ef36ad6921
PR: kern/68079 Submitted by: Georg-W. Koltermann gwk at rahn-koltermann dot de
831 lines
19 KiB
C
831 lines
19 KiB
C
/*-
|
|
* Copyright (c) 2000 Marcel Moolenaar
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer
|
|
* in this position and unchanged.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. The name of the author may not be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/mman.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/resource.h>
|
|
#include <sys/resourcevar.h>
|
|
#include <sys/syscallsubr.h>
|
|
#include <sys/sysproto.h>
|
|
#include <sys/unistd.h>
|
|
|
|
#include <machine/frame.h>
|
|
#include <machine/psl.h>
|
|
#include <machine/segments.h>
|
|
#include <machine/sysarch.h>
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/pmap.h>
|
|
#include <vm/vm_map.h>
|
|
|
|
#include <i386/linux/linux.h>
|
|
#include <i386/linux/linux_proto.h>
|
|
#include <compat/linux/linux_ipc.h>
|
|
#include <compat/linux/linux_signal.h>
|
|
#include <compat/linux/linux_util.h>
|
|
|
|
struct l_descriptor {
|
|
l_uint entry_number;
|
|
l_ulong base_addr;
|
|
l_uint limit;
|
|
l_uint seg_32bit:1;
|
|
l_uint contents:2;
|
|
l_uint read_exec_only:1;
|
|
l_uint limit_in_pages:1;
|
|
l_uint seg_not_present:1;
|
|
l_uint useable:1;
|
|
};
|
|
|
|
struct l_old_select_argv {
|
|
l_int nfds;
|
|
l_fd_set *readfds;
|
|
l_fd_set *writefds;
|
|
l_fd_set *exceptfds;
|
|
struct l_timeval *timeout;
|
|
};
|
|
|
|
int
|
|
linux_to_bsd_sigaltstack(int lsa)
|
|
{
|
|
int bsa = 0;
|
|
|
|
if (lsa & LINUX_SS_DISABLE)
|
|
bsa |= SS_DISABLE;
|
|
if (lsa & LINUX_SS_ONSTACK)
|
|
bsa |= SS_ONSTACK;
|
|
return (bsa);
|
|
}
|
|
|
|
int
|
|
bsd_to_linux_sigaltstack(int bsa)
|
|
{
|
|
int lsa = 0;
|
|
|
|
if (bsa & SS_DISABLE)
|
|
lsa |= LINUX_SS_DISABLE;
|
|
if (bsa & SS_ONSTACK)
|
|
lsa |= LINUX_SS_ONSTACK;
|
|
return (lsa);
|
|
}
|
|
|
|
int
|
|
linux_execve(struct thread *td, struct linux_execve_args *args)
|
|
{
|
|
struct execve_args bsd;
|
|
caddr_t sg;
|
|
|
|
sg = stackgap_init();
|
|
CHECKALTEXIST(td, &sg, args->path);
|
|
|
|
#ifdef DEBUG
|
|
if (ldebug(execve))
|
|
printf(ARGS(execve, "%s"), args->path);
|
|
#endif
|
|
|
|
bsd.fname = args->path;
|
|
bsd.argv = args->argp;
|
|
bsd.envv = args->envp;
|
|
return (execve(td, &bsd));
|
|
}
|
|
|
|
struct l_ipc_kludge {
|
|
struct l_msgbuf *msgp;
|
|
l_long msgtyp;
|
|
};
|
|
|
|
int
|
|
linux_ipc(struct thread *td, struct linux_ipc_args *args)
|
|
{
|
|
|
|
switch (args->what & 0xFFFF) {
|
|
case LINUX_SEMOP: {
|
|
struct linux_semop_args a;
|
|
|
|
a.semid = args->arg1;
|
|
a.tsops = args->ptr;
|
|
a.nsops = args->arg2;
|
|
return (linux_semop(td, &a));
|
|
}
|
|
case LINUX_SEMGET: {
|
|
struct linux_semget_args a;
|
|
|
|
a.key = args->arg1;
|
|
a.nsems = args->arg2;
|
|
a.semflg = args->arg3;
|
|
return (linux_semget(td, &a));
|
|
}
|
|
case LINUX_SEMCTL: {
|
|
struct linux_semctl_args a;
|
|
int error;
|
|
|
|
a.semid = args->arg1;
|
|
a.semnum = args->arg2;
|
|
a.cmd = args->arg3;
|
|
error = copyin(args->ptr, &a.arg, sizeof(a.arg));
|
|
if (error)
|
|
return (error);
|
|
return (linux_semctl(td, &a));
|
|
}
|
|
case LINUX_MSGSND: {
|
|
struct linux_msgsnd_args a;
|
|
|
|
a.msqid = args->arg1;
|
|
a.msgp = args->ptr;
|
|
a.msgsz = args->arg2;
|
|
a.msgflg = args->arg3;
|
|
return (linux_msgsnd(td, &a));
|
|
}
|
|
case LINUX_MSGRCV: {
|
|
struct linux_msgrcv_args a;
|
|
|
|
a.msqid = args->arg1;
|
|
a.msgsz = args->arg2;
|
|
a.msgflg = args->arg3;
|
|
if ((args->what >> 16) == 0) {
|
|
struct l_ipc_kludge tmp;
|
|
int error;
|
|
|
|
if (args->ptr == NULL)
|
|
return (EINVAL);
|
|
error = copyin(args->ptr, &tmp, sizeof(tmp));
|
|
if (error)
|
|
return (error);
|
|
a.msgp = tmp.msgp;
|
|
a.msgtyp = tmp.msgtyp;
|
|
} else {
|
|
a.msgp = args->ptr;
|
|
a.msgtyp = args->arg5;
|
|
}
|
|
return (linux_msgrcv(td, &a));
|
|
}
|
|
case LINUX_MSGGET: {
|
|
struct linux_msgget_args a;
|
|
|
|
a.key = args->arg1;
|
|
a.msgflg = args->arg2;
|
|
return (linux_msgget(td, &a));
|
|
}
|
|
case LINUX_MSGCTL: {
|
|
struct linux_msgctl_args a;
|
|
|
|
a.msqid = args->arg1;
|
|
a.cmd = args->arg2;
|
|
a.buf = args->ptr;
|
|
return (linux_msgctl(td, &a));
|
|
}
|
|
case LINUX_SHMAT: {
|
|
struct linux_shmat_args a;
|
|
|
|
a.shmid = args->arg1;
|
|
a.shmaddr = args->ptr;
|
|
a.shmflg = args->arg2;
|
|
a.raddr = (l_ulong *)args->arg3;
|
|
return (linux_shmat(td, &a));
|
|
}
|
|
case LINUX_SHMDT: {
|
|
struct linux_shmdt_args a;
|
|
|
|
a.shmaddr = args->ptr;
|
|
return (linux_shmdt(td, &a));
|
|
}
|
|
case LINUX_SHMGET: {
|
|
struct linux_shmget_args a;
|
|
|
|
a.key = args->arg1;
|
|
a.size = args->arg2;
|
|
a.shmflg = args->arg3;
|
|
return (linux_shmget(td, &a));
|
|
}
|
|
case LINUX_SHMCTL: {
|
|
struct linux_shmctl_args a;
|
|
|
|
a.shmid = args->arg1;
|
|
a.cmd = args->arg2;
|
|
a.buf = args->ptr;
|
|
return (linux_shmctl(td, &a));
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return (EINVAL);
|
|
}
|
|
|
|
int
|
|
linux_old_select(struct thread *td, struct linux_old_select_args *args)
|
|
{
|
|
struct l_old_select_argv linux_args;
|
|
struct linux_select_args newsel;
|
|
int error;
|
|
|
|
#ifdef DEBUG
|
|
if (ldebug(old_select))
|
|
printf(ARGS(old_select, "%p"), args->ptr);
|
|
#endif
|
|
|
|
error = copyin(args->ptr, &linux_args, sizeof(linux_args));
|
|
if (error)
|
|
return (error);
|
|
|
|
newsel.nfds = linux_args.nfds;
|
|
newsel.readfds = linux_args.readfds;
|
|
newsel.writefds = linux_args.writefds;
|
|
newsel.exceptfds = linux_args.exceptfds;
|
|
newsel.timeout = linux_args.timeout;
|
|
return (linux_select(td, &newsel));
|
|
}
|
|
|
|
int
|
|
linux_fork(struct thread *td, struct linux_fork_args *args)
|
|
{
|
|
int error;
|
|
|
|
#ifdef DEBUG
|
|
if (ldebug(fork))
|
|
printf(ARGS(fork, ""));
|
|
#endif
|
|
|
|
if ((error = fork(td, (struct fork_args *)args)) != 0)
|
|
return (error);
|
|
|
|
if (td->td_retval[1] == 1)
|
|
td->td_retval[0] = 0;
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
linux_vfork(struct thread *td, struct linux_vfork_args *args)
|
|
{
|
|
int error;
|
|
|
|
#ifdef DEBUG
|
|
if (ldebug(vfork))
|
|
printf(ARGS(vfork, ""));
|
|
#endif
|
|
|
|
if ((error = vfork(td, (struct vfork_args *)args)) != 0)
|
|
return (error);
|
|
/* Are we the child? */
|
|
if (td->td_retval[1] == 1)
|
|
td->td_retval[0] = 0;
|
|
return (0);
|
|
}
|
|
|
|
#define CLONE_VM 0x100
|
|
#define CLONE_FS 0x200
|
|
#define CLONE_FILES 0x400
|
|
#define CLONE_SIGHAND 0x800
|
|
#define CLONE_PID 0x1000
|
|
|
|
int
|
|
linux_clone(struct thread *td, struct linux_clone_args *args)
|
|
{
|
|
int error, ff = RFPROC | RFSTOPPED;
|
|
struct proc *p2;
|
|
struct thread *td2;
|
|
int exit_signal;
|
|
|
|
#ifdef DEBUG
|
|
if (ldebug(clone)) {
|
|
printf(ARGS(clone, "flags %x, stack %x"),
|
|
(unsigned int)args->flags, (unsigned int)args->stack);
|
|
if (args->flags & CLONE_PID)
|
|
printf(LMSG("CLONE_PID not yet supported"));
|
|
}
|
|
#endif
|
|
|
|
if (!args->stack)
|
|
return (EINVAL);
|
|
|
|
exit_signal = args->flags & 0x000000ff;
|
|
if (exit_signal >= LINUX_NSIG)
|
|
return (EINVAL);
|
|
|
|
if (exit_signal <= LINUX_SIGTBLSZ)
|
|
exit_signal = linux_to_bsd_signal[_SIG_IDX(exit_signal)];
|
|
|
|
if (args->flags & CLONE_VM)
|
|
ff |= RFMEM;
|
|
if (args->flags & CLONE_SIGHAND)
|
|
ff |= RFSIGSHARE;
|
|
if (!(args->flags & CLONE_FILES))
|
|
ff |= RFFDG;
|
|
|
|
error = fork1(td, ff, 0, &p2);
|
|
if (error)
|
|
return (error);
|
|
|
|
|
|
PROC_LOCK(p2);
|
|
p2->p_sigparent = exit_signal;
|
|
PROC_UNLOCK(p2);
|
|
td2 = FIRST_THREAD_IN_PROC(p2);
|
|
td2->td_frame->tf_esp = (unsigned int)args->stack;
|
|
|
|
#ifdef DEBUG
|
|
if (ldebug(clone))
|
|
printf(LMSG("clone: successful rfork to %ld, stack %p sig = %d"),
|
|
(long)p2->p_pid, args->stack, exit_signal);
|
|
#endif
|
|
|
|
/*
|
|
* Make this runnable after we are finished with it.
|
|
*/
|
|
mtx_lock_spin(&sched_lock);
|
|
TD_SET_CAN_RUN(td2);
|
|
setrunqueue(td2);
|
|
mtx_unlock_spin(&sched_lock);
|
|
|
|
td->td_retval[0] = p2->p_pid;
|
|
td->td_retval[1] = 0;
|
|
return (0);
|
|
}
|
|
|
|
/* XXX move */
|
|
struct l_mmap_argv {
|
|
l_caddr_t addr;
|
|
l_int len;
|
|
l_int prot;
|
|
l_int flags;
|
|
l_int fd;
|
|
l_int pos;
|
|
};
|
|
|
|
#define STACK_SIZE (2 * 1024 * 1024)
|
|
#define GUARD_SIZE (4 * PAGE_SIZE)
|
|
|
|
static int linux_mmap_common(struct thread *, struct l_mmap_argv *);
|
|
|
|
int
|
|
linux_mmap2(struct thread *td, struct linux_mmap2_args *args)
|
|
{
|
|
struct l_mmap_argv linux_args;
|
|
|
|
#ifdef DEBUG
|
|
if (ldebug(mmap2))
|
|
printf(ARGS(mmap2, "%p, %d, %d, 0x%08x, %d, %d"),
|
|
(void *)args->addr, args->len, args->prot,
|
|
args->flags, args->fd, args->pgoff);
|
|
#endif
|
|
|
|
linux_args.addr = (l_caddr_t)args->addr;
|
|
linux_args.len = args->len;
|
|
linux_args.prot = args->prot;
|
|
linux_args.flags = args->flags;
|
|
linux_args.fd = args->fd;
|
|
linux_args.pos = args->pgoff * PAGE_SIZE;
|
|
|
|
return (linux_mmap_common(td, &linux_args));
|
|
}
|
|
|
|
int
|
|
linux_mmap(struct thread *td, struct linux_mmap_args *args)
|
|
{
|
|
int error;
|
|
struct l_mmap_argv linux_args;
|
|
|
|
error = copyin(args->ptr, &linux_args, sizeof(linux_args));
|
|
if (error)
|
|
return (error);
|
|
|
|
#ifdef DEBUG
|
|
if (ldebug(mmap))
|
|
printf(ARGS(mmap, "%p, %d, %d, 0x%08x, %d, %d"),
|
|
(void *)linux_args.addr, linux_args.len, linux_args.prot,
|
|
linux_args.flags, linux_args.fd, linux_args.pos);
|
|
#endif
|
|
|
|
return (linux_mmap_common(td, &linux_args));
|
|
}
|
|
|
|
static int
|
|
linux_mmap_common(struct thread *td, struct l_mmap_argv *linux_args)
|
|
{
|
|
struct proc *p = td->td_proc;
|
|
struct mmap_args /* {
|
|
caddr_t addr;
|
|
size_t len;
|
|
int prot;
|
|
int flags;
|
|
int fd;
|
|
long pad;
|
|
off_t pos;
|
|
} */ bsd_args;
|
|
int error;
|
|
|
|
error = 0;
|
|
bsd_args.flags = 0;
|
|
if (linux_args->flags & LINUX_MAP_SHARED)
|
|
bsd_args.flags |= MAP_SHARED;
|
|
if (linux_args->flags & LINUX_MAP_PRIVATE)
|
|
bsd_args.flags |= MAP_PRIVATE;
|
|
if (linux_args->flags & LINUX_MAP_FIXED)
|
|
bsd_args.flags |= MAP_FIXED;
|
|
if (linux_args->flags & LINUX_MAP_ANON)
|
|
bsd_args.flags |= MAP_ANON;
|
|
else
|
|
bsd_args.flags |= MAP_NOSYNC;
|
|
if (linux_args->flags & LINUX_MAP_GROWSDOWN) {
|
|
bsd_args.flags |= MAP_STACK;
|
|
|
|
/* The linux MAP_GROWSDOWN option does not limit auto
|
|
* growth of the region. Linux mmap with this option
|
|
* takes as addr the inital BOS, and as len, the initial
|
|
* region size. It can then grow down from addr without
|
|
* limit. However, linux threads has an implicit internal
|
|
* limit to stack size of STACK_SIZE. Its just not
|
|
* enforced explicitly in linux. But, here we impose
|
|
* a limit of (STACK_SIZE - GUARD_SIZE) on the stack
|
|
* region, since we can do this with our mmap.
|
|
*
|
|
* Our mmap with MAP_STACK takes addr as the maximum
|
|
* downsize limit on BOS, and as len the max size of
|
|
* the region. It them maps the top SGROWSIZ bytes,
|
|
* and autgrows the region down, up to the limit
|
|
* in addr.
|
|
*
|
|
* If we don't use the MAP_STACK option, the effect
|
|
* of this code is to allocate a stack region of a
|
|
* fixed size of (STACK_SIZE - GUARD_SIZE).
|
|
*/
|
|
|
|
/* This gives us TOS */
|
|
bsd_args.addr = linux_args->addr + linux_args->len;
|
|
|
|
if (bsd_args.addr > p->p_vmspace->vm_maxsaddr) {
|
|
/* Some linux apps will attempt to mmap
|
|
* thread stacks near the top of their
|
|
* address space. If their TOS is greater
|
|
* than vm_maxsaddr, vm_map_growstack()
|
|
* will confuse the thread stack with the
|
|
* process stack and deliver a SEGV if they
|
|
* attempt to grow the thread stack past their
|
|
* current stacksize rlimit. To avoid this,
|
|
* adjust vm_maxsaddr upwards to reflect
|
|
* the current stacksize rlimit rather
|
|
* than the maximum possible stacksize.
|
|
* It would be better to adjust the
|
|
* mmap'ed region, but some apps do not check
|
|
* mmap's return value.
|
|
*/
|
|
PROC_LOCK(p);
|
|
p->p_vmspace->vm_maxsaddr = (char *)USRSTACK -
|
|
lim_cur(p, RLIMIT_STACK);
|
|
PROC_UNLOCK(p);
|
|
}
|
|
|
|
/* This gives us our maximum stack size */
|
|
if (linux_args->len > STACK_SIZE - GUARD_SIZE)
|
|
bsd_args.len = linux_args->len;
|
|
else
|
|
bsd_args.len = STACK_SIZE - GUARD_SIZE;
|
|
|
|
/* This gives us a new BOS. If we're using VM_STACK, then
|
|
* mmap will just map the top SGROWSIZ bytes, and let
|
|
* the stack grow down to the limit at BOS. If we're
|
|
* not using VM_STACK we map the full stack, since we
|
|
* don't have a way to autogrow it.
|
|
*/
|
|
bsd_args.addr -= bsd_args.len;
|
|
} else {
|
|
bsd_args.addr = linux_args->addr;
|
|
bsd_args.len = linux_args->len;
|
|
}
|
|
|
|
bsd_args.prot = linux_args->prot | PROT_READ; /* always required */
|
|
if (linux_args->flags & LINUX_MAP_ANON)
|
|
bsd_args.fd = -1;
|
|
else
|
|
bsd_args.fd = linux_args->fd;
|
|
bsd_args.pos = linux_args->pos;
|
|
bsd_args.pad = 0;
|
|
|
|
#ifdef DEBUG
|
|
if (ldebug(mmap))
|
|
printf("-> %s(%p, %d, %d, 0x%08x, %d, 0x%x)\n",
|
|
__func__,
|
|
(void *)bsd_args.addr, bsd_args.len, bsd_args.prot,
|
|
bsd_args.flags, bsd_args.fd, (int)bsd_args.pos);
|
|
#endif
|
|
error = mmap(td, &bsd_args);
|
|
#ifdef DEBUG
|
|
if (ldebug(mmap))
|
|
printf("-> %s() return: 0x%x (0x%08x)\n",
|
|
__func__, error, (u_int)td->td_retval[0]);
|
|
#endif
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
linux_pipe(struct thread *td, struct linux_pipe_args *args)
|
|
{
|
|
int error;
|
|
int reg_edx;
|
|
|
|
#ifdef DEBUG
|
|
if (ldebug(pipe))
|
|
printf(ARGS(pipe, "*"));
|
|
#endif
|
|
|
|
reg_edx = td->td_retval[1];
|
|
error = pipe(td, 0);
|
|
if (error) {
|
|
td->td_retval[1] = reg_edx;
|
|
return (error);
|
|
}
|
|
|
|
error = copyout(td->td_retval, args->pipefds, 2*sizeof(int));
|
|
if (error) {
|
|
td->td_retval[1] = reg_edx;
|
|
return (error);
|
|
}
|
|
|
|
td->td_retval[1] = reg_edx;
|
|
td->td_retval[0] = 0;
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
linux_ioperm(struct thread *td, struct linux_ioperm_args *args)
|
|
{
|
|
struct sysarch_args sa;
|
|
struct i386_ioperm_args *iia;
|
|
caddr_t sg;
|
|
|
|
sg = stackgap_init();
|
|
iia = stackgap_alloc(&sg, sizeof(struct i386_ioperm_args));
|
|
iia->start = args->start;
|
|
iia->length = args->length;
|
|
iia->enable = args->enable;
|
|
sa.op = I386_SET_IOPERM;
|
|
sa.parms = (char *)iia;
|
|
return (sysarch(td, &sa));
|
|
}
|
|
|
|
int
|
|
linux_iopl(struct thread *td, struct linux_iopl_args *args)
|
|
{
|
|
int error;
|
|
|
|
if (args->level < 0 || args->level > 3)
|
|
return (EINVAL);
|
|
if ((error = suser(td)) != 0)
|
|
return (error);
|
|
if ((error = securelevel_gt(td->td_ucred, 0)) != 0)
|
|
return (error);
|
|
td->td_frame->tf_eflags = (td->td_frame->tf_eflags & ~PSL_IOPL) |
|
|
(args->level * (PSL_IOPL / 3));
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
linux_modify_ldt(struct thread *td, struct linux_modify_ldt_args *uap)
|
|
{
|
|
int error;
|
|
caddr_t sg;
|
|
struct sysarch_args args;
|
|
struct i386_ldt_args *ldt;
|
|
struct l_descriptor ld;
|
|
union descriptor *desc;
|
|
|
|
sg = stackgap_init();
|
|
|
|
if (uap->ptr == NULL)
|
|
return (EINVAL);
|
|
|
|
switch (uap->func) {
|
|
case 0x00: /* read_ldt */
|
|
ldt = stackgap_alloc(&sg, sizeof(*ldt));
|
|
ldt->start = 0;
|
|
ldt->descs = uap->ptr;
|
|
ldt->num = uap->bytecount / sizeof(union descriptor);
|
|
args.op = I386_GET_LDT;
|
|
args.parms = (char*)ldt;
|
|
error = sysarch(td, &args);
|
|
td->td_retval[0] *= sizeof(union descriptor);
|
|
break;
|
|
case 0x01: /* write_ldt */
|
|
case 0x11: /* write_ldt */
|
|
if (uap->bytecount != sizeof(ld))
|
|
return (EINVAL);
|
|
|
|
error = copyin(uap->ptr, &ld, sizeof(ld));
|
|
if (error)
|
|
return (error);
|
|
|
|
ldt = stackgap_alloc(&sg, sizeof(*ldt));
|
|
desc = stackgap_alloc(&sg, sizeof(*desc));
|
|
ldt->start = ld.entry_number;
|
|
ldt->descs = desc;
|
|
ldt->num = 1;
|
|
desc->sd.sd_lolimit = (ld.limit & 0x0000ffff);
|
|
desc->sd.sd_hilimit = (ld.limit & 0x000f0000) >> 16;
|
|
desc->sd.sd_lobase = (ld.base_addr & 0x00ffffff);
|
|
desc->sd.sd_hibase = (ld.base_addr & 0xff000000) >> 24;
|
|
desc->sd.sd_type = SDT_MEMRO | ((ld.read_exec_only ^ 1) << 1) |
|
|
(ld.contents << 2);
|
|
desc->sd.sd_dpl = 3;
|
|
desc->sd.sd_p = (ld.seg_not_present ^ 1);
|
|
desc->sd.sd_xx = 0;
|
|
desc->sd.sd_def32 = ld.seg_32bit;
|
|
desc->sd.sd_gran = ld.limit_in_pages;
|
|
args.op = I386_SET_LDT;
|
|
args.parms = (char*)ldt;
|
|
error = sysarch(td, &args);
|
|
break;
|
|
default:
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
|
|
if (error == EOPNOTSUPP) {
|
|
printf("linux: modify_ldt needs kernel option USER_LDT\n");
|
|
error = ENOSYS;
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
linux_sigaction(struct thread *td, struct linux_sigaction_args *args)
|
|
{
|
|
l_osigaction_t osa;
|
|
l_sigaction_t act, oact;
|
|
int error;
|
|
|
|
#ifdef DEBUG
|
|
if (ldebug(sigaction))
|
|
printf(ARGS(sigaction, "%d, %p, %p"),
|
|
args->sig, (void *)args->nsa, (void *)args->osa);
|
|
#endif
|
|
|
|
if (args->nsa != NULL) {
|
|
error = copyin(args->nsa, &osa, sizeof(l_osigaction_t));
|
|
if (error)
|
|
return (error);
|
|
act.lsa_handler = osa.lsa_handler;
|
|
act.lsa_flags = osa.lsa_flags;
|
|
act.lsa_restorer = osa.lsa_restorer;
|
|
LINUX_SIGEMPTYSET(act.lsa_mask);
|
|
act.lsa_mask.__bits[0] = osa.lsa_mask;
|
|
}
|
|
|
|
error = linux_do_sigaction(td, args->sig, args->nsa ? &act : NULL,
|
|
args->osa ? &oact : NULL);
|
|
|
|
if (args->osa != NULL && !error) {
|
|
osa.lsa_handler = oact.lsa_handler;
|
|
osa.lsa_flags = oact.lsa_flags;
|
|
osa.lsa_restorer = oact.lsa_restorer;
|
|
osa.lsa_mask = oact.lsa_mask.__bits[0];
|
|
error = copyout(&osa, args->osa, sizeof(l_osigaction_t));
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Linux has two extra args, restart and oldmask. We dont use these,
|
|
* but it seems that "restart" is actually a context pointer that
|
|
* enables the signal to happen with a different register set.
|
|
*/
|
|
int
|
|
linux_sigsuspend(struct thread *td, struct linux_sigsuspend_args *args)
|
|
{
|
|
sigset_t sigmask;
|
|
l_sigset_t mask;
|
|
|
|
#ifdef DEBUG
|
|
if (ldebug(sigsuspend))
|
|
printf(ARGS(sigsuspend, "%08lx"), (unsigned long)args->mask);
|
|
#endif
|
|
|
|
LINUX_SIGEMPTYSET(mask);
|
|
mask.__bits[0] = args->mask;
|
|
linux_to_bsd_sigset(&mask, &sigmask);
|
|
return (kern_sigsuspend(td, sigmask));
|
|
}
|
|
|
|
int
|
|
linux_rt_sigsuspend(struct thread *td, struct linux_rt_sigsuspend_args *uap)
|
|
{
|
|
l_sigset_t lmask;
|
|
sigset_t sigmask;
|
|
int error;
|
|
|
|
#ifdef DEBUG
|
|
if (ldebug(rt_sigsuspend))
|
|
printf(ARGS(rt_sigsuspend, "%p, %d"),
|
|
(void *)uap->newset, uap->sigsetsize);
|
|
#endif
|
|
|
|
if (uap->sigsetsize != sizeof(l_sigset_t))
|
|
return (EINVAL);
|
|
|
|
error = copyin(uap->newset, &lmask, sizeof(l_sigset_t));
|
|
if (error)
|
|
return (error);
|
|
|
|
linux_to_bsd_sigset(&lmask, &sigmask);
|
|
return (kern_sigsuspend(td, sigmask));
|
|
}
|
|
|
|
int
|
|
linux_pause(struct thread *td, struct linux_pause_args *args)
|
|
{
|
|
struct proc *p = td->td_proc;
|
|
sigset_t sigmask;
|
|
|
|
#ifdef DEBUG
|
|
if (ldebug(pause))
|
|
printf(ARGS(pause, ""));
|
|
#endif
|
|
|
|
PROC_LOCK(p);
|
|
sigmask = td->td_sigmask;
|
|
PROC_UNLOCK(p);
|
|
return (kern_sigsuspend(td, sigmask));
|
|
}
|
|
|
|
int
|
|
linux_sigaltstack(struct thread *td, struct linux_sigaltstack_args *uap)
|
|
{
|
|
stack_t ss, oss;
|
|
l_stack_t lss;
|
|
int error;
|
|
|
|
#ifdef DEBUG
|
|
if (ldebug(sigaltstack))
|
|
printf(ARGS(sigaltstack, "%p, %p"), uap->uss, uap->uoss);
|
|
#endif
|
|
|
|
if (uap->uss != NULL) {
|
|
error = copyin(uap->uss, &lss, sizeof(l_stack_t));
|
|
if (error)
|
|
return (error);
|
|
|
|
ss.ss_sp = lss.ss_sp;
|
|
ss.ss_size = lss.ss_size;
|
|
ss.ss_flags = linux_to_bsd_sigaltstack(lss.ss_flags);
|
|
}
|
|
error = kern_sigaltstack(td, (uap->uss != NULL) ? &ss : NULL,
|
|
(uap->uoss != NULL) ? &oss : NULL);
|
|
if (!error && uap->uoss != NULL) {
|
|
lss.ss_sp = oss.ss_sp;
|
|
lss.ss_size = oss.ss_size;
|
|
lss.ss_flags = bsd_to_linux_sigaltstack(oss.ss_flags);
|
|
error = copyout(&lss, uap->uoss, sizeof(l_stack_t));
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
linux_ftruncate64(struct thread *td, struct linux_ftruncate64_args *args)
|
|
{
|
|
struct ftruncate_args sa;
|
|
|
|
#ifdef DEBUG
|
|
if (ldebug(ftruncate64))
|
|
printf(ARGS(ftruncate64, "%u, %jd"), args->fd,
|
|
(intmax_t)args->length);
|
|
#endif
|
|
|
|
sa.fd = args->fd;
|
|
sa.pad = 0;
|
|
sa.length = args->length;
|
|
return ftruncate(td, &sa);
|
|
}
|