2862674874
configured in the kernel.
729 lines
18 KiB
C
729 lines
18 KiB
C
/*-
|
|
* Copyright (c) 1990 The Regents of the University of California.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to Berkeley by
|
|
* the University of Utah, and William Jolitz.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* from: @(#)trap.c 7.4 (Berkeley) 5/13/91
|
|
* $Id: trap.c,v 1.21 1994/04/02 07:00:31 davidg Exp $
|
|
*/
|
|
|
|
/*
|
|
* 386 Trap and System call handleing
|
|
*/
|
|
|
|
#include "isa.h"
|
|
#include "npx.h"
|
|
#include "ddb.h"
|
|
#include "machine/cpu.h"
|
|
#include "machine/psl.h"
|
|
#include "machine/reg.h"
|
|
#include "machine/eflags.h"
|
|
|
|
#include "param.h"
|
|
#include "systm.h"
|
|
#include "proc.h"
|
|
#include "user.h"
|
|
#include "acct.h"
|
|
#include "kernel.h"
|
|
#ifdef KTRACE
|
|
#include "ktrace.h"
|
|
#endif
|
|
|
|
#include "vm/vm_param.h"
|
|
#include "vm/pmap.h"
|
|
#include "vm/vm_map.h"
|
|
#include "vm/vm_user.h"
|
|
#include "vm/vm_page.h"
|
|
#include "sys/vmmeter.h"
|
|
|
|
#include "machine/trap.h"
|
|
|
|
#ifdef __GNUC__
|
|
|
|
/*
|
|
* The "r" contraint could be "rm" except for fatal bugs in gas. As usual,
|
|
* we omit the size from the mov instruction to avoid nonfatal bugs in gas.
|
|
*/
|
|
#define read_gs() ({ u_short gs; __asm("mov %%gs,%0" : "=r" (gs)); gs; })
|
|
#define write_gs(newgs) __asm("mov %0,%%gs" : : "r" ((u_short) newgs))
|
|
|
|
#else /* not __GNUC__ */
|
|
|
|
u_short read_gs __P((void));
|
|
void write_gs __P((/* promoted u_short */ int gs));
|
|
|
|
#endif /* __GNUC__ */
|
|
|
|
extern int grow(struct proc *,int);
|
|
|
|
struct sysent sysent[];
|
|
int nsysent;
|
|
|
|
#define MAX_TRAP_MSG 27
|
|
char *trap_msg[] = {
|
|
"reserved addressing fault", /* 0 T_RESADFLT */
|
|
"privileged instruction fault", /* 1 T_PRIVINFLT */
|
|
"reserved operand fault", /* 2 T_RESOPFLT */
|
|
"breakpoint instruction fault", /* 3 T_BPTFLT */
|
|
"", /* 4 unused */
|
|
"system call trap", /* 5 T_SYSCALL */
|
|
"arithmetic trap", /* 6 T_ARITHTRAP */
|
|
"system forced exception", /* 7 T_ASTFLT */
|
|
"segmentation (limit) fault", /* 8 T_SEGFLT */
|
|
"protection fault", /* 9 T_PROTFLT */
|
|
"trace trap", /* 10 T_TRCTRAP */
|
|
"", /* 11 unused */
|
|
"page fault", /* 12 T_PAGEFLT */
|
|
"page table fault", /* 13 T_TABLEFLT */
|
|
"alignment fault", /* 14 T_ALIGNFLT */
|
|
"kernel stack pointer not valid", /* 15 T_KSPNOTVAL */
|
|
"bus error", /* 16 T_BUSERR */
|
|
"kernel debugger fault", /* 17 T_KDBTRAP */
|
|
"integer divide fault", /* 18 T_DIVIDE */
|
|
"non-maskable interrupt trap", /* 19 T_NMI */
|
|
"overflow trap", /* 20 T_OFLOW */
|
|
"FPU bounds check fault", /* 21 T_BOUND */
|
|
"FPU device not available", /* 22 T_DNA */
|
|
"double fault", /* 23 T_DOUBLEFLT */
|
|
"FPU operand fetch fault", /* 24 T_FPOPFLT */
|
|
"invalid TSS fault", /* 25 T_TSSFLT */
|
|
"segment not present fault", /* 26 T_SEGNPFLT */
|
|
"stack fault", /* 27 T_STKFLT */
|
|
};
|
|
|
|
#define pde_v(v) (PTD[((v)>>PD_SHIFT)&1023].pd_v)
|
|
|
|
/*
|
|
* trap(frame):
|
|
* Exception, fault, and trap interface to BSD kernel. This
|
|
* common code is called from assembly language IDT gate entry
|
|
* routines that prepare a suitable stack frame, and restore this
|
|
* frame after the exception has been processed. Note that the
|
|
* effect is as if the arguments were passed call by reference.
|
|
*/
|
|
|
|
/*ARGSUSED*/
|
|
void
|
|
trap(frame)
|
|
struct trapframe frame;
|
|
{
|
|
register int i;
|
|
register struct proc *p = curproc;
|
|
struct timeval syst;
|
|
int ucode, type, code, eva, fault_type;
|
|
|
|
frame.tf_eflags &= ~PSL_NT; /* clear nested trap XXX */
|
|
type = frame.tf_trapno;
|
|
#if NDDB > 0
|
|
if (curpcb && curpcb->pcb_onfault) {
|
|
if (frame.tf_trapno == T_BPTFLT
|
|
|| frame.tf_trapno == T_TRCTRAP)
|
|
if (kdb_trap (type, 0, &frame))
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
if (curpcb == 0 || curproc == 0)
|
|
goto skiptoswitch;
|
|
if (curpcb->pcb_onfault && frame.tf_trapno != T_PAGEFLT) {
|
|
extern int _udatasel;
|
|
|
|
if (read_gs() != (u_short) _udatasel)
|
|
/*
|
|
* Some user has corrupted %gs but we depend on it in
|
|
* copyout() etc. Fix it up and retry.
|
|
*
|
|
* (We don't preserve %fs or %gs, so users can change
|
|
* them to either _ucodesel, _udatasel or a not-present
|
|
* selector, possibly ORed with 0 to 3, making them
|
|
* volatile for other users. Not preserving them saves
|
|
* time and doesn't lose functionality or open security
|
|
* holes.)
|
|
*/
|
|
write_gs(_udatasel);
|
|
else
|
|
copyfault:
|
|
frame.tf_eip = (int)curpcb->pcb_onfault;
|
|
return;
|
|
}
|
|
|
|
syst = p->p_stime;
|
|
if (ISPL(frame.tf_cs) == SEL_UPL) {
|
|
type |= T_USER;
|
|
p->p_regs = (int *)&frame;
|
|
}
|
|
|
|
skiptoswitch:
|
|
ucode=0;
|
|
eva = rcr2();
|
|
code = frame.tf_err;
|
|
|
|
if ((type & ~T_USER) == T_PAGEFLT)
|
|
goto pfault;
|
|
|
|
switch (type) {
|
|
case T_SEGNPFLT|T_USER:
|
|
case T_STKFLT|T_USER:
|
|
case T_PROTFLT|T_USER: /* protection fault */
|
|
ucode = code + BUS_SEGM_FAULT ;
|
|
i = SIGBUS;
|
|
break;
|
|
|
|
case T_PRIVINFLT|T_USER: /* privileged instruction fault */
|
|
case T_RESADFLT|T_USER: /* reserved addressing fault */
|
|
case T_RESOPFLT|T_USER: /* reserved operand fault */
|
|
case T_FPOPFLT|T_USER: /* coprocessor operand fault */
|
|
ucode = type &~ T_USER;
|
|
i = SIGILL;
|
|
break;
|
|
|
|
case T_ASTFLT|T_USER: /* Allow process switch */
|
|
astoff();
|
|
cnt.v_soft++;
|
|
if ((p->p_flag & SOWEUPC) && p->p_stats->p_prof.pr_scale) {
|
|
addupc(frame.tf_eip, &p->p_stats->p_prof, 1);
|
|
p->p_flag &= ~SOWEUPC;
|
|
}
|
|
goto out;
|
|
|
|
case T_DNA|T_USER:
|
|
#if NNPX > 0
|
|
/* if a transparent fault (due to context switch "late") */
|
|
if (npxdna()) return;
|
|
#endif /* NNPX > 0 */
|
|
#ifdef MATH_EMULATE
|
|
i = math_emulate(&frame);
|
|
if (i == 0) return;
|
|
#else /* MATH_EMULATE */
|
|
panic("trap: math emulation necessary!");
|
|
#endif /* MATH_EMULATE */
|
|
ucode = FPE_FPU_NP_TRAP;
|
|
break;
|
|
|
|
case T_BOUND|T_USER:
|
|
ucode = FPE_SUBRNG_TRAP;
|
|
i = SIGFPE;
|
|
break;
|
|
|
|
case T_OFLOW|T_USER:
|
|
ucode = FPE_INTOVF_TRAP;
|
|
i = SIGFPE;
|
|
break;
|
|
|
|
case T_DIVIDE|T_USER:
|
|
ucode = FPE_INTDIV_TRAP;
|
|
i = SIGFPE;
|
|
break;
|
|
|
|
case T_ARITHTRAP|T_USER:
|
|
ucode = code;
|
|
i = SIGFPE;
|
|
break;
|
|
|
|
pfault:
|
|
case T_PAGEFLT: /* allow page faults in kernel mode */
|
|
case T_PAGEFLT|T_USER: /* page fault */
|
|
{
|
|
vm_offset_t va;
|
|
struct vmspace *vm;
|
|
vm_map_t map = 0;
|
|
int rv = 0, oldflags;
|
|
vm_prot_t ftype;
|
|
unsigned v;
|
|
extern vm_map_t kernel_map;
|
|
|
|
va = trunc_page((vm_offset_t)eva);
|
|
|
|
/*
|
|
* Don't allow user-mode faults in kernel address space
|
|
*/
|
|
if ((type == (T_PAGEFLT|T_USER)) && (va >= KERNBASE)) {
|
|
goto nogo;
|
|
}
|
|
|
|
if ((p == 0) || (type == T_PAGEFLT && va >= KERNBASE)) {
|
|
vm = 0;
|
|
map = kernel_map;
|
|
} else {
|
|
vm = p->p_vmspace;
|
|
map = &vm->vm_map;
|
|
}
|
|
|
|
if (code & PGEX_W)
|
|
ftype = VM_PROT_READ | VM_PROT_WRITE;
|
|
else
|
|
ftype = VM_PROT_READ;
|
|
|
|
oldflags = p->p_flag;
|
|
if (map != kernel_map) {
|
|
vm_offset_t pa;
|
|
vm_offset_t v = (vm_offset_t) vtopte(va);
|
|
vm_page_t ptepg;
|
|
|
|
/*
|
|
* Keep swapout from messing with us during this
|
|
* critical time.
|
|
*/
|
|
p->p_flag |= SLOCK;
|
|
|
|
/*
|
|
* Grow the stack if necessary
|
|
*/
|
|
if ((caddr_t)va > vm->vm_maxsaddr
|
|
&& (caddr_t)va < (caddr_t)USRSTACK) {
|
|
if (!grow(p, va)) {
|
|
rv = KERN_FAILURE;
|
|
p->p_flag &= ~SLOCK;
|
|
p->p_flag |= (oldflags & SLOCK);
|
|
goto nogo;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check if page table is mapped, if not,
|
|
* fault it first
|
|
*/
|
|
|
|
/* Fault the pte only if needed: */
|
|
*(volatile char *)v += 0;
|
|
|
|
ptepg = (vm_page_t) pmap_pte_vm_page(vm_map_pmap(map), v);
|
|
vm_page_hold(ptepg);
|
|
|
|
/* Fault in the user page: */
|
|
rv = vm_fault(map, va, ftype, FALSE);
|
|
|
|
vm_page_unhold(ptepg);
|
|
|
|
/*
|
|
* page table pages don't need to be kept if they
|
|
* are not held
|
|
*/
|
|
if( ptepg->hold_count == 0 && ptepg->wire_count == 0) {
|
|
pmap_page_protect( VM_PAGE_TO_PHYS(ptepg),
|
|
VM_PROT_NONE);
|
|
if( ptepg->flags & PG_CLEAN)
|
|
vm_page_free(ptepg);
|
|
}
|
|
|
|
|
|
p->p_flag &= ~SLOCK;
|
|
p->p_flag |= (oldflags & SLOCK);
|
|
} else {
|
|
/*
|
|
* Since we know that kernel virtual address addresses
|
|
* always have pte pages mapped, we just have to fault
|
|
* the page.
|
|
*/
|
|
rv = vm_fault(map, va, ftype, FALSE);
|
|
}
|
|
|
|
if (rv == KERN_SUCCESS) {
|
|
if (type == T_PAGEFLT)
|
|
return;
|
|
goto out;
|
|
}
|
|
nogo:
|
|
if (type == T_PAGEFLT) {
|
|
if (curpcb->pcb_onfault)
|
|
goto copyfault;
|
|
|
|
goto we_re_toast;
|
|
}
|
|
i = (rv == KERN_PROTECTION_FAILURE) ? SIGBUS : SIGSEGV;
|
|
|
|
/* kludge to pass faulting virtual address to sendsig */
|
|
ucode = type &~ T_USER;
|
|
frame.tf_err = eva;
|
|
|
|
break;
|
|
}
|
|
|
|
#if NDDB == 0
|
|
case T_TRCTRAP: /* trace trap -- someone single stepping lcall's */
|
|
frame.tf_eflags &= ~PSL_T;
|
|
|
|
/* Q: how do we turn it on again? */
|
|
return;
|
|
#endif
|
|
|
|
case T_BPTFLT|T_USER: /* bpt instruction fault */
|
|
case T_TRCTRAP|T_USER: /* trace trap */
|
|
frame.tf_eflags &= ~PSL_T;
|
|
i = SIGTRAP;
|
|
break;
|
|
|
|
#if NISA > 0
|
|
case T_NMI:
|
|
case T_NMI|T_USER:
|
|
#if NDDB > 0
|
|
/* NMI can be hooked up to a pushbutton for debugging */
|
|
printf ("NMI ... going to debugger\n");
|
|
if (kdb_trap (type, 0, &frame))
|
|
return;
|
|
#endif
|
|
/* machine/parity/power fail/"kitchen sink" faults */
|
|
if (isa_nmi(code) == 0) return;
|
|
/* FALL THROUGH */
|
|
#endif
|
|
default:
|
|
we_re_toast:
|
|
|
|
fault_type = type & ~T_USER;
|
|
#if NDDB > 0
|
|
if ((fault_type == T_BPTFLT) || (fault_type == T_TRCTRAP)) {
|
|
if (kdb_trap (type, 0, &frame))
|
|
return;
|
|
}
|
|
#endif
|
|
if (fault_type <= MAX_TRAP_MSG)
|
|
printf("\n\nFatal trap %d: %s while in %s mode\n",
|
|
fault_type, trap_msg[fault_type],
|
|
ISPL(frame.tf_cs) == SEL_UPL ? "user" : "kernel");
|
|
if (fault_type == T_PAGEFLT) {
|
|
printf("fault virtual address = 0x%x\n", eva);
|
|
printf("fault code = %s %s, %s\n",
|
|
code & PGEX_U ? "user" : "supervisor",
|
|
code & PGEX_W ? "write" : "read",
|
|
code & PGEX_P ? "protection violation" : "page not present");
|
|
}
|
|
printf("instruction pointer = 0x%x\n", frame.tf_eip);
|
|
printf("processor eflags = ");
|
|
if (frame.tf_eflags & EFL_TF)
|
|
printf("trace/trap, ");
|
|
if (frame.tf_eflags & EFL_IF)
|
|
printf("interrupt enabled, ");
|
|
if (frame.tf_eflags & EFL_NT)
|
|
printf("nested task, ");
|
|
if (frame.tf_eflags & EFL_RF)
|
|
printf("resume, ");
|
|
if (frame.tf_eflags & EFL_VM)
|
|
printf("vm86, ");
|
|
printf("IOPL = %d\n", (frame.tf_eflags & EFL_IOPL) >> 12);
|
|
printf("current process = ");
|
|
if (curproc) {
|
|
printf("%d (%s)\n",
|
|
curproc->p_pid, curproc->p_comm ?
|
|
curproc->p_comm : "");
|
|
} else {
|
|
printf("Idle\n");
|
|
}
|
|
printf("interrupt mask = ");
|
|
if ((cpl & net_imask) == net_imask)
|
|
printf("net ");
|
|
if ((cpl & tty_imask) == tty_imask)
|
|
printf("tty ");
|
|
if ((cpl & bio_imask) == bio_imask)
|
|
printf("bio ");
|
|
if (cpl == 0)
|
|
printf("none");
|
|
printf("\n");
|
|
|
|
#ifdef KDB
|
|
if (kdb_trap(&psl))
|
|
return;
|
|
#endif
|
|
#if NDDB > 0
|
|
if (kdb_trap (type, 0, &frame))
|
|
return;
|
|
#endif
|
|
if (fault_type <= MAX_TRAP_MSG)
|
|
panic(trap_msg[fault_type]);
|
|
else
|
|
panic("unknown/reserved trap");
|
|
|
|
/* NOTREACHED */
|
|
}
|
|
|
|
trapsignal(p, i, ucode);
|
|
if ((type & T_USER) == 0)
|
|
return;
|
|
|
|
#ifdef DIAGNOSTIC
|
|
fault_type = type & ~T_USER;
|
|
if (fault_type <= MAX_TRAP_MSG) {
|
|
uprintf("fatal process exception: %s",
|
|
trap_msg[fault_type]);
|
|
if ((fault_type == T_PAGEFLT) || (fault_type == T_PROTFLT))
|
|
uprintf(", fault VA = 0x%x", eva);
|
|
uprintf("\n");
|
|
}
|
|
#endif
|
|
|
|
out:
|
|
while (i = CURSIG(p))
|
|
psig(i);
|
|
p->p_pri = p->p_usrpri;
|
|
if (want_resched) {
|
|
int s;
|
|
/*
|
|
* Since we are curproc, clock will normally just change
|
|
* our priority without moving us from one queue to another
|
|
* (since the running process is not on a queue.)
|
|
* If that happened after we setrq ourselves but before we
|
|
* swtch()'ed, we might not be on the queue indicated by
|
|
* our priority.
|
|
*/
|
|
s = splclock();
|
|
setrq(p);
|
|
p->p_stats->p_ru.ru_nivcsw++;
|
|
swtch();
|
|
splx(s);
|
|
while (i = CURSIG(p))
|
|
psig(i);
|
|
}
|
|
if (p->p_stats->p_prof.pr_scale) {
|
|
int ticks;
|
|
struct timeval *tv = &p->p_stime;
|
|
|
|
ticks = ((tv->tv_sec - syst.tv_sec) * 1000 +
|
|
(tv->tv_usec - syst.tv_usec) / 1000) / (tick / 1000);
|
|
if (ticks) {
|
|
#ifdef PROFTIMER
|
|
extern int profscale;
|
|
addupc(frame.tf_eip, &p->p_stats->p_prof,
|
|
ticks * profscale);
|
|
#else
|
|
addupc(frame.tf_eip, &p->p_stats->p_prof, ticks);
|
|
#endif
|
|
}
|
|
}
|
|
curpri = p->p_pri;
|
|
}
|
|
|
|
/*
|
|
* Compensate for 386 brain damage (missing URKR).
|
|
* This is a little simpler than the pagefault handler in trap() because
|
|
* it the page tables have already been faulted in and high addresses
|
|
* are thrown out early for other reasons.
|
|
*/
|
|
int trapwrite(addr)
|
|
unsigned addr;
|
|
{
|
|
struct proc *p;
|
|
vm_offset_t va, v;
|
|
struct vmspace *vm;
|
|
int oldflags;
|
|
int rv;
|
|
|
|
va = trunc_page((vm_offset_t)addr);
|
|
/*
|
|
* XXX - MAX is END. Changed > to >= for temp. fix.
|
|
*/
|
|
if (va >= VM_MAXUSER_ADDRESS)
|
|
return (1);
|
|
|
|
p = curproc;
|
|
vm = p->p_vmspace;
|
|
|
|
oldflags = p->p_flag;
|
|
p->p_flag |= SLOCK;
|
|
|
|
if ((caddr_t)va >= vm->vm_maxsaddr
|
|
&& (caddr_t)va < (caddr_t)USRSTACK) {
|
|
if (!grow(p, va)) {
|
|
p->p_flag &= ~SLOCK;
|
|
p->p_flag |= (oldflags & SLOCK);
|
|
return (1);
|
|
}
|
|
}
|
|
|
|
v = trunc_page(vtopte(va));
|
|
|
|
/*
|
|
* wire the pte page
|
|
*/
|
|
if (va < USRSTACK) {
|
|
vm_map_pageable(&vm->vm_map, v, round_page(v+1), FALSE);
|
|
}
|
|
|
|
/*
|
|
* fault the data page
|
|
*/
|
|
rv = vm_fault(&vm->vm_map, va, VM_PROT_READ|VM_PROT_WRITE, FALSE);
|
|
|
|
/*
|
|
* unwire the pte page
|
|
*/
|
|
if (va < USRSTACK) {
|
|
vm_map_pageable(&vm->vm_map, v, round_page(v+1), TRUE);
|
|
}
|
|
|
|
p->p_flag &= ~SLOCK;
|
|
p->p_flag |= (oldflags & SLOCK);
|
|
|
|
if (rv != KERN_SUCCESS)
|
|
return 1;
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* syscall(frame):
|
|
* System call request from POSIX system call gate interface to kernel.
|
|
* Like trap(), argument is call by reference.
|
|
*/
|
|
/*ARGSUSED*/
|
|
void
|
|
syscall(frame)
|
|
volatile struct trapframe frame;
|
|
{
|
|
register int *locr0 = ((int *)&frame);
|
|
register caddr_t params;
|
|
register int i;
|
|
register struct sysent *callp;
|
|
register struct proc *p = curproc;
|
|
struct timeval syst;
|
|
int error, opc;
|
|
int args[8], rval[2];
|
|
int code;
|
|
|
|
#ifdef lint
|
|
r0 = 0; r0 = r0; r1 = 0; r1 = r1;
|
|
#endif
|
|
syst = p->p_stime;
|
|
if (ISPL(frame.tf_cs) != SEL_UPL)
|
|
panic("syscall");
|
|
|
|
code = frame.tf_eax;
|
|
p->p_regs = (int *)&frame;
|
|
params = (caddr_t)frame.tf_esp + sizeof (int) ;
|
|
|
|
/*
|
|
* Reconstruct pc, assuming lcall $X,y is 7 bytes, as it is always.
|
|
*/
|
|
opc = frame.tf_eip - 7;
|
|
if (code == 0) {
|
|
code = fuword(params);
|
|
params += sizeof (int);
|
|
}
|
|
if (code < 0 || code >= nsysent)
|
|
callp = &sysent[0];
|
|
else
|
|
callp = &sysent[code];
|
|
|
|
if ((i = callp->sy_narg * sizeof (int)) &&
|
|
(error = copyin(params, (caddr_t)args, (u_int)i))) {
|
|
frame.tf_eax = error;
|
|
frame.tf_eflags |= PSL_C; /* carry bit */
|
|
#ifdef KTRACE
|
|
if (KTRPOINT(p, KTR_SYSCALL))
|
|
ktrsyscall(p->p_tracep, code, callp->sy_narg, args);
|
|
#endif
|
|
goto done;
|
|
}
|
|
#ifdef KTRACE
|
|
if (KTRPOINT(p, KTR_SYSCALL))
|
|
ktrsyscall(p->p_tracep, code, callp->sy_narg, args);
|
|
#endif
|
|
rval[0] = 0;
|
|
rval[1] = frame.tf_edx;
|
|
/*pg("%d. s %d\n", p->p_pid, code);*/
|
|
error = (*callp->sy_call)(p, args, rval);
|
|
if (error == ERESTART)
|
|
frame.tf_eip = opc;
|
|
else if (error != EJUSTRETURN) {
|
|
if (error) {
|
|
/*pg("error %d", error);*/
|
|
frame.tf_eax = error;
|
|
frame.tf_eflags |= PSL_C; /* carry bit */
|
|
} else {
|
|
frame.tf_eax = rval[0];
|
|
frame.tf_edx = rval[1];
|
|
frame.tf_eflags &= ~PSL_C; /* carry bit */
|
|
}
|
|
}
|
|
/* else if (error == EJUSTRETURN) */
|
|
/* nothing to do */
|
|
done:
|
|
/*
|
|
* Reinitialize proc pointer `p' as it may be different
|
|
* if this is a child returning from fork syscall.
|
|
*/
|
|
p = curproc;
|
|
while (i = CURSIG(p))
|
|
psig(i);
|
|
p->p_pri = p->p_usrpri;
|
|
if (want_resched) {
|
|
int s;
|
|
/*
|
|
* Since we are curproc, clock will normally just change
|
|
* our priority without moving us from one queue to another
|
|
* (since the running process is not on a queue.)
|
|
* If that happened after we setrq ourselves but before we
|
|
* swtch()'ed, we might not be on the queue indicated by
|
|
* our priority.
|
|
*/
|
|
s = splclock();
|
|
setrq(p);
|
|
p->p_stats->p_ru.ru_nivcsw++;
|
|
swtch();
|
|
splx(s);
|
|
while (i = CURSIG(p))
|
|
psig(i);
|
|
}
|
|
if (p->p_stats->p_prof.pr_scale) {
|
|
int ticks;
|
|
struct timeval *tv = &p->p_stime;
|
|
|
|
ticks = ((tv->tv_sec - syst.tv_sec) * 1000 +
|
|
(tv->tv_usec - syst.tv_usec) / 1000) / (tick / 1000);
|
|
if (ticks) {
|
|
#ifdef PROFTIMER
|
|
extern int profscale;
|
|
addupc(frame.tf_eip, &p->p_stats->p_prof,
|
|
ticks * profscale);
|
|
#else
|
|
addupc(frame.tf_eip, &p->p_stats->p_prof, ticks);
|
|
#endif
|
|
}
|
|
}
|
|
curpri = p->p_pri;
|
|
#ifdef KTRACE
|
|
if (KTRPOINT(p, KTR_SYSRET))
|
|
ktrsysret(p->p_tracep, code, error, rval[0]);
|
|
#endif
|
|
#ifdef DIAGNOSTICx
|
|
{ extern int _udatasel, _ucodesel;
|
|
if (frame.tf_ss != _udatasel)
|
|
printf("ss %x call %d\n", frame.tf_ss, code);
|
|
if ((frame.tf_cs&0xffff) != _ucodesel)
|
|
printf("cs %x call %d\n", frame.tf_cs, code);
|
|
if (frame.tf_eip > VM_MAXUSER_ADDRESS) {
|
|
printf("eip %x call %d\n", frame.tf_eip, code);
|
|
frame.tf_eip = 0;
|
|
}
|
|
}
|
|
#endif
|
|
}
|