freebsd-dev/cddl/contrib/opensolaris/lib/libdtrace/common/dt_proc.c
Rui Paulo 0f2bd1e89d Add libdtrace support for tracing userland programs.
Summary of changes:
* Implement a compatibility shim between Solaris libproc and our
libproc and remove several ifdefs because of this.
* Port the drti to FreeBSD.
* Implement the missing DOODAD sections
* Link with libproc and librtld_db
* Support for ustack, jstack and uregs (by sson@)
* Misc bugfixing

When writing the SUWN_dof section, we had to resort to building the ELF
file layout by "hand". This is the job of libelf, but our libelf doesn't
support this yet. When libelf is fixed, we can remove the code under
#ifdef BROKEN_LIBELF.

Sponsored by:	The FreeBSD Foundation
2010-08-21 11:50:53 +00:00

1209 lines
35 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2010 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/*
* DTrace Process Control
*
* This file provides a set of routines that permit libdtrace and its clients
* to create and grab process handles using libproc, and to share these handles
* between library mechanisms that need libproc access, such as ustack(), and
* client mechanisms that need libproc access, such as dtrace(1M) -c and -p.
* The library provides several mechanisms in the libproc control layer:
*
* Reference Counting: The library code and client code can independently grab
* the same process handles without interfering with one another. Only when
* the reference count drops to zero and the handle is not being cached (see
* below for more information on caching) will Prelease() be called on it.
*
* Handle Caching: If a handle is grabbed PGRAB_RDONLY (e.g. by ustack()) and
* the reference count drops to zero, the handle is not immediately released.
* Instead, libproc handles are maintained on dph_lrulist in order from most-
* recently accessed to least-recently accessed. Idle handles are maintained
* until a pre-defined LRU cache limit is exceeded, permitting repeated calls
* to ustack() to avoid the overhead of releasing and re-grabbing processes.
*
* Process Control: For processes that are grabbed for control (~PGRAB_RDONLY)
* or created by dt_proc_create(), a control thread is created to provide
* callbacks on process exit and symbol table caching on dlopen()s.
*
* MT-Safety: Libproc is not MT-Safe, so dt_proc_lock() and dt_proc_unlock()
* are provided to synchronize access to the libproc handle between libdtrace
* code and client code and the control thread's use of the ps_prochandle.
*
* NOTE: MT-Safety is NOT provided for libdtrace itself, or for use of the
* dtrace_proc_grab/dtrace_proc_create mechanisms. Like all exported libdtrace
* calls, these are assumed to be MT-Unsafe. MT-Safety is ONLY provided for
* synchronization between libdtrace control threads and the client thread.
*
* The ps_prochandles themselves are maintained along with a dt_proc_t struct
* in a hash table indexed by PID. This provides basic locking and reference
* counting. The dt_proc_t is also maintained in LRU order on dph_lrulist.
* The dph_lrucnt and dph_lrulim count the number of cacheable processes and
* the current limit on the number of actively cached entries.
*
* The control thread for a process establishes breakpoints at the rtld_db
* locations of interest, updates mappings and symbol tables at these points,
* and handles exec and fork (by always following the parent). The control
* thread automatically exits when the process dies or control is lost.
*
* A simple notification mechanism is provided for libdtrace clients using
* dtrace_handle_proc() for notification of PS_UNDEAD or PS_LOST events. If
* such an event occurs, the dt_proc_t itself is enqueued on a notification
* list and the control thread broadcasts to dph_cv. dtrace_sleep() will wake
* up using this condition and will then call the client handler as necessary.
*/
#include <sys/wait.h>
#if defined(sun)
#include <sys/lwp.h>
#endif
#include <strings.h>
#include <signal.h>
#include <assert.h>
#include <errno.h>
#include <dt_proc.h>
#include <dt_pid.h>
#include <dt_impl.h>
#if !defined(sun)
#include <sys/syscall.h>
#include <libproc_compat.h>
#define SYS_forksys SYS_fork
#endif
#define IS_SYS_EXEC(w) (w == SYS_execve)
#define IS_SYS_FORK(w) (w == SYS_vfork || w == SYS_forksys)
static dt_bkpt_t *
dt_proc_bpcreate(dt_proc_t *dpr, uintptr_t addr, dt_bkpt_f *func, void *data)
{
struct ps_prochandle *P = dpr->dpr_proc;
dt_bkpt_t *dbp;
assert(DT_MUTEX_HELD(&dpr->dpr_lock));
if ((dbp = dt_zalloc(dpr->dpr_hdl, sizeof (dt_bkpt_t))) != NULL) {
dbp->dbp_func = func;
dbp->dbp_data = data;
dbp->dbp_addr = addr;
if (Psetbkpt(P, dbp->dbp_addr, &dbp->dbp_instr) == 0)
dbp->dbp_active = B_TRUE;
dt_list_append(&dpr->dpr_bps, dbp);
}
return (dbp);
}
static void
dt_proc_bpdestroy(dt_proc_t *dpr, int delbkpts)
{
int state = Pstate(dpr->dpr_proc);
dt_bkpt_t *dbp, *nbp;
assert(DT_MUTEX_HELD(&dpr->dpr_lock));
for (dbp = dt_list_next(&dpr->dpr_bps); dbp != NULL; dbp = nbp) {
if (delbkpts && dbp->dbp_active &&
state != PS_LOST && state != PS_UNDEAD) {
(void) Pdelbkpt(dpr->dpr_proc,
dbp->dbp_addr, dbp->dbp_instr);
}
nbp = dt_list_next(dbp);
dt_list_delete(&dpr->dpr_bps, dbp);
dt_free(dpr->dpr_hdl, dbp);
}
}
static void
dt_proc_bpmatch(dtrace_hdl_t *dtp, dt_proc_t *dpr)
{
#if defined(sun)
const lwpstatus_t *psp = &Pstatus(dpr->dpr_proc)->pr_lwp;
#else
unsigned long pc;
#endif
dt_bkpt_t *dbp;
assert(DT_MUTEX_HELD(&dpr->dpr_lock));
#if !defined(sun)
proc_regget(dpr->dpr_proc, REG_PC, &pc);
proc_bkptregadj(&pc);
#endif
for (dbp = dt_list_next(&dpr->dpr_bps);
dbp != NULL; dbp = dt_list_next(dbp)) {
#if defined(sun)
if (psp->pr_reg[R_PC] == dbp->dbp_addr)
break;
#else
if (pc == dbp->dbp_addr)
break;
#endif
}
if (dbp == NULL) {
dt_dprintf("pid %d: spurious breakpoint wakeup for %lx\n",
#if defined(sun)
(int)dpr->dpr_pid, (ulong_t)psp->pr_reg[R_PC]);
#else
(int)dpr->dpr_pid, pc);
#endif
return;
}
dt_dprintf("pid %d: hit breakpoint at %lx (%lu)\n",
(int)dpr->dpr_pid, (ulong_t)dbp->dbp_addr, ++dbp->dbp_hits);
dbp->dbp_func(dtp, dpr, dbp->dbp_data);
(void) Pxecbkpt(dpr->dpr_proc, dbp->dbp_instr);
}
static void
dt_proc_bpenable(dt_proc_t *dpr)
{
dt_bkpt_t *dbp;
assert(DT_MUTEX_HELD(&dpr->dpr_lock));
for (dbp = dt_list_next(&dpr->dpr_bps);
dbp != NULL; dbp = dt_list_next(dbp)) {
if (!dbp->dbp_active && Psetbkpt(dpr->dpr_proc,
dbp->dbp_addr, &dbp->dbp_instr) == 0)
dbp->dbp_active = B_TRUE;
}
dt_dprintf("breakpoints enabled\n");
}
static void
dt_proc_bpdisable(dt_proc_t *dpr)
{
dt_bkpt_t *dbp;
assert(DT_MUTEX_HELD(&dpr->dpr_lock));
for (dbp = dt_list_next(&dpr->dpr_bps);
dbp != NULL; dbp = dt_list_next(dbp)) {
if (dbp->dbp_active && Pdelbkpt(dpr->dpr_proc,
dbp->dbp_addr, dbp->dbp_instr) == 0)
dbp->dbp_active = B_FALSE;
}
dt_dprintf("breakpoints disabled\n");
}
static void
dt_proc_notify(dtrace_hdl_t *dtp, dt_proc_hash_t *dph, dt_proc_t *dpr,
const char *msg)
{
dt_proc_notify_t *dprn = dt_alloc(dtp, sizeof (dt_proc_notify_t));
if (dprn == NULL) {
dt_dprintf("failed to allocate notification for %d %s\n",
(int)dpr->dpr_pid, msg);
} else {
dprn->dprn_dpr = dpr;
if (msg == NULL)
dprn->dprn_errmsg[0] = '\0';
else
(void) strlcpy(dprn->dprn_errmsg, msg,
sizeof (dprn->dprn_errmsg));
(void) pthread_mutex_lock(&dph->dph_lock);
dprn->dprn_next = dph->dph_notify;
dph->dph_notify = dprn;
(void) pthread_cond_broadcast(&dph->dph_cv);
(void) pthread_mutex_unlock(&dph->dph_lock);
}
}
/*
* Check to see if the control thread was requested to stop when the victim
* process reached a particular event (why) rather than continuing the victim.
* If 'why' is set in the stop mask, we wait on dpr_cv for dt_proc_continue().
* If 'why' is not set, this function returns immediately and does nothing.
*/
static void
dt_proc_stop(dt_proc_t *dpr, uint8_t why)
{
assert(DT_MUTEX_HELD(&dpr->dpr_lock));
assert(why != DT_PROC_STOP_IDLE);
if (dpr->dpr_stop & why) {
dpr->dpr_stop |= DT_PROC_STOP_IDLE;
dpr->dpr_stop &= ~why;
(void) pthread_cond_broadcast(&dpr->dpr_cv);
/*
* We disable breakpoints while stopped to preserve the
* integrity of the program text for both our own disassembly
* and that of the kernel.
*/
dt_proc_bpdisable(dpr);
while (dpr->dpr_stop & DT_PROC_STOP_IDLE)
(void) pthread_cond_wait(&dpr->dpr_cv, &dpr->dpr_lock);
dt_proc_bpenable(dpr);
}
}
/*ARGSUSED*/
static void
dt_proc_bpmain(dtrace_hdl_t *dtp, dt_proc_t *dpr, const char *fname)
{
dt_dprintf("pid %d: breakpoint at %s()\n", (int)dpr->dpr_pid, fname);
dt_proc_stop(dpr, DT_PROC_STOP_MAIN);
}
static void
dt_proc_rdevent(dtrace_hdl_t *dtp, dt_proc_t *dpr, const char *evname)
{
rd_event_msg_t rdm;
rd_err_e err;
if ((err = rd_event_getmsg(dpr->dpr_rtld, &rdm)) != RD_OK) {
dt_dprintf("pid %d: failed to get %s event message: %s\n",
(int)dpr->dpr_pid, evname, rd_errstr(err));
return;
}
dt_dprintf("pid %d: rtld event %s type=%d state %d\n",
(int)dpr->dpr_pid, evname, rdm.type, rdm.u.state);
switch (rdm.type) {
case RD_DLACTIVITY:
if (rdm.u.state != RD_CONSISTENT)
break;
Pupdate_syms(dpr->dpr_proc);
if (dt_pid_create_probes_module(dtp, dpr) != 0)
dt_proc_notify(dtp, dtp->dt_procs, dpr,
dpr->dpr_errmsg);
break;
case RD_PREINIT:
Pupdate_syms(dpr->dpr_proc);
dt_proc_stop(dpr, DT_PROC_STOP_PREINIT);
break;
case RD_POSTINIT:
Pupdate_syms(dpr->dpr_proc);
dt_proc_stop(dpr, DT_PROC_STOP_POSTINIT);
break;
}
}
static void
dt_proc_rdwatch(dt_proc_t *dpr, rd_event_e event, const char *evname)
{
rd_notify_t rdn;
rd_err_e err;
if ((err = rd_event_addr(dpr->dpr_rtld, event, &rdn)) != RD_OK) {
dt_dprintf("pid %d: failed to get event address for %s: %s\n",
(int)dpr->dpr_pid, evname, rd_errstr(err));
return;
}
if (rdn.type != RD_NOTIFY_BPT) {
dt_dprintf("pid %d: event %s has unexpected type %d\n",
(int)dpr->dpr_pid, evname, rdn.type);
return;
}
(void) dt_proc_bpcreate(dpr, rdn.u.bptaddr,
#if defined(sun)
(dt_bkpt_f *)dt_proc_rdevent, (void *)evname);
#else
/* XXX ugly */
(dt_bkpt_f *)dt_proc_rdevent, __DECONST(void *, evname));
#endif
}
/*
* Common code for enabling events associated with the run-time linker after
* attaching to a process or after a victim process completes an exec(2).
*/
static void
dt_proc_attach(dt_proc_t *dpr, int exec)
{
#if defined(sun)
const pstatus_t *psp = Pstatus(dpr->dpr_proc);
#endif
rd_err_e err;
GElf_Sym sym;
assert(DT_MUTEX_HELD(&dpr->dpr_lock));
if (exec) {
#if defined(sun)
if (psp->pr_lwp.pr_errno != 0)
return; /* exec failed: nothing needs to be done */
#endif
dt_proc_bpdestroy(dpr, B_FALSE);
#if defined(sun)
Preset_maps(dpr->dpr_proc);
#endif
}
if ((dpr->dpr_rtld = Prd_agent(dpr->dpr_proc)) != NULL &&
(err = rd_event_enable(dpr->dpr_rtld, B_TRUE)) == RD_OK) {
#if defined(sun)
dt_proc_rdwatch(dpr, RD_PREINIT, "RD_PREINIT");
#endif
dt_proc_rdwatch(dpr, RD_POSTINIT, "RD_POSTINIT");
#if defined(sun)
dt_proc_rdwatch(dpr, RD_DLACTIVITY, "RD_DLACTIVITY");
#endif
} else {
dt_dprintf("pid %d: failed to enable rtld events: %s\n",
(int)dpr->dpr_pid, dpr->dpr_rtld ? rd_errstr(err) :
"rtld_db agent initialization failed");
}
Pupdate_maps(dpr->dpr_proc);
if (Pxlookup_by_name(dpr->dpr_proc, LM_ID_BASE,
"a.out", "main", &sym, NULL) == 0) {
(void) dt_proc_bpcreate(dpr, (uintptr_t)sym.st_value,
(dt_bkpt_f *)dt_proc_bpmain, "a.out`main");
} else {
dt_dprintf("pid %d: failed to find a.out`main: %s\n",
(int)dpr->dpr_pid, strerror(errno));
}
}
/*
* Wait for a stopped process to be set running again by some other debugger.
* This is typically not required by /proc-based debuggers, since the usual
* model is that one debugger controls one victim. But DTrace, as usual, has
* its own needs: the stop() action assumes that prun(1) or some other tool
* will be applied to resume the victim process. This could be solved by
* adding a PCWRUN directive to /proc, but that seems like overkill unless
* other debuggers end up needing this functionality, so we implement a cheap
* equivalent to PCWRUN using the set of existing kernel mechanisms.
*
* Our intent is really not just to wait for the victim to run, but rather to
* wait for it to run and then stop again for a reason other than the current
* PR_REQUESTED stop. Since PCWSTOP/Pstopstatus() can be applied repeatedly
* to a stopped process and will return the same result without affecting the
* victim, we can just perform these operations repeatedly until Pstate()
* changes, the representative LWP ID changes, or the stop timestamp advances.
* dt_proc_control() will then rediscover the new state and continue as usual.
* When the process is still stopped in the same exact state, we sleep for a
* brief interval before waiting again so as not to spin consuming CPU cycles.
*/
static void
dt_proc_waitrun(dt_proc_t *dpr)
{
printf("%s:%s(%d): DOODAD\n",__FUNCTION__,__FILE__,__LINE__);
#ifdef DOODAD
struct ps_prochandle *P = dpr->dpr_proc;
const lwpstatus_t *psp = &Pstatus(P)->pr_lwp;
int krflag = psp->pr_flags & (PR_KLC | PR_RLC);
timestruc_t tstamp = psp->pr_tstamp;
lwpid_t lwpid = psp->pr_lwpid;
const long wstop = PCWSTOP;
int pfd = Pctlfd(P);
assert(DT_MUTEX_HELD(&dpr->dpr_lock));
assert(psp->pr_flags & PR_STOPPED);
assert(Pstate(P) == PS_STOP);
/*
* While we are waiting for the victim to run, clear PR_KLC and PR_RLC
* so that if the libdtrace client is killed, the victim stays stopped.
* dt_proc_destroy() will also observe this and perform PRELEASE_HANG.
*/
(void) Punsetflags(P, krflag);
Psync(P);
(void) pthread_mutex_unlock(&dpr->dpr_lock);
while (!dpr->dpr_quit) {
if (write(pfd, &wstop, sizeof (wstop)) == -1 && errno == EINTR)
continue; /* check dpr_quit and continue waiting */
(void) pthread_mutex_lock(&dpr->dpr_lock);
(void) Pstopstatus(P, PCNULL, 0);
psp = &Pstatus(P)->pr_lwp;
/*
* If we've reached a new state, found a new representative, or
* the stop timestamp has changed, restore PR_KLC/PR_RLC to its
* original setting and then return with dpr_lock held.
*/
if (Pstate(P) != PS_STOP || psp->pr_lwpid != lwpid ||
bcmp(&psp->pr_tstamp, &tstamp, sizeof (tstamp)) != 0) {
(void) Psetflags(P, krflag);
Psync(P);
return;
}
(void) pthread_mutex_unlock(&dpr->dpr_lock);
(void) poll(NULL, 0, MILLISEC / 2);
}
(void) pthread_mutex_lock(&dpr->dpr_lock);
#endif
}
typedef struct dt_proc_control_data {
dtrace_hdl_t *dpcd_hdl; /* DTrace handle */
dt_proc_t *dpcd_proc; /* proccess to control */
} dt_proc_control_data_t;
/*
* Main loop for all victim process control threads. We initialize all the
* appropriate /proc control mechanisms, and then enter a loop waiting for
* the process to stop on an event or die. We process any events by calling
* appropriate subroutines, and exit when the victim dies or we lose control.
*
* The control thread synchronizes the use of dpr_proc with other libdtrace
* threads using dpr_lock. We hold the lock for all of our operations except
* waiting while the process is running: this is accomplished by writing a
* PCWSTOP directive directly to the underlying /proc/<pid>/ctl file. If the
* libdtrace client wishes to exit or abort our wait, SIGCANCEL can be used.
*/
static void *
dt_proc_control(void *arg)
{
dt_proc_control_data_t *datap = arg;
dtrace_hdl_t *dtp = datap->dpcd_hdl;
dt_proc_t *dpr = datap->dpcd_proc;
dt_proc_hash_t *dph = dpr->dpr_hdl->dt_procs;
struct ps_prochandle *P = dpr->dpr_proc;
int pid = dpr->dpr_pid;
#if defined(sun)
int pfd = Pctlfd(P);
const long wstop = PCWSTOP;
#endif
int notify = B_FALSE;
/*
* We disable the POSIX thread cancellation mechanism so that the
* client program using libdtrace can't accidentally cancel our thread.
* dt_proc_destroy() uses SIGCANCEL explicitly to simply poke us out
* of PCWSTOP with EINTR, at which point we will see dpr_quit and exit.
*/
(void) pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, NULL);
/*
* Set up the corresponding process for tracing by libdtrace. We want
* to be able to catch breakpoints and efficiently single-step over
* them, and we need to enable librtld_db to watch libdl activity.
*/
(void) pthread_mutex_lock(&dpr->dpr_lock);
#if defined(sun)
(void) Punsetflags(P, PR_ASYNC); /* require synchronous mode */
(void) Psetflags(P, PR_BPTADJ); /* always adjust eip on x86 */
(void) Punsetflags(P, PR_FORK); /* do not inherit on fork */
(void) Pfault(P, FLTBPT, B_TRUE); /* always trace breakpoints */
(void) Pfault(P, FLTTRACE, B_TRUE); /* always trace single-step */
/*
* We must trace exit from exec() system calls so that if the exec is
* successful, we can reset our breakpoints and re-initialize libproc.
*/
(void) Psysexit(P, SYS_execve, B_TRUE);
/*
* We must trace entry and exit for fork() system calls in order to
* disable our breakpoints temporarily during the fork. We do not set
* the PR_FORK flag, so if fork succeeds the child begins executing and
* does not inherit any other tracing behaviors or a control thread.
*/
(void) Psysentry(P, SYS_vfork, B_TRUE);
(void) Psysexit(P, SYS_vfork, B_TRUE);
(void) Psysentry(P, SYS_forksys, B_TRUE);
(void) Psysexit(P, SYS_forksys, B_TRUE);
Psync(P); /* enable all /proc changes */
#endif
dt_proc_attach(dpr, B_FALSE); /* enable rtld breakpoints */
/*
* If PR_KLC is set, we created the process; otherwise we grabbed it.
* Check for an appropriate stop request and wait for dt_proc_continue.
*/
#if defined(sun)
if (Pstatus(P)->pr_flags & PR_KLC)
#else
if (proc_getflags(P) & PR_KLC)
#endif
dt_proc_stop(dpr, DT_PROC_STOP_CREATE);
else
dt_proc_stop(dpr, DT_PROC_STOP_GRAB);
if (Psetrun(P, 0, 0) == -1) {
dt_dprintf("pid %d: failed to set running: %s\n",
(int)dpr->dpr_pid, strerror(errno));
}
(void) pthread_mutex_unlock(&dpr->dpr_lock);
/*
* Wait for the process corresponding to this control thread to stop,
* process the event, and then set it running again. We want to sleep
* with dpr_lock *unheld* so that other parts of libdtrace can use the
* ps_prochandle in the meantime (e.g. ustack()). To do this, we write
* a PCWSTOP directive directly to the underlying /proc/<pid>/ctl file.
* Once the process stops, we wake up, grab dpr_lock, and then call
* Pwait() (which will return immediately) and do our processing.
*/
while (!dpr->dpr_quit) {
const lwpstatus_t *psp;
#if defined(sun)
if (write(pfd, &wstop, sizeof (wstop)) == -1 && errno == EINTR)
continue; /* check dpr_quit and continue waiting */
#else
/* Wait for the process to report status. */
proc_wstatus(P);
if (errno == EINTR)
continue; /* check dpr_quit and continue waiting */
#endif
(void) pthread_mutex_lock(&dpr->dpr_lock);
#if defined(sun)
pwait_locked:
if (Pstopstatus(P, PCNULL, 0) == -1 && errno == EINTR) {
(void) pthread_mutex_unlock(&dpr->dpr_lock);
continue; /* check dpr_quit and continue waiting */
}
#endif
switch (Pstate(P)) {
case PS_STOP:
#if defined(sun)
psp = &Pstatus(P)->pr_lwp;
#else
psp = proc_getlwpstatus(P);
#endif
dt_dprintf("pid %d: proc stopped showing %d/%d\n",
pid, psp->pr_why, psp->pr_what);
/*
* If the process stops showing PR_REQUESTED, then the
* DTrace stop() action was applied to it or another
* debugging utility (e.g. pstop(1)) asked it to stop.
* In either case, the user's intention is for the
* process to remain stopped until another external
* mechanism (e.g. prun(1)) is applied. So instead of
* setting the process running ourself, we wait for
* someone else to do so. Once that happens, we return
* to our normal loop waiting for an event of interest.
*/
if (psp->pr_why == PR_REQUESTED) {
dt_proc_waitrun(dpr);
(void) pthread_mutex_unlock(&dpr->dpr_lock);
continue;
}
/*
* If the process stops showing one of the events that
* we are tracing, perform the appropriate response.
* Note that we ignore PR_SUSPENDED, PR_CHECKPOINT, and
* PR_JOBCONTROL by design: if one of these conditions
* occurs, we will fall through to Psetrun() but the
* process will remain stopped in the kernel by the
* corresponding mechanism (e.g. job control stop).
*/
if (psp->pr_why == PR_FAULTED && psp->pr_what == FLTBPT)
dt_proc_bpmatch(dtp, dpr);
else if (psp->pr_why == PR_SYSENTRY &&
IS_SYS_FORK(psp->pr_what))
dt_proc_bpdisable(dpr);
else if (psp->pr_why == PR_SYSEXIT &&
IS_SYS_FORK(psp->pr_what))
dt_proc_bpenable(dpr);
else if (psp->pr_why == PR_SYSEXIT &&
IS_SYS_EXEC(psp->pr_what))
dt_proc_attach(dpr, B_TRUE);
break;
case PS_LOST:
#if defined(sun)
if (Preopen(P) == 0)
goto pwait_locked;
#endif
dt_dprintf("pid %d: proc lost: %s\n",
pid, strerror(errno));
dpr->dpr_quit = B_TRUE;
notify = B_TRUE;
break;
case PS_UNDEAD:
dt_dprintf("pid %d: proc died\n", pid);
dpr->dpr_quit = B_TRUE;
notify = B_TRUE;
break;
}
if (Pstate(P) != PS_UNDEAD && Psetrun(P, 0, 0) == -1) {
dt_dprintf("pid %d: failed to set running: %s\n",
(int)dpr->dpr_pid, strerror(errno));
}
(void) pthread_mutex_unlock(&dpr->dpr_lock);
}
/*
* If the control thread detected PS_UNDEAD or PS_LOST, then enqueue
* the dt_proc_t structure on the dt_proc_hash_t notification list.
*/
if (notify)
dt_proc_notify(dtp, dph, dpr, NULL);
/*
* Destroy and remove any remaining breakpoints, set dpr_done and clear
* dpr_tid to indicate the control thread has exited, and notify any
* waiting thread in dt_proc_destroy() that we have succesfully exited.
*/
(void) pthread_mutex_lock(&dpr->dpr_lock);
dt_proc_bpdestroy(dpr, B_TRUE);
dpr->dpr_done = B_TRUE;
dpr->dpr_tid = 0;
(void) pthread_cond_broadcast(&dpr->dpr_cv);
(void) pthread_mutex_unlock(&dpr->dpr_lock);
return (NULL);
}
/*PRINTFLIKE3*/
static struct ps_prochandle *
dt_proc_error(dtrace_hdl_t *dtp, dt_proc_t *dpr, const char *format, ...)
{
va_list ap;
va_start(ap, format);
dt_set_errmsg(dtp, NULL, NULL, NULL, 0, format, ap);
va_end(ap);
if (dpr->dpr_proc != NULL)
Prelease(dpr->dpr_proc, 0);
dt_free(dtp, dpr);
(void) dt_set_errno(dtp, EDT_COMPILER);
return (NULL);
}
dt_proc_t *
dt_proc_lookup(dtrace_hdl_t *dtp, struct ps_prochandle *P, int remove)
{
dt_proc_hash_t *dph = dtp->dt_procs;
#if defined(sun)
pid_t pid = Pstatus(P)->pr_pid;
#else
pid_t pid = proc_getpid(P);
#endif
dt_proc_t *dpr, **dpp = &dph->dph_hash[pid & (dph->dph_hashlen - 1)];
for (dpr = *dpp; dpr != NULL; dpr = dpr->dpr_hash) {
if (dpr->dpr_pid == pid)
break;
else
dpp = &dpr->dpr_hash;
}
assert(dpr != NULL);
assert(dpr->dpr_proc == P);
if (remove)
*dpp = dpr->dpr_hash; /* remove from pid hash chain */
return (dpr);
}
static void
dt_proc_destroy(dtrace_hdl_t *dtp, struct ps_prochandle *P)
{
dt_proc_t *dpr = dt_proc_lookup(dtp, P, B_FALSE);
dt_proc_hash_t *dph = dtp->dt_procs;
dt_proc_notify_t *npr, **npp;
int rflag;
assert(dpr != NULL);
/*
* If neither PR_KLC nor PR_RLC is set, then the process is stopped by
* an external debugger and we were waiting in dt_proc_waitrun().
* Leave the process in this condition using PRELEASE_HANG.
*/
#if defined(sun)
if (!(Pstatus(dpr->dpr_proc)->pr_flags & (PR_KLC | PR_RLC))) {
#else
if (!(proc_getflags(dpr->dpr_proc) & (PR_KLC | PR_RLC))) {
#endif
dt_dprintf("abandoning pid %d\n", (int)dpr->dpr_pid);
rflag = PRELEASE_HANG;
#if defined(sun)
} else if (Pstatus(dpr->dpr_proc)->pr_flags & PR_KLC) {
#else
} else if (proc_getflags(dpr->dpr_proc) & PR_KLC) {
#endif
dt_dprintf("killing pid %d\n", (int)dpr->dpr_pid);
rflag = PRELEASE_KILL; /* apply kill-on-last-close */
} else {
dt_dprintf("releasing pid %d\n", (int)dpr->dpr_pid);
rflag = 0; /* apply run-on-last-close */
}
if (dpr->dpr_tid) {
/*
* Set the dpr_quit flag to tell the daemon thread to exit. We
* send it a SIGCANCEL to poke it out of PCWSTOP or any other
* long-term /proc system call. Our daemon threads have POSIX
* cancellation disabled, so EINTR will be the only effect. We
* then wait for dpr_done to indicate the thread has exited.
*
* We can't use pthread_kill() to send SIGCANCEL because the
* interface forbids it and we can't use pthread_cancel()
* because with cancellation disabled it won't actually
* send SIGCANCEL to the target thread, so we use _lwp_kill()
* to do the job. This is all built on evil knowledge of
* the details of the cancellation mechanism in libc.
*/
(void) pthread_mutex_lock(&dpr->dpr_lock);
dpr->dpr_quit = B_TRUE;
#if defined(sun)
(void) _lwp_kill(dpr->dpr_tid, SIGCANCEL);
#else
pthread_kill(dpr->dpr_tid, SIGUSR1);
#endif
/*
* If the process is currently idling in dt_proc_stop(), re-
* enable breakpoints and poke it into running again.
*/
if (dpr->dpr_stop & DT_PROC_STOP_IDLE) {
dt_proc_bpenable(dpr);
dpr->dpr_stop &= ~DT_PROC_STOP_IDLE;
(void) pthread_cond_broadcast(&dpr->dpr_cv);
}
while (!dpr->dpr_done)
(void) pthread_cond_wait(&dpr->dpr_cv, &dpr->dpr_lock);
(void) pthread_mutex_unlock(&dpr->dpr_lock);
}
/*
* Before we free the process structure, remove this dt_proc_t from the
* lookup hash, and then walk the dt_proc_hash_t's notification list
* and remove this dt_proc_t if it is enqueued.
*/
(void) pthread_mutex_lock(&dph->dph_lock);
(void) dt_proc_lookup(dtp, P, B_TRUE);
npp = &dph->dph_notify;
while ((npr = *npp) != NULL) {
if (npr->dprn_dpr == dpr) {
*npp = npr->dprn_next;
dt_free(dtp, npr);
} else {
npp = &npr->dprn_next;
}
}
(void) pthread_mutex_unlock(&dph->dph_lock);
/*
* Remove the dt_proc_list from the LRU list, release the underlying
* libproc handle, and free our dt_proc_t data structure.
*/
if (dpr->dpr_cacheable) {
assert(dph->dph_lrucnt != 0);
dph->dph_lrucnt--;
}
dt_list_delete(&dph->dph_lrulist, dpr);
Prelease(dpr->dpr_proc, rflag);
dt_free(dtp, dpr);
}
static int
dt_proc_create_thread(dtrace_hdl_t *dtp, dt_proc_t *dpr, uint_t stop)
{
dt_proc_control_data_t data;
sigset_t nset, oset;
pthread_attr_t a;
int err;
(void) pthread_mutex_lock(&dpr->dpr_lock);
dpr->dpr_stop |= stop; /* set bit for initial rendezvous */
(void) pthread_attr_init(&a);
(void) pthread_attr_setdetachstate(&a, PTHREAD_CREATE_DETACHED);
(void) sigfillset(&nset);
(void) sigdelset(&nset, SIGABRT); /* unblocked for assert() */
#if defined(sun)
(void) sigdelset(&nset, SIGCANCEL); /* see dt_proc_destroy() */
#else
(void) sigdelset(&nset, SIGUSR1); /* see dt_proc_destroy() */
#endif
data.dpcd_hdl = dtp;
data.dpcd_proc = dpr;
(void) pthread_sigmask(SIG_SETMASK, &nset, &oset);
err = pthread_create(&dpr->dpr_tid, &a, dt_proc_control, &data);
(void) pthread_sigmask(SIG_SETMASK, &oset, NULL);
/*
* If the control thread was created, then wait on dpr_cv for either
* dpr_done to be set (the victim died or the control thread failed)
* or DT_PROC_STOP_IDLE to be set, indicating that the victim is now
* stopped by /proc and the control thread is at the rendezvous event.
* On success, we return with the process and control thread stopped:
* the caller can then apply dt_proc_continue() to resume both.
*/
if (err == 0) {
while (!dpr->dpr_done && !(dpr->dpr_stop & DT_PROC_STOP_IDLE))
(void) pthread_cond_wait(&dpr->dpr_cv, &dpr->dpr_lock);
/*
* If dpr_done is set, the control thread aborted before it
* reached the rendezvous event. This is either due to PS_LOST
* or PS_UNDEAD (i.e. the process died). We try to provide a
* small amount of useful information to help figure it out.
*/
if (dpr->dpr_done) {
#if defined(sun)
const psinfo_t *prp = Ppsinfo(dpr->dpr_proc);
int stat = prp ? prp->pr_wstat : 0;
int pid = dpr->dpr_pid;
#else
int stat = proc_getwstat(dpr->dpr_proc);
int pid = proc_getpid(dpr->dpr_proc);
#endif
if (proc_state(dpr->dpr_proc) == PS_LOST) {
(void) dt_proc_error(dpr->dpr_hdl, dpr,
"failed to control pid %d: process exec'd "
"set-id or unobservable program\n", pid);
} else if (WIFSIGNALED(stat)) {
(void) dt_proc_error(dpr->dpr_hdl, dpr,
"failed to control pid %d: process died "
"from signal %d\n", pid, WTERMSIG(stat));
} else {
(void) dt_proc_error(dpr->dpr_hdl, dpr,
"failed to control pid %d: process exited "
"with status %d\n", pid, WEXITSTATUS(stat));
}
err = ESRCH; /* cause grab() or create() to fail */
}
} else {
(void) dt_proc_error(dpr->dpr_hdl, dpr,
"failed to create control thread for process-id %d: %s\n",
(int)dpr->dpr_pid, strerror(err));
}
(void) pthread_mutex_unlock(&dpr->dpr_lock);
(void) pthread_attr_destroy(&a);
return (err);
}
struct ps_prochandle *
dt_proc_create(dtrace_hdl_t *dtp, const char *file, char *const *argv,
proc_child_func *pcf, void *child_arg)
{
dt_proc_hash_t *dph = dtp->dt_procs;
dt_proc_t *dpr;
int err;
if ((dpr = dt_zalloc(dtp, sizeof (dt_proc_t))) == NULL)
return (NULL); /* errno is set for us */
(void) pthread_mutex_init(&dpr->dpr_lock, NULL);
(void) pthread_cond_init(&dpr->dpr_cv, NULL);
#if defined(sun)
if ((dpr->dpr_proc = Pcreate(file, argv, &err, NULL, 0)) == NULL) {
#else
if ((err = proc_create(file, argv, pcf, child_arg,
&dpr->dpr_proc)) != 0) {
#endif
return (dt_proc_error(dtp, dpr,
"failed to execute %s: %s\n", file, Pcreate_error(err)));
}
dpr->dpr_hdl = dtp;
#if defined(sun)
dpr->dpr_pid = Pstatus(dpr->dpr_proc)->pr_pid;
#else
dpr->dpr_pid = proc_getpid(dpr->dpr_proc);
#endif
(void) Punsetflags(dpr->dpr_proc, PR_RLC);
(void) Psetflags(dpr->dpr_proc, PR_KLC);
if (dt_proc_create_thread(dtp, dpr, dtp->dt_prcmode) != 0)
return (NULL); /* dt_proc_error() has been called for us */
dpr->dpr_hash = dph->dph_hash[dpr->dpr_pid & (dph->dph_hashlen - 1)];
dph->dph_hash[dpr->dpr_pid & (dph->dph_hashlen - 1)] = dpr;
dt_list_prepend(&dph->dph_lrulist, dpr);
dt_dprintf("created pid %d\n", (int)dpr->dpr_pid);
dpr->dpr_refs++;
return (dpr->dpr_proc);
}
struct ps_prochandle *
dt_proc_grab(dtrace_hdl_t *dtp, pid_t pid, int flags, int nomonitor)
{
dt_proc_hash_t *dph = dtp->dt_procs;
uint_t h = pid & (dph->dph_hashlen - 1);
dt_proc_t *dpr, *opr;
int err;
/*
* Search the hash table for the pid. If it is already grabbed or
* created, move the handle to the front of the lrulist, increment
* the reference count, and return the existing ps_prochandle.
*/
for (dpr = dph->dph_hash[h]; dpr != NULL; dpr = dpr->dpr_hash) {
if (dpr->dpr_pid == pid && !dpr->dpr_stale) {
/*
* If the cached handle was opened read-only and
* this request is for a writeable handle, mark
* the cached handle as stale and open a new handle.
* Since it's stale, unmark it as cacheable.
*/
if (dpr->dpr_rdonly && !(flags & PGRAB_RDONLY)) {
dt_dprintf("upgrading pid %d\n", (int)pid);
dpr->dpr_stale = B_TRUE;
dpr->dpr_cacheable = B_FALSE;
dph->dph_lrucnt--;
break;
}
dt_dprintf("grabbed pid %d (cached)\n", (int)pid);
dt_list_delete(&dph->dph_lrulist, dpr);
dt_list_prepend(&dph->dph_lrulist, dpr);
dpr->dpr_refs++;
return (dpr->dpr_proc);
}
}
if ((dpr = dt_zalloc(dtp, sizeof (dt_proc_t))) == NULL)
return (NULL); /* errno is set for us */
(void) pthread_mutex_init(&dpr->dpr_lock, NULL);
(void) pthread_cond_init(&dpr->dpr_cv, NULL);
#if defined(sun)
if ((dpr->dpr_proc = Pgrab(pid, flags, &err)) == NULL) {
#else
if ((err = proc_attach(pid, flags, &dpr->dpr_proc)) != 0) {
#endif
return (dt_proc_error(dtp, dpr,
"failed to grab pid %d: %s\n", (int)pid, Pgrab_error(err)));
}
dpr->dpr_hdl = dtp;
dpr->dpr_pid = pid;
(void) Punsetflags(dpr->dpr_proc, PR_KLC);
(void) Psetflags(dpr->dpr_proc, PR_RLC);
/*
* If we are attempting to grab the process without a monitor
* thread, then mark the process cacheable only if it's being
* grabbed read-only. If we're currently caching more process
* handles than dph_lrulim permits, attempt to find the
* least-recently-used handle that is currently unreferenced and
* release it from the cache. Otherwise we are grabbing the process
* for control: create a control thread for this process and store
* its ID in dpr->dpr_tid.
*/
if (nomonitor || (flags & PGRAB_RDONLY)) {
if (dph->dph_lrucnt >= dph->dph_lrulim) {
for (opr = dt_list_prev(&dph->dph_lrulist);
opr != NULL; opr = dt_list_prev(opr)) {
if (opr->dpr_cacheable && opr->dpr_refs == 0) {
dt_proc_destroy(dtp, opr->dpr_proc);
break;
}
}
}
if (flags & PGRAB_RDONLY) {
dpr->dpr_cacheable = B_TRUE;
dpr->dpr_rdonly = B_TRUE;
dph->dph_lrucnt++;
}
} else if (dt_proc_create_thread(dtp, dpr, DT_PROC_STOP_GRAB) != 0)
return (NULL); /* dt_proc_error() has been called for us */
dpr->dpr_hash = dph->dph_hash[h];
dph->dph_hash[h] = dpr;
dt_list_prepend(&dph->dph_lrulist, dpr);
dt_dprintf("grabbed pid %d\n", (int)pid);
dpr->dpr_refs++;
return (dpr->dpr_proc);
}
void
dt_proc_release(dtrace_hdl_t *dtp, struct ps_prochandle *P)
{
dt_proc_t *dpr = dt_proc_lookup(dtp, P, B_FALSE);
dt_proc_hash_t *dph = dtp->dt_procs;
assert(dpr != NULL);
assert(dpr->dpr_refs != 0);
if (--dpr->dpr_refs == 0 &&
(!dpr->dpr_cacheable || dph->dph_lrucnt > dph->dph_lrulim))
dt_proc_destroy(dtp, P);
}
void
dt_proc_continue(dtrace_hdl_t *dtp, struct ps_prochandle *P)
{
dt_proc_t *dpr = dt_proc_lookup(dtp, P, B_FALSE);
(void) pthread_mutex_lock(&dpr->dpr_lock);
if (dpr->dpr_stop & DT_PROC_STOP_IDLE) {
dpr->dpr_stop &= ~DT_PROC_STOP_IDLE;
(void) pthread_cond_broadcast(&dpr->dpr_cv);
}
(void) pthread_mutex_unlock(&dpr->dpr_lock);
}
void
dt_proc_lock(dtrace_hdl_t *dtp, struct ps_prochandle *P)
{
dt_proc_t *dpr = dt_proc_lookup(dtp, P, B_FALSE);
int err = pthread_mutex_lock(&dpr->dpr_lock);
assert(err == 0); /* check for recursion */
}
void
dt_proc_unlock(dtrace_hdl_t *dtp, struct ps_prochandle *P)
{
dt_proc_t *dpr = dt_proc_lookup(dtp, P, B_FALSE);
int err = pthread_mutex_unlock(&dpr->dpr_lock);
assert(err == 0); /* check for unheld lock */
}
void
dt_proc_hash_create(dtrace_hdl_t *dtp)
{
if ((dtp->dt_procs = dt_zalloc(dtp, sizeof (dt_proc_hash_t) +
sizeof (dt_proc_t *) * _dtrace_pidbuckets - 1)) != NULL) {
(void) pthread_mutex_init(&dtp->dt_procs->dph_lock, NULL);
(void) pthread_cond_init(&dtp->dt_procs->dph_cv, NULL);
dtp->dt_procs->dph_hashlen = _dtrace_pidbuckets;
dtp->dt_procs->dph_lrulim = _dtrace_pidlrulim;
}
}
void
dt_proc_hash_destroy(dtrace_hdl_t *dtp)
{
dt_proc_hash_t *dph = dtp->dt_procs;
dt_proc_t *dpr;
while ((dpr = dt_list_next(&dph->dph_lrulist)) != NULL)
dt_proc_destroy(dtp, dpr->dpr_proc);
dtp->dt_procs = NULL;
dt_free(dtp, dph);
}
struct ps_prochandle *
dtrace_proc_create(dtrace_hdl_t *dtp, const char *file, char *const *argv,
proc_child_func *pcf, void *child_arg)
{
dt_ident_t *idp = dt_idhash_lookup(dtp->dt_macros, "target");
struct ps_prochandle *P = dt_proc_create(dtp, file, argv, pcf, child_arg);
if (P != NULL && idp != NULL && idp->di_id == 0) {
#if defined(sun)
idp->di_id = Pstatus(P)->pr_pid; /* $target = created pid */
#else
idp->di_id = proc_getpid(P); /* $target = created pid */
#endif
}
return (P);
}
struct ps_prochandle *
dtrace_proc_grab(dtrace_hdl_t *dtp, pid_t pid, int flags)
{
dt_ident_t *idp = dt_idhash_lookup(dtp->dt_macros, "target");
struct ps_prochandle *P = dt_proc_grab(dtp, pid, flags, 0);
if (P != NULL && idp != NULL && idp->di_id == 0)
idp->di_id = pid; /* $target = grabbed pid */
return (P);
}
void
dtrace_proc_release(dtrace_hdl_t *dtp, struct ps_prochandle *P)
{
dt_proc_release(dtp, P);
}
void
dtrace_proc_continue(dtrace_hdl_t *dtp, struct ps_prochandle *P)
{
dt_proc_continue(dtp, P);
}