freebsd-dev/sys/pci/if_sk.c
Warner Losh b84e866a18 Due to extreme bogusness in the pci bus layer, these drivers were
forced to do slightly bogus power state manipulation.  However, this
is one of those features that is preventing further progress, so mark
them as BURN_BIRDGES like I did for the drivers in sys/dev/...

This, like the other change, are a no-op unless you have BURN_BRIDGES
in your kernel.
2003-07-03 21:39:53 +00:00

2240 lines
56 KiB
C

/*
* Copyright (c) 1997, 1998, 1999, 2000
* Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
* the SK-984x series adapters, both single port and dual port.
* References:
* The XaQti XMAC II datasheet,
* http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
* The SysKonnect GEnesis manual, http://www.syskonnect.com
*
* Note: XaQti has been aquired by Vitesse, and Vitesse does not have the
* XMAC II datasheet online. I have put my copy at people.freebsd.org as a
* convenience to others until Vitesse corrects this problem:
*
* http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
*
* Written by Bill Paul <wpaul@ee.columbia.edu>
* Department of Electrical Engineering
* Columbia University, New York City
*/
/*
* The SysKonnect gigabit ethernet adapters consist of two main
* components: the SysKonnect GEnesis controller chip and the XaQti Corp.
* XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
* components and a PHY while the GEnesis controller provides a PCI
* interface with DMA support. Each card may have between 512K and
* 2MB of SRAM on board depending on the configuration.
*
* The SysKonnect GEnesis controller can have either one or two XMAC
* chips connected to it, allowing single or dual port NIC configurations.
* SysKonnect has the distinction of being the only vendor on the market
* with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
* dual DMA queues, packet/MAC/transmit arbiters and direct access to the
* XMAC registers. This driver takes advantage of these features to allow
* both XMACs to operate as independent interfaces.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/queue.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/bpf.h>
#include <vm/vm.h> /* for vtophys */
#include <vm/pmap.h> /* for vtophys */
#include <machine/bus_pio.h>
#include <machine/bus_memio.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/mii/brgphyreg.h>
#include <pci/pcireg.h>
#include <pci/pcivar.h>
#define SK_USEIOSPACE
#include <pci/if_skreg.h>
#include <pci/xmaciireg.h>
MODULE_DEPEND(sk, pci, 1, 1, 1);
MODULE_DEPEND(sk, ether, 1, 1, 1);
MODULE_DEPEND(sk, miibus, 1, 1, 1);
/* "controller miibus0" required. See GENERIC if you get errors here. */
#include "miibus_if.h"
#ifndef lint
static const char rcsid[] =
"$FreeBSD$";
#endif
static struct sk_type sk_devs[] = {
{ SK_VENDORID, SK_DEVICEID_GE, "SysKonnect Gigabit Ethernet" },
{ 0, 0, NULL }
};
static int sk_probe (device_t);
static int sk_attach (device_t);
static int sk_detach (device_t);
static int sk_detach_xmac (device_t);
static int sk_probe_xmac (device_t);
static int sk_attach_xmac (device_t);
static void sk_tick (void *);
static void sk_intr (void *);
static void sk_intr_xmac (struct sk_if_softc *);
static void sk_intr_bcom (struct sk_if_softc *);
static void sk_rxeof (struct sk_if_softc *);
static void sk_txeof (struct sk_if_softc *);
static int sk_encap (struct sk_if_softc *, struct mbuf *,
u_int32_t *);
static void sk_start (struct ifnet *);
static int sk_ioctl (struct ifnet *, u_long, caddr_t);
static void sk_init (void *);
static void sk_init_xmac (struct sk_if_softc *);
static void sk_stop (struct sk_if_softc *);
static void sk_watchdog (struct ifnet *);
static void sk_shutdown (device_t);
static int sk_ifmedia_upd (struct ifnet *);
static void sk_ifmedia_sts (struct ifnet *, struct ifmediareq *);
static void sk_reset (struct sk_softc *);
static int sk_newbuf (struct sk_if_softc *,
struct sk_chain *, struct mbuf *);
static int sk_alloc_jumbo_mem (struct sk_if_softc *);
static void *sk_jalloc (struct sk_if_softc *);
static void sk_jfree (void *, void *);
static int sk_init_rx_ring (struct sk_if_softc *);
static void sk_init_tx_ring (struct sk_if_softc *);
static u_int32_t sk_win_read_4 (struct sk_softc *, int);
static u_int16_t sk_win_read_2 (struct sk_softc *, int);
static u_int8_t sk_win_read_1 (struct sk_softc *, int);
static void sk_win_write_4 (struct sk_softc *, int, u_int32_t);
static void sk_win_write_2 (struct sk_softc *, int, u_int32_t);
static void sk_win_write_1 (struct sk_softc *, int, u_int32_t);
static u_int8_t sk_vpd_readbyte (struct sk_softc *, int);
static void sk_vpd_read_res (struct sk_softc *, struct vpd_res *, int);
static void sk_vpd_read (struct sk_softc *);
static int sk_miibus_readreg (device_t, int, int);
static int sk_miibus_writereg (device_t, int, int, int);
static void sk_miibus_statchg (device_t);
static u_int32_t sk_calchash (caddr_t);
static void sk_setfilt (struct sk_if_softc *, caddr_t, int);
static void sk_setmulti (struct sk_if_softc *);
#ifdef SK_USEIOSPACE
#define SK_RES SYS_RES_IOPORT
#define SK_RID SK_PCI_LOIO
#else
#define SK_RES SYS_RES_MEMORY
#define SK_RID SK_PCI_LOMEM
#endif
/*
* Note that we have newbus methods for both the GEnesis controller
* itself and the XMAC(s). The XMACs are children of the GEnesis, and
* the miibus code is a child of the XMACs. We need to do it this way
* so that the miibus drivers can access the PHY registers on the
* right PHY. It's not quite what I had in mind, but it's the only
* design that achieves the desired effect.
*/
static device_method_t skc_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, sk_probe),
DEVMETHOD(device_attach, sk_attach),
DEVMETHOD(device_detach, sk_detach),
DEVMETHOD(device_shutdown, sk_shutdown),
/* bus interface */
DEVMETHOD(bus_print_child, bus_generic_print_child),
DEVMETHOD(bus_driver_added, bus_generic_driver_added),
{ 0, 0 }
};
static driver_t skc_driver = {
"skc",
skc_methods,
sizeof(struct sk_softc)
};
static devclass_t skc_devclass;
static device_method_t sk_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, sk_probe_xmac),
DEVMETHOD(device_attach, sk_attach_xmac),
DEVMETHOD(device_detach, sk_detach_xmac),
DEVMETHOD(device_shutdown, bus_generic_shutdown),
/* bus interface */
DEVMETHOD(bus_print_child, bus_generic_print_child),
DEVMETHOD(bus_driver_added, bus_generic_driver_added),
/* MII interface */
DEVMETHOD(miibus_readreg, sk_miibus_readreg),
DEVMETHOD(miibus_writereg, sk_miibus_writereg),
DEVMETHOD(miibus_statchg, sk_miibus_statchg),
{ 0, 0 }
};
static driver_t sk_driver = {
"sk",
sk_methods,
sizeof(struct sk_if_softc)
};
static devclass_t sk_devclass;
DRIVER_MODULE(sk, pci, skc_driver, skc_devclass, 0, 0);
DRIVER_MODULE(sk, skc, sk_driver, sk_devclass, 0, 0);
DRIVER_MODULE(miibus, sk, miibus_driver, miibus_devclass, 0, 0);
#define SK_SETBIT(sc, reg, x) \
CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x)
#define SK_CLRBIT(sc, reg, x) \
CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x)
#define SK_WIN_SETBIT_4(sc, reg, x) \
sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) | x)
#define SK_WIN_CLRBIT_4(sc, reg, x) \
sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) & ~x)
#define SK_WIN_SETBIT_2(sc, reg, x) \
sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) | x)
#define SK_WIN_CLRBIT_2(sc, reg, x) \
sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) & ~x)
static u_int32_t
sk_win_read_4(sc, reg)
struct sk_softc *sc;
int reg;
{
CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
return(CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg)));
}
static u_int16_t
sk_win_read_2(sc, reg)
struct sk_softc *sc;
int reg;
{
CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
return(CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg)));
}
static u_int8_t
sk_win_read_1(sc, reg)
struct sk_softc *sc;
int reg;
{
CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
return(CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg)));
}
static void
sk_win_write_4(sc, reg, val)
struct sk_softc *sc;
int reg;
u_int32_t val;
{
CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), val);
return;
}
static void
sk_win_write_2(sc, reg, val)
struct sk_softc *sc;
int reg;
u_int32_t val;
{
CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), (u_int32_t)val);
return;
}
static void
sk_win_write_1(sc, reg, val)
struct sk_softc *sc;
int reg;
u_int32_t val;
{
CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), val);
return;
}
/*
* The VPD EEPROM contains Vital Product Data, as suggested in
* the PCI 2.1 specification. The VPD data is separared into areas
* denoted by resource IDs. The SysKonnect VPD contains an ID string
* resource (the name of the adapter), a read-only area resource
* containing various key/data fields and a read/write area which
* can be used to store asset management information or log messages.
* We read the ID string and read-only into buffers attached to
* the controller softc structure for later use. At the moment,
* we only use the ID string during sk_attach().
*/
static u_int8_t
sk_vpd_readbyte(sc, addr)
struct sk_softc *sc;
int addr;
{
int i;
sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
for (i = 0; i < SK_TIMEOUT; i++) {
DELAY(1);
if (sk_win_read_2(sc,
SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
break;
}
if (i == SK_TIMEOUT)
return(0);
return(sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA)));
}
static void
sk_vpd_read_res(sc, res, addr)
struct sk_softc *sc;
struct vpd_res *res;
int addr;
{
int i;
u_int8_t *ptr;
ptr = (u_int8_t *)res;
for (i = 0; i < sizeof(struct vpd_res); i++)
ptr[i] = sk_vpd_readbyte(sc, i + addr);
return;
}
static void
sk_vpd_read(sc)
struct sk_softc *sc;
{
int pos = 0, i;
struct vpd_res res;
if (sc->sk_vpd_prodname != NULL)
free(sc->sk_vpd_prodname, M_DEVBUF);
if (sc->sk_vpd_readonly != NULL)
free(sc->sk_vpd_readonly, M_DEVBUF);
sc->sk_vpd_prodname = NULL;
sc->sk_vpd_readonly = NULL;
sk_vpd_read_res(sc, &res, pos);
if (res.vr_id != VPD_RES_ID) {
printf("skc%d: bad VPD resource id: expected %x got %x\n",
sc->sk_unit, VPD_RES_ID, res.vr_id);
return;
}
pos += sizeof(res);
sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
for (i = 0; i < res.vr_len; i++)
sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
sc->sk_vpd_prodname[i] = '\0';
pos += i;
sk_vpd_read_res(sc, &res, pos);
if (res.vr_id != VPD_RES_READ) {
printf("skc%d: bad VPD resource id: expected %x got %x\n",
sc->sk_unit, VPD_RES_READ, res.vr_id);
return;
}
pos += sizeof(res);
sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
for (i = 0; i < res.vr_len + 1; i++)
sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
return;
}
static int
sk_miibus_readreg(dev, phy, reg)
device_t dev;
int phy, reg;
{
struct sk_if_softc *sc_if;
int i;
sc_if = device_get_softc(dev);
if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
return(0);
SK_IF_LOCK(sc_if);
SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
SK_XM_READ_2(sc_if, XM_PHY_DATA);
if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
for (i = 0; i < SK_TIMEOUT; i++) {
DELAY(1);
if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
XM_MMUCMD_PHYDATARDY)
break;
}
if (i == SK_TIMEOUT) {
printf("sk%d: phy failed to come ready\n",
sc_if->sk_unit);
return(0);
}
}
DELAY(1);
i = SK_XM_READ_2(sc_if, XM_PHY_DATA);
SK_IF_UNLOCK(sc_if);
return(i);
}
static int
sk_miibus_writereg(dev, phy, reg, val)
device_t dev;
int phy, reg, val;
{
struct sk_if_softc *sc_if;
int i;
sc_if = device_get_softc(dev);
SK_IF_LOCK(sc_if);
SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
for (i = 0; i < SK_TIMEOUT; i++) {
if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
break;
}
if (i == SK_TIMEOUT) {
printf("sk%d: phy failed to come ready\n", sc_if->sk_unit);
return(ETIMEDOUT);
}
SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
for (i = 0; i < SK_TIMEOUT; i++) {
DELAY(1);
if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
break;
}
SK_IF_UNLOCK(sc_if);
if (i == SK_TIMEOUT)
printf("sk%d: phy write timed out\n", sc_if->sk_unit);
return(0);
}
static void
sk_miibus_statchg(dev)
device_t dev;
{
struct sk_if_softc *sc_if;
struct mii_data *mii;
sc_if = device_get_softc(dev);
mii = device_get_softc(sc_if->sk_miibus);
SK_IF_LOCK(sc_if);
/*
* If this is a GMII PHY, manually set the XMAC's
* duplex mode accordingly.
*/
if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
} else {
SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
}
}
SK_IF_UNLOCK(sc_if);
return;
}
#define SK_POLY 0xEDB88320
#define SK_BITS 6
static u_int32_t
sk_calchash(addr)
caddr_t addr;
{
u_int32_t idx, bit, data, crc;
/* Compute CRC for the address value. */
crc = 0xFFFFFFFF; /* initial value */
for (idx = 0; idx < 6; idx++) {
for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1)
crc = (crc >> 1) ^ (((crc ^ data) & 1) ? SK_POLY : 0);
}
return (~crc & ((1 << SK_BITS) - 1));
}
static void
sk_setfilt(sc_if, addr, slot)
struct sk_if_softc *sc_if;
caddr_t addr;
int slot;
{
int base;
base = XM_RXFILT_ENTRY(slot);
SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
return;
}
static void
sk_setmulti(sc_if)
struct sk_if_softc *sc_if;
{
struct ifnet *ifp;
u_int32_t hashes[2] = { 0, 0 };
int h, i;
struct ifmultiaddr *ifma;
u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 };
ifp = &sc_if->arpcom.ac_if;
/* First, zot all the existing filters. */
for (i = 1; i < XM_RXFILT_MAX; i++)
sk_setfilt(sc_if, (caddr_t)&dummy, i);
SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
/* Now program new ones. */
if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
hashes[0] = 0xFFFFFFFF;
hashes[1] = 0xFFFFFFFF;
} else {
i = 1;
TAILQ_FOREACH_REVERSE(ifma, &ifp->if_multiaddrs, ifmultihead, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
/*
* Program the first XM_RXFILT_MAX multicast groups
* into the perfect filter. For all others,
* use the hash table.
*/
if (i < XM_RXFILT_MAX) {
sk_setfilt(sc_if,
LLADDR((struct sockaddr_dl *)ifma->ifma_addr), i);
i++;
continue;
}
h = sk_calchash(
LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
if (h < 32)
hashes[0] |= (1 << h);
else
hashes[1] |= (1 << (h - 32));
}
}
SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
XM_MODE_RX_USE_PERFECT);
SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
return;
}
static int
sk_init_rx_ring(sc_if)
struct sk_if_softc *sc_if;
{
struct sk_chain_data *cd;
struct sk_ring_data *rd;
int i;
cd = &sc_if->sk_cdata;
rd = sc_if->sk_rdata;
bzero((char *)rd->sk_rx_ring,
sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
for (i = 0; i < SK_RX_RING_CNT; i++) {
cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
if (sk_newbuf(sc_if, &cd->sk_rx_chain[i], NULL) == ENOBUFS)
return(ENOBUFS);
if (i == (SK_RX_RING_CNT - 1)) {
cd->sk_rx_chain[i].sk_next =
&cd->sk_rx_chain[0];
rd->sk_rx_ring[i].sk_next =
vtophys(&rd->sk_rx_ring[0]);
} else {
cd->sk_rx_chain[i].sk_next =
&cd->sk_rx_chain[i + 1];
rd->sk_rx_ring[i].sk_next =
vtophys(&rd->sk_rx_ring[i + 1]);
}
}
sc_if->sk_cdata.sk_rx_prod = 0;
sc_if->sk_cdata.sk_rx_cons = 0;
return(0);
}
static void
sk_init_tx_ring(sc_if)
struct sk_if_softc *sc_if;
{
struct sk_chain_data *cd;
struct sk_ring_data *rd;
int i;
cd = &sc_if->sk_cdata;
rd = sc_if->sk_rdata;
bzero((char *)sc_if->sk_rdata->sk_tx_ring,
sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
for (i = 0; i < SK_TX_RING_CNT; i++) {
cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
if (i == (SK_TX_RING_CNT - 1)) {
cd->sk_tx_chain[i].sk_next =
&cd->sk_tx_chain[0];
rd->sk_tx_ring[i].sk_next =
vtophys(&rd->sk_tx_ring[0]);
} else {
cd->sk_tx_chain[i].sk_next =
&cd->sk_tx_chain[i + 1];
rd->sk_tx_ring[i].sk_next =
vtophys(&rd->sk_tx_ring[i + 1]);
}
}
sc_if->sk_cdata.sk_tx_prod = 0;
sc_if->sk_cdata.sk_tx_cons = 0;
sc_if->sk_cdata.sk_tx_cnt = 0;
return;
}
static int
sk_newbuf(sc_if, c, m)
struct sk_if_softc *sc_if;
struct sk_chain *c;
struct mbuf *m;
{
struct mbuf *m_new = NULL;
struct sk_rx_desc *r;
if (m == NULL) {
caddr_t *buf = NULL;
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
if (m_new == NULL)
return(ENOBUFS);
/* Allocate the jumbo buffer */
buf = sk_jalloc(sc_if);
if (buf == NULL) {
m_freem(m_new);
#ifdef SK_VERBOSE
printf("sk%d: jumbo allocation failed "
"-- packet dropped!\n", sc_if->sk_unit);
#endif
return(ENOBUFS);
}
/* Attach the buffer to the mbuf */
MEXTADD(m_new, buf, SK_JLEN, sk_jfree,
(struct sk_if_softc *)sc_if, 0, EXT_NET_DRV);
m_new->m_data = (void *)buf;
m_new->m_pkthdr.len = m_new->m_len = SK_JLEN;
} else {
/*
* We're re-using a previously allocated mbuf;
* be sure to re-init pointers and lengths to
* default values.
*/
m_new = m;
m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
m_new->m_data = m_new->m_ext.ext_buf;
}
/*
* Adjust alignment so packet payload begins on a
* longword boundary. Mandatory for Alpha, useful on
* x86 too.
*/
m_adj(m_new, ETHER_ALIGN);
r = c->sk_desc;
c->sk_mbuf = m_new;
r->sk_data_lo = vtophys(mtod(m_new, caddr_t));
r->sk_ctl = m_new->m_len | SK_RXSTAT;
return(0);
}
/*
* Allocate jumbo buffer storage. The SysKonnect adapters support
* "jumbograms" (9K frames), although SysKonnect doesn't currently
* use them in their drivers. In order for us to use them, we need
* large 9K receive buffers, however standard mbuf clusters are only
* 2048 bytes in size. Consequently, we need to allocate and manage
* our own jumbo buffer pool. Fortunately, this does not require an
* excessive amount of additional code.
*/
static int
sk_alloc_jumbo_mem(sc_if)
struct sk_if_softc *sc_if;
{
caddr_t ptr;
register int i;
struct sk_jpool_entry *entry;
/* Grab a big chunk o' storage. */
sc_if->sk_cdata.sk_jumbo_buf = contigmalloc(SK_JMEM, M_DEVBUF,
M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
if (sc_if->sk_cdata.sk_jumbo_buf == NULL) {
printf("sk%d: no memory for jumbo buffers!\n", sc_if->sk_unit);
return(ENOBUFS);
}
SLIST_INIT(&sc_if->sk_jfree_listhead);
SLIST_INIT(&sc_if->sk_jinuse_listhead);
/*
* Now divide it up into 9K pieces and save the addresses
* in an array.
*/
ptr = sc_if->sk_cdata.sk_jumbo_buf;
for (i = 0; i < SK_JSLOTS; i++) {
sc_if->sk_cdata.sk_jslots[i] = ptr;
ptr += SK_JLEN;
entry = malloc(sizeof(struct sk_jpool_entry),
M_DEVBUF, M_NOWAIT);
if (entry == NULL) {
free(sc_if->sk_cdata.sk_jumbo_buf, M_DEVBUF);
sc_if->sk_cdata.sk_jumbo_buf = NULL;
printf("sk%d: no memory for jumbo "
"buffer queue!\n", sc_if->sk_unit);
return(ENOBUFS);
}
entry->slot = i;
SLIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
entry, jpool_entries);
}
return(0);
}
/*
* Allocate a jumbo buffer.
*/
static void *
sk_jalloc(sc_if)
struct sk_if_softc *sc_if;
{
struct sk_jpool_entry *entry;
entry = SLIST_FIRST(&sc_if->sk_jfree_listhead);
if (entry == NULL) {
#ifdef SK_VERBOSE
printf("sk%d: no free jumbo buffers\n", sc_if->sk_unit);
#endif
return(NULL);
}
SLIST_REMOVE_HEAD(&sc_if->sk_jfree_listhead, jpool_entries);
SLIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
return(sc_if->sk_cdata.sk_jslots[entry->slot]);
}
/*
* Release a jumbo buffer.
*/
static void
sk_jfree(buf, args)
void *buf;
void *args;
{
struct sk_if_softc *sc_if;
int i;
struct sk_jpool_entry *entry;
/* Extract the softc struct pointer. */
sc_if = (struct sk_if_softc *)args;
if (sc_if == NULL)
panic("sk_jfree: didn't get softc pointer!");
/* calculate the slot this buffer belongs to */
i = ((vm_offset_t)buf
- (vm_offset_t)sc_if->sk_cdata.sk_jumbo_buf) / SK_JLEN;
if ((i < 0) || (i >= SK_JSLOTS))
panic("sk_jfree: asked to free buffer that we don't manage!");
entry = SLIST_FIRST(&sc_if->sk_jinuse_listhead);
if (entry == NULL)
panic("sk_jfree: buffer not in use!");
entry->slot = i;
SLIST_REMOVE_HEAD(&sc_if->sk_jinuse_listhead, jpool_entries);
SLIST_INSERT_HEAD(&sc_if->sk_jfree_listhead, entry, jpool_entries);
return;
}
/*
* Set media options.
*/
static int
sk_ifmedia_upd(ifp)
struct ifnet *ifp;
{
struct sk_if_softc *sc_if;
struct mii_data *mii;
sc_if = ifp->if_softc;
mii = device_get_softc(sc_if->sk_miibus);
sk_init(sc_if);
mii_mediachg(mii);
return(0);
}
/*
* Report current media status.
*/
static void
sk_ifmedia_sts(ifp, ifmr)
struct ifnet *ifp;
struct ifmediareq *ifmr;
{
struct sk_if_softc *sc_if;
struct mii_data *mii;
sc_if = ifp->if_softc;
mii = device_get_softc(sc_if->sk_miibus);
mii_pollstat(mii);
ifmr->ifm_active = mii->mii_media_active;
ifmr->ifm_status = mii->mii_media_status;
return;
}
static int
sk_ioctl(ifp, command, data)
struct ifnet *ifp;
u_long command;
caddr_t data;
{
struct sk_if_softc *sc_if = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *) data;
int error = 0;
struct mii_data *mii;
SK_IF_LOCK(sc_if);
switch(command) {
case SIOCSIFMTU:
if (ifr->ifr_mtu > SK_JUMBO_MTU)
error = EINVAL;
else {
ifp->if_mtu = ifr->ifr_mtu;
sk_init(sc_if);
}
break;
case SIOCSIFFLAGS:
if (ifp->if_flags & IFF_UP) {
if (ifp->if_flags & IFF_RUNNING &&
ifp->if_flags & IFF_PROMISC &&
!(sc_if->sk_if_flags & IFF_PROMISC)) {
SK_XM_SETBIT_4(sc_if, XM_MODE,
XM_MODE_RX_PROMISC);
sk_setmulti(sc_if);
} else if (ifp->if_flags & IFF_RUNNING &&
!(ifp->if_flags & IFF_PROMISC) &&
sc_if->sk_if_flags & IFF_PROMISC) {
SK_XM_CLRBIT_4(sc_if, XM_MODE,
XM_MODE_RX_PROMISC);
sk_setmulti(sc_if);
} else
sk_init(sc_if);
} else {
if (ifp->if_flags & IFF_RUNNING)
sk_stop(sc_if);
}
sc_if->sk_if_flags = ifp->if_flags;
error = 0;
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
sk_setmulti(sc_if);
error = 0;
break;
case SIOCGIFMEDIA:
case SIOCSIFMEDIA:
mii = device_get_softc(sc_if->sk_miibus);
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
break;
default:
error = ether_ioctl(ifp, command, data);
break;
}
SK_IF_UNLOCK(sc_if);
return(error);
}
/*
* Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
* IDs against our list and return a device name if we find a match.
*/
static int
sk_probe(dev)
device_t dev;
{
struct sk_type *t;
t = sk_devs;
while(t->sk_name != NULL) {
if ((pci_get_vendor(dev) == t->sk_vid) &&
(pci_get_device(dev) == t->sk_did)) {
device_set_desc(dev, t->sk_name);
return(0);
}
t++;
}
return(ENXIO);
}
/*
* Force the GEnesis into reset, then bring it out of reset.
*/
static void
sk_reset(sc)
struct sk_softc *sc;
{
CSR_WRITE_4(sc, SK_CSR, SK_CSR_SW_RESET);
CSR_WRITE_4(sc, SK_CSR, SK_CSR_MASTER_RESET);
DELAY(1000);
CSR_WRITE_4(sc, SK_CSR, SK_CSR_SW_UNRESET);
CSR_WRITE_4(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
/* Configure packet arbiter */
sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
/* Enable RAM interface */
sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
/*
* Configure interrupt moderation. The moderation timer
* defers interrupts specified in the interrupt moderation
* timer mask based on the timeout specified in the interrupt
* moderation timer init register. Each bit in the timer
* register represents 18.825ns, so to specify a timeout in
* microseconds, we have to multiply by 54.
*/
sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(200));
sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
return;
}
static int
sk_probe_xmac(dev)
device_t dev;
{
/*
* Not much to do here. We always know there will be
* at least one XMAC present, and if there are two,
* sk_attach() will create a second device instance
* for us.
*/
device_set_desc(dev, "XaQti Corp. XMAC II");
return(0);
}
/*
* Each XMAC chip is attached as a separate logical IP interface.
* Single port cards will have only one logical interface of course.
*/
static int
sk_attach_xmac(dev)
device_t dev;
{
struct sk_softc *sc;
struct sk_if_softc *sc_if;
struct ifnet *ifp;
int i, port, error;
if (dev == NULL)
return(EINVAL);
error = 0;
sc_if = device_get_softc(dev);
sc = device_get_softc(device_get_parent(dev));
SK_LOCK(sc);
port = *(int *)device_get_ivars(dev);
free(device_get_ivars(dev), M_DEVBUF);
device_set_ivars(dev, NULL);
sc_if->sk_dev = dev;
sc_if->sk_unit = device_get_unit(dev);
sc_if->sk_port = port;
sc_if->sk_softc = sc;
sc->sk_if[port] = sc_if;
if (port == SK_PORT_A)
sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
if (port == SK_PORT_B)
sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
/*
* Get station address for this interface. Note that
* dual port cards actually come with three station
* addresses: one for each port, plus an extra. The
* extra one is used by the SysKonnect driver software
* as a 'virtual' station address for when both ports
* are operating in failover mode. Currently we don't
* use this extra address.
*/
for (i = 0; i < ETHER_ADDR_LEN; i++)
sc_if->arpcom.ac_enaddr[i] =
sk_win_read_1(sc, SK_MAC0_0 + (port * 8) + i);
printf("sk%d: Ethernet address: %6D\n",
sc_if->sk_unit, sc_if->arpcom.ac_enaddr, ":");
/*
* Set up RAM buffer addresses. The NIC will have a certain
* amount of SRAM on it, somewhere between 512K and 2MB. We
* need to divide this up a) between the transmitter and
* receiver and b) between the two XMACs, if this is a
* dual port NIC. Our algotithm is to divide up the memory
* evenly so that everyone gets a fair share.
*/
if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
u_int32_t chunk, val;
chunk = sc->sk_ramsize / 2;
val = sc->sk_rboff / sizeof(u_int64_t);
sc_if->sk_rx_ramstart = val;
val += (chunk / sizeof(u_int64_t));
sc_if->sk_rx_ramend = val - 1;
sc_if->sk_tx_ramstart = val;
val += (chunk / sizeof(u_int64_t));
sc_if->sk_tx_ramend = val - 1;
} else {
u_int32_t chunk, val;
chunk = sc->sk_ramsize / 4;
val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
sizeof(u_int64_t);
sc_if->sk_rx_ramstart = val;
val += (chunk / sizeof(u_int64_t));
sc_if->sk_rx_ramend = val - 1;
sc_if->sk_tx_ramstart = val;
val += (chunk / sizeof(u_int64_t));
sc_if->sk_tx_ramend = val - 1;
}
/* Read and save PHY type and set PHY address */
sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
switch(sc_if->sk_phytype) {
case SK_PHYTYPE_XMAC:
sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
break;
case SK_PHYTYPE_BCOM:
sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
break;
default:
printf("skc%d: unsupported PHY type: %d\n",
sc->sk_unit, sc_if->sk_phytype);
error = ENODEV;
goto fail_xmac;
}
/* Allocate the descriptor queues. */
sc_if->sk_rdata = contigmalloc(sizeof(struct sk_ring_data), M_DEVBUF,
M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
if (sc_if->sk_rdata == NULL) {
printf("sk%d: no memory for list buffers!\n", sc_if->sk_unit);
error = ENOMEM;
goto fail_xmac;
}
bzero(sc_if->sk_rdata, sizeof(struct sk_ring_data));
/* Try to allocate memory for jumbo buffers. */
if (sk_alloc_jumbo_mem(sc_if)) {
printf("sk%d: jumbo buffer allocation failed\n",
sc_if->sk_unit);
error = ENOMEM;
goto fail_xmac;
}
ifp = &sc_if->arpcom.ac_if;
ifp->if_softc = sc_if;
ifp->if_unit = sc_if->sk_unit;
ifp->if_name = "sk";
ifp->if_mtu = ETHERMTU;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = sk_ioctl;
ifp->if_output = ether_output;
ifp->if_start = sk_start;
ifp->if_watchdog = sk_watchdog;
ifp->if_init = sk_init;
ifp->if_baudrate = 1000000000;
ifp->if_snd.ifq_maxlen = SK_TX_RING_CNT - 1;
callout_handle_init(&sc_if->sk_tick_ch);
/*
* Call MI attach routine.
*/
ether_ifattach(ifp, sc_if->arpcom.ac_enaddr);
/*
* Do miibus setup.
*/
sk_init_xmac(sc_if);
if (mii_phy_probe(dev, &sc_if->sk_miibus,
sk_ifmedia_upd, sk_ifmedia_sts)) {
printf("skc%d: no PHY found!\n", sc_if->sk_unit);
ether_ifdetach(ifp);
error = ENXIO;
goto fail_xmac;
}
fail_xmac:
SK_UNLOCK(sc);
if (error) {
/* Access should be ok even though lock has been dropped */
sc->sk_if[port] = NULL;
sk_detach_xmac(dev);
}
return(error);
}
/*
* Attach the interface. Allocate softc structures, do ifmedia
* setup and ethernet/BPF attach.
*/
static int
sk_attach(dev)
device_t dev;
{
struct sk_softc *sc;
int unit, error = 0, rid, *port;
sc = device_get_softc(dev);
unit = device_get_unit(dev);
mtx_init(&sc->sk_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
MTX_DEF | MTX_RECURSE);
#ifndef BURN_BRIDGES
/*
* Handle power management nonsense.
*/
if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
u_int32_t iobase, membase, irq;
/* Save important PCI config data. */
iobase = pci_read_config(dev, SK_PCI_LOIO, 4);
membase = pci_read_config(dev, SK_PCI_LOMEM, 4);
irq = pci_read_config(dev, SK_PCI_INTLINE, 4);
/* Reset the power state. */
printf("skc%d: chip is in D%d power mode "
"-- setting to D0\n", unit,
pci_get_powerstate(dev));
pci_set_powerstate(dev, PCI_POWERSTATE_D0);
/* Restore PCI config data. */
pci_write_config(dev, SK_PCI_LOIO, iobase, 4);
pci_write_config(dev, SK_PCI_LOMEM, membase, 4);
pci_write_config(dev, SK_PCI_INTLINE, irq, 4);
}
#endif
/*
* Map control/status registers.
*/
pci_enable_busmaster(dev);
rid = SK_RID;
sc->sk_res = bus_alloc_resource(dev, SK_RES, &rid,
0, ~0, 1, RF_ACTIVE);
if (sc->sk_res == NULL) {
printf("sk%d: couldn't map ports/memory\n", unit);
error = ENXIO;
goto fail;
}
sc->sk_btag = rman_get_bustag(sc->sk_res);
sc->sk_bhandle = rman_get_bushandle(sc->sk_res);
/* Allocate interrupt */
rid = 0;
sc->sk_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
RF_SHAREABLE | RF_ACTIVE);
if (sc->sk_irq == NULL) {
printf("skc%d: couldn't map interrupt\n", unit);
error = ENXIO;
goto fail;
}
/* Reset the adapter. */
sk_reset(sc);
sc->sk_unit = unit;
/* Read and save vital product data from EEPROM. */
sk_vpd_read(sc);
/* Read and save RAM size and RAMbuffer offset */
switch(sk_win_read_1(sc, SK_EPROM0)) {
case SK_RAMSIZE_512K_64:
sc->sk_ramsize = 0x80000;
sc->sk_rboff = SK_RBOFF_0;
break;
case SK_RAMSIZE_1024K_64:
sc->sk_ramsize = 0x100000;
sc->sk_rboff = SK_RBOFF_80000;
break;
case SK_RAMSIZE_1024K_128:
sc->sk_ramsize = 0x100000;
sc->sk_rboff = SK_RBOFF_0;
break;
case SK_RAMSIZE_2048K_128:
sc->sk_ramsize = 0x200000;
sc->sk_rboff = SK_RBOFF_0;
break;
default:
printf("skc%d: unknown ram size: %d\n",
sc->sk_unit, sk_win_read_1(sc, SK_EPROM0));
error = ENXIO;
goto fail;
}
/* Read and save physical media type */
switch(sk_win_read_1(sc, SK_PMDTYPE)) {
case SK_PMD_1000BASESX:
sc->sk_pmd = IFM_1000_SX;
break;
case SK_PMD_1000BASELX:
sc->sk_pmd = IFM_1000_LX;
break;
case SK_PMD_1000BASECX:
sc->sk_pmd = IFM_1000_CX;
break;
case SK_PMD_1000BASETX:
sc->sk_pmd = IFM_1000_T;
break;
default:
printf("skc%d: unknown media type: 0x%x\n",
sc->sk_unit, sk_win_read_1(sc, SK_PMDTYPE));
error = ENXIO;
goto fail;
}
/* Announce the product name. */
printf("skc%d: %s\n", sc->sk_unit, sc->sk_vpd_prodname);
sc->sk_devs[SK_PORT_A] = device_add_child(dev, "sk", -1);
port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
*port = SK_PORT_A;
device_set_ivars(sc->sk_devs[SK_PORT_A], port);
if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
sc->sk_devs[SK_PORT_B] = device_add_child(dev, "sk", -1);
port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
*port = SK_PORT_B;
device_set_ivars(sc->sk_devs[SK_PORT_B], port);
}
/* Turn on the 'driver is loaded' LED. */
CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
bus_generic_attach(dev);
/* Hook interrupt last to avoid having to lock softc */
error = bus_setup_intr(dev, sc->sk_irq, INTR_TYPE_NET,
sk_intr, sc, &sc->sk_intrhand);
if (error) {
printf("skc%d: couldn't set up irq\n", unit);
goto fail;
}
fail:
if (error)
sk_detach(dev);
return(error);
}
/*
* Shutdown hardware and free up resources. This can be called any
* time after the mutex has been initialized. It is called in both
* the error case in attach and the normal detach case so it needs
* to be careful about only freeing resources that have actually been
* allocated.
*/
static int
sk_detach_xmac(dev)
device_t dev;
{
struct sk_if_softc *sc_if;
struct ifnet *ifp;
sc_if = device_get_softc(dev);
KASSERT(mtx_initialized(&sc_if->sk_softc->sk_mtx),
("sk mutex not initialized in sk_detach_xmac"));
SK_IF_LOCK(sc_if);
ifp = &sc_if->arpcom.ac_if;
/* These should only be active if attach_xmac succeeded */
if (device_is_attached(dev)) {
sk_stop(sc_if);
ether_ifdetach(ifp);
}
if (sc_if->sk_miibus)
device_delete_child(dev, sc_if->sk_miibus);
bus_generic_detach(dev);
if (sc_if->sk_cdata.sk_jumbo_buf)
contigfree(sc_if->sk_cdata.sk_jumbo_buf, SK_JMEM, M_DEVBUF);
if (sc_if->sk_rdata) {
contigfree(sc_if->sk_rdata, sizeof(struct sk_ring_data),
M_DEVBUF);
}
SK_IF_UNLOCK(sc_if);
return(0);
}
static int
sk_detach(dev)
device_t dev;
{
struct sk_softc *sc;
sc = device_get_softc(dev);
KASSERT(mtx_initialized(&sc->sk_mtx), ("sk mutex not initialized"));
SK_LOCK(sc);
if (device_is_alive(dev)) {
if (sc->sk_devs[SK_PORT_A] != NULL)
device_delete_child(dev, sc->sk_devs[SK_PORT_A]);
if (sc->sk_devs[SK_PORT_B] != NULL)
device_delete_child(dev, sc->sk_devs[SK_PORT_B]);
bus_generic_detach(dev);
}
if (sc->sk_intrhand)
bus_teardown_intr(dev, sc->sk_irq, sc->sk_intrhand);
if (sc->sk_irq)
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sk_irq);
if (sc->sk_res)
bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res);
SK_UNLOCK(sc);
mtx_destroy(&sc->sk_mtx);
return(0);
}
static int
sk_encap(sc_if, m_head, txidx)
struct sk_if_softc *sc_if;
struct mbuf *m_head;
u_int32_t *txidx;
{
struct sk_tx_desc *f = NULL;
struct mbuf *m;
u_int32_t frag, cur, cnt = 0;
m = m_head;
cur = frag = *txidx;
/*
* Start packing the mbufs in this chain into
* the fragment pointers. Stop when we run out
* of fragments or hit the end of the mbuf chain.
*/
for (m = m_head; m != NULL; m = m->m_next) {
if (m->m_len != 0) {
if ((SK_TX_RING_CNT -
(sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2)
return(ENOBUFS);
f = &sc_if->sk_rdata->sk_tx_ring[frag];
f->sk_data_lo = vtophys(mtod(m, vm_offset_t));
f->sk_ctl = m->m_len | SK_OPCODE_DEFAULT;
if (cnt == 0)
f->sk_ctl |= SK_TXCTL_FIRSTFRAG;
else
f->sk_ctl |= SK_TXCTL_OWN;
cur = frag;
SK_INC(frag, SK_TX_RING_CNT);
cnt++;
}
}
if (m != NULL)
return(ENOBUFS);
sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR;
sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |= SK_TXCTL_OWN;
sc_if->sk_cdata.sk_tx_cnt += cnt;
*txidx = frag;
return(0);
}
static void
sk_start(ifp)
struct ifnet *ifp;
{
struct sk_softc *sc;
struct sk_if_softc *sc_if;
struct mbuf *m_head = NULL;
u_int32_t idx;
sc_if = ifp->if_softc;
sc = sc_if->sk_softc;
SK_IF_LOCK(sc_if);
idx = sc_if->sk_cdata.sk_tx_prod;
while(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
IF_DEQUEUE(&ifp->if_snd, m_head);
if (m_head == NULL)
break;
/*
* Pack the data into the transmit ring. If we
* don't have room, set the OACTIVE flag and wait
* for the NIC to drain the ring.
*/
if (sk_encap(sc_if, m_head, &idx)) {
IF_PREPEND(&ifp->if_snd, m_head);
ifp->if_flags |= IFF_OACTIVE;
break;
}
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
BPF_MTAP(ifp, m_head);
}
/* Transmit */
sc_if->sk_cdata.sk_tx_prod = idx;
CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
/* Set a timeout in case the chip goes out to lunch. */
ifp->if_timer = 5;
SK_IF_UNLOCK(sc_if);
return;
}
static void
sk_watchdog(ifp)
struct ifnet *ifp;
{
struct sk_if_softc *sc_if;
sc_if = ifp->if_softc;
printf("sk%d: watchdog timeout\n", sc_if->sk_unit);
sk_init(sc_if);
return;
}
static void
sk_shutdown(dev)
device_t dev;
{
struct sk_softc *sc;
sc = device_get_softc(dev);
SK_LOCK(sc);
/* Turn off the 'driver is loaded' LED. */
CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
/*
* Reset the GEnesis controller. Doing this should also
* assert the resets on the attached XMAC(s).
*/
sk_reset(sc);
SK_UNLOCK(sc);
return;
}
static void
sk_rxeof(sc_if)
struct sk_if_softc *sc_if;
{
struct mbuf *m;
struct ifnet *ifp;
struct sk_chain *cur_rx;
int total_len = 0;
int i;
u_int32_t rxstat;
ifp = &sc_if->arpcom.ac_if;
i = sc_if->sk_cdata.sk_rx_prod;
cur_rx = &sc_if->sk_cdata.sk_rx_chain[i];
while(!(sc_if->sk_rdata->sk_rx_ring[i].sk_ctl & SK_RXCTL_OWN)) {
cur_rx = &sc_if->sk_cdata.sk_rx_chain[i];
rxstat = sc_if->sk_rdata->sk_rx_ring[i].sk_xmac_rxstat;
m = cur_rx->sk_mbuf;
cur_rx->sk_mbuf = NULL;
total_len = SK_RXBYTES(sc_if->sk_rdata->sk_rx_ring[i].sk_ctl);
SK_INC(i, SK_RX_RING_CNT);
if (rxstat & XM_RXSTAT_ERRFRAME) {
ifp->if_ierrors++;
sk_newbuf(sc_if, cur_rx, m);
continue;
}
/*
* Try to allocate a new jumbo buffer. If that
* fails, copy the packet to mbufs and put the
* jumbo buffer back in the ring so it can be
* re-used. If allocating mbufs fails, then we
* have to drop the packet.
*/
if (sk_newbuf(sc_if, cur_rx, NULL) == ENOBUFS) {
struct mbuf *m0;
m0 = m_devget(mtod(m, char *), total_len, ETHER_ALIGN,
ifp, NULL);
sk_newbuf(sc_if, cur_rx, m);
if (m0 == NULL) {
printf("sk%d: no receive buffers "
"available -- packet dropped!\n",
sc_if->sk_unit);
ifp->if_ierrors++;
continue;
}
m = m0;
} else {
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = m->m_len = total_len;
}
ifp->if_ipackets++;
(*ifp->if_input)(ifp, m);
}
sc_if->sk_cdata.sk_rx_prod = i;
return;
}
static void
sk_txeof(sc_if)
struct sk_if_softc *sc_if;
{
struct sk_tx_desc *cur_tx = NULL;
struct ifnet *ifp;
u_int32_t idx;
ifp = &sc_if->arpcom.ac_if;
/*
* Go through our tx ring and free mbufs for those
* frames that have been sent.
*/
idx = sc_if->sk_cdata.sk_tx_cons;
while(idx != sc_if->sk_cdata.sk_tx_prod) {
cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
if (cur_tx->sk_ctl & SK_TXCTL_OWN)
break;
if (cur_tx->sk_ctl & SK_TXCTL_LASTFRAG)
ifp->if_opackets++;
if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
}
sc_if->sk_cdata.sk_tx_cnt--;
SK_INC(idx, SK_TX_RING_CNT);
ifp->if_timer = 0;
}
sc_if->sk_cdata.sk_tx_cons = idx;
if (cur_tx != NULL)
ifp->if_flags &= ~IFF_OACTIVE;
return;
}
static void
sk_tick(xsc_if)
void *xsc_if;
{
struct sk_if_softc *sc_if;
struct mii_data *mii;
struct ifnet *ifp;
int i;
sc_if = xsc_if;
SK_IF_LOCK(sc_if);
ifp = &sc_if->arpcom.ac_if;
mii = device_get_softc(sc_if->sk_miibus);
if (!(ifp->if_flags & IFF_UP)) {
SK_IF_UNLOCK(sc_if);
return;
}
if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
sk_intr_bcom(sc_if);
SK_IF_UNLOCK(sc_if);
return;
}
/*
* According to SysKonnect, the correct way to verify that
* the link has come back up is to poll bit 0 of the GPIO
* register three times. This pin has the signal from the
* link_sync pin connected to it; if we read the same link
* state 3 times in a row, we know the link is up.
*/
for (i = 0; i < 3; i++) {
if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
break;
}
if (i != 3) {
sc_if->sk_tick_ch = timeout(sk_tick, sc_if, hz);
SK_IF_UNLOCK(sc_if);
return;
}
/* Turn the GP0 interrupt back on. */
SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
SK_XM_READ_2(sc_if, XM_ISR);
mii_tick(mii);
untimeout(sk_tick, sc_if, sc_if->sk_tick_ch);
SK_IF_UNLOCK(sc_if);
return;
}
static void
sk_intr_bcom(sc_if)
struct sk_if_softc *sc_if;
{
struct mii_data *mii;
struct ifnet *ifp;
int status;
mii = device_get_softc(sc_if->sk_miibus);
ifp = &sc_if->arpcom.ac_if;
SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
/*
* Read the PHY interrupt register to make sure
* we clear any pending interrupts.
*/
status = sk_miibus_readreg(sc_if->sk_dev,
SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
if (!(ifp->if_flags & IFF_RUNNING)) {
sk_init_xmac(sc_if);
return;
}
if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
int lstat;
lstat = sk_miibus_readreg(sc_if->sk_dev,
SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS);
if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
mii_mediachg(mii);
/* Turn off the link LED. */
SK_IF_WRITE_1(sc_if, 0,
SK_LINKLED1_CTL, SK_LINKLED_OFF);
sc_if->sk_link = 0;
} else if (status & BRGPHY_ISR_LNK_CHG) {
sk_miibus_writereg(sc_if->sk_dev, SK_PHYADDR_BCOM,
BRGPHY_MII_IMR, 0xFF00);
mii_tick(mii);
sc_if->sk_link = 1;
/* Turn on the link LED. */
SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
SK_LINKLED_BLINK_OFF);
} else {
mii_tick(mii);
sc_if->sk_tick_ch = timeout(sk_tick, sc_if, hz);
}
}
SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
return;
}
static void
sk_intr_xmac(sc_if)
struct sk_if_softc *sc_if;
{
struct sk_softc *sc;
u_int16_t status;
sc = sc_if->sk_softc;
status = SK_XM_READ_2(sc_if, XM_ISR);
/*
* Link has gone down. Start MII tick timeout to
* watch for link resync.
*/
if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
if (status & XM_ISR_GP0_SET) {
SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
sc_if->sk_tick_ch = timeout(sk_tick, sc_if, hz);
}
if (status & XM_ISR_AUTONEG_DONE) {
sc_if->sk_tick_ch = timeout(sk_tick, sc_if, hz);
}
}
if (status & XM_IMR_TX_UNDERRUN)
SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
if (status & XM_IMR_RX_OVERRUN)
SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
status = SK_XM_READ_2(sc_if, XM_ISR);
return;
}
static void
sk_intr(xsc)
void *xsc;
{
struct sk_softc *sc = xsc;
struct sk_if_softc *sc_if0 = NULL, *sc_if1 = NULL;
struct ifnet *ifp0 = NULL, *ifp1 = NULL;
u_int32_t status;
SK_LOCK(sc);
sc_if0 = sc->sk_if[SK_PORT_A];
sc_if1 = sc->sk_if[SK_PORT_B];
if (sc_if0 != NULL)
ifp0 = &sc_if0->arpcom.ac_if;
if (sc_if1 != NULL)
ifp1 = &sc_if1->arpcom.ac_if;
for (;;) {
status = CSR_READ_4(sc, SK_ISSR);
if (!(status & sc->sk_intrmask))
break;
/* Handle receive interrupts first. */
if (status & SK_ISR_RX1_EOF) {
sk_rxeof(sc_if0);
CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
}
if (status & SK_ISR_RX2_EOF) {
sk_rxeof(sc_if1);
CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
}
/* Then transmit interrupts. */
if (status & SK_ISR_TX1_S_EOF) {
sk_txeof(sc_if0);
CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
SK_TXBMU_CLR_IRQ_EOF);
}
if (status & SK_ISR_TX2_S_EOF) {
sk_txeof(sc_if1);
CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
SK_TXBMU_CLR_IRQ_EOF);
}
/* Then MAC interrupts. */
if (status & SK_ISR_MAC1 &&
ifp0->if_flags & IFF_RUNNING)
sk_intr_xmac(sc_if0);
if (status & SK_ISR_MAC2 &&
ifp1->if_flags & IFF_RUNNING)
sk_intr_xmac(sc_if1);
if (status & SK_ISR_EXTERNAL_REG) {
if (ifp0 != NULL)
sk_intr_bcom(sc_if0);
if (ifp1 != NULL)
sk_intr_bcom(sc_if1);
}
}
CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
if (ifp0 != NULL && ifp0->if_snd.ifq_head != NULL)
sk_start(ifp0);
if (ifp1 != NULL && ifp1->if_snd.ifq_head != NULL)
sk_start(ifp1);
SK_UNLOCK(sc);
return;
}
static void
sk_init_xmac(sc_if)
struct sk_if_softc *sc_if;
{
struct sk_softc *sc;
struct ifnet *ifp;
struct sk_bcom_hack bhack[] = {
{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
{ 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
{ 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
{ 0, 0 } };
sc = sc_if->sk_softc;
ifp = &sc_if->arpcom.ac_if;
/* Unreset the XMAC. */
SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
DELAY(1000);
/* Reset the XMAC's internal state. */
SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
/* Save the XMAC II revision */
sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
/*
* Perform additional initialization for external PHYs,
* namely for the 1000baseTX cards that use the XMAC's
* GMII mode.
*/
if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
int i = 0;
u_int32_t val;
/* Take PHY out of reset. */
val = sk_win_read_4(sc, SK_GPIO);
if (sc_if->sk_port == SK_PORT_A)
val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
else
val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
sk_win_write_4(sc, SK_GPIO, val);
/* Enable GMII mode on the XMAC. */
SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
sk_miibus_writereg(sc_if->sk_dev, SK_PHYADDR_BCOM,
BRGPHY_MII_BMCR, BRGPHY_BMCR_RESET);
DELAY(10000);
sk_miibus_writereg(sc_if->sk_dev, SK_PHYADDR_BCOM,
BRGPHY_MII_IMR, 0xFFF0);
/*
* Early versions of the BCM5400 apparently have
* a bug that requires them to have their reserved
* registers initialized to some magic values. I don't
* know what the numbers do, I'm just the messenger.
*/
if (sk_miibus_readreg(sc_if->sk_dev,
SK_PHYADDR_BCOM, 0x03) == 0x6041) {
while(bhack[i].reg) {
sk_miibus_writereg(sc_if->sk_dev,
SK_PHYADDR_BCOM, bhack[i].reg,
bhack[i].val);
i++;
}
}
}
/* Set station address */
SK_XM_WRITE_2(sc_if, XM_PAR0,
*(u_int16_t *)(&sc_if->arpcom.ac_enaddr[0]));
SK_XM_WRITE_2(sc_if, XM_PAR1,
*(u_int16_t *)(&sc_if->arpcom.ac_enaddr[2]));
SK_XM_WRITE_2(sc_if, XM_PAR2,
*(u_int16_t *)(&sc_if->arpcom.ac_enaddr[4]));
SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
if (ifp->if_flags & IFF_PROMISC) {
SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
} else {
SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
}
if (ifp->if_flags & IFF_BROADCAST) {
SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
} else {
SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
}
/* We don't need the FCS appended to the packet. */
SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
/* We want short frames padded to 60 bytes. */
SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
/*
* Enable the reception of all error frames. This is is
* a necessary evil due to the design of the XMAC. The
* XMAC's receive FIFO is only 8K in size, however jumbo
* frames can be up to 9000 bytes in length. When bad
* frame filtering is enabled, the XMAC's RX FIFO operates
* in 'store and forward' mode. For this to work, the
* entire frame has to fit into the FIFO, but that means
* that jumbo frames larger than 8192 bytes will be
* truncated. Disabling all bad frame filtering causes
* the RX FIFO to operate in streaming mode, in which
* case the XMAC will start transfering frames out of the
* RX FIFO as soon as the FIFO threshold is reached.
*/
SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
XM_MODE_RX_INRANGELEN);
if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
else
SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
/*
* Bump up the transmit threshold. This helps hold off transmit
* underruns when we're blasting traffic from both ports at once.
*/
SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
/* Set multicast filter */
sk_setmulti(sc_if);
/* Clear and enable interrupts */
SK_XM_READ_2(sc_if, XM_ISR);
if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
else
SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
/* Configure MAC arbiter */
switch(sc_if->sk_xmac_rev) {
case XM_XMAC_REV_B2:
sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
break;
case XM_XMAC_REV_C1:
sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
break;
default:
break;
}
sk_win_write_2(sc, SK_MACARB_CTL,
SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
sc_if->sk_link = 1;
return;
}
/*
* Note that to properly initialize any part of the GEnesis chip,
* you first have to take it out of reset mode.
*/
static void
sk_init(xsc)
void *xsc;
{
struct sk_if_softc *sc_if = xsc;
struct sk_softc *sc;
struct ifnet *ifp;
struct mii_data *mii;
SK_IF_LOCK(sc_if);
ifp = &sc_if->arpcom.ac_if;
sc = sc_if->sk_softc;
mii = device_get_softc(sc_if->sk_miibus);
/* Cancel pending I/O and free all RX/TX buffers. */
sk_stop(sc_if);
/* Configure LINK_SYNC LED */
SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_ON);
/* Configure RX LED */
SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_START);
/* Configure TX LED */
SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_TXLEDCTL_COUNTER_START);
/* Configure I2C registers */
/* Configure XMAC(s) */
sk_init_xmac(sc_if);
mii_mediachg(mii);
/* Configure MAC FIFOs */
SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
/* Configure transmit arbiter(s) */
SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
/* Configure RAMbuffers */
SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
/* Configure BMUs */
SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
vtophys(&sc_if->sk_rdata->sk_rx_ring[0]));
SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
vtophys(&sc_if->sk_rdata->sk_tx_ring[0]));
SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
/* Init descriptors */
if (sk_init_rx_ring(sc_if) == ENOBUFS) {
printf("sk%d: initialization failed: no "
"memory for rx buffers\n", sc_if->sk_unit);
sk_stop(sc_if);
SK_IF_UNLOCK(sc_if);
return;
}
sk_init_tx_ring(sc_if);
/* Configure interrupt handling */
CSR_READ_4(sc, SK_ISSR);
if (sc_if->sk_port == SK_PORT_A)
sc->sk_intrmask |= SK_INTRS1;
else
sc->sk_intrmask |= SK_INTRS2;
sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
/* Start BMUs. */
SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
/* Enable XMACs TX and RX state machines */
SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
SK_IF_UNLOCK(sc_if);
return;
}
static void
sk_stop(sc_if)
struct sk_if_softc *sc_if;
{
int i;
struct sk_softc *sc;
struct ifnet *ifp;
SK_IF_LOCK(sc_if);
sc = sc_if->sk_softc;
ifp = &sc_if->arpcom.ac_if;
untimeout(sk_tick, sc_if, sc_if->sk_tick_ch);
if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
u_int32_t val;
/* Put PHY back into reset. */
val = sk_win_read_4(sc, SK_GPIO);
if (sc_if->sk_port == SK_PORT_A) {
val |= SK_GPIO_DIR0;
val &= ~SK_GPIO_DAT0;
} else {
val |= SK_GPIO_DIR2;
val &= ~SK_GPIO_DAT2;
}
sk_win_write_4(sc, SK_GPIO, val);
}
/* Turn off various components of this interface. */
SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_RESET);
SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
/* Disable interrupts */
if (sc_if->sk_port == SK_PORT_A)
sc->sk_intrmask &= ~SK_INTRS1;
else
sc->sk_intrmask &= ~SK_INTRS2;
CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
SK_XM_READ_2(sc_if, XM_ISR);
SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
/* Free RX and TX mbufs still in the queues. */
for (i = 0; i < SK_RX_RING_CNT; i++) {
if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
}
}
for (i = 0; i < SK_TX_RING_CNT; i++) {
if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
}
}
ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
SK_IF_UNLOCK(sc_if);
return;
}