freebsd-dev/sys/dev/ocs_fc/ocs_os.h
Kenneth D. Merry ef270ab1b6 Bring in the Broadcom/Emulex Fibre Channel driver, ocs_fc(4).
The ocs_fc(4) driver supports the following hardware:

Emulex 16/8G FC GEN 5 HBAS
	LPe15004 FC Host Bus Adapters
	LPe160XX FC Host Bus Adapters

Emulex 32/16G FC GEN 6 HBAS
	LPe3100X FC Host Bus Adapters
	LPe3200X FC Host Bus Adapters

The driver supports target and initiator mode, and also supports FC-Tape.

Note that the driver only currently works on little endian platforms.  It
is only included in the module build for amd64 and i386, and in GENERIC
on amd64 only.

Submitted by:	Ram Kishore Vegesna <ram.vegesna@broadcom.com>
Reviewed by:	mav
MFC after:	5 days
Relnotes:	yes
Sponsored by:	Broadcom
Differential Revision:	https://reviews.freebsd.org/D11423
2018-03-30 15:28:25 +00:00

1407 lines
35 KiB
C

/*-
* Copyright (c) 2017 Broadcom. All rights reserved.
* The term "Broadcom" refers to Broadcom Limited and/or its subsidiaries.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* $FreeBSD$
*/
/**
* @file
* bsd specific headers common to the driver
*/
#ifndef _OCS_OS_H
#define _OCS_OS_H
typedef struct ocs_softc ocs_t;
/***************************************************************************
* OS specific includes
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <sys/endian.h>
#include <sys/stddef.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/taskqueue.h>
#include <sys/bitstring.h>
#include <sys/stack.h>
#include <machine/atomic.h>
#include <machine/bus.h>
#include <machine/stdarg.h>
#include <dev/pci/pcivar.h>
#include <sys/sema.h>
#include <sys/time.h>
#include <sys/proc.h>
#include <sys/kthread.h>
#include <sys/unistd.h>
#include <sys/sched.h>
#include <sys/conf.h>
#include <sys/sysctl.h>
#include <sys/ioccom.h>
#include <sys/ctype.h>
/* OCS_OS_MAX_ISR_TIME_MSEC - maximum time driver code should spend in an interrupt
* or kernel thread context without yielding
*/
#define OCS_OS_MAX_ISR_TIME_MSEC 1000
/* BSD driver specific definitions */
#define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
#define OCS_MAX_LUN 512
#define OCS_NUM_UNSOLICITED_FRAMES 1024
#define OCS_MAX_DOMAINS 1
#define OCS_MAX_REMOTE_NODES 2048
#define OCS_MAX_TARGETS 1024
#define OCS_MAX_INITIATORS 1024
/** Reserve this number of IO for each intiator to return FULL/BUSY status */
#define OCS_RSVD_INI_IO 8
#define OCS_MIN_DMA_ALIGNMENT 16
#define OCS_MAX_DMA_ALLOC (64*1024) /* maxium DMA allocation that is expected to reliably succeed */
/*
* Macros used to size the CQ hash table. We want to round up to the next
* power of 2 for the hash.
*/
#define B2(x) ( (x) | ( (x) >> 1) )
#define B4(x) ( B2(x) | ( B2(x) >> 2) )
#define B8(x) ( B4(x) | ( B4(x) >> 4) )
#define B16(x) ( B8(x) | ( B8(x) >> 8) )
#define B32(x) (B16(x) | (B16(x) >>16) )
#define B32_NEXT_POWER_OF_2(x) (B32((x)-1) + 1)
/*
* likely/unlikely - branch prediction hint
*/
#define likely(x) __builtin_expect(!!(x), 1)
#define unlikely(x) __builtin_expect(!!(x), 0)
/***************************************************************************
* OS abstraction
*/
/**
* @brief Min/Max macros
*
*/
#define OCS_MAX(x, y) ((x) > (y) ? (x) : (y))
#define OCS_MIN(x, y) ((x) < (y) ? (x) : (y))
#define PRIX64 "lX"
#define PRIx64 "lx"
#define PRId64 "ld"
#define PRIu64 "lu"
/**
* Enable optional features
* - OCS_INCLUDE_DEBUG include low-level SLI debug support
*/
#define OCS_INCLUDE_DEBUG
/**
* @brief Set the Nth bit
*
* @todo move to a private file used internally?
*/
#ifndef BIT
#define BIT(n) (1U << (n))
#endif
/***************************************************************************
* Platform specific operations
*/
/**
* @ingroup os
* @typedef ocs_os_handle_t
* @brief OS specific handle or driver context
*
* This can be anything from a void * to some other OS specific type. The lower
* layers make no assumption about its value and pass it back as the first
* parameter to most OS functions.
*/
typedef ocs_t * ocs_os_handle_t;
/**
* @ingroup os
* @brief return the lower 32-bits of a bus address
*
* @param addr Physical or bus address to convert
* @return lower 32-bits of a bus address
*
* @note this may be a good cadidate for an inline or macro
*/
static inline uint32_t ocs_addr32_lo(uintptr_t addr)
{
#if defined(__LP64__)
return (uint32_t)(addr & 0xffffffffUL);
#else
return addr;
#endif
}
/**
* @ingroup os
* @brief return the upper 32-bits of a bus address
*
* @param addr Physical or bus address to convert
* @return upper 32-bits of a bus address
*
* @note this may be a good cadidate for an inline or macro
*/
static inline uint32_t ocs_addr32_hi(uintptr_t addr)
{
#if defined(__LP64__)
return (uint32_t)(addr >> 32);
#else
return 0;
#endif
}
/**
* @ingroup os
* @brief return the log2(val)
*
* @param val number to use (assumed to be exact power of 2)
*
* @return log base 2 of val
*/
static inline uint32_t ocs_lg2(uint32_t val)
{
#if defined(__GNUC__)
/*
* clz = "count leading zero's"
*
* Assuming val is an exact power of 2, the most significant bit
* will be the log base 2 of val
*/
return 31 - __builtin_clz(val);
#else
#error You need to provide a non-GCC version of this function
#endif
}
/**
* @ingroup os
* @brief optimization barrier
*
* Optimization barrier. Prevents compiler re-ordering
* instructions across barrier.
*
* @return none
*/
#define ocs_barrier() __asm __volatile("" : : : "memory");
/**
* @ingroup os
* @brief convert a big endian 32 bit value to the host's native format
*
* @param val 32 bit big endian value
*
* @return value converted to the host's native endianness
*/
#define ocs_be32toh(val) be32toh(val)
/**
* @ingroup os
* @brief convert a 32 bit value from the host's native format to big endian
*
* @param val 32 bit native endian value
*
* @return value converted to big endian
*/
#define ocs_htobe32(val) htobe32(val)
/**
* @ingroup os
* @brief convert a 16 bit value from the host's native format to big endian
*
* @param v 16 bit native endian value
*
* @return value converted to big endian
*/
#define ocs_htobe16(v) htobe16(v)
#define ocs_be16toh(v) be16toh(v)
#define ocs_htobe64(v) htobe64(v)
#define ocs_be64toh(v) be64toh(v)
/**
* @ingroup os
* @brief Delay execution by the given number of micro-seconds
*
* @param usec number of micro-seconds to "busy-wait"
*
* @note The value of usec may be greater than 1,000,000
*/
#define ocs_udelay(usec) DELAY(usec)
/**
* @ingroup os
* @brief Delay execution by the given number of milli-seconds
*
* @param msec number of milli-seconds to "busy-wait"
*
* @note The value of usec may be greater than 1,000,000
*/
#define ocs_msleep(msec) ocs_udelay((msec)*1000)
/**
* @ingroup os
* @brief Get time of day in msec
*
* @return time of day in msec
*/
static inline time_t
ocs_msectime(void)
{
struct timeval tv;
getmicrotime(&tv);
return (tv.tv_sec*1000) + (tv.tv_usec / 1000);
}
/**
* @ingroup os
* @brief Copy length number of bytes from the source to destination address
*
* @param d pointer to the destination memory
* @param s pointer to the source memory
* @param l number of bytes to copy
*
* @return original value of dst pointer
*/
#define ocs_memcpy(d, s, l) memcpy(d, s, l)
#define ocs_strlen(s) strlen(s)
#define ocs_strcpy(d,s) strcpy(d, s)
#define ocs_strncpy(d,s, n) strncpy(d, s, n)
#define ocs_strcat(d, s) strcat(d, s)
#define ocs_strtoul(s,ep,b) strtoul(s,ep,b)
#define ocs_strtoull(s,ep,b) ((uint64_t)strtouq(s,ep,b))
#define ocs_atoi(s) strtol(s, 0, 0)
#define ocs_strcmp(d,s) strcmp(d,s)
#define ocs_strcasecmp(d,s) strcasecmp(d,s)
#define ocs_strncmp(d,s,n) strncmp(d,s,n)
#define ocs_strstr(h,n) strstr(h,n)
#define ocs_strsep(h, n) strsep(h, n)
#define ocs_strchr(s,c) strchr(s,c)
#define ocs_copy_from_user(dst, src, n) copyin(src, dst, n)
#define ocs_copy_to_user(dst, src, n) copyout(src, dst, n)
#define ocs_snprintf(buf, n, fmt, ...) snprintf(buf, n, fmt, ##__VA_ARGS__)
#define ocs_vsnprintf(buf, n, fmt, ap) vsnprintf((char*)buf, n, fmt, ap)
#define ocs_sscanf(buf,fmt, ...) sscanf(buf, fmt, ##__VA_ARGS__)
#define ocs_printf printf
#define ocs_isspace(c) isspace(c)
#define ocs_isdigit(c) isdigit(c)
#define ocs_isxdigit(c) isxdigit(c)
extern uint64_t ocs_get_tsc(void);
extern void *ocs_ioctl_preprocess(ocs_os_handle_t os, void *arg, size_t size);
extern int32_t ocs_ioctl_postprocess(ocs_os_handle_t os, void *arg, void *kern_ptr, size_t size);
extern void ocs_ioctl_free(ocs_os_handle_t os, void *kern_ptr, size_t size);
extern char *ocs_strdup(const char *s);
/**
* @ingroup os
* @brief Set the value of each byte in memory
*
* @param b pointer to the memory
* @param c value used to set memory
* @param l number of bytes to set
*
* @return original value of mem pointer
*/
#define ocs_memset(b, c, l) memset(b, c, l)
#define LOG_CRIT 0
#define LOG_ERR 1
#define LOG_WARN 2
#define LOG_INFO 3
#define LOG_TEST 4
#define LOG_DEBUG 5
extern int loglevel;
extern void _ocs_log(ocs_t *ocs, const char *func, int line, const char *fmt, ...);
#define ocs_log_crit(os, fmt, ...) ocs_log(os, LOG_CRIT, fmt, ##__VA_ARGS__);
#define ocs_log_err(os, fmt, ...) ocs_log(os, LOG_ERR, fmt, ##__VA_ARGS__);
#define ocs_log_warn(os, fmt, ...) ocs_log(os, LOG_WARN, fmt, ##__VA_ARGS__);
#define ocs_log_info(os, fmt, ...) ocs_log(os, LOG_INFO, fmt, ##__VA_ARGS__);
#define ocs_log_test(os, fmt, ...) ocs_log(os, LOG_TEST, fmt, ##__VA_ARGS__);
#define ocs_log_debug(os, fmt, ...) ocs_log(os, LOG_DEBUG, fmt, ##__VA_ARGS__);
#define ocs_log(os, level, fmt, ...) \
do { \
if (level <= loglevel) { \
_ocs_log(os, __func__, __LINE__, fmt, ##__VA_ARGS__); \
} \
} while (0)
static inline uint32_t ocs_roundup(uint32_t x, uint32_t y)
{
return (((x + y - 1) / y) * y);
}
static inline uint32_t ocs_rounddown(uint32_t x, uint32_t y)
{
return ((x / y) * y);
}
/***************************************************************************
* Memory allocation interfaces
*/
#define OCS_M_ZERO M_ZERO
#define OCS_M_NOWAIT M_NOWAIT
/**
* @ingroup os
* @brief Allocate host memory
*
* @param os OS handle
* @param size number of bytes to allocate
* @param flags additional options
*
* Flags include
* - OCS_M_ZERO zero memory after allocating
* - OCS_M_NOWAIT do not block/sleep waiting for an allocation request
*
* @return pointer to allocated memory, NULL otherwise
*/
extern void *ocs_malloc(ocs_os_handle_t os, size_t size, int32_t flags);
/**
* @ingroup os
* @brief Free host memory
*
* @param os OS handle
* @param addr pointer to memory
* @param size bytes to free
*/
extern void ocs_free(ocs_os_handle_t os, void *addr, size_t size);
/**
* @ingroup os
* @brief generic DMA memory descriptor for driver allocations
*
* Memory regions ultimately used by the hardware are described using
* this structure. All implementations must include the structure members
* defined in the first section, and they may also add their own structure
* members in the second section.
*
* Note that each region described by ocs_dma_s is assumed to be physically
* contiguous.
*/
typedef struct ocs_dma_s {
/*
* OCS layer requires the following members
*/
void *virt; /**< virtual address of the memory used by the CPU */
void *alloc; /**< originally allocated virtual address used to restore virt if modified */
uintptr_t phys; /**< physical or bus address of the memory used by the hardware */
size_t size; /**< size in bytes of the memory */
/*
* Implementation specific fields allowed here
*/
size_t len; /**< application specific length */
bus_dma_tag_t tag;
bus_dmamap_t map;
} ocs_dma_t;
/**
* @ingroup os
* @brief Returns maximum supported DMA allocation size
*
* @param os OS specific handle or driver context
* @param align alignment requirement for DMA allocation
*
* Return maximum supported DMA allocation size, given alignment
* requirement.
*
* @return maxiumum supported DMA allocation size
*/
static inline uint32_t ocs_max_dma_alloc(ocs_os_handle_t os, size_t align)
{
return ~((uint32_t)0); /* no max */
}
/**
* @ingroup os
* @brief Allocate a DMA capable block of memory
*
* @param os OS specific handle or driver context
* @param dma DMA descriptor containing results of memory allocation
* @param size Size in bytes of desired allocation
* @param align Alignment in bytes of the requested allocation
*
* @return 0 on success, non-zero otherwise
*/
extern int32_t ocs_dma_alloc(ocs_os_handle_t, ocs_dma_t *, size_t, size_t);
/**
* @ingroup os
* @brief Free a DMA capable block of memory
*
* @param os OS specific handle or driver context
* @param dma DMA descriptor for memory to be freed
*
* @return 0 if memory is de-allocated, non-zero otherwise
*/
extern int32_t ocs_dma_free(ocs_os_handle_t, ocs_dma_t *);
extern int32_t ocs_dma_copy_in(ocs_dma_t *dma, void *buffer, uint32_t buffer_length);
extern int32_t ocs_dma_copy_out(ocs_dma_t *dma, void *buffer, uint32_t buffer_length);
static inline int32_t ocs_dma_valid(ocs_dma_t *dma)
{
return (dma->size != 0);
}
/**
* @ingroup os
* @brief Synchronize the DMA buffer memory
*
* Ensures memory coherency between the CPU and device
*
* @param dma DMA descriptor of memory to synchronize
* @param flags Describes direction of synchronization
* - OCS_DMASYNC_PREREAD sync needed before hardware updates host memory
* - OCS_DMASYNC_PREWRITE sync needed after CPU updates host memory but before hardware can access
* - OCS_DMASYNC_POSTREAD sync needed after hardware updates host memory but before CPU can access
* - OCS_DMASYNC_POSTWRITE sync needed after hardware updates host memory
*/
extern void ocs_dma_sync(ocs_dma_t *, uint32_t);
#define OCS_DMASYNC_PREWRITE BUS_DMASYNC_PREWRITE
#define OCS_DMASYNC_POSTREAD BUS_DMASYNC_POSTREAD
/***************************************************************************
* Locking
*/
/**
* @ingroup os
* @typedef ocs_lock_t
* @brief Define the type used implement locking
*/
#define MAX_LOCK_DESC_LEN 64
typedef struct ocs_lock_s {
struct mtx lock;
char name[MAX_LOCK_DESC_LEN];
} ocs_lock_t;
/**
* @ingroup os
* @brief Initialize a lock
*
* @param lock lock to initialize
* @param name string identifier for the lock
*/
extern void ocs_lock_init(void *os, ocs_lock_t *lock, const char *name, ...);
/**
* @ingroup os
* @brief Free a previously allocated lock
*
* @param lock lock to free
*/
static inline void
ocs_lock_free(ocs_lock_t *lock)
{
if (mtx_initialized(&(lock)->lock)) {
mtx_assert(&(lock)->lock, MA_NOTOWNED);
mtx_destroy(&(lock)->lock);
} else {
panic("XXX trying to free with un-initialized mtx!?!?\n");
}
}
/**
* @ingroup os
* @brief Acquire a lock
*
* @param lock lock to obtain
*/
static inline void
ocs_lock(ocs_lock_t *lock)
{
if (mtx_initialized(&(lock)->lock)) {
mtx_assert(&(lock)->lock, MA_NOTOWNED);
mtx_lock(&(lock)->lock);
} else {
panic("XXX trying to lock with un-initialized mtx!?!?\n");
}
}
/**
* @ingroup os
* @brief Release a lock
*
* @param lock lock to release
*/
static inline void
ocs_unlock(ocs_lock_t *lock)
{
if (mtx_initialized(&(lock)->lock)) {
mtx_assert(&(lock)->lock, MA_OWNED | MA_NOTRECURSED);
mtx_unlock(&(lock)->lock);
} else {
panic("XXX trying to unlock with un-initialized mtx!?!?\n");
}
}
/**
* @ingroup os
* @typedef ocs_lock_t
* @brief Define the type used implement recursive locking
*/
typedef struct ocs_lock_s ocs_rlock_t;
/**
* @ingroup os
* @brief Initialize a recursive lock
*
* @param ocs pointer to ocs structure
* @param lock lock to initialize
* @param name string identifier for the lock
*/
static inline void
ocs_rlock_init(ocs_t *ocs, ocs_rlock_t *lock, const char *name)
{
ocs_strncpy(lock->name, name, MAX_LOCK_DESC_LEN);
mtx_init(&(lock)->lock, lock->name, NULL, MTX_DEF | MTX_RECURSE | MTX_DUPOK);
}
/**
* @ingroup os
* @brief Free a previously allocated recursive lock
*
* @param lock lock to free
*/
static inline void
ocs_rlock_free(ocs_rlock_t *lock)
{
if (mtx_initialized(&(lock)->lock)) {
mtx_destroy(&(lock)->lock);
} else {
panic("XXX trying to free with un-initialized mtx!?!?\n");
}
}
/**
* @brief try to acquire a recursive lock
*
* Attempt to acquire a recursive lock, return TRUE if successful
*
* @param lock pointer to recursive lock
*
* @return TRUE if lock was acquired, FALSE if not
*/
static inline int32_t
ocs_rlock_try(ocs_rlock_t *lock)
{
int rc = mtx_trylock(&(lock)->lock);
return rc != 0;
}
/**
* @ingroup os
* @brief Acquire a recursive lock
*
* @param lock lock to obtain
*/
static inline void
ocs_rlock_acquire(ocs_rlock_t *lock)
{
if (mtx_initialized(&(lock)->lock)) {
mtx_lock(&(lock)->lock);
} else {
panic("XXX trying to lock with un-initialized mtx!?!?\n");
}
}
/**
* @ingroup os
* @brief Release a recursive lock
*
* @param lock lock to release
*/
static inline void
ocs_rlock_release(ocs_rlock_t *lock)
{
if (mtx_initialized(&(lock)->lock)) {
mtx_assert(&(lock)->lock, MA_OWNED);
mtx_unlock(&(lock)->lock);
} else {
panic("XXX trying to unlock with un-initialized mtx!?!?\n");
}
}
/**
* @brief counting semaphore
*
* Declaration of the counting semaphore object
*
*/
typedef struct {
char name[32];
struct sema sem; /**< OS counting semaphore structure */
} ocs_sem_t;
#define OCS_SEM_FOREVER (-1)
#define OCS_SEM_TRY (0)
/**
* @brief Initialize a counting semaphore
*
* The semaphore is initiatlized to the value
*
* @param sem pointer to semaphore
* @param val initial value
* @param name label for the semaphore
*
* @return returns 0 for success, a negative error code value for failure.
*/
extern int ocs_sem_init(ocs_sem_t *sem, int val, const char *name, ...) __attribute__((format(printf, 3, 4)));
/**
* @brief execute a P (decrement) operation
*
* A P (decrement and block if negative) operation is performed on the semaphore.
*
* If timeout_usec is zero, the semaphore attempts one time and returns 0 if acquired.
* If timeout_usec is greater than zero, then the call will block until the semaphore
* is acquired, or a timeout occurred. If timeout_usec is less than zero, then
* the call will block until the semaphore is acquired.
*
* @param sem pointer to semaphore
* @param timeout_usec timeout in microseconds
*
* @return returns 0 for success, negative value if the semaphore was not acquired.
*/
static inline int
ocs_sem_p(ocs_sem_t *sem, int timeout_usec)
{
int32_t rc = 0;
if (timeout_usec == 0) {
rc = sema_trywait(&sem->sem);
if (rc == 0) {
rc = -1;
}
} else if (timeout_usec > 0) {
struct timeval tv;
uint32_t ticks;
tv.tv_sec = timeout_usec / 1000000;
tv.tv_usec = timeout_usec % 1000000;
ticks = tvtohz(&tv);
if (ticks == 0) {
ticks ++;
}
rc = sema_timedwait(&sem->sem, ticks);
if (rc != 0) {
rc = -1;
}
} else {
sema_wait(&sem->sem);
}
if (rc)
rc = -1;
return rc;
}
/**
* @brief perform a V (increment) operation on a counting semaphore
*
* The semaphore is incremented, unblocking one thread that is waiting on the
* sempahore
*
* @param sem pointer to the semaphore
*
* @return none
*/
static inline void
ocs_sem_v(ocs_sem_t *sem)
{
sema_post(&sem->sem);
}
/***************************************************************************
* Bitmap
*/
/**
* @ingroup os
* @typedef ocs_bitmap_t
* @brief Define the type used implement bit-maps
*/
typedef bitstr_t ocs_bitmap_t;
/**
* @ingroup os
* @brief Allocate a bitmap
*
* @param n_bits Minimum number of entries in the bit-map
*
* @return pointer to the bit-map or NULL on error
*/
extern ocs_bitmap_t *ocs_bitmap_alloc(uint32_t n_bits);
/**
* @ingroup os
* @brief Free a bit-map
*
* @param bitmap Bit-map to free
*/
extern void ocs_bitmap_free(ocs_bitmap_t *bitmap);
/**
* @ingroup os
* @brief Find next unset bit and set it
*
* @param bitmap bit map to search
* @param n_bits number of bits in map
*
* @return bit position or -1 if map is full
*/
extern int32_t ocs_bitmap_find(ocs_bitmap_t *bitmap, uint32_t n_bits);
/**
* @ingroup os
* @brief search for next (un)set bit
*
* @param bitmap bit map to search
* @param set search for a set or unset bit
* @param n_bits number of bits in map
*
* @return bit position or -1
*/
extern int32_t ocs_bitmap_search(ocs_bitmap_t *bitmap, uint8_t set, uint32_t n_bits);
/**
* @ingroup os
* @brief clear the specified bit
*
* @param bitmap pointer to bit map
* @param bit bit number to clear
*/
extern void ocs_bitmap_clear(ocs_bitmap_t *bitmap, uint32_t bit);
extern int32_t ocs_get_property(const char *prop_name, char *buffer, uint32_t buffer_len);
/***************************************************************************
* Timer Routines
*
* Functions for setting, querying and canceling timers.
*/
typedef struct {
struct callout callout;
struct mtx lock;
void (*func)(void *);
void *data;
} ocs_timer_t;
/**
* @ingroup os
* @brief Initialize and set a timer
*
* @param os OS handle
* @param timer pointer to the structure allocated for this timer
* @param func the function to call when the timer expires
* @param data Data to pass to the provided timer function when the timer
* expires.
* @param timeout_ms the timeout in milliseconds
*/
extern int32_t ocs_setup_timer(ocs_os_handle_t os, ocs_timer_t *timer, void(*func)(void *arg),
void *data, uint32_t timeout_ms);
/**
* @ingroup os
* @brief Modify a timer's expiration
*
* @param timer pointer to the structure allocated for this timer
* @param timeout_ms the timeout in milliseconds
*/
extern int32_t ocs_mod_timer(ocs_timer_t *timer, uint32_t timeout_ms);
/**
* @ingroup os
* @brief Queries to see if a timer is pending.
*
* @param timer pointer to the structure allocated for this timer
*
* @return non-zero if the timer is pending
*/
extern int32_t ocs_timer_pending(ocs_timer_t *timer);
/**
* @ingroup os
* @brief Remove a pending timer
*
* @param timer pointer to the structure allocated for this timer
* expires.
*/
extern int32_t ocs_del_timer(ocs_timer_t *timer);
/***************************************************************************
* Atomics
*
*/
typedef uint32_t ocs_atomic_t;
/**
* @ingroup os
* @brief initialize an atomic
*
* @param a pointer to the atomic object
* @param v initial value
*
* @return none
*/
#define ocs_atomic_init(a, v) ocs_atomic_set(a, v)
/**
* @ingroup os
* @brief adds an integer to an atomic value
*
* @param a pointer to the atomic object
* @param v value to increment
*
* @return the value of the atomic before incrementing.
*/
#define ocs_atomic_add_return(a, v) atomic_fetchadd_32(a, v)
/**
* @ingroup os
* @brief subtracts an integer to an atomic value
*
* @param a pointer to the atomic object
* @param v value to increment
*
* @return the value of the atomic before subtracting.
*/
#define ocs_atomic_sub_return(a, v) atomic_fetchadd_32(a, (-(v)))
/**
* @ingroup os
* @brief returns the current value of an atomic object
*
* @param a pointer to the atomic object
*
* @return the value of the atomic.
*/
#define ocs_atomic_read(a) atomic_load_acq_32(a)
/**
* @ingroup os
* @brief sets the current value of an atomic object
*
* @param a pointer to the atomic object
*/
#define ocs_atomic_set(a, v) atomic_store_rel_32(a, v)
/**
* @ingroup os
* @brief Sets atomic to 0, returns previous value
*
* @param a pointer to the atomic object
*
* @return the value of the atomic before the operation.
*/
#define ocs_atomic_read_and_clear atomic_readandclear_32(a)
/**
* @brief OCS thread structure
*
*/
typedef struct ocs_thread_s ocs_thread_t;
typedef int32_t (*ocs_thread_fctn)(ocs_thread_t *mythread);
struct ocs_thread_s {
struct thread *tcb; /*<< thread control block */
ocs_thread_fctn fctn; /*<< thread function */
char *name; /*<< name of thread */
void *arg; /*<< pointer to thread argument */
ocs_atomic_t terminate; /*<< terminate request */
int32_t retval; /*<< return value */
uint32_t cpu_affinity; /*<< cpu affinity */
};
#define OCS_THREAD_DEFAULT_STACK_SIZE_PAGES 8
/**
* @brief OCS thread start options
*
*/
typedef enum {
OCS_THREAD_RUN, /*<< run immediately */
OCS_THREAD_CREATE, /*<< create and wait for start request */
} ocs_thread_start_e;
extern int32_t ocs_thread_create(ocs_os_handle_t os, ocs_thread_t *thread, ocs_thread_fctn fctn,
const char *name, void *arg, ocs_thread_start_e start_option);
extern int32_t ocs_thread_start(ocs_thread_t *thread);
extern void *ocs_thread_get_arg(ocs_thread_t *mythread);
extern int32_t ocs_thread_terminate(ocs_thread_t *thread);
extern int32_t ocs_thread_terminate_requested(ocs_thread_t *thread);
extern int32_t ocs_thread_get_retval(ocs_thread_t *thread);
extern void ocs_thread_yield(ocs_thread_t *thread);
extern ocs_thread_t *ocs_thread_self(void);
extern int32_t ocs_thread_setcpu(ocs_thread_t *thread, uint32_t cpu);
extern int32_t ocs_thread_getcpu(void);
/***************************************************************************
* PCI
*
* Several functions below refer to a "register set". This is one or
* more PCI BARs that constitute a PCI address. For example, if a MMIO
* region is described using both BAR[0] and BAR[1], the combination of
* BARs defines register set 0.
*/
/**
* @brief tracks mapped PCI memory regions
*/
typedef struct ocs_pci_reg_s {
uint32_t rid;
struct resource *res;
bus_space_tag_t btag;
bus_space_handle_t bhandle;
} ocs_pci_reg_t;
#define PCI_MAX_BAR 6
#define PCI_64BIT_BAR0 0
#define PCI_VENDOR_EMULEX 0x10df /* Emulex */
#define PCI_PRODUCT_EMULEX_OCE16001 0xe200 /* OneCore 16Gb FC (lancer) */
#define PCI_PRODUCT_EMULEX_OCE16002 0xe200 /* OneCore 16Gb FC (lancer) */
#define PCI_PRODUCT_EMULEX_LPE31004 0xe300 /* LightPulse 16Gb x 4 FC (lancer-g6) */
#define PCI_PRODUCT_EMULEX_LPE32002 0xe300 /* LightPulse 32Gb x 2 FC (lancer-g6) */
#define PCI_PRODUCT_EMULEX_OCE1600_VF 0xe208
#define PCI_PRODUCT_EMULEX_OCE50102 0xe260 /* OneCore FCoE (lancer) */
#define PCI_PRODUCT_EMULEX_OCE50102_VF 0xe268
/**
* @ingroup os
* @brief Get the PCI bus, device, and function values
*
* @param ocs OS specific handle or driver context
* @param bus Pointer to location to store the bus number.
* @param dev Pointer to location to store the device number.
* @param func Pointer to location to store the function number.
*
* @return Returns 0.
*/
extern int32_t
ocs_get_bus_dev_func(ocs_t *ocs, uint8_t* bus, uint8_t* dev, uint8_t* func);
extern ocs_t *ocs_get_instance(uint32_t index);
extern uint32_t ocs_instance(void *os);
/**
* @ingroup os
* @brief Read a 32 bit value from the specified configuration register
*
* @param os OS specific handle or driver context
* @param reg register offset
*
* @return The 32 bit value
*/
extern uint32_t ocs_config_read32(ocs_os_handle_t os, uint32_t reg);
/**
* @ingroup os
* @brief Read a 16 bit value from the specified configuration
* register
*
* @param os OS specific handle or driver context
* @param reg register offset
*
* @return The 16 bit value
*/
extern uint16_t ocs_config_read16(ocs_os_handle_t os, uint32_t reg);
/**
* @ingroup os
* @brief Read a 8 bit value from the specified configuration
* register
*
* @param os OS specific handle or driver context
* @param reg register offset
*
* @return The 8 bit value
*/
extern uint8_t ocs_config_read8(ocs_os_handle_t os, uint32_t reg);
/**
* @ingroup os
* @brief Write a 8 bit value to the specified configuration
* register
*
* @param os OS specific handle or driver context
* @param reg register offset
* @param val value to write
*
* @return None
*/
extern void ocs_config_write8(ocs_os_handle_t os, uint32_t reg, uint8_t val);
/**
* @ingroup os
* @brief Write a 16 bit value to the specified configuration
* register
*
* @param os OS specific handle or driver context
* @param reg register offset
* @param val value to write
*
* @return None
*/
extern void ocs_config_write16(ocs_os_handle_t os, uint32_t reg, uint16_t val);
/**
* @ingroup os
* @brief Write a 32 bit value to the specified configuration
* register
*
* @param os OS specific handle or driver context
* @param reg register offset
* @param val value to write
*
* @return None
*/
extern void ocs_config_write32(ocs_os_handle_t os, uint32_t reg, uint32_t val);
/**
* @ingroup os
* @brief Read a PCI register
*
* @param os OS specific handle or driver context
* @param rset Which "register set" to use
* @param off Register offset
*
* @return 32 bit conents of the register
*/
extern uint32_t ocs_reg_read32(ocs_os_handle_t os, uint32_t rset, uint32_t off);
/**
* @ingroup os
* @brief Read a PCI register
*
* @param os OS specific handle or driver context
* @param rset Which "register set" to use
* @param off Register offset
*
* @return 16 bit conents of the register
*/
extern uint16_t ocs_reg_read16(ocs_os_handle_t os, uint32_t rset, uint32_t off);
/**
* @ingroup os
* @brief Read a PCI register
*
* @param os OS specific handle or driver context
* @param rset Which "register set" to use
* @param off Register offset
*
* @return 8 bit conents of the register
*/
extern uint8_t ocs_reg_read8(ocs_os_handle_t os, uint32_t rset, uint32_t off);
/**
* @ingroup os
* @brief Write a PCI register
*
* @param os OS specific handle or driver context
* @param rset Which "register set" to use
* @param off Register offset
* @param val 32-bit value to write
*/
extern void ocs_reg_write32(ocs_os_handle_t os, uint32_t rset, uint32_t off, uint32_t val);
/**
* @ingroup os
* @brief Write a PCI register
*
* @param os OS specific handle or driver context
* @param rset Which "register set" to use
* @param off Register offset
* @param val 16-bit value to write
*/
extern void ocs_reg_write16(ocs_os_handle_t os, uint32_t rset, uint32_t off, uint16_t val);
/**
* @ingroup os
* @brief Write a PCI register
*
* @param os OS specific handle or driver context
* @param rset Which "register set" to use
* @param off Register offset
* @param val 8-bit value to write
*/
extern void ocs_reg_write8(ocs_os_handle_t os, uint32_t rset, uint32_t off, uint8_t val);
/**
* @ingroup os
* @brief Disable interrupts
*
* @param os OS specific handle or driver context
*/
extern void ocs_intr_disable(ocs_os_handle_t os);
/**
* @ingroup os
* @brief Enable interrupts
*
* @param os OS specific handle or driver context
*/
extern void ocs_intr_enable(ocs_os_handle_t os);
/**
* @ingroup os
* @brief Return model string
*
* @param os OS specific handle or driver context
*/
extern const char *ocs_pci_model(uint16_t vendor, uint16_t device);
extern void ocs_print_stack(void);
extern void ocs_abort(void) __attribute__((noreturn));
/***************************************************************************
* Reference counting
*
*/
/**
* @ingroup os
* @brief reference counter object
*/
typedef void (*ocs_ref_release_t)(void *arg);
typedef struct ocs_ref_s {
ocs_ref_release_t release; /* release function to call */
void *arg;
uint32_t count; /* ref count; no need to be atomic if we have a lock */
} ocs_ref_t;
/**
* @ingroup os
* @brief initialize given reference object
*
* @param ref Pointer to reference object
* @param release Function to be called when count is 0.
* @param arg Argument to be passed to release function.
*/
static inline void
ocs_ref_init(ocs_ref_t *ref, ocs_ref_release_t release, void *arg)
{
ref->release = release;
ref->arg = arg;
ocs_atomic_init(&ref->count, 1);
}
/**
* @ingroup os
* @brief Return reference count value
*
* @param ref Pointer to reference object
*
* @return Count value of given reference object
*/
static inline uint32_t
ocs_ref_read_count(ocs_ref_t *ref)
{
return ocs_atomic_read(&ref->count);
}
/**
* @ingroup os
* @brief Set count on given reference object to a value.
*
* @param ref Pointer to reference object
* @param i Set count to this value
*/
static inline void
ocs_ref_set(ocs_ref_t *ref, int i)
{
ocs_atomic_set(&ref->count, i);
}
/**
* @ingroup os
* @brief Take a reference on given object.
*
* @par Description
* This function takes a reference on an object.
*
* Note: this function should only be used if the caller can
* guarantee that the reference count is >= 1 and will stay >= 1
* for the duration of this call (i.e. won't go to zero). If it
* can't (the refcount may go to zero during this call),
* ocs_ref_get_unless_zero() should be used instead.
*
* @param ref Pointer to reference object
*
*/
static inline void
ocs_ref_get(ocs_ref_t *ref)
{
ocs_atomic_add_return(&ref->count, 1);
}
/**
* @ingroup os
* @brief Take a reference on given object if count is not zero.
*
* @par Description
* This function takes a reference on an object if and only if
* the given reference object is "active" or valid.
*
* @param ref Pointer to reference object
*
* @return non-zero if "get" succeeded; Return zero if ref count
* is zero.
*/
static inline uint32_t
ocs_ref_get_unless_zero(ocs_ref_t *ref)
{
uint32_t rc = 0;
rc = ocs_atomic_read(&ref->count);
if (rc != 0) {
ocs_atomic_add_return(&ref->count, 1);
}
return rc;
}
/**
* @ingroup os
* @brief Decrement reference on given object
*
* @par Description
* This function decrements the reference count on the given
* reference object. If the reference count becomes zero, the
* "release" function (set during "init" time) is called.
*
* @param ref Pointer to reference object
*
* @return non-zero if release function was called; zero
* otherwise.
*/
static inline uint32_t
ocs_ref_put(ocs_ref_t *ref)
{
uint32_t rc = 0;
if (ocs_atomic_sub_return(&ref->count, 1) == 1) {
ref->release(ref->arg);
rc = 1;
}
return rc;
}
/**
* @ingroup os
* @brief Get the OS system ticks
*
* @return number of ticks that have occurred since the system
* booted.
*/
static inline uint64_t
ocs_get_os_ticks(void)
{
return ticks;
}
/**
* @ingroup os
* @brief Get the OS system tick frequency
*
* @return frequency of system ticks.
*/
static inline uint32_t
ocs_get_os_tick_freq(void)
{
return hz;
}
/*****************************************************************************
*
* CPU topology API
*/
typedef struct {
uint32_t num_cpus; /* Number of CPU cores */
uint8_t hyper; /* TRUE if threaded CPUs */
} ocs_cpuinfo_t;
extern int32_t ocs_get_cpuinfo(ocs_cpuinfo_t *cpuinfo);
extern uint32_t ocs_get_num_cpus(void);
#include "ocs_list.h"
#include "ocs_utils.h"
#include "ocs_mgmt.h"
#include "ocs_common.h"
#endif /* !_OCS_OS_H */