = 0;
}
sc->submit_queues[i].tail = 0;
sc->submit_queues[i].head = 0;
sc->submit_queues[i].busy = 0;
sc->compl_queues[i].tail = 0;
sc->compl_queues[i].head = 0;
}
pthread_mutex_unlock(&sc->mtx);
} else
sc->submit_queues = calloc(sc->max_queues + 1,
sizeof(struct nvme_submission_queue));
if (sc->compl_queues == NULL) {
sc->compl_queues = calloc(sc->max_queues + 1,
sizeof(struct nvme_completion_queue));
for (int i = 0; i <= sc->num_cqueues; i++)
pthread_mutex_init(&sc->compl_queues[i].mtx, NULL);
}
}
static void
pci_nvme_init_controller(struct vmctx *ctx, struct pci_nvme_softc *sc)
{
uint16_t acqs, asqs;
DPRINTF(("%s\r\n", __func__));
asqs = (sc->regs.aqa & NVME_AQA_REG_ASQS_MASK) + 1;
sc->submit_queues[0].size = asqs;
sc->submit_queues[0].qbase = vm_map_gpa(ctx, sc->regs.asq,
sizeof(struct nvme_command) * asqs);
DPRINTF(("%s mapping Admin-SQ guest 0x%lx, host: %p\r\n",
__func__, sc->regs.asq, sc->submit_queues[0].qbase));
acqs = ((sc->regs.aqa >> NVME_AQA_REG_ACQS_SHIFT) &
NVME_AQA_REG_ACQS_MASK) + 1;
sc->compl_queues[0].size = acqs;
sc->compl_queues[0].qbase = vm_map_gpa(ctx, sc->regs.acq,
sizeof(struct nvme_completion) * acqs);
DPRINTF(("%s mapping Admin-CQ guest 0x%lx, host: %p\r\n",
__func__, sc->regs.acq, sc->compl_queues[0].qbase));
}
static int
nvme_opc_delete_io_sq(struct pci_nvme_softc* sc, struct nvme_command* command,
struct nvme_completion* compl)
{
uint16_t qid = command->cdw10 & 0xffff;
DPRINTF(("%s DELETE_IO_SQ %u\r\n", __func__, qid));
if (qid == 0 || qid > sc->num_cqueues) {
WPRINTF(("%s NOT PERMITTED queue id %u / num_squeues %u\r\n",
__func__, qid, sc->num_squeues));
pci_nvme_status_tc(&compl->status, NVME_SCT_COMMAND_SPECIFIC,
NVME_SC_INVALID_QUEUE_IDENTIFIER);
return (1);
}
sc->submit_queues[qid].qbase = NULL;
pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS);
return (1);
}
static int
nvme_opc_create_io_sq(struct pci_nvme_softc* sc, struct nvme_command* command,
struct nvme_completion* compl)
{
if (command->cdw11 & NVME_CMD_CDW11_PC) {
uint16_t qid = command->cdw10 & 0xffff;
struct nvme_submission_queue *nsq;
if (qid > sc->num_squeues) {
WPRINTF(("%s queue index %u > num_squeues %u\r\n",
__func__, qid, sc->num_squeues));
pci_nvme_status_tc(&compl->status,
NVME_SCT_COMMAND_SPECIFIC,
NVME_SC_INVALID_QUEUE_IDENTIFIER);
return (1);
}
nsq = &sc->submit_queues[qid];
nsq->size = ((command->cdw10 >> 16) & 0xffff) + 1;
nsq->qbase = vm_map_gpa(sc->nsc_pi->pi_vmctx, command->prp1,
sizeof(struct nvme_command) * (size_t)nsq->size);
nsq->cqid = (command->cdw11 >> 16) & 0xffff;
nsq->qpriority = (command->cdw11 >> 1) & 0x03;
DPRINTF(("%s sq %u size %u gaddr %p cqid %u\r\n", __func__,
qid, nsq->size, nsq->qbase, nsq->cqid));
pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS);
DPRINTF(("%s completed creating IOSQ qid %u\r\n",
__func__, qid));
} else {
/*
* Guest sent non-cont submission queue request.
* This setting is unsupported by this emulation.
*/
WPRINTF(("%s unsupported non-contig (list-based) "
"create i/o submission queue\r\n", __func__));
pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
}
return (1);
}
static int
nvme_opc_delete_io_cq(struct pci_nvme_softc* sc, struct nvme_command* command,
struct nvme_completion* compl)
{
uint16_t qid = command->cdw10 & 0xffff;
DPRINTF(("%s DELETE_IO_CQ %u\r\n", __func__, qid));
if (qid == 0 || qid > sc->num_cqueues) {
WPRINTF(("%s queue index %u / num_cqueues %u\r\n",
__func__, qid, sc->num_cqueues));
pci_nvme_status_tc(&compl->status, NVME_SCT_COMMAND_SPECIFIC,
NVME_SC_INVALID_QUEUE_IDENTIFIER);
return (1);
}
sc->compl_queues[qid].qbase = NULL;
pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS);
return (1);
}
static int
nvme_opc_create_io_cq(struct pci_nvme_softc* sc, struct nvme_command* command,
struct nvme_completion* compl)
{
if (command->cdw11 & NVME_CMD_CDW11_PC) {
uint16_t qid = command->cdw10 & 0xffff;
struct nvme_completion_queue *ncq;
if (qid > sc->num_cqueues) {
WPRINTF(("%s queue index %u > num_cqueues %u\r\n",
__func__, qid, sc->num_cqueues));
pci_nvme_status_tc(&compl->status,
NVME_SCT_COMMAND_SPECIFIC,
NVME_SC_INVALID_QUEUE_IDENTIFIER);
return (1);
}
ncq = &sc->compl_queues[qid];
ncq->intr_en = (command->cdw11 & NVME_CMD_CDW11_IEN) >> 1;
ncq->intr_vec = (command->cdw11 >> 16) & 0xffff;
ncq->size = ((command->cdw10 >> 16) & 0xffff) + 1;
ncq->qbase = vm_map_gpa(sc->nsc_pi->pi_vmctx,
command->prp1,
sizeof(struct nvme_command) * (size_t)ncq->size);
pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS);
} else {
/*
* Non-contig completion queue unsupported.
*/
WPRINTF(("%s unsupported non-contig (list-based) "
"create i/o completion queue\r\n",
__func__));
/* 0x12 = Invalid Use of Controller Memory Buffer */
pci_nvme_status_genc(&compl->status, 0x12);
}
return (1);
}
static int
nvme_opc_get_log_page(struct pci_nvme_softc* sc, struct nvme_command* command,
struct nvme_completion* compl)
{
uint32_t logsize = (1 + ((command->cdw10 >> 16) & 0xFFF)) * 2;
uint8_t logpage = command->cdw10 & 0xFF;
void *data;
DPRINTF(("%s log page %u len %u\r\n", __func__, logpage, logsize));
if (logpage >= 1 && logpage <= 3)
data = vm_map_gpa(sc->nsc_pi->pi_vmctx, command->prp1,
PAGE_SIZE);
pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS);
switch (logpage) {
case 0x01: /* Error information */
memset(data, 0, logsize > PAGE_SIZE ? PAGE_SIZE : logsize);
break;
case 0x02: /* SMART/Health information */
/* TODO: present some smart info */
memset(data, 0, logsize > PAGE_SIZE ? PAGE_SIZE : logsize);
break;
case 0x03: /* Firmware slot information */
memset(data, 0, logsize > PAGE_SIZE ? PAGE_SIZE : logsize);
break;
default:
WPRINTF(("%s get log page %x command not supported\r\n",
__func__, logpage));
pci_nvme_status_tc(&compl->status, NVME_SCT_COMMAND_SPECIFIC,
NVME_SC_INVALID_LOG_PAGE);
}
return (1);
}
static int
nvme_opc_identify(struct pci_nvme_softc* sc, struct nvme_command* command,
struct nvme_completion* compl)
{
void *dest;
DPRINTF(("%s identify 0x%x nsid 0x%x\r\n", __func__,
command->cdw10 & 0xFF, command->nsid));
switch (command->cdw10 & 0xFF) {
case 0x00: /* return Identify Namespace data structure */
dest = vm_map_gpa(sc->nsc_pi->pi_vmctx, command->prp1,
sizeof(sc->nsdata));
memcpy(dest, &sc->nsdata, sizeof(sc->nsdata));
break;
case 0x01: /* return Identify Controller data structure */
dest = vm_map_gpa(sc->nsc_pi->pi_vmctx, command->prp1,
sizeof(sc->ctrldata));
memcpy(dest, &sc->ctrldata, sizeof(sc->ctrldata));
break;
case 0x02: /* list of 1024 active NSIDs > CDW1.NSID */
dest = vm_map_gpa(sc->nsc_pi->pi_vmctx, command->prp1,
sizeof(uint32_t) * 1024);
((uint32_t *)dest)[0] = 1;
((uint32_t *)dest)[1] = 0;
break;
case 0x11:
pci_nvme_status_genc(&compl->status,
NVME_SC_INVALID_NAMESPACE_OR_FORMAT);
return (1);
case 0x03: /* list of NSID structures in CDW1.NSID, 4096 bytes */
case 0x10:
case 0x12:
case 0x13:
case 0x14:
case 0x15:
default:
DPRINTF(("%s unsupported identify command requested 0x%x\r\n",
__func__, command->cdw10 & 0xFF));
pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
return (1);
}
pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS);
return (1);
}
static int
nvme_opc_set_features(struct pci_nvme_softc* sc, struct nvme_command* command,
struct nvme_completion* compl)
{
int feature = command->cdw10 & 0xFF;
uint32_t iv;
DPRINTF(("%s feature 0x%x\r\n", __func__, feature));
compl->cdw0 = 0;
switch (feature) {
case NVME_FEAT_ARBITRATION:
DPRINTF((" arbitration 0x%x\r\n", command->cdw11));
break;
case NVME_FEAT_POWER_MANAGEMENT:
DPRINTF((" power management 0x%x\r\n", command->cdw11));
break;
case NVME_FEAT_LBA_RANGE_TYPE:
DPRINTF((" lba range 0x%x\r\n", command->cdw11));
break;
case NVME_FEAT_TEMPERATURE_THRESHOLD:
DPRINTF((" temperature threshold 0x%x\r\n", command->cdw11));
break;
case NVME_FEAT_ERROR_RECOVERY:
DPRINTF((" error recovery 0x%x\r\n", command->cdw11));
break;
case NVME_FEAT_VOLATILE_WRITE_CACHE:
DPRINTF((" volatile write cache 0x%x\r\n", command->cdw11));
break;
case NVME_FEAT_NUMBER_OF_QUEUES:
sc->num_squeues = command->cdw11 & 0xFFFF;
sc->num_cqueues = (command->cdw11 >> 16) & 0xFFFF;
DPRINTF((" number of queues (submit %u, completion %u)\r\n",
sc->num_squeues, sc->num_cqueues));
if (sc->num_squeues == 0 || sc->num_squeues > sc->max_queues)
sc->num_squeues = sc->max_queues;
if (sc->num_cqueues == 0 || sc->num_cqueues > sc->max_queues)
sc->num_cqueues = sc->max_queues;
compl->cdw0 = (sc->num_squeues & 0xFFFF) |
((sc->num_cqueues & 0xFFFF) << 16);
break;
case NVME_FEAT_INTERRUPT_COALESCING:
DPRINTF((" interrupt coalescing 0x%x\r\n", command->cdw11));
/* in uS */
sc->intr_coales_aggr_time = ((command->cdw11 >> 8) & 0xFF)*100;
sc->intr_coales_aggr_thresh = command->cdw11 & 0xFF;
break;
case NVME_FEAT_INTERRUPT_VECTOR_CONFIGURATION:
iv = command->cdw11 & 0xFFFF;
DPRINTF((" interrupt vector configuration 0x%x\r\n",
command->cdw11));
for (uint32_t i = 0; i <= sc->num_cqueues; i++) {
if (sc->compl_queues[i].intr_vec == iv) {
if (command->cdw11 & (1 << 16))
sc->compl_queues[i].intr_en |=
NVME_CQ_INTCOAL;
else
sc->compl_queues[i].intr_en &=
~NVME_CQ_INTCOAL;
}
}
break;
case NVME_FEAT_WRITE_ATOMICITY:
DPRINTF((" write atomicity 0x%x\r\n", command->cdw11));
break;
case NVME_FEAT_ASYNC_EVENT_CONFIGURATION:
DPRINTF((" async event configuration 0x%x\r\n",
command->cdw11));
sc->async_ev_config = command->cdw11;
break;
case NVME_FEAT_SOFTWARE_PROGRESS_MARKER:
DPRINTF((" software progress marker 0x%x\r\n",
command->cdw11));
break;
case 0x0C:
DPRINTF((" autonomous power state transition 0x%x\r\n",
command->cdw11));
break;
default:
WPRINTF(("%s invalid feature\r\n", __func__));
pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
return (1);
}
pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS);
return (1);
}
static int
nvme_opc_get_features(struct pci_nvme_softc* sc, struct nvme_command* command,
struct nvme_completion* compl)
{
int feature = command->cdw10 & 0xFF;
DPRINTF(("%s feature 0x%x\r\n", __func__, feature));
compl->cdw0 = 0;
switch (feature) {
case NVME_FEAT_ARBITRATION:
DPRINTF((" arbitration\r\n"));
break;
case NVME_FEAT_POWER_MANAGEMENT:
DPRINTF((" power management\r\n"));
break;
case NVME_FEAT_LBA_RANGE_TYPE:
DPRINTF((" lba range\r\n"));
break;
case NVME_FEAT_TEMPERATURE_THRESHOLD:
DPRINTF((" temperature threshold\r\n"));
switch ((command->cdw11 >> 20) & 0x3) {
case 0:
/* Over temp threshold */
compl->cdw0 = 0xFFFF;
break;
case 1:
/* Under temp threshold */
compl->cdw0 = 0;
break;
default:
WPRINTF((" invalid threshold type select\r\n"));
pci_nvme_status_genc(&compl->status,
NVME_SC_INVALID_FIELD);
return (1);
}
break;
case NVME_FEAT_ERROR_RECOVERY:
DPRINTF((" error recovery\r\n"));
break;
case NVME_FEAT_VOLATILE_WRITE_CACHE:
DPRINTF((" volatile write cache\r\n"));
break;
case NVME_FEAT_NUMBER_OF_QUEUES:
compl->cdw0 = 0;
if (sc->num_squeues == 0)
compl->cdw0 |= sc->max_queues & 0xFFFF;
else
compl->cdw0 |= sc->num_squeues & 0xFFFF;
if (sc->num_cqueues == 0)
compl->cdw0 |= (sc->max_queues & 0xFFFF) << 16;
else
compl->cdw0 |= (sc->num_cqueues & 0xFFFF) << 16;
DPRINTF((" number of queues (submit %u, completion %u)\r\n",
compl->cdw0 & 0xFFFF,
(compl->cdw0 >> 16) & 0xFFFF));
break;
case NVME_FEAT_INTERRUPT_COALESCING:
DPRINTF((" interrupt coalescing\r\n"));
break;
case NVME_FEAT_INTERRUPT_VECTOR_CONFIGURATION:
DPRINTF((" interrupt vector configuration\r\n"));
break;
case NVME_FEAT_WRITE_ATOMICITY:
DPRINTF((" write atomicity\r\n"));
break;
case NVME_FEAT_ASYNC_EVENT_CONFIGURATION:
DPRINTF((" async event configuration\r\n"));
sc->async_ev_config = command->cdw11;
break;
case NVME_FEAT_SOFTWARE_PROGRESS_MARKER:
DPRINTF((" software progress marker\r\n"));
break;
case 0x0C:
DPRINTF((" autonomous power state transition\r\n"));
break;
default:
WPRINTF(("%s invalid feature 0x%x\r\n", __func__, feature));
pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
return (1);
}
pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS);
return (1);
}
static int
nvme_opc_abort(struct pci_nvme_softc* sc, struct nvme_command* command,
struct nvme_completion* compl)
{
DPRINTF(("%s submission queue %u, command ID 0x%x\r\n", __func__,
command->cdw10 & 0xFFFF, (command->cdw10 >> 16) & 0xFFFF));
/* TODO: search for the command ID and abort it */
compl->cdw0 = 1;
pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS);
return (1);
}
static int
nvme_opc_async_event_req(struct pci_nvme_softc* sc,
struct nvme_command* command, struct nvme_completion* compl)
{
DPRINTF(("%s async event request 0x%x\r\n", __func__, command->cdw11));
/*
* TODO: raise events when they happen based on the Set Features cmd.
* These events happen async, so only set completion successful if
* there is an event reflective of the request to get event.
*/
pci_nvme_status_tc(&compl->status, NVME_SCT_COMMAND_SPECIFIC,
NVME_SC_ASYNC_EVENT_REQUEST_LIMIT_EXCEEDED);
return (0);
}
static void
pci_nvme_handle_admin_cmd(struct pci_nvme_softc* sc, uint64_t value)
{
struct nvme_completion compl;
struct nvme_command *cmd;
struct nvme_submission_queue *sq;
struct nvme_completion_queue *cq;
int do_intr = 0;
uint16_t sqhead;
DPRINTF(("%s index %u\r\n", __func__, (uint32_t)value));
sq = &sc->submit_queues[0];
sqhead = atomic_load_acq_short(&sq->head);
if (atomic_testandset_int(&sq->busy, 1)) {
DPRINTF(("%s SQ busy, head %u, tail %u\r\n",
__func__, sqhead, sq->tail));
return;
}
DPRINTF(("sqhead %u, tail %u\r\n", sqhead, sq->tail));
while (sqhead != atomic_load_acq_short(&sq->tail)) {
cmd = &(sq->qbase)[sqhead];
compl.status = 0;
switch (NVME_CMD_GET_OPC(cmd->opc_fuse)) {
case NVME_OPC_DELETE_IO_SQ:
DPRINTF(("%s command DELETE_IO_SQ\r\n", __func__));
do_intr |= nvme_opc_delete_io_sq(sc, cmd, &compl);
break;
case NVME_OPC_CREATE_IO_SQ:
DPRINTF(("%s command CREATE_IO_SQ\r\n", __func__));
do_intr |= nvme_opc_create_io_sq(sc, cmd, &compl);
break;
case NVME_OPC_DELETE_IO_CQ:
DPRINTF(("%s command DELETE_IO_CQ\r\n", __func__));
do_intr |= nvme_opc_delete_io_cq(sc, cmd, &compl);
break;
case NVME_OPC_CREATE_IO_CQ:
DPRINTF(("%s command CREATE_IO_CQ\r\n", __func__));
do_intr |= nvme_opc_create_io_cq(sc, cmd, &compl);
break;
case NVME_OPC_GET_LOG_PAGE:
DPRINTF(("%s command GET_LOG_PAGE\r\n", __func__));
do_intr |= nvme_opc_get_log_page(sc, cmd, &compl);
break;
case NVME_OPC_IDENTIFY:
DPRINTF(("%s command IDENTIFY\r\n", __func__));
do_intr |= nvme_opc_identify(sc, cmd, &compl);
break;
case NVME_OPC_ABORT:
DPRINTF(("%s command ABORT\r\n", __func__));
do_intr |= nvme_opc_abort(sc, cmd, &compl);
break;
case NVME_OPC_SET_FEATURES:
DPRINTF(("%s command SET_FEATURES\r\n", __func__));
do_intr |= nvme_opc_set_features(sc, cmd, &compl);
break;
case NVME_OPC_GET_FEATURES:
DPRINTF(("%s command GET_FEATURES\r\n", __func__));
do_intr |= nvme_opc_get_features(sc, cmd, &compl);
break;
case NVME_OPC_ASYNC_EVENT_REQUEST:
DPRINTF(("%s command ASYNC_EVENT_REQ\r\n", __func__));
/* XXX dont care, unhandled for now
do_intr |= nvme_opc_async_event_req(sc, cmd, &compl);
*/
break;
default:
WPRINTF(("0x%x command is not implemented\r\n",
NVME_CMD_GET_OPC(cmd->opc_fuse)));
}
/* for now skip async event generation */
if (NVME_CMD_GET_OPC(cmd->opc_fuse) !=
NVME_OPC_ASYNC_EVENT_REQUEST) {
struct nvme_completion *cp;
int phase;
cq = &sc->compl_queues[0];
cp = &(cq->qbase)[cq->tail];
cp->sqid = 0;
cp->sqhd = sqhead;
cp->cid = cmd->cid;
phase = NVME_STATUS_GET_P(cp->status);
cp->status = compl.status;
pci_nvme_toggle_phase(&cp->status, phase);
cq->tail = (cq->tail + 1) % cq->size;
}
sqhead = (sqhead + 1) % sq->size;
}
DPRINTF(("setting sqhead %u\r\n", sqhead));
atomic_store_short(&sq->head, sqhead);
atomic_store_int(&sq->busy, 0);
if (do_intr)
pci_generate_msix(sc->nsc_pi, 0);
}
static int
pci_nvme_append_iov_req(struct pci_nvme_softc *sc, struct pci_nvme_ioreq *req,
uint64_t gpaddr, size_t size, int do_write, uint64_t lba)
{
int iovidx;
if (req != NULL) {
/* concatenate contig block-iovs to minimize number of iovs */
if ((req->prev_gpaddr + req->prev_size) == gpaddr) {
iovidx = req->io_req.br_iovcnt - 1;
req->io_req.br_iov[iovidx].iov_base =
paddr_guest2host(req->sc->nsc_pi->pi_vmctx,
req->prev_gpaddr, size);
req->prev_size += size;
req->io_req.br_resid += size;
req->io_req.br_iov[iovidx].iov_len = req->prev_size;
} else {
pthread_mutex_lock(&req->mtx);
iovidx = req->io_req.br_iovcnt;
if (iovidx == NVME_MAX_BLOCKIOVS) {
int err = 0;
DPRINTF(("large I/O, doing partial req\r\n"));
iovidx = 0;
req->io_req.br_iovcnt = 0;
req->io_req.br_callback = pci_nvme_io_partial;
if (!do_write)
err = blockif_read(sc->nvstore.ctx,
&req->io_req);
else
err = blockif_write(sc->nvstore.ctx,
&req->io_req);
/* wait until req completes before cont */
if (err == 0)
pthread_cond_wait(&req->cv, &req->mtx);
}
if (iovidx == 0) {
req->io_req.br_offset = lba;
req->io_req.br_resid = 0;
req->io_req.br_param = req;
}
req->io_req.br_iov[iovidx].iov_base =
paddr_guest2host(req->sc->nsc_pi->pi_vmctx,
gpaddr, size);
req->io_req.br_iov[iovidx].iov_len = size;
req->prev_gpaddr = gpaddr;
req->prev_size = size;
req->io_req.br_resid += size;
req->io_req.br_iovcnt++;
pthread_mutex_unlock(&req->mtx);
}
} else {
/* RAM buffer: read/write directly */
void *p = sc->nvstore.ctx;
void *gptr;
if ((lba + size) > sc->nvstore.size) {
WPRINTF(("%s write would overflow RAM\r\n", __func__));
return (-1);
}
p = (void *)((uintptr_t)p + (uintptr_t)lba);
gptr = paddr_guest2host(sc->nsc_pi->pi_vmctx, gpaddr, size);
if (do_write)
memcpy(p, gptr, size);
else
memcpy(gptr, p, size);
}
return (0);
}
static void
pci_nvme_set_completion(struct pci_nvme_softc *sc,
struct nvme_submission_queue *sq, int sqid, uint16_t cid,
uint32_t cdw0, uint16_t status, int ignore_busy)
{
struct nvme_completion_queue *cq = &sc->compl_queues[sq->cqid];
struct nvme_completion *compl;
int do_intr = 0;
int phase;
DPRINTF(("%s sqid %d cqid %u cid %u status: 0x%x 0x%x\r\n",
__func__, sqid, sq->cqid, cid, NVME_STATUS_GET_SCT(status),
NVME_STATUS_GET_SC(status)));
pthread_mutex_lock(&cq->mtx);
assert(cq->qbase != NULL);
compl = &cq->qbase[cq->tail];
compl->sqhd = atomic_load_acq_short(&sq->head);
compl->sqid = sqid;
compl->cid = cid;
// toggle phase
phase = NVME_STATUS_GET_P(compl->status);
compl->status = status;
pci_nvme_toggle_phase(&compl->status, phase);
cq->tail = (cq->tail + 1) % cq->size;
if (cq->intr_en & NVME_CQ_INTEN)
do_intr = 1;
pthread_mutex_unlock(&cq->mtx);
if (ignore_busy || !atomic_load_acq_int(&sq->busy))
if (do_intr)
pci_generate_msix(sc->nsc_pi, cq->intr_vec);
}
static void
pci_nvme_release_ioreq(struct pci_nvme_softc *sc, struct pci_nvme_ioreq *req)
{
req->sc = NULL;
req->nvme_sq = NULL;
req->sqid = 0;
pthread_mutex_lock(&sc->mtx);
req->next = sc->ioreqs_free;
sc->ioreqs_free = req;
sc->pending_ios--;
/* when no more IO pending, can set to ready if device reset/enabled */
if (sc->pending_ios == 0 &&
NVME_CC_GET_EN(sc->regs.cc) && !(NVME_CSTS_GET_RDY(sc->regs.csts)))
sc->regs.csts |= NVME_CSTS_RDY;
pthread_mutex_unlock(&sc->mtx);
sem_post(&sc->iosemlock);
}
static struct pci_nvme_ioreq *
pci_nvme_get_ioreq(struct pci_nvme_softc *sc)
{
struct pci_nvme_ioreq *req = NULL;;
sem_wait(&sc->iosemlock);
pthread_mutex_lock(&sc->mtx);
req = sc->ioreqs_free;
assert(req != NULL);
sc->ioreqs_free = req->next;
req->next = NULL;
req->sc = sc;
sc->pending_ios++;
pthread_mutex_unlock(&sc->mtx);
req->io_req.br_iovcnt = 0;
req->io_req.br_offset = 0;
req->io_req.br_resid = 0;
req->io_req.br_param = req;
req->prev_gpaddr = 0;
req->prev_size = 0;
return req;
}
static void
pci_nvme_io_done(struct blockif_req *br, int err)
{
struct pci_nvme_ioreq *req = br->br_param;
struct nvme_submission_queue *sq = req->nvme_sq;
uint16_t code, status;
DPRINTF(("%s error %d %s\r\n", __func__, err, strerror(err)));
/* TODO return correct error */
code = err ? NVME_SC_DATA_TRANSFER_ERROR : NVME_SC_SUCCESS;
pci_nvme_status_genc(&status, code);
pci_nvme_set_completion(req->sc, sq, req->sqid, req->cid, 0, status, 0);
pci_nvme_release_ioreq(req->sc, req);
}
static void
pci_nvme_io_partial(struct blockif_req *br, int err)
{
struct pci_nvme_ioreq *req = br->br_param;
DPRINTF(("%s error %d %s\r\n", __func__, err, strerror(err)));
pthread_cond_signal(&req->cv);
}
static void
pci_nvme_handle_io_cmd(struct pci_nvme_softc* sc, uint16_t idx)
{
struct nvme_submission_queue *sq;
uint16_t status;
uint16_t sqhead;
int err;
/* handle all submissions up to sq->tail index */
sq = &sc->submit_queues[idx];
if (atomic_testandset_int(&sq->busy, 1)) {
DPRINTF(("%s sqid %u busy\r\n", __func__, idx));
return;
}
sqhead = atomic_load_acq_short(&sq->head);
DPRINTF(("nvme_handle_io qid %u head %u tail %u cmdlist %p\r\n",
idx, sqhead, sq->tail, sq->qbase));
while (sqhead != atomic_load_acq_short(&sq->tail)) {
struct nvme_command *cmd;
struct pci_nvme_ioreq *req = NULL;
uint64_t lba;
uint64_t nblocks, bytes, size, cpsz;
/* TODO: support scatter gather list handling */
cmd = &sq->qbase[sqhead];
sqhead = (sqhead + 1) % sq->size;
lba = ((uint64_t)cmd->cdw11 << 32) | cmd->cdw10;
if (NVME_CMD_GET_OPC(cmd->opc_fuse) == NVME_OPC_FLUSH) {
pci_nvme_status_genc(&status, NVME_SC_SUCCESS);
pci_nvme_set_completion(sc, sq, idx, cmd->cid, 0,
status, 1);
continue;
} else if (NVME_CMD_GET_OPC(cmd->opc_fuse) == 0x08) {
/* TODO: write zeroes */
WPRINTF(("%s write zeroes lba 0x%lx blocks %u\r\n",
__func__, lba, cmd->cdw12 & 0xFFFF));
pci_nvme_status_genc(&status, NVME_SC_SUCCESS);
pci_nvme_set_completion(sc, sq, idx, cmd->cid, 0,
status, 1);
continue;
}
nblocks = (cmd->cdw12 & 0xFFFF) + 1;
bytes = nblocks * sc->nvstore.sectsz;
if (sc->nvstore.type == NVME_STOR_BLOCKIF) {
req = pci_nvme_get_ioreq(sc);
req->nvme_sq = sq;
req->sqid = idx;
}
/*
* If data starts mid-page and flows into the next page, then
* increase page count
*/
DPRINTF(("[h%u:t%u:n%u] %s starting LBA 0x%lx blocks %lu "
"(%lu-bytes)\r\n",
sqhead==0 ? sq->size-1 : sqhead-1, sq->tail, sq->size,
NVME_CMD_GET_OPC(cmd->opc_fuse) == NVME_OPC_WRITE ?
"WRITE" : "READ",
lba, nblocks, bytes));
cmd->prp1 &= ~(0x03UL);
cmd->prp2 &= ~(0x03UL);
DPRINTF((" prp1 0x%lx prp2 0x%lx\r\n", cmd->prp1, cmd->prp2));
size = bytes;
lba *= sc->nvstore.sectsz;
cpsz = PAGE_SIZE - (cmd->prp1 % PAGE_SIZE);
if (cpsz > bytes)
cpsz = bytes;
if (req != NULL) {
req->io_req.br_offset = ((uint64_t)cmd->cdw11 << 32) |
cmd->cdw10;
req->opc = NVME_CMD_GET_OPC(cmd->opc_fuse);
req->cid = cmd->cid;
req->nsid = cmd->nsid;
}
err = pci_nvme_append_iov_req(sc, req, cmd->prp1, cpsz,
NVME_CMD_GET_OPC(cmd->opc_fuse) == NVME_OPC_WRITE, lba);
lba += cpsz;
size -= cpsz;
if (size == 0)
goto iodone;
if (size <= PAGE_SIZE) {
/* prp2 is second (and final) page in transfer */
err = pci_nvme_append_iov_req(sc, req, cmd->prp2,
size,
NVME_CMD_GET_OPC(cmd->opc_fuse) == NVME_OPC_WRITE,
lba);
} else {
uint64_t *prp_list;
int i;
/* prp2 is pointer to a physical region page list */
prp_list = paddr_guest2host(sc->nsc_pi->pi_vmctx,
cmd->prp2, PAGE_SIZE);
i = 0;
while (size != 0) {
cpsz = MIN(size, PAGE_SIZE);
/*
* Move to linked physical region page list
* in last item.
*/
if (i == (NVME_PRP2_ITEMS-1) &&
size > PAGE_SIZE) {
assert((prp_list[i] & (PAGE_SIZE-1)) == 0);
prp_list = paddr_guest2host(
sc->nsc_pi->pi_vmctx,
prp_list[i], PAGE_SIZE);
i = 0;
}
if (prp_list[i] == 0) {
WPRINTF(("PRP2[%d] = 0 !!!\r\n", i));
err = 1;
break;
}
err = pci_nvme_append_iov_req(sc, req,
prp_list[i], cpsz,
NVME_CMD_GET_OPC(cmd->opc_fuse) ==
NVME_OPC_WRITE, lba);
if (err)
break;
lba += cpsz;
size -= cpsz;
i++;
}
}
iodone:
if (sc->nvstore.type == NVME_STOR_RAM) {
uint16_t code, status;
code = err ? NVME_SC_LBA_OUT_OF_RANGE :
NVME_SC_SUCCESS;
pci_nvme_status_genc(&status, code);
pci_nvme_set_completion(sc, sq, idx, cmd->cid, 0,
status, 1);
continue;
}
if (err)
goto do_error;
req->io_req.br_callback = pci_nvme_io_done;
err = 0;
switch (NVME_CMD_GET_OPC(cmd->opc_fuse)) {
case NVME_OPC_READ:
err = blockif_read(sc->nvstore.ctx, &req->io_req);
break;
case NVME_OPC_WRITE:
err = blockif_write(sc->nvstore.ctx, &req->io_req);
break;
default:
WPRINTF(("%s unhandled io command 0x%x\r\n",
__func__, NVME_CMD_GET_OPC(cmd->opc_fuse)));
err = 1;
}
do_error:
if (err) {
uint16_t status;
pci_nvme_status_genc(&status,
NVME_SC_DATA_TRANSFER_ERROR);
pci_nvme_set_completion(sc, sq, idx, cmd->cid, 0,
status, 1);
pci_nvme_release_ioreq(sc, req);
}
}
atomic_store_short(&sq->head, sqhead);
atomic_store_int(&sq->busy, 0);
}
static void
pci_nvme_handle_doorbell(struct vmctx *ctx, struct pci_nvme_softc* sc,
uint64_t idx, int is_sq, uint64_t value)
{
DPRINTF(("nvme doorbell %lu, %s, val 0x%lx\r\n",
idx, is_sq ? "SQ" : "CQ", value & 0xFFFF));
if (is_sq) {
atomic_store_short(&sc->submit_queues[idx].tail,
(uint16_t)value);
if (idx == 0) {
pci_nvme_handle_admin_cmd(sc, value);
} else {
/* submission queue; handle new entries in SQ */
if (idx > sc->num_squeues) {
WPRINTF(("%s SQ index %lu overflow from "
"guest (max %u)\r\n",
__func__, idx, sc->num_squeues));
return;
}
pci_nvme_handle_io_cmd(sc, (uint16_t)idx);
}
} else {
if (idx > sc->num_cqueues) {
WPRINTF(("%s queue index %lu overflow from "
"guest (max %u)\r\n",
__func__, idx, sc->num_cqueues));
return;
}
sc->compl_queues[idx].head = (uint16_t)value;
}
}
static void
pci_nvme_bar0_reg_dumps(const char *func, uint64_t offset, int iswrite)
{
const char *s = iswrite ? "WRITE" : "READ";
switch (offset) {
case NVME_CR_CAP_LOW:
DPRINTF(("%s %s NVME_CR_CAP_LOW\r\n", func, s));
break;
case NVME_CR_CAP_HI:
DPRINTF(("%s %s NVME_CR_CAP_HI\r\n", func, s));
break;
case NVME_CR_VS:
DPRINTF(("%s %s NVME_CR_VS\r\n", func, s));
break;
case NVME_CR_INTMS:
DPRINTF(("%s %s NVME_CR_INTMS\r\n", func, s));
break;
case NVME_CR_INTMC:
DPRINTF(("%s %s NVME_CR_INTMC\r\n", func, s));
break;
case NVME_CR_CC:
DPRINTF(("%s %s NVME_CR_CC\r\n", func, s));
break;
case NVME_CR_CSTS:
DPRINTF(("%s %s NVME_CR_CSTS\r\n", func, s));
break;
case NVME_CR_NSSR:
DPRINTF(("%s %s NVME_CR_NSSR\r\n", func, s));
break;
case NVME_CR_AQA:
DPRINTF(("%s %s NVME_CR_AQA\r\n", func, s));
break;
case NVME_CR_ASQ_LOW:
DPRINTF(("%s %s NVME_CR_ASQ_LOW\r\n", func, s));
break;
case NVME_CR_ASQ_HI:
DPRINTF(("%s %s NVME_CR_ASQ_HI\r\n", func, s));
break;
case NVME_CR_ACQ_LOW:
DPRINTF(("%s %s NVME_CR_ACQ_LOW\r\n", func, s));
break;
case NVME_CR_ACQ_HI:
DPRINTF(("%s %s NVME_CR_ACQ_HI\r\n", func, s));
break;
default:
DPRINTF(("unknown nvme bar-0 offset 0x%lx\r\n", offset));
}
}
static void
pci_nvme_write_bar_0(struct vmctx *ctx, struct pci_nvme_softc* sc,
uint64_t offset, int size, uint64_t value)
{
uint32_t ccreg;
if (offset >= NVME_DOORBELL_OFFSET) {
uint64_t belloffset = offset - NVME_DOORBELL_OFFSET;
uint64_t idx = belloffset / 8; /* door bell size = 2*int */
int is_sq = (belloffset % 8) < 4;
if (belloffset > ((sc->max_queues+1) * 8 - 4)) {
WPRINTF(("guest attempted an overflow write offset "
"0x%lx, val 0x%lx in %s",
offset, value, __func__));
return;
}
pci_nvme_handle_doorbell(ctx, sc, idx, is_sq, value);
return;
}
DPRINTF(("nvme-write offset 0x%lx, size %d, value 0x%lx\r\n",
offset, size, value));
if (size != 4) {
WPRINTF(("guest wrote invalid size %d (offset 0x%lx, "
"val 0x%lx) to bar0 in %s",
size, offset, value, __func__));
/* TODO: shutdown device */
return;
}
pci_nvme_bar0_reg_dumps(__func__, offset, 1);
pthread_mutex_lock(&sc->mtx);
switch (offset) {
case NVME_CR_CAP_LOW:
case NVME_CR_CAP_HI:
/* readonly */
break;
case NVME_CR_VS:
/* readonly */
break;
case NVME_CR_INTMS:
/* MSI-X, so ignore */
break;
case NVME_CR_INTMC:
/* MSI-X, so ignore */
break;
case NVME_CR_CC:
ccreg = (uint32_t)value;
DPRINTF(("%s NVME_CR_CC en %x css %x shn %x iosqes %u "
"iocqes %u\r\n",
__func__,
NVME_CC_GET_EN(ccreg), NVME_CC_GET_CSS(ccreg),
NVME_CC_GET_SHN(ccreg), NVME_CC_GET_IOSQES(ccreg),
NVME_CC_GET_IOCQES(ccreg)));
if (NVME_CC_GET_SHN(ccreg)) {
/* perform shutdown - flush out data to backend */
sc->regs.csts &= ~(NVME_CSTS_REG_SHST_MASK <<
NVME_CSTS_REG_SHST_SHIFT);
sc->regs.csts |= NVME_SHST_COMPLETE <<
NVME_CSTS_REG_SHST_SHIFT;
}
if (NVME_CC_GET_EN(ccreg) != NVME_CC_GET_EN(sc->regs.cc)) {
if (NVME_CC_GET_EN(ccreg) == 0)
/* transition 1-> causes controller reset */
pci_nvme_reset(sc);
else
pci_nvme_init_controller(ctx, sc);
}
/* Insert the iocqes, iosqes and en bits from the write */
sc->regs.cc &= ~NVME_CC_WRITE_MASK;
sc->regs.cc |= ccreg & NVME_CC_WRITE_MASK;
if (NVME_CC_GET_EN(ccreg) == 0) {
/* Insert the ams, mps and css bit fields */
sc->regs.cc &= ~NVME_CC_NEN_WRITE_MASK;
sc->regs.cc |= ccreg & NVME_CC_NEN_WRITE_MASK;
sc->regs.csts &= ~NVME_CSTS_RDY;
} else if (sc->pending_ios == 0) {
sc->regs.csts |= NVME_CSTS_RDY;
}
break;
case NVME_CR_CSTS:
break;
case NVME_CR_NSSR:
/* ignore writes; don't support subsystem reset */
break;
case NVME_CR_AQA:
sc->regs.aqa = (uint32_t)value;
break;
case NVME_CR_ASQ_LOW:
sc->regs.asq = (sc->regs.asq & (0xFFFFFFFF00000000)) |
(0xFFFFF000 & value);
break;
case NVME_CR_ASQ_HI:
sc->regs.asq = (sc->regs.asq & (0x00000000FFFFFFFF)) |
(value << 32);
break;
case NVME_CR_ACQ_LOW:
sc->regs.acq = (sc->regs.acq & (0xFFFFFFFF00000000)) |
(0xFFFFF000 & value);
break;
case NVME_CR_ACQ_HI:
sc->regs.acq = (sc->regs.acq & (0x00000000FFFFFFFF)) |
(value << 32);
break;
default:
DPRINTF(("%s unknown offset 0x%lx, value 0x%lx size %d\r\n",
__func__, offset, value, size));
}
pthread_mutex_unlock(&sc->mtx);
}
static void
pci_nvme_write(struct vmctx *ctx, int vcpu, struct pci_devinst *pi,
int baridx, uint64_t offset, int size, uint64_t value)
{
struct pci_nvme_softc* sc = pi->pi_arg;
if (baridx == pci_msix_table_bar(pi) ||
baridx == pci_msix_pba_bar(pi)) {
DPRINTF(("nvme-write baridx %d, msix: off 0x%lx, size %d, "
" value 0x%lx\r\n", baridx, offset, size, value));
pci_emul_msix_twrite(pi, offset, size, value);
return;
}
switch (baridx) {
case 0:
pci_nvme_write_bar_0(ctx, sc, offset, size, value);
break;
default:
DPRINTF(("%s unknown baridx %d, val 0x%lx\r\n",
__func__, baridx, value));
}
}
static uint64_t pci_nvme_read_bar_0(struct pci_nvme_softc* sc,
uint64_t offset, int size)
{
uint64_t value;
pci_nvme_bar0_reg_dumps(__func__, offset, 0);
if (offset < NVME_DOORBELL_OFFSET) {
void *p = &(sc->regs);
pthread_mutex_lock(&sc->mtx);
memcpy(&value, (void *)((uintptr_t)p + offset), size);
pthread_mutex_unlock(&sc->mtx);
} else {
value = 0;
WPRINTF(("pci_nvme: read invalid offset %ld\r\n", offset));
}
switch (size) {
case 1:
value &= 0xFF;
break;
case 2:
value &= 0xFFFF;
break;
case 4:
value &= 0xFFFFFFFF;
break;
}
DPRINTF((" nvme-read offset 0x%lx, size %d -> value 0x%x\r\n",
offset, size, (uint32_t)value));
return (value);
}
static uint64_t
pci_nvme_read(struct vmctx *ctx, int vcpu, struct pci_devinst *pi, int baridx,
uint64_t offset, int size)
{
struct pci_nvme_softc* sc = pi->pi_arg;
if (baridx == pci_msix_table_bar(pi) ||
baridx == pci_msix_pba_bar(pi)) {
DPRINTF(("nvme-read bar: %d, msix: regoff 0x%lx, size %d\r\n",
baridx, offset, size));
return pci_emul_msix_tread(pi, offset, size);
}
switch (baridx) {
case 0:
return pci_nvme_read_bar_0(sc, offset, size);
default:
DPRINTF(("unknown bar %d, 0x%lx\r\n", baridx, offset));
}
return (0);
}
static int
pci_nvme_parse_opts(struct pci_nvme_softc *sc, char *opts)
{
char bident[sizeof("XX:X:X")];
char *uopt, *xopts, *config;
uint32_t sectsz;
int optidx;
sc->max_queues = NVME_QUEUES;
sc->max_qentries = NVME_MAX_QENTRIES;
sc->ioslots = NVME_IOSLOTS;
sc->num_squeues = sc->max_queues;
sc->num_cqueues = sc->max_queues;
sectsz = 0;
uopt = strdup(opts);
optidx = 0;
snprintf(sc->ctrldata.sn, sizeof(sc->ctrldata.sn),
"NVME-%d-%d", sc->nsc_pi->pi_slot, sc->nsc_pi->pi_func);
for (xopts = strtok(uopt, ",");
xopts != NULL;
xopts = strtok(NULL, ",")) {
if ((config = strchr(xopts, '=')) != NULL)
*config++ = '\0';
if (!strcmp("maxq", xopts)) {
sc->max_queues = atoi(config);
} else if (!strcmp("qsz", xopts)) {
sc->max_qentries = atoi(config);
} else if (!strcmp("ioslots", xopts)) {
sc->ioslots = atoi(config);
} else if (!strcmp("sectsz", xopts)) {
sectsz = atoi(config);
} else if (!strcmp("ser", xopts)) {
/*
* This field indicates the Product Serial Number in
* 8-bit ASCII, unused bytes should be NULL characters.
* Ref: NVM Express Management Interface 1.0a.
*/
memset(sc->ctrldata.sn, 0, sizeof(sc->ctrldata.sn));
strncpy(sc->ctrldata.sn, config,
sizeof(sc->ctrldata.sn));
} else if (!strcmp("ram", xopts)) {
uint64_t sz = strtoull(&xopts[4], NULL, 10);
sc->nvstore.type = NVME_STOR_RAM;
sc->nvstore.size = sz * 1024 * 1024;
sc->nvstore.ctx = calloc(1, sc->nvstore.size);
sc->nvstore.sectsz = 4096;
sc->nvstore.sectsz_bits = 12;
if (sc->nvstore.ctx == NULL) {
perror("Unable to allocate RAM");
return (-1);
}
} else if (optidx == 0) {
snprintf(bident, sizeof(bident), "%d:%d",
sc->nsc_pi->pi_slot, sc->nsc_pi->pi_func);
sc->nvstore.ctx = blockif_open(xopts, bident);
if (sc->nvstore.ctx == NULL) {
perror("Could not open backing file");
return (-1);
}
sc->nvstore.type = NVME_STOR_BLOCKIF;
sc->nvstore.size = blockif_size(sc->nvstore.ctx);
} else {
fprintf(stderr, "Invalid option %s\n", xopts);
return (-1);
}
optidx++;
}
free(uopt);
if (sc->nvstore.ctx == NULL || sc->nvstore.size == 0) {
fprintf(stderr, "backing store not specified\n");
return (-1);
}
if (sectsz == 512 || sectsz == 4096 || sectsz == 8192)
sc->nvstore.sectsz = sectsz;
else if (sc->nvstore.type != NVME_STOR_RAM)
sc->nvstore.sectsz = blockif_sectsz(sc->nvstore.ctx);
for (sc->nvstore.sectsz_bits = 9;
(1 << sc->nvstore.sectsz_bits) < sc->nvstore.sectsz;
sc->nvstore.sectsz_bits++);
if (sc->max_queues == 0) {
fprintf(stderr, "Invalid maxq option\n");
return (-1);
}
if (sc->max_qentries <= 0) {
fprintf(stderr, "Invalid qsz option\n");
return (-1);
}
if (sc->ioslots <= 0) {
fprintf(stderr, "Invalid ioslots option\n");
return (-1);
}
return (0);
}
static int
pci_nvme_init(struct vmctx *ctx, struct pci_devinst *pi, char *opts)
{
struct pci_nvme_softc *sc;
uint32_t pci_membar_sz;
int error;
error = 0;
sc = calloc(1, sizeof(struct pci_nvme_softc));
pi->pi_arg = sc;
sc->nsc_pi = pi;
error = pci_nvme_parse_opts(sc, opts);
if (error < 0)
goto done;
else
error = 0;
sc->ioreqs = calloc(sc->ioslots, sizeof(struct pci_nvme_ioreq));
for (int i = 0; i < sc->ioslots; i++) {
if (i < (sc->ioslots-1))
sc->ioreqs[i].next = &sc->ioreqs[i+1];
pthread_mutex_init(&sc->ioreqs[i].mtx, NULL);
pthread_cond_init(&sc->ioreqs[i].cv, NULL);
}
sc->ioreqs_free = sc->ioreqs;
sc->intr_coales_aggr_thresh = 1;
pci_set_cfgdata16(pi, PCIR_DEVICE, 0x0A0A);
pci_set_cfgdata16(pi, PCIR_VENDOR, 0xFB5D);
pci_set_cfgdata8(pi, PCIR_CLASS, PCIC_STORAGE);
pci_set_cfgdata8(pi, PCIR_SUBCLASS, PCIS_STORAGE_NVM);
pci_set_cfgdata8(pi, PCIR_PROGIF,
PCIP_STORAGE_NVM_ENTERPRISE_NVMHCI_1_0);
/* allocate size of nvme registers + doorbell space for all queues */
pci_membar_sz = sizeof(struct nvme_registers) +
2*sizeof(uint32_t)*(sc->max_queues);
DPRINTF(("nvme membar size: %u\r\n", pci_membar_sz));
error = pci_emul_alloc_bar(pi, 0, PCIBAR_MEM64, pci_membar_sz);
if (error) {
WPRINTF(("%s pci alloc mem bar failed\r\n", __func__));
goto done;
}
error = pci_emul_add_msixcap(pi, sc->max_queues, NVME_MSIX_BAR);
if (error) {
WPRINTF(("%s pci add msixcap failed\r\n", __func__));
goto done;
}
pthread_mutex_init(&sc->mtx, NULL);
sem_init(&sc->iosemlock, 0, sc->ioslots);
pci_nvme_reset(sc);
pci_nvme_init_ctrldata(sc);
pci_nvme_init_nsdata(sc);
pci_lintr_request(pi);
done:
return (error);
}
struct pci_devemu pci_de_nvme = {
.pe_emu = "nvme",
.pe_init = pci_nvme_init,
.pe_barwrite = pci_nvme_write,
.pe_barread = pci_nvme_read
};
PCI_EMUL_SET(pci_de_nvme);