freebsd-dev/sys/kern/vfs_aio.c
1999-08-13 10:10:12 +00:00

2008 lines
46 KiB
C

/*
* Copyright (c) 1997 John S. Dyson. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. John S. Dyson's name may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* DISCLAIMER: This code isn't warranted to do anything useful. Anything
* bad that happens because of using this software isn't the responsibility
* of the author. This software is distributed AS-IS.
*
* $Id: vfs_aio.c,v 1.55 1999/08/08 18:42:48 phk Exp $
*/
/*
* This file contains support for the POSIX 1003.1B AIO/LIO facility.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/buf.h>
#include <sys/sysproto.h>
#include <sys/filedesc.h>
#include <sys/kernel.h>
#include <sys/fcntl.h>
#include <sys/file.h>
#include <sys/lock.h>
#include <sys/unistd.h>
#include <sys/proc.h>
#include <sys/resourcevar.h>
#include <sys/signalvar.h>
#include <sys/sysctl.h>
#include <sys/vnode.h>
#include <sys/conf.h>
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/vm_extern.h>
#include <vm/pmap.h>
#include <vm/vm_map.h>
#include <vm/vm_zone.h>
#include <sys/aio.h>
#include <sys/shm.h>
#include <machine/cpu.h>
#include <machine/limits.h>
static long jobrefid;
#define JOBST_NULL 0x0
#define JOBST_JOBQPROC 0x1
#define JOBST_JOBQGLOBAL 0x2
#define JOBST_JOBRUNNING 0x3
#define JOBST_JOBFINISHED 0x4
#define JOBST_JOBQBUF 0x5
#define JOBST_JOBBFINISHED 0x6
#ifndef MAX_AIO_PER_PROC
#define MAX_AIO_PER_PROC 32
#endif
#ifndef MAX_AIO_QUEUE_PER_PROC
#define MAX_AIO_QUEUE_PER_PROC 256 /* Bigger than AIO_LISTIO_MAX */
#endif
#ifndef MAX_AIO_PROCS
#define MAX_AIO_PROCS 32
#endif
#ifndef MAX_AIO_QUEUE
#define MAX_AIO_QUEUE 1024 /* Bigger than AIO_LISTIO_MAX */
#endif
#ifndef TARGET_AIO_PROCS
#define TARGET_AIO_PROCS 0
#endif
#ifndef MAX_BUF_AIO
#define MAX_BUF_AIO 16
#endif
#ifndef AIOD_TIMEOUT_DEFAULT
#define AIOD_TIMEOUT_DEFAULT (10 * hz)
#endif
#ifndef AIOD_LIFETIME_DEFAULT
#define AIOD_LIFETIME_DEFAULT (30 * hz)
#endif
static int max_aio_procs = MAX_AIO_PROCS;
static int num_aio_procs = 0;
static int target_aio_procs = TARGET_AIO_PROCS;
static int max_queue_count = MAX_AIO_QUEUE;
static int num_queue_count = 0;
static int num_buf_aio = 0;
static int num_aio_resv_start = 0;
static int aiod_timeout;
static int aiod_lifetime;
static int max_aio_per_proc = MAX_AIO_PER_PROC,
max_aio_queue_per_proc=MAX_AIO_QUEUE_PER_PROC;
static int max_buf_aio = MAX_BUF_AIO;
SYSCTL_NODE(_vfs, OID_AUTO, aio, CTLFLAG_RW, 0, "AIO mgmt");
SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_per_proc,
CTLFLAG_RW, &max_aio_per_proc, 0, "");
SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue_per_proc,
CTLFLAG_RW, &max_aio_queue_per_proc, 0, "");
SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_procs,
CTLFLAG_RW, &max_aio_procs, 0, "");
SYSCTL_INT(_vfs_aio, OID_AUTO, num_aio_procs,
CTLFLAG_RD, &num_aio_procs, 0, "");
SYSCTL_INT(_vfs_aio, OID_AUTO, num_queue_count,
CTLFLAG_RD, &num_queue_count, 0, "");
SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue,
CTLFLAG_RW, &max_queue_count, 0, "");
SYSCTL_INT(_vfs_aio, OID_AUTO, target_aio_procs,
CTLFLAG_RW, &target_aio_procs, 0, "");
SYSCTL_INT(_vfs_aio, OID_AUTO, max_buf_aio,
CTLFLAG_RW, &max_buf_aio, 0, "");
SYSCTL_INT(_vfs_aio, OID_AUTO, num_buf_aio,
CTLFLAG_RD, &num_buf_aio, 0, "");
SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_lifetime,
CTLFLAG_RW, &aiod_lifetime, 0, "");
SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_timeout,
CTLFLAG_RW, &aiod_timeout, 0, "");
/*
* Job queue item
*/
#define AIOCBLIST_CANCELLED 0x1
#define AIOCBLIST_RUNDOWN 0x4
#define AIOCBLIST_ASYNCFREE 0x8
#define AIOCBLIST_DONE 0x10
struct aiocblist {
TAILQ_ENTRY (aiocblist) list; /* List of jobs */
TAILQ_ENTRY (aiocblist) plist; /* List of jobs for proc */
int jobflags;
int jobstate;
int inputcharge, outputcharge;
struct buf *bp; /* buffer pointer */
struct proc *userproc; /* User process */
struct aioproclist *jobaioproc; /* AIO process descriptor */
struct aio_liojob *lio; /* optional lio job */
struct aiocb *uuaiocb; /* pointer in userspace of aiocb */
struct aiocb uaiocb; /* Kernel I/O control block */
};
/*
* AIO process info
*/
#define AIOP_FREE 0x1 /* proc on free queue */
#define AIOP_SCHED 0x2 /* proc explicitly scheduled */
struct aioproclist {
int aioprocflags; /* AIO proc flags */
TAILQ_ENTRY(aioproclist) list; /* List of processes */
struct proc *aioproc; /* The AIO thread */
TAILQ_HEAD (,aiocblist) jobtorun; /* suggested job to run */
};
/*
* data-structure for lio signal management
*/
struct aio_liojob {
int lioj_flags;
int lioj_buffer_count;
int lioj_buffer_finished_count;
int lioj_queue_count;
int lioj_queue_finished_count;
struct sigevent lioj_signal; /* signal on all I/O done */
TAILQ_ENTRY (aio_liojob) lioj_list;
struct kaioinfo *lioj_ki;
};
#define LIOJ_SIGNAL 0x1 /* signal on all done (lio) */
#define LIOJ_SIGNAL_POSTED 0x2 /* signal has been posted */
/*
* per process aio data structure
*/
struct kaioinfo {
int kaio_flags; /* per process kaio flags */
int kaio_maxactive_count; /* maximum number of AIOs */
int kaio_active_count; /* number of currently used AIOs */
int kaio_qallowed_count; /* maxiumu size of AIO queue */
int kaio_queue_count; /* size of AIO queue */
int kaio_ballowed_count; /* maximum number of buffers */
int kaio_queue_finished_count; /* number of daemon jobs finished */
int kaio_buffer_count; /* number of physio buffers */
int kaio_buffer_finished_count; /* count of I/O done */
struct proc *kaio_p; /* process that uses this kaio block */
TAILQ_HEAD (,aio_liojob) kaio_liojoblist; /* list of lio jobs */
TAILQ_HEAD (,aiocblist) kaio_jobqueue; /* job queue for process */
TAILQ_HEAD (,aiocblist) kaio_jobdone; /* done queue for process */
TAILQ_HEAD (,aiocblist) kaio_bufqueue; /* buffer job queue for process */
TAILQ_HEAD (,aiocblist) kaio_bufdone; /* buffer done queue for process */
};
#define KAIO_RUNDOWN 0x1 /* process is being run down */
#define KAIO_WAKEUP 0x2 /* wakeup process when there is a significant
event */
static TAILQ_HEAD (,aioproclist) aio_freeproc, aio_activeproc;
static TAILQ_HEAD(,aiocblist) aio_jobs; /* Async job list */
static TAILQ_HEAD(,aiocblist) aio_bufjobs; /* Phys I/O job list */
static TAILQ_HEAD(,aiocblist) aio_freejobs; /* Pool of free jobs */
static void aio_init_aioinfo(struct proc *p) ;
static void aio_onceonly(void *) ;
static int aio_free_entry(struct aiocblist *aiocbe);
static void aio_process(struct aiocblist *aiocbe);
static int aio_newproc(void) ;
static int aio_aqueue(struct proc *p, struct aiocb *job, int type) ;
static void aio_physwakeup(struct buf *bp);
static int aio_fphysio(struct proc *p, struct aiocblist *aiocbe, int type);
static int aio_qphysio(struct proc *p, struct aiocblist *iocb);
static void aio_daemon(void *uproc);
SYSINIT(aio, SI_SUB_VFS, SI_ORDER_ANY, aio_onceonly, NULL);
static vm_zone_t kaio_zone=0, aiop_zone=0,
aiocb_zone=0, aiol_zone=0, aiolio_zone=0;
/*
* Startup initialization
*/
void
aio_onceonly(void *na)
{
TAILQ_INIT(&aio_freeproc);
TAILQ_INIT(&aio_activeproc);
TAILQ_INIT(&aio_jobs);
TAILQ_INIT(&aio_bufjobs);
TAILQ_INIT(&aio_freejobs);
kaio_zone = zinit("AIO", sizeof (struct kaioinfo), 0, 0, 1);
aiop_zone = zinit("AIOP", sizeof (struct aioproclist), 0, 0, 1);
aiocb_zone = zinit("AIOCB", sizeof (struct aiocblist), 0, 0, 1);
aiol_zone = zinit("AIOL", AIO_LISTIO_MAX * sizeof (int), 0, 0, 1);
aiolio_zone = zinit("AIOLIO",
AIO_LISTIO_MAX * sizeof (struct aio_liojob), 0, 0, 1);
aiod_timeout = AIOD_TIMEOUT_DEFAULT;
aiod_lifetime = AIOD_LIFETIME_DEFAULT;
jobrefid = 1;
}
/*
* Init the per-process aioinfo structure.
* The aioinfo limits are set per-process for user limit (resource) management.
*/
void
aio_init_aioinfo(struct proc *p)
{
struct kaioinfo *ki;
if (p->p_aioinfo == NULL) {
ki = zalloc(kaio_zone);
p->p_aioinfo = ki;
ki->kaio_flags = 0;
ki->kaio_maxactive_count = max_aio_per_proc;
ki->kaio_active_count = 0;
ki->kaio_qallowed_count = max_aio_queue_per_proc;
ki->kaio_queue_count = 0;
ki->kaio_ballowed_count = max_buf_aio;
ki->kaio_buffer_count = 0;
ki->kaio_buffer_finished_count = 0;
ki->kaio_p = p;
TAILQ_INIT(&ki->kaio_jobdone);
TAILQ_INIT(&ki->kaio_jobqueue);
TAILQ_INIT(&ki->kaio_bufdone);
TAILQ_INIT(&ki->kaio_bufqueue);
TAILQ_INIT(&ki->kaio_liojoblist);
}
}
/*
* Free a job entry. Wait for completion if it is currently
* active, but don't delay forever. If we delay, we return
* a flag that says that we have to restart the queue scan.
*/
int
aio_free_entry(struct aiocblist *aiocbe)
{
struct kaioinfo *ki;
struct aioproclist *aiop;
struct aio_liojob *lj;
struct proc *p;
int error;
int s;
if (aiocbe->jobstate == JOBST_NULL)
panic("aio_free_entry: freeing already free job");
p = aiocbe->userproc;
ki = p->p_aioinfo;
lj = aiocbe->lio;
if (ki == NULL)
panic("aio_free_entry: missing p->p_aioinfo");
if (aiocbe->jobstate == JOBST_JOBRUNNING) {
if (aiocbe->jobflags & AIOCBLIST_ASYNCFREE)
return 0;
aiocbe->jobflags |= AIOCBLIST_RUNDOWN;
tsleep(aiocbe, PRIBIO|PCATCH, "jobwai", 0);
}
aiocbe->jobflags &= ~AIOCBLIST_ASYNCFREE;
if (aiocbe->bp == NULL) {
if (ki->kaio_queue_count <= 0)
panic("aio_free_entry: process queue size <= 0");
if (num_queue_count <= 0)
panic("aio_free_entry: system wide queue size <= 0");
if(lj) {
lj->lioj_queue_count--;
if (aiocbe->jobflags & AIOCBLIST_DONE)
lj->lioj_queue_finished_count--;
}
ki->kaio_queue_count--;
if (aiocbe->jobflags & AIOCBLIST_DONE)
ki->kaio_queue_finished_count--;
num_queue_count--;
} else {
if(lj) {
lj->lioj_buffer_count--;
if (aiocbe->jobflags & AIOCBLIST_DONE)
lj->lioj_buffer_finished_count--;
}
if (aiocbe->jobflags & AIOCBLIST_DONE)
ki->kaio_buffer_finished_count--;
ki->kaio_buffer_count--;
num_buf_aio--;
}
if ((ki->kaio_flags & KAIO_WAKEUP) ||
((ki->kaio_flags & KAIO_RUNDOWN) &&
((ki->kaio_buffer_count == 0) &&
(ki->kaio_queue_count == 0)))) {
ki->kaio_flags &= ~KAIO_WAKEUP;
wakeup(p);
}
if ( aiocbe->jobstate == JOBST_JOBQBUF) {
if ((error = aio_fphysio(p, aiocbe, 1)) != 0)
return error;
if (aiocbe->jobstate != JOBST_JOBBFINISHED)
panic("aio_free_entry: invalid physio finish-up state");
s = splbio();
TAILQ_REMOVE(&ki->kaio_bufdone, aiocbe, plist);
splx(s);
} else if ( aiocbe->jobstate == JOBST_JOBQPROC) {
aiop = aiocbe->jobaioproc;
TAILQ_REMOVE(&aiop->jobtorun, aiocbe, list);
} else if ( aiocbe->jobstate == JOBST_JOBQGLOBAL) {
TAILQ_REMOVE(&aio_jobs, aiocbe, list);
} else if ( aiocbe->jobstate == JOBST_JOBFINISHED) {
TAILQ_REMOVE(&ki->kaio_jobdone, aiocbe, plist);
} else if ( aiocbe->jobstate == JOBST_JOBBFINISHED) {
s = splbio();
TAILQ_REMOVE(&ki->kaio_bufdone, aiocbe, plist);
splx(s);
if (aiocbe->bp) {
vunmapbuf(aiocbe->bp);
relpbuf(aiocbe->bp, NULL);
aiocbe->bp = NULL;
}
}
if (lj && (lj->lioj_buffer_count == 0) && (lj->lioj_queue_count == 0)) {
TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
zfree(aiolio_zone, lj);
}
TAILQ_INSERT_HEAD(&aio_freejobs, aiocbe, list);
aiocbe->jobstate = JOBST_NULL;
return 0;
}
/*
* Rundown the jobs for a given process.
*/
void
aio_proc_rundown(struct proc *p)
{
int s;
struct kaioinfo *ki;
struct aio_liojob *lj, *ljn;
struct aiocblist *aiocbe, *aiocbn;
ki = p->p_aioinfo;
if (ki == NULL)
return;
ki->kaio_flags |= LIOJ_SIGNAL_POSTED;
while ((ki->kaio_active_count > 0) ||
(ki->kaio_buffer_count > ki->kaio_buffer_finished_count)) {
ki->kaio_flags |= KAIO_RUNDOWN;
if (tsleep(p, PRIBIO, "kaiowt", aiod_timeout))
break;
}
restart1:
for ( aiocbe = TAILQ_FIRST(&ki->kaio_jobdone);
aiocbe;
aiocbe = aiocbn) {
aiocbn = TAILQ_NEXT(aiocbe, plist);
if (aio_free_entry(aiocbe))
goto restart1;
}
restart2:
for ( aiocbe = TAILQ_FIRST(&ki->kaio_jobqueue);
aiocbe;
aiocbe = aiocbn) {
aiocbn = TAILQ_NEXT(aiocbe, plist);
if (aio_free_entry(aiocbe))
goto restart2;
}
/*
* Note the use of lots of splbio here, trying to avoid
* splbio for long chains of I/O. Probably unnecessary.
*/
restart3:
s = splbio();
while (TAILQ_FIRST(&ki->kaio_bufqueue)) {
ki->kaio_flags |= KAIO_WAKEUP;
tsleep (p, PRIBIO, "aioprn", 0);
splx(s);
goto restart3;
}
splx(s);
restart4:
s = splbio();
for ( aiocbe = TAILQ_FIRST(&ki->kaio_bufdone);
aiocbe;
aiocbe = aiocbn) {
aiocbn = TAILQ_NEXT(aiocbe, plist);
if (aio_free_entry(aiocbe)) {
splx(s);
goto restart4;
}
}
splx(s);
for ( lj = TAILQ_FIRST(&ki->kaio_liojoblist);
lj;
lj = ljn) {
ljn = TAILQ_NEXT(lj, lioj_list);
if ((lj->lioj_buffer_count == 0) && (lj->lioj_queue_count == 0)) {
TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
zfree(aiolio_zone, lj);
} else {
#if defined(DIAGNOSTIC)
printf("LIO job not cleaned up: B:%d, BF:%d, Q:%d, QF:%d\n",
lj->lioj_buffer_count, lj->lioj_buffer_finished_count,
lj->lioj_queue_count, lj->lioj_queue_finished_count);
#endif
}
}
zfree(kaio_zone, ki);
p->p_aioinfo = NULL;
}
/*
* Select a job to run (called by an AIO daemon)
*/
static struct aiocblist *
aio_selectjob(struct aioproclist *aiop)
{
struct aiocblist *aiocbe;
aiocbe = TAILQ_FIRST(&aiop->jobtorun);
if (aiocbe) {
TAILQ_REMOVE(&aiop->jobtorun, aiocbe, list);
return aiocbe;
}
for (aiocbe = TAILQ_FIRST(&aio_jobs);
aiocbe;
aiocbe = TAILQ_NEXT(aiocbe, list)) {
struct kaioinfo *ki;
struct proc *userp;
userp = aiocbe->userproc;
ki = userp->p_aioinfo;
if (ki->kaio_active_count < ki->kaio_maxactive_count) {
TAILQ_REMOVE(&aio_jobs, aiocbe, list);
return aiocbe;
}
}
return NULL;
}
/*
* The AIO processing activity. This is the code that does the
* I/O request for the non-physio version of the operations. The
* normal vn operations are used, and this code should work in
* all instances for every type of file, including pipes, sockets,
* fifos, and regular files.
*/
void
aio_process(struct aiocblist *aiocbe)
{
struct filedesc *fdp;
struct proc *userp, *mycp;
struct aiocb *cb;
struct file *fp;
struct uio auio;
struct iovec aiov;
unsigned int fd;
int cnt;
int error;
off_t offset;
int oublock_st, oublock_end;
int inblock_st, inblock_end;
userp = aiocbe->userproc;
cb = &aiocbe->uaiocb;
mycp = curproc;
fdp = mycp->p_fd;
fd = cb->aio_fildes;
fp = fdp->fd_ofiles[fd];
aiov.iov_base = (void *) cb->aio_buf;
aiov.iov_len = cb->aio_nbytes;
auio.uio_iov = &aiov;
auio.uio_iovcnt = 1;
auio.uio_offset = offset = cb->aio_offset;
auio.uio_resid = cb->aio_nbytes;
cnt = cb->aio_nbytes;
auio.uio_segflg = UIO_USERSPACE;
auio.uio_procp = mycp;
inblock_st = mycp->p_stats->p_ru.ru_inblock;
oublock_st = mycp->p_stats->p_ru.ru_oublock;
if (cb->aio_lio_opcode == LIO_READ) {
auio.uio_rw = UIO_READ;
error = (*fp->f_ops->fo_read)(fp, &auio, fp->f_cred, FOF_OFFSET);
} else {
auio.uio_rw = UIO_WRITE;
error = (*fp->f_ops->fo_write)(fp, &auio, fp->f_cred, FOF_OFFSET);
}
inblock_end = mycp->p_stats->p_ru.ru_inblock;
oublock_end = mycp->p_stats->p_ru.ru_oublock;
aiocbe->inputcharge = inblock_end - inblock_st;
aiocbe->outputcharge = oublock_end - oublock_st;
if (error) {
if (auio.uio_resid != cnt) {
if (error == ERESTART || error == EINTR || error == EWOULDBLOCK)
error = 0;
if ((error == EPIPE) && (cb->aio_lio_opcode == LIO_WRITE))
psignal(userp, SIGPIPE);
}
}
cnt -= auio.uio_resid;
cb->_aiocb_private.error = error;
cb->_aiocb_private.status = cnt;
return;
}
/*
* The AIO daemon, most of the actual work is done in aio_process,
* but the setup (and address space mgmt) is done in this routine.
*/
static void
aio_daemon(void *uproc)
{
int s;
struct aioproclist *aiop;
struct vmspace *myvm;
struct proc *mycp;
/*
* Local copies of curproc (cp) and vmspace (myvm)
*/
mycp = curproc;
myvm = mycp->p_vmspace;
if (mycp->p_textvp) {
vrele(mycp->p_textvp);
mycp->p_textvp = NULL;
}
/*
* Allocate and ready the aio control info. There is one
* aiop structure per daemon.
*/
aiop = zalloc(aiop_zone);
aiop->aioproc = mycp;
aiop->aioprocflags |= AIOP_FREE;
TAILQ_INIT(&aiop->jobtorun);
/*
* Place thread (lightweight process) onto the AIO free thread list
*/
if (TAILQ_EMPTY(&aio_freeproc))
wakeup(&aio_freeproc);
TAILQ_INSERT_HEAD(&aio_freeproc, aiop, list);
/*
* Make up a name for the daemon
*/
strcpy(mycp->p_comm, "aiod");
/*
* Get rid of our current filedescriptors. AIOD's don't need any
* filedescriptors, except as temporarily inherited from the client.
* Credentials are also cloned, and made equivalent to "root."
*/
fdfree(mycp);
mycp->p_fd = NULL;
mycp->p_ucred = crcopy(mycp->p_ucred);
mycp->p_ucred->cr_uid = 0;
mycp->p_ucred->cr_ngroups = 1;
mycp->p_ucred->cr_groups[0] = 1;
/*
* The daemon resides in its own pgrp.
*/
enterpgrp(mycp, mycp->p_pid, 1);
/*
* Mark special process type
*/
mycp->p_flag |= P_SYSTEM|P_KTHREADP;
/*
* Wakeup parent process. (Parent sleeps to keep from blasting away
* creating to many daemons.)
*/
wakeup(mycp);
while(1) {
struct proc *curcp;
struct aiocblist *aiocbe;
/*
* curcp is the current daemon process context.
* userp is the current user process context.
*/
curcp = mycp;
/*
* Take daemon off of free queue
*/
if (aiop->aioprocflags & AIOP_FREE) {
TAILQ_REMOVE(&aio_freeproc, aiop, list);
TAILQ_INSERT_TAIL(&aio_activeproc, aiop, list);
aiop->aioprocflags &= ~AIOP_FREE;
}
aiop->aioprocflags &= ~AIOP_SCHED;
/*
* Check for jobs
*/
while ((aiocbe = aio_selectjob(aiop)) != NULL) {
struct proc *userp;
struct aiocb *cb;
struct kaioinfo *ki;
struct aio_liojob *lj;
cb = &aiocbe->uaiocb;
userp = aiocbe->userproc;
aiocbe->jobstate = JOBST_JOBRUNNING;
/*
* Connect to process address space for user program
*/
if (userp != curcp) {
struct vmspace *tmpvm;
/*
* Save the current address space that we are connected to.
*/
tmpvm = mycp->p_vmspace;
/*
* Point to the new user address space, and refer to it.
*/
mycp->p_vmspace = userp->p_vmspace;
mycp->p_vmspace->vm_refcnt++;
/*
* Activate the new mapping.
*/
pmap_activate(mycp);
/*
* If the old address space wasn't the daemons own address
* space, then we need to remove the daemon's reference from
* the other process that it was acting on behalf of.
*/
if (tmpvm != myvm) {
vmspace_free(tmpvm);
}
/*
* Disassociate from previous clients file descriptors, and
* associate to the new clients descriptors. Note that
* the daemon doesn't need to worry about its orginal
* descriptors, because they were originally freed.
*/
if (mycp->p_fd)
fdfree(mycp);
mycp->p_fd = fdshare(userp);
curcp = userp;
}
ki = userp->p_aioinfo;
lj = aiocbe->lio;
/*
* Account for currently active jobs
*/
ki->kaio_active_count++;
/*
* Do the I/O function
*/
aiocbe->jobaioproc = aiop;
aio_process(aiocbe);
/*
* decrement the active job count
*/
ki->kaio_active_count--;
/*
* increment the completion count for wakeup/signal comparisons
*/
aiocbe->jobflags |= AIOCBLIST_DONE;
ki->kaio_queue_finished_count++;
if (lj) {
lj->lioj_queue_finished_count++;
}
if ((ki->kaio_flags & KAIO_WAKEUP) ||
((ki->kaio_flags & KAIO_RUNDOWN) &&
(ki->kaio_active_count == 0))) {
ki->kaio_flags &= ~KAIO_WAKEUP;
wakeup(userp);
}
s = splbio();
if (lj && (lj->lioj_flags & (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED)) ==
LIOJ_SIGNAL) {
if ((lj->lioj_queue_finished_count == lj->lioj_queue_count) &&
(lj->lioj_buffer_finished_count == lj->lioj_buffer_count)) {
psignal(userp, lj->lioj_signal.sigev_signo);
lj->lioj_flags |= LIOJ_SIGNAL_POSTED;
}
}
splx(s);
aiocbe->jobstate = JOBST_JOBFINISHED;
/*
* If the I/O request should be automatically rundown, do the
* needed cleanup. Otherwise, place the queue entry for
* the just finished I/O request into the done queue for the
* associated client.
*/
if (aiocbe->jobflags & AIOCBLIST_ASYNCFREE) {
aiocbe->jobflags &= ~AIOCBLIST_ASYNCFREE;
TAILQ_INSERT_HEAD(&aio_freejobs, aiocbe, list);
} else {
TAILQ_REMOVE(&ki->kaio_jobqueue,
aiocbe, plist);
TAILQ_INSERT_TAIL(&ki->kaio_jobdone,
aiocbe, plist);
}
if (aiocbe->jobflags & AIOCBLIST_RUNDOWN) {
wakeup(aiocbe);
aiocbe->jobflags &= ~AIOCBLIST_RUNDOWN;
}
if (cb->aio_sigevent.sigev_notify == SIGEV_SIGNAL) {
psignal(userp, cb->aio_sigevent.sigev_signo);
}
}
/*
* Disconnect from user address space
*/
if (curcp != mycp) {
struct vmspace *tmpvm;
/*
* Get the user address space to disconnect from.
*/
tmpvm = mycp->p_vmspace;
/*
* Get original address space for daemon.
*/
mycp->p_vmspace = myvm;
/*
* Activate the daemon's address space.
*/
pmap_activate(mycp);
#if defined(DIAGNOSTIC)
if (tmpvm == myvm)
printf("AIOD: vmspace problem -- %d\n", mycp->p_pid);
#endif
/*
* remove our vmspace reference.
*/
vmspace_free(tmpvm);
/*
* disassociate from the user process's file descriptors.
*/
if (mycp->p_fd)
fdfree(mycp);
mycp->p_fd = NULL;
curcp = mycp;
}
/*
* If we are the first to be put onto the free queue, wakeup
* anyone waiting for a daemon.
*/
TAILQ_REMOVE(&aio_activeproc, aiop, list);
if (TAILQ_EMPTY(&aio_freeproc))
wakeup(&aio_freeproc);
TAILQ_INSERT_HEAD(&aio_freeproc, aiop, list);
aiop->aioprocflags |= AIOP_FREE;
/*
* If daemon is inactive for a long time, allow it to exit, thereby
* freeing resources.
*/
if (((aiop->aioprocflags & AIOP_SCHED) == 0) &&
tsleep(mycp, PRIBIO, "aiordy", aiod_lifetime)) {
if ((TAILQ_FIRST(&aio_jobs) == NULL) &&
(TAILQ_FIRST(&aiop->jobtorun) == NULL)) {
if ((aiop->aioprocflags & AIOP_FREE) &&
(num_aio_procs > target_aio_procs)) {
TAILQ_REMOVE(&aio_freeproc, aiop, list);
zfree(aiop_zone, aiop);
num_aio_procs--;
#if defined(DIAGNOSTIC)
if (mycp->p_vmspace->vm_refcnt <= 1)
printf("AIOD: bad vm refcnt for exiting daemon: %d\n",
mycp->p_vmspace->vm_refcnt);
#endif
exit1(mycp, 0);
}
}
}
}
}
/*
* Create a new AIO daemon. This is mostly a kernel-thread fork routine.
* The AIO daemon modifies its environment itself.
*/
static int
aio_newproc()
{
int error;
struct proc *p, *np;
p = &proc0;
error = fork1(p, RFPROC|RFMEM|RFNOWAIT, &np);
if (error)
return error;
cpu_set_fork_handler(np, aio_daemon, curproc);
/*
* Wait until daemon is started, but continue on just in case (to
* handle error conditions.
*/
error = tsleep(np, PZERO, "aiosta", aiod_timeout);
num_aio_procs++;
return error;
}
/*
* Try the high-performance physio method for eligible VCHR devices. This
* routine doesn't require the use of any additional threads, and have
* overhead.
*/
int
aio_qphysio(p, aiocbe)
struct proc *p;
struct aiocblist *aiocbe;
{
int error;
struct aiocb *cb;
struct file *fp;
struct buf *bp;
int bflags;
struct vnode *vp;
struct kaioinfo *ki;
struct filedesc *fdp;
struct aio_liojob *lj;
int fd;
int s;
int cnt;
dev_t dev;
int rw;
d_strategy_t *fstrategy;
struct cdevsw *cdev;
struct cdevsw *bdev;
cb = &aiocbe->uaiocb;
fdp = p->p_fd;
fd = cb->aio_fildes;
fp = fdp->fd_ofiles[fd];
if (fp->f_type != DTYPE_VNODE) {
return -1;
}
vp = (struct vnode *)fp->f_data;
if (vp->v_type != VCHR || ((cb->aio_nbytes & (DEV_BSIZE - 1)) != 0)) {
return -1;
}
if ((cb->aio_nbytes > MAXPHYS) && (num_buf_aio >= max_buf_aio)) {
return -1;
}
if ((vp->v_rdev == NULL) || (vp->v_flag & VISTTY)) {
return -1;
}
if (vp->v_rdev == NODEV) {
return -1;
}
cdev = devsw(vp->v_rdev);
if (cdev == NULL) {
return -1;
}
if (cdev->d_bmaj == -1) {
return -1;
}
bdev = cdev;
ki = p->p_aioinfo;
if (ki->kaio_buffer_count >= ki->kaio_ballowed_count) {
return -1;
}
cnt = cb->aio_nbytes;
if (cnt > MAXPHYS) {
return -1;
}
dev = makebdev(bdev->d_bmaj, minor(vp->v_rdev));
/*
* Physical I/O is charged directly to the process, so we don't have
* to fake it.
*/
aiocbe->inputcharge = 0;
aiocbe->outputcharge = 0;
ki->kaio_buffer_count++;
lj = aiocbe->lio;
if (lj) {
lj->lioj_buffer_count++;
}
/* create and build a buffer header for a transfer */
bp = (struct buf *)getpbuf(NULL);
/*
* get a copy of the kva from the physical buffer
*/
bp->b_caller1 = p;
bp->b_dev = dev;
error = bp->b_error = 0;
if (cb->aio_lio_opcode == LIO_WRITE) {
rw = 0;
bflags = B_WRITE;
} else {
rw = 1;
bflags = B_READ;
}
bp->b_bcount = cb->aio_nbytes;
bp->b_bufsize = cb->aio_nbytes;
bp->b_flags = B_PHYS | B_CALL | bflags;
bp->b_iodone = aio_physwakeup;
bp->b_saveaddr = bp->b_data;
bp->b_data = (void *) cb->aio_buf;
bp->b_blkno = btodb(cb->aio_offset);
if (rw && !useracc(bp->b_data, bp->b_bufsize, B_WRITE)) {
error = EFAULT;
goto doerror;
}
if (!rw && !useracc(bp->b_data, bp->b_bufsize, B_READ)) {
error = EFAULT;
goto doerror;
}
/* bring buffer into kernel space */
vmapbuf(bp);
s = splbio();
aiocbe->bp = bp;
bp->b_spc = (void *)aiocbe;
TAILQ_INSERT_TAIL(&aio_bufjobs, aiocbe, list);
TAILQ_INSERT_TAIL(&ki->kaio_bufqueue, aiocbe, plist);
aiocbe->jobstate = JOBST_JOBQBUF;
cb->_aiocb_private.status = cb->aio_nbytes;
num_buf_aio++;
fstrategy = bdev->d_strategy;
bp->b_error = 0;
splx(s);
/* perform transfer */
(*fstrategy)(bp);
s = splbio();
/*
* If we had an error invoking the request, or an error in processing
* the request before we have returned, we process it as an error
* in transfer. Note that such an I/O error is not indicated immediately,
* but is returned using the aio_error mechanism. In this case, aio_suspend
* will return immediately.
*/
if (bp->b_error || (bp->b_flags & B_ERROR)) {
struct aiocb *job = aiocbe->uuaiocb;
aiocbe->uaiocb._aiocb_private.status = 0;
suword(&job->_aiocb_private.status, 0);
aiocbe->uaiocb._aiocb_private.error = bp->b_error;
suword(&job->_aiocb_private.error, bp->b_error);
ki->kaio_buffer_finished_count++;
if (aiocbe->jobstate != JOBST_JOBBFINISHED) {
aiocbe->jobstate = JOBST_JOBBFINISHED;
aiocbe->jobflags |= AIOCBLIST_DONE;
TAILQ_REMOVE(&aio_bufjobs, aiocbe, list);
TAILQ_REMOVE(&ki->kaio_bufqueue, aiocbe, plist);
TAILQ_INSERT_TAIL(&ki->kaio_bufdone, aiocbe, plist);
}
}
splx(s);
return 0;
doerror:
ki->kaio_buffer_count--;
if (lj) {
lj->lioj_buffer_count--;
}
aiocbe->bp = NULL;
relpbuf(bp, NULL);
return error;
}
/*
* This waits/tests physio completion.
*/
int
aio_fphysio(p, iocb, flgwait)
struct proc *p;
struct aiocblist *iocb;
int flgwait;
{
int s;
struct buf *bp;
int error;
bp = iocb->bp;
s = splbio();
if (flgwait == 0) {
if ((bp->b_flags & B_DONE) == 0) {
splx(s);
return EINPROGRESS;
}
}
while ((bp->b_flags & B_DONE) == 0) {
if (tsleep((caddr_t)bp, PRIBIO, "physstr", aiod_timeout)) {
if ((bp->b_flags & B_DONE) == 0) {
splx(s);
return EINPROGRESS;
} else {
break;
}
}
}
/* release mapping into kernel space */
vunmapbuf(bp);
iocb->bp = 0;
error = 0;
/*
* check for an error
*/
if (bp->b_flags & B_ERROR) {
error = bp->b_error;
}
relpbuf(bp, NULL);
return (error);
}
/*
* Queue a new AIO request. Choosing either the threaded or direct physio
* VCHR technique is done in this code.
*/
static int
_aio_aqueue(struct proc *p, struct aiocb *job, struct aio_liojob *lj, int type)
{
struct filedesc *fdp;
struct file *fp;
unsigned int fd;
int error;
int opcode;
struct aiocblist *aiocbe;
struct aioproclist *aiop;
struct kaioinfo *ki;
if ((aiocbe = TAILQ_FIRST(&aio_freejobs)) != NULL) {
TAILQ_REMOVE(&aio_freejobs, aiocbe, list);
} else {
aiocbe = zalloc (aiocb_zone);
}
aiocbe->inputcharge = 0;
aiocbe->outputcharge = 0;
suword(&job->_aiocb_private.status, -1);
suword(&job->_aiocb_private.error, 0);
suword(&job->_aiocb_private.kernelinfo, -1);
error = copyin((caddr_t)job,
(caddr_t) &aiocbe->uaiocb, sizeof aiocbe->uaiocb);
if (error) {
suword(&job->_aiocb_private.error, error);
TAILQ_INSERT_HEAD(&aio_freejobs, aiocbe, list);
return error;
}
/*
* Save userspace address of the job info
*/
aiocbe->uuaiocb = job;
/*
* Get the opcode
*/
if (type != LIO_NOP) {
aiocbe->uaiocb.aio_lio_opcode = type;
}
opcode = aiocbe->uaiocb.aio_lio_opcode;
/*
* Get the fd info for process
*/
fdp = p->p_fd;
/*
* Range check file descriptor
*/
fd = aiocbe->uaiocb.aio_fildes;
if (fd >= fdp->fd_nfiles) {
TAILQ_INSERT_HEAD(&aio_freejobs, aiocbe, list);
if (type == 0) {
suword(&job->_aiocb_private.error, EBADF);
}
return EBADF;
}
fp = fdp->fd_ofiles[fd];
if ((fp == NULL) ||
((opcode == LIO_WRITE) && ((fp->f_flag & FWRITE) == 0))) {
TAILQ_INSERT_HEAD(&aio_freejobs, aiocbe, list);
if (type == 0) {
suword(&job->_aiocb_private.error, EBADF);
}
return EBADF;
}
if (aiocbe->uaiocb.aio_offset == -1LL) {
TAILQ_INSERT_HEAD(&aio_freejobs, aiocbe, list);
if (type == 0) {
suword(&job->_aiocb_private.error, EINVAL);
}
return EINVAL;
}
error = suword(&job->_aiocb_private.kernelinfo, jobrefid);
if (error) {
TAILQ_INSERT_HEAD(&aio_freejobs, aiocbe, list);
if (type == 0) {
suword(&job->_aiocb_private.error, EINVAL);
}
return error;
}
aiocbe->uaiocb._aiocb_private.kernelinfo = (void *)(intptr_t)jobrefid;
if (jobrefid == LONG_MAX)
jobrefid = 1;
else
jobrefid++;
if (opcode == LIO_NOP) {
TAILQ_INSERT_HEAD(&aio_freejobs, aiocbe, list);
if (type == 0) {
suword(&job->_aiocb_private.error, 0);
suword(&job->_aiocb_private.status, 0);
suword(&job->_aiocb_private.kernelinfo, 0);
}
return 0;
}
if ((opcode != LIO_READ) && (opcode != LIO_WRITE)) {
TAILQ_INSERT_HEAD(&aio_freejobs, aiocbe, list);
if (type == 0) {
suword(&job->_aiocb_private.status, 0);
suword(&job->_aiocb_private.error, EINVAL);
}
return EINVAL;
}
suword(&job->_aiocb_private.error, EINPROGRESS);
aiocbe->uaiocb._aiocb_private.error = EINPROGRESS;
aiocbe->userproc = p;
aiocbe->jobflags = 0;
aiocbe->lio = lj;
ki = p->p_aioinfo;
if ((error = aio_qphysio(p, aiocbe)) == 0) {
return 0;
} else if (error > 0) {
suword(&job->_aiocb_private.status, 0);
aiocbe->uaiocb._aiocb_private.error = error;
suword(&job->_aiocb_private.error, error);
return error;
}
/*
* No buffer for daemon I/O
*/
aiocbe->bp = NULL;
ki->kaio_queue_count++;
if (lj) {
lj->lioj_queue_count++;
}
TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, aiocbe, plist);
TAILQ_INSERT_TAIL(&aio_jobs, aiocbe, list);
aiocbe->jobstate = JOBST_JOBQGLOBAL;
num_queue_count++;
error = 0;
/*
* If we don't have a free AIO process, and we are below our
* quota, then start one. Otherwise, depend on the subsequent
* I/O completions to pick-up this job. If we don't sucessfully
* create the new process (thread) due to resource issues, we
* return an error for now (EAGAIN), which is likely not the
* correct thing to do.
*/
retryproc:
if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) {
TAILQ_REMOVE(&aio_freeproc, aiop, list);
TAILQ_INSERT_TAIL(&aio_activeproc, aiop, list);
aiop->aioprocflags &= ~AIOP_FREE;
wakeup(aiop->aioproc);
} else if (((num_aio_resv_start + num_aio_procs) < max_aio_procs) &&
((ki->kaio_active_count + num_aio_resv_start) <
ki->kaio_maxactive_count)) {
num_aio_resv_start++;
if ((error = aio_newproc()) == 0) {
num_aio_resv_start--;
p->p_retval[0] = 0;
goto retryproc;
}
num_aio_resv_start--;
}
return error;
}
/*
* This routine queues an AIO request, checking for quotas.
*/
static int
aio_aqueue(struct proc *p, struct aiocb *job, int type)
{
struct kaioinfo *ki;
if (p->p_aioinfo == NULL) {
aio_init_aioinfo(p);
}
if (num_queue_count >= max_queue_count)
return EAGAIN;
ki = p->p_aioinfo;
if (ki->kaio_queue_count >= ki->kaio_qallowed_count)
return EAGAIN;
return _aio_aqueue(p, job, NULL, type);
}
/*
* Support the aio_return system call, as a side-effect, kernel
* resources are released.
*/
int
aio_return(struct proc *p, struct aio_return_args *uap)
{
int s;
int jobref;
struct aiocblist *cb, *ncb;
struct aiocb *ujob;
struct kaioinfo *ki;
ki = p->p_aioinfo;
if (ki == NULL) {
return EINVAL;
}
ujob = uap->aiocbp;
jobref = fuword(&ujob->_aiocb_private.kernelinfo);
if (jobref == -1 || jobref == 0)
return EINVAL;
for (cb = TAILQ_FIRST(&ki->kaio_jobdone);
cb;
cb = TAILQ_NEXT(cb, plist)) {
if (((intptr_t) cb->uaiocb._aiocb_private.kernelinfo) == jobref) {
if (ujob == cb->uuaiocb) {
p->p_retval[0] = cb->uaiocb._aiocb_private.status;
} else {
p->p_retval[0] = EFAULT;
}
if (cb->uaiocb.aio_lio_opcode == LIO_WRITE) {
curproc->p_stats->p_ru.ru_oublock += cb->outputcharge;
cb->outputcharge = 0;
} else if (cb->uaiocb.aio_lio_opcode == LIO_READ) {
curproc->p_stats->p_ru.ru_inblock += cb->inputcharge;
cb->inputcharge = 0;
}
aio_free_entry(cb);
return 0;
}
}
s = splbio();
for (cb = TAILQ_FIRST(&ki->kaio_bufdone);
cb;
cb = ncb) {
ncb = TAILQ_NEXT(cb, plist);
if (((intptr_t) cb->uaiocb._aiocb_private.kernelinfo) == jobref) {
splx(s);
if (ujob == cb->uuaiocb) {
p->p_retval[0] = cb->uaiocb._aiocb_private.status;
} else {
p->p_retval[0] = EFAULT;
}
aio_free_entry(cb);
return 0;
}
}
splx(s);
return (EINVAL);
}
/*
* Allow a process to wakeup when any of the I/O requests are
* completed.
*/
int
aio_suspend(struct proc *p, struct aio_suspend_args *uap)
{
struct timeval atv;
struct timespec ts;
struct aiocb *const *cbptr, *cbp;
struct kaioinfo *ki;
struct aiocblist *cb;
int i;
int njoblist;
int error, s, timo;
int *ijoblist;
struct aiocb **ujoblist;
if (uap->nent >= AIO_LISTIO_MAX)
return EINVAL;
timo = 0;
if (uap->timeout) {
/*
* Get timespec struct
*/
if ((error = copyin(uap->timeout, &ts, sizeof(ts))) != 0) {
return error;
}
if (ts.tv_nsec < 0 || ts.tv_nsec >= 1000000000)
return (EINVAL);
TIMESPEC_TO_TIMEVAL(&atv, &ts);
if (itimerfix(&atv))
return (EINVAL);
timo = tvtohz(&atv);
}
ki = p->p_aioinfo;
if (ki == NULL)
return EAGAIN;
njoblist = 0;
ijoblist = zalloc(aiol_zone);
ujoblist = zalloc(aiol_zone);
cbptr = uap->aiocbp;
for(i = 0; i < uap->nent; i++) {
cbp = (struct aiocb *) (intptr_t) fuword((caddr_t) &cbptr[i]);
if (cbp == 0)
continue;
ujoblist[njoblist] = cbp;
ijoblist[njoblist] = fuword(&cbp->_aiocb_private.kernelinfo);
njoblist++;
}
if (njoblist == 0) {
zfree(aiol_zone, ijoblist);
zfree(aiol_zone, ujoblist);
return 0;
}
error = 0;
while (1) {
for (cb = TAILQ_FIRST(&ki->kaio_jobdone);
cb; cb = TAILQ_NEXT(cb, plist)) {
for(i = 0; i < njoblist; i++) {
if (((intptr_t) cb->uaiocb._aiocb_private.kernelinfo) ==
ijoblist[i]) {
if (ujoblist[i] != cb->uuaiocb)
error = EINVAL;
zfree(aiol_zone, ijoblist);
zfree(aiol_zone, ujoblist);
return error;
}
}
}
s = splbio();
for (cb = TAILQ_FIRST(&ki->kaio_bufdone);
cb; cb = TAILQ_NEXT(cb, plist)) {
for(i = 0; i < njoblist; i++) {
if (((intptr_t) cb->uaiocb._aiocb_private.kernelinfo) ==
ijoblist[i]) {
splx(s);
if (ujoblist[i] != cb->uuaiocb)
error = EINVAL;
zfree(aiol_zone, ijoblist);
zfree(aiol_zone, ujoblist);
return error;
}
}
}
ki->kaio_flags |= KAIO_WAKEUP;
error = tsleep(p, PRIBIO|PCATCH, "aiospn", timo);
splx(s);
if (error == EINTR) {
zfree(aiol_zone, ijoblist);
zfree(aiol_zone, ujoblist);
return EINTR;
} else if (error == EWOULDBLOCK) {
zfree(aiol_zone, ijoblist);
zfree(aiol_zone, ujoblist);
return EAGAIN;
}
}
/* NOTREACHED */
return EINVAL;
}
/*
* aio_cancel at the kernel level is a NOOP right now. It
* might be possible to support it partially in user mode, or
* in kernel mode later on.
*/
int
aio_cancel(struct proc *p, struct aio_cancel_args *uap)
{
return ENOSYS;
}
/*
* aio_error is implemented in the kernel level for compatibility
* purposes only. For a user mode async implementation, it would be
* best to do it in a userland subroutine.
*/
int
aio_error(struct proc *p, struct aio_error_args *uap)
{
int s;
struct aiocblist *cb;
struct kaioinfo *ki;
int jobref;
ki = p->p_aioinfo;
if (ki == NULL)
return EINVAL;
jobref = fuword(&uap->aiocbp->_aiocb_private.kernelinfo);
if ((jobref == -1) || (jobref == 0))
return EINVAL;
for (cb = TAILQ_FIRST(&ki->kaio_jobdone);
cb;
cb = TAILQ_NEXT(cb, plist)) {
if (((intptr_t) cb->uaiocb._aiocb_private.kernelinfo) == jobref) {
p->p_retval[0] = cb->uaiocb._aiocb_private.error;
return 0;
}
}
for (cb = TAILQ_FIRST(&ki->kaio_jobqueue);
cb;
cb = TAILQ_NEXT(cb, plist)) {
if (((intptr_t) cb->uaiocb._aiocb_private.kernelinfo) == jobref) {
p->p_retval[0] = EINPROGRESS;
return 0;
}
}
s = splbio();
for (cb = TAILQ_FIRST(&ki->kaio_bufdone);
cb;
cb = TAILQ_NEXT(cb, plist)) {
if (((intptr_t) cb->uaiocb._aiocb_private.kernelinfo) == jobref) {
p->p_retval[0] = cb->uaiocb._aiocb_private.error;
splx(s);
return 0;
}
}
for (cb = TAILQ_FIRST(&ki->kaio_bufqueue);
cb;
cb = TAILQ_NEXT(cb, plist)) {
if (((intptr_t) cb->uaiocb._aiocb_private.kernelinfo) == jobref) {
p->p_retval[0] = EINPROGRESS;
splx(s);
return 0;
}
}
splx(s);
/*
* Hack for lio
*/
/*
status = fuword(&uap->aiocbp->_aiocb_private.status);
if (status == -1) {
return fuword(&uap->aiocbp->_aiocb_private.error);
}
*/
return EINVAL;
}
int
aio_read(struct proc *p, struct aio_read_args *uap)
{
struct filedesc *fdp;
struct file *fp;
struct uio auio;
struct iovec aiov;
unsigned int fd;
int cnt;
struct aiocb iocb;
int error, pmodes;
pmodes = fuword(&uap->aiocbp->_aiocb_private.privatemodes);
if ((pmodes & AIO_PMODE_SYNC) == 0) {
return aio_aqueue(p, (struct aiocb *) uap->aiocbp, LIO_READ);
}
/*
* Get control block
*/
if ((error = copyin((caddr_t) uap->aiocbp, (caddr_t) &iocb, sizeof iocb)) != 0)
return error;
/*
* Get the fd info for process
*/
fdp = p->p_fd;
/*
* Range check file descriptor
*/
fd = iocb.aio_fildes;
if (fd >= fdp->fd_nfiles)
return EBADF;
fp = fdp->fd_ofiles[fd];
if ((fp == NULL) || ((fp->f_flag & FREAD) == 0))
return EBADF;
if (iocb.aio_offset == -1LL)
return EINVAL;
auio.uio_resid = iocb.aio_nbytes;
if (auio.uio_resid < 0)
return (EINVAL);
/*
* Process sync simply -- queue async request.
*/
if ((iocb._aiocb_private.privatemodes & AIO_PMODE_SYNC) == 0) {
return aio_aqueue(p, (struct aiocb *) uap->aiocbp, LIO_READ);
}
aiov.iov_base = (void *) iocb.aio_buf;
aiov.iov_len = iocb.aio_nbytes;
auio.uio_iov = &aiov;
auio.uio_iovcnt = 1;
auio.uio_offset = iocb.aio_offset;
auio.uio_rw = UIO_READ;
auio.uio_segflg = UIO_USERSPACE;
auio.uio_procp = p;
cnt = iocb.aio_nbytes;
error = (*fp->f_ops->fo_read)(fp, &auio, fp->f_cred, FOF_OFFSET);
if (error &&
(auio.uio_resid != cnt) &&
(error == ERESTART || error == EINTR || error == EWOULDBLOCK))
error = 0;
cnt -= auio.uio_resid;
p->p_retval[0] = cnt;
return error;
}
int
aio_write(struct proc *p, struct aio_write_args *uap)
{
struct filedesc *fdp;
struct file *fp;
struct uio auio;
struct iovec aiov;
unsigned int fd;
int cnt;
struct aiocb iocb;
int error;
int pmodes;
/*
* Process sync simply -- queue async request.
*/
pmodes = fuword(&uap->aiocbp->_aiocb_private.privatemodes);
if ((pmodes & AIO_PMODE_SYNC) == 0) {
return aio_aqueue(p, (struct aiocb *) uap->aiocbp, LIO_WRITE);
}
if ((error = copyin((caddr_t) uap->aiocbp, (caddr_t) &iocb, sizeof iocb)) != 0)
return error;
/*
* Get the fd info for process
*/
fdp = p->p_fd;
/*
* Range check file descriptor
*/
fd = iocb.aio_fildes;
if (fd >= fdp->fd_nfiles)
return EBADF;
fp = fdp->fd_ofiles[fd];
if ((fp == NULL) || ((fp->f_flag & FWRITE) == 0))
return EBADF;
if (iocb.aio_offset == -1LL)
return EINVAL;
aiov.iov_base = (void *) iocb.aio_buf;
aiov.iov_len = iocb.aio_nbytes;
auio.uio_iov = &aiov;
auio.uio_iovcnt = 1;
auio.uio_offset = iocb.aio_offset;
auio.uio_resid = iocb.aio_nbytes;
if (auio.uio_resid < 0)
return (EINVAL);
auio.uio_rw = UIO_WRITE;
auio.uio_segflg = UIO_USERSPACE;
auio.uio_procp = p;
cnt = iocb.aio_nbytes;
error = (*fp->f_ops->fo_write)(fp, &auio, fp->f_cred, FOF_OFFSET);
if (error) {
if (auio.uio_resid != cnt) {
if (error == ERESTART || error == EINTR || error == EWOULDBLOCK)
error = 0;
if (error == EPIPE)
psignal(p, SIGPIPE);
}
}
cnt -= auio.uio_resid;
p->p_retval[0] = cnt;
return error;
}
int
lio_listio(struct proc *p, struct lio_listio_args *uap)
{
int nent, nentqueued;
struct aiocb *iocb, * const *cbptr;
struct aiocblist *cb;
struct kaioinfo *ki;
struct aio_liojob *lj;
int error, runningcode;
int nerror;
int i;
int s;
if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) {
return EINVAL;
}
nent = uap->nent;
if (nent > AIO_LISTIO_MAX) {
return EINVAL;
}
if (p->p_aioinfo == NULL) {
aio_init_aioinfo(p);
}
if ((nent + num_queue_count) > max_queue_count) {
return EAGAIN;
}
ki = p->p_aioinfo;
if ((nent + ki->kaio_queue_count) > ki->kaio_qallowed_count) {
return EAGAIN;
}
lj = zalloc(aiolio_zone);
if (!lj) {
return EAGAIN;
}
lj->lioj_flags = 0;
lj->lioj_buffer_count = 0;
lj->lioj_buffer_finished_count = 0;
lj->lioj_queue_count = 0;
lj->lioj_queue_finished_count = 0;
lj->lioj_ki = ki;
TAILQ_INSERT_TAIL(&ki->kaio_liojoblist, lj, lioj_list);
/*
* Setup signal
*/
if (uap->sig && (uap->mode == LIO_NOWAIT)) {
error = copyin(uap->sig, &lj->lioj_signal, sizeof lj->lioj_signal);
if (error)
return error;
lj->lioj_flags |= LIOJ_SIGNAL;
lj->lioj_flags &= ~LIOJ_SIGNAL_POSTED;
} else {
lj->lioj_flags &= ~LIOJ_SIGNAL;
}
/*
* get pointers to the list of I/O requests
*/
nerror = 0;
nentqueued = 0;
cbptr = uap->acb_list;
for(i = 0; i < uap->nent; i++) {
iocb = (struct aiocb *) (intptr_t) fuword((caddr_t) &cbptr[i]);
if (((intptr_t) iocb != -1) && ((intptr_t) iocb != NULL)) {
error = _aio_aqueue(p, iocb, lj, 0);
if (error == 0) {
nentqueued++;
} else {
nerror++;
}
}
}
/*
* If we haven't queued any, then just return error
*/
if (nentqueued == 0) {
return 0;
}
/*
* Calculate the appropriate error return
*/
runningcode = 0;
if (nerror)
runningcode = EIO;
if (uap->mode == LIO_WAIT) {
while (1) {
int found;
found = 0;
for(i = 0; i < uap->nent; i++) {
int jobref, command;
/*
* Fetch address of the control buf pointer in user space
*/
iocb = (struct aiocb *) (intptr_t) fuword((caddr_t) &cbptr[i]);
if (((intptr_t) iocb == -1) || ((intptr_t) iocb == 0))
continue;
/*
* Fetch the associated command from user space
*/
command = fuword(&iocb->aio_lio_opcode);
if (command == LIO_NOP) {
found++;
continue;
}
jobref = fuword(&iocb->_aiocb_private.kernelinfo);
for (cb = TAILQ_FIRST(&ki->kaio_jobdone);
cb;
cb = TAILQ_NEXT(cb, plist)) {
if (((intptr_t) cb->uaiocb._aiocb_private.kernelinfo) ==
jobref) {
if (cb->uaiocb.aio_lio_opcode == LIO_WRITE) {
curproc->p_stats->p_ru.ru_oublock +=
cb->outputcharge;
cb->outputcharge = 0;
} else if (cb->uaiocb.aio_lio_opcode == LIO_READ) {
curproc->p_stats->p_ru.ru_inblock +=
cb->inputcharge;
cb->inputcharge = 0;
}
found++;
break;
}
}
s = splbio();
for (cb = TAILQ_FIRST(&ki->kaio_bufdone);
cb;
cb = TAILQ_NEXT(cb, plist)) {
if (((intptr_t) cb->uaiocb._aiocb_private.kernelinfo) ==
jobref) {
found++;
break;
}
}
splx(s);
}
/*
* If all I/Os have been disposed of, then we can return
*/
if (found == nentqueued) {
return runningcode;
}
ki->kaio_flags |= KAIO_WAKEUP;
error = tsleep(p, PRIBIO|PCATCH, "aiospn", 0);
if (error == EINTR) {
return EINTR;
} else if (error == EWOULDBLOCK) {
return EAGAIN;
}
}
}
return runningcode;
}
/*
* This is a wierd hack so that we can post a signal. It is safe
* to do so from a timeout routine, but *not* from an interrupt routine.
*/
static void
process_signal(void *ljarg)
{
struct aio_liojob *lj = ljarg;
if (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL) {
if (lj->lioj_queue_count == lj->lioj_queue_finished_count) {
psignal(lj->lioj_ki->kaio_p, lj->lioj_signal.sigev_signo);
lj->lioj_flags |= LIOJ_SIGNAL_POSTED;
}
}
}
/*
* Interrupt handler for physio, performs the necessary process wakeups,
* and signals.
*/
static void
aio_physwakeup(bp)
struct buf *bp;
{
struct aiocblist *aiocbe;
struct proc *p;
struct kaioinfo *ki;
struct aio_liojob *lj;
int s;
s = splbio();
wakeup((caddr_t) bp);
bp->b_flags &= ~B_CALL;
bp->b_flags |= B_DONE;
aiocbe = (struct aiocblist *)bp->b_spc;
if (aiocbe) {
p = bp->b_caller1;
aiocbe->jobstate = JOBST_JOBBFINISHED;
aiocbe->uaiocb._aiocb_private.status -= bp->b_resid;
aiocbe->uaiocb._aiocb_private.error = 0;
aiocbe->jobflags |= AIOCBLIST_DONE;
if (bp->b_flags & B_ERROR) {
aiocbe->uaiocb._aiocb_private.error = bp->b_error;
}
lj = aiocbe->lio;
if (lj) {
lj->lioj_buffer_finished_count++;
/*
* wakeup/signal if all of the interrupt jobs are done
*/
if (lj->lioj_buffer_finished_count == lj->lioj_buffer_count) {
/*
* post a signal if it is called for
*/
if ((lj->lioj_flags & (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED)) ==
LIOJ_SIGNAL) {
lj->lioj_flags |= LIOJ_SIGNAL_POSTED;
timeout(process_signal, lj, 0);
}
}
}
ki = p->p_aioinfo;
if (ki) {
ki->kaio_buffer_finished_count++;
TAILQ_REMOVE(&aio_bufjobs, aiocbe, list);
TAILQ_REMOVE(&ki->kaio_bufqueue, aiocbe, plist);
TAILQ_INSERT_TAIL(&ki->kaio_bufdone, aiocbe, plist);
/*
* and do the wakeup
*/
if (ki->kaio_flags & (KAIO_RUNDOWN|KAIO_WAKEUP)) {
ki->kaio_flags &= ~KAIO_WAKEUP;
wakeup(p);
}
}
}
splx(s);
}