freebsd-dev/sys/mips/rmi/clock.c
Randall Stewart 7a46404742 Fixes setup of clock. It was not properly
initialized, thus backward time warnings
were being spewed to the console.
2010-01-26 05:07:41 +00:00

357 lines
9.1 KiB
C

/*-
* Copyright (c) 2003-2009 RMI Corporation
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of RMI Corporation, nor the names of its contributors,
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* RMI_BSD
*/
#include <sys/cdefs.h> /* RCS ID & Copyright macro defns */
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/queue.h>
#include <sys/smp.h>
#include <sys/sysctl.h>
#include <sys/systm.h>
#include <sys/timetc.h>
#include <sys/module.h>
#include <sys/stdint.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <sys/systm.h>
#include <sys/clock.h>
#include <machine/clock.h>
#include <machine/md_var.h>
#include <machine/hwfunc.h>
#include <machine/intr_machdep.h>
#include <mips/rmi/iomap.h>
#include <mips/rmi/clock.h>
#include <mips/rmi/interrupt.h>
#include <mips/rmi/pic.h>
#include <mips/rmi/shared_structs.h>
#ifdef XLR_PERFMON
#include <mips/rmi/perfmon.h>
#endif
uint64_t counter_freq;
uint64_t cycles_per_tick;
uint64_t cycles_per_usec;
uint64_t cycles_per_sec;
uint64_t cycles_per_hz;
u_int32_t counter_upper = 0;
u_int32_t counter_lower_last = 0;
#define STAT_PROF_CLOCK_SCALE_FACTOR 8
static int scale_factor;
static int count_scale_factor[32];
uint64_t
platform_get_frequency()
{
return XLR_PIC_HZ;
}
void
mips_timer_early_init(uint64_t clock_hz)
{
/* Initialize clock early so that we can use DELAY sooner */
counter_freq = clock_hz;
cycles_per_usec = (clock_hz / (1000 * 1000));
}
/*
* count_compare_clockhandler:
*
* Handle the clock interrupt when count becomes equal to
* compare.
*/
int
count_compare_clockhandler(struct trapframe *tf)
{
int cpu = PCPU_GET(cpuid);
uint32_t cycles;
critical_enter();
if (cpu == 0) {
mips_wr_compare(0);
} else {
count_scale_factor[cpu]++;
cycles = mips_rd_count();
cycles += XLR_CPU_HZ / hz;
mips_wr_compare(cycles);
hardclock_cpu(USERMODE(tf->sr));
if (count_scale_factor[cpu] == STAT_PROF_CLOCK_SCALE_FACTOR) {
statclock(USERMODE(tf->sr));
if (profprocs != 0) {
profclock(USERMODE(tf->sr), tf->pc);
}
count_scale_factor[cpu] = 0;
}
/* If needed , handle count compare tick skew here */
}
critical_exit();
return (FILTER_HANDLED);
}
unsigned long clock_tick_foo=0;
int
pic_hardclockhandler(struct trapframe *tf)
{
int cpu = PCPU_GET(cpuid);
critical_enter();
if (cpu == 0) {
scale_factor++;
clock_tick_foo++;
/*
if ((clock_tick_foo % 10000) == 0) {
printf("Clock tick foo at %ld\n", clock_tick_foo);
}
*/
hardclock(USERMODE(tf->sr), tf->pc);
if (scale_factor == STAT_PROF_CLOCK_SCALE_FACTOR) {
statclock(USERMODE(tf->sr));
if (profprocs != 0) {
profclock(USERMODE(tf->sr), tf->pc);
}
scale_factor = 0;
}
#ifdef XLR_PERFMON
if (xlr_perfmon_started)
xlr_perfmon_clockhandler();
#endif
} else {
/* If needed , handle count compare tick skew here */
}
critical_exit();
return (FILTER_HANDLED);
}
int
pic_timecounthandler(struct trapframe *tf)
{
return (FILTER_HANDLED);
}
void
rmi_early_counter_init()
{
int cpu = PCPU_GET(cpuid);
xlr_reg_t *mmio = xlr_io_mmio(XLR_IO_PIC_OFFSET);
/*
* We do this to get the PIC time counter running right after system
* start. Otherwise the DELAY() function will not be able to work
* since it won't have a TC to read.
*/
xlr_write_reg(mmio, PIC_TIMER_6_MAXVAL_0, (0xffffffff & 0xffffffff));
xlr_write_reg(mmio, PIC_TIMER_6_MAXVAL_1, (0xffffffff & 0xffffffff));
xlr_write_reg(mmio, PIC_IRT_0_TIMER_6, (1 << cpu));
xlr_write_reg(mmio, PIC_IRT_1_TIMER_6, (1 << 31) | (0 << 30) | (1 << 6) | (PIC_TIMER_6_IRQ));
pic_update_control(1 << (8 + 6), 0);
}
void tick_init(void);
void
platform_initclocks(void)
{
int cpu = PCPU_GET(cpuid);
void *cookie;
/*
* Note: Passing #3 as NULL ensures that clockhandler gets called
* with trapframe
*/
/* profiling/process accounting timer interrupt for non-zero cpus */
cpu_establish_hardintr("compare",
(driver_filter_t *) count_compare_clockhandler,
NULL,
NULL,
IRQ_TIMER,
INTR_TYPE_CLK | INTR_FAST, &cookie);
/* timekeeping timer interrupt for cpu 0 */
cpu_establish_hardintr("hardclk",
(driver_filter_t *) pic_hardclockhandler,
NULL,
NULL,
PIC_TIMER_7_IRQ,
INTR_TYPE_CLK | INTR_FAST,
&cookie);
/* this is used by timecounter */
cpu_establish_hardintr("timecount",
(driver_filter_t *) pic_timecounthandler, NULL,
NULL, PIC_TIMER_6_IRQ, INTR_TYPE_CLK | INTR_FAST,
&cookie);
if (cpu == 0) {
__uint64_t maxval = XLR_PIC_HZ / hz;
xlr_reg_t *mmio = xlr_io_mmio(XLR_IO_PIC_OFFSET);
stathz = hz / STAT_PROF_CLOCK_SCALE_FACTOR;
profhz = stathz;
/* Setup PIC Interrupt */
if (rmi_spin_mutex_safe)
mtx_lock_spin(&xlr_pic_lock);
xlr_write_reg(mmio, PIC_TIMER_7_MAXVAL_0, (maxval & 0xffffffff)); /* 0x100 + 7 */
xlr_write_reg(mmio, PIC_TIMER_7_MAXVAL_1, (maxval >> 32) & 0xffffffff); /* 0x110 + 7 */
/* 0x40 + 8 */
/* reg 40 is lower bits 31-0 and holds CPU mask */
xlr_write_reg(mmio, PIC_IRT_0_TIMER_7, (1 << cpu));
/* 0x80 + 8 */
/* Reg 80 is upper bits 63-32 and holds */
/* Valid Edge Local IRQ */
xlr_write_reg(mmio, PIC_IRT_1_TIMER_7, (1 << 31) | (0 << 30) | (1 << 6) | (PIC_TIMER_7_IRQ));
pic_update_control(1 << (8 + 7), 1);
xlr_write_reg(mmio, PIC_TIMER_6_MAXVAL_0, (0xffffffff & 0xffffffff));
xlr_write_reg(mmio, PIC_TIMER_6_MAXVAL_1, (0xffffffff & 0xffffffff));
xlr_write_reg(mmio, PIC_IRT_0_TIMER_6, (1 << cpu));
xlr_write_reg(mmio, PIC_IRT_1_TIMER_6, (1 << 31) | (0 << 30) | (1 << 6) | (PIC_TIMER_6_IRQ));
pic_update_control(1 << (8 + 6), 1);
if (rmi_spin_mutex_safe)
mtx_unlock_spin(&xlr_pic_lock);
} else {
/* Setup count-compare interrupt for vcpu[1-31] */
mips_wr_compare((xlr_boot1_info.cpu_frequency) / hz);
}
tick_init();
}
unsigned
__attribute__((no_instrument_function))
platform_get_timecount(struct timecounter *tc __unused)
{
xlr_reg_t *mmio = xlr_io_mmio(XLR_IO_PIC_OFFSET);
return 0xffffffffU - xlr_read_reg(mmio, PIC_TIMER_6_COUNTER_0);
}
void
DELAY(int n)
{
uint32_t cur, last, delta, usecs;
/*
* This works by polling the timer and counting the number of
* microseconds that go by.
*/
last = platform_get_timecount(NULL);
delta = usecs = 0;
while (n > usecs) {
cur = platform_get_timecount(NULL);
/* Check to see if the timer has wrapped around. */
if (cur < last)
delta += (cur + (cycles_per_hz - last));
else
delta += (cur - last);
last = cur;
if (delta >= cycles_per_usec) {
usecs += delta / cycles_per_usec;
delta %= cycles_per_usec;
}
}
}
static
uint64_t
read_pic_counter(void)
{
xlr_reg_t *mmio = xlr_io_mmio(XLR_IO_PIC_OFFSET);
uint32_t lower, upper;
uint64_t tc;
/*
* Pull the value of the 64 bit counter which is stored in PIC
* register 120+N and 130+N
*/
upper = 0xffffffffU - xlr_read_reg(mmio, PIC_TIMER_6_COUNTER_1);
lower = 0xffffffffU - xlr_read_reg(mmio, PIC_TIMER_6_COUNTER_0);
tc = (((uint64_t) upper << 32) | (uint64_t) lower);
return (tc);
}
extern struct timecounter counter_timecounter;
void
mips_timer_init_params(uint64_t platform_counter_freq, int double_count)
{
/*
* XXX: Do not use printf here: uart code 8250 may use DELAY so this
* function should be called before cninit.
*/
counter_freq = platform_counter_freq;
/*
* XXX: Some MIPS32 cores update the Count register only every two
* pipeline cycles.
*/
if (double_count != 0)
counter_freq /= 2;
cycles_per_tick = counter_freq / 1000;
cycles_per_hz = counter_freq / hz;
cycles_per_usec = counter_freq / (1 * 1000 * 1000);
cycles_per_sec = counter_freq;
counter_timecounter.tc_frequency = counter_freq;
printf("hz=%d cyl_per_hz:%jd cyl_per_usec:%jd freq:%jd cyl_per_hz:%jd cyl_per_sec:%jd\n",
hz,
cycles_per_tick,
cycles_per_usec,
counter_freq,
cycles_per_hz,
cycles_per_sec
);
set_cputicker(read_pic_counter, counter_freq, 1);
}