a061fea6ee
Auto-replace 'howmany(IEEE80211_MODE_MAX, 8)' with 'IEEE80211_MODE_BYTES'. No functional changes.
2175 lines
57 KiB
C
2175 lines
57 KiB
C
/*-
|
|
* Copyright (c) 2008 Weongyo Jeong <weongyo@freebsd.org>
|
|
* Copyright (c) 2007 Marvell Semiconductor, Inc.
|
|
* Copyright (c) 2007 Sam Leffler, Errno Consulting
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer,
|
|
* without modification.
|
|
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
|
|
* similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
|
|
* redistribution must be conditioned upon including a substantially
|
|
* similar Disclaimer requirement for further binary redistribution.
|
|
*
|
|
* NO WARRANTY
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
|
|
* AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
|
|
* THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
|
|
* OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
|
|
* IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
|
|
* THE POSSIBILITY OF SUCH DAMAGES.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
#ifdef __FreeBSD__
|
|
__FBSDID("$FreeBSD$");
|
|
#endif
|
|
|
|
#include "opt_malo.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/endian.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/sockio.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/taskqueue.h>
|
|
|
|
#include <machine/bus.h>
|
|
#include <sys/bus.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/if_var.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_media.h>
|
|
#include <net/if_types.h>
|
|
#include <net/ethernet.h>
|
|
|
|
#include <net80211/ieee80211_var.h>
|
|
#include <net80211/ieee80211_regdomain.h>
|
|
|
|
#include <net/bpf.h>
|
|
|
|
#include <dev/malo/if_malo.h>
|
|
|
|
SYSCTL_NODE(_hw, OID_AUTO, malo, CTLFLAG_RD, 0,
|
|
"Marvell 88w8335 driver parameters");
|
|
|
|
static int malo_txcoalesce = 8; /* # tx pkts to q before poking f/w*/
|
|
SYSCTL_INT(_hw_malo, OID_AUTO, txcoalesce, CTLFLAG_RWTUN, &malo_txcoalesce,
|
|
0, "tx buffers to send at once");
|
|
static int malo_rxbuf = MALO_RXBUF; /* # rx buffers to allocate */
|
|
SYSCTL_INT(_hw_malo, OID_AUTO, rxbuf, CTLFLAG_RWTUN, &malo_rxbuf,
|
|
0, "rx buffers allocated");
|
|
static int malo_rxquota = MALO_RXBUF; /* # max buffers to process */
|
|
SYSCTL_INT(_hw_malo, OID_AUTO, rxquota, CTLFLAG_RWTUN, &malo_rxquota,
|
|
0, "max rx buffers to process per interrupt");
|
|
static int malo_txbuf = MALO_TXBUF; /* # tx buffers to allocate */
|
|
SYSCTL_INT(_hw_malo, OID_AUTO, txbuf, CTLFLAG_RWTUN, &malo_txbuf,
|
|
0, "tx buffers allocated");
|
|
|
|
#ifdef MALO_DEBUG
|
|
static int malo_debug = 0;
|
|
SYSCTL_INT(_hw_malo, OID_AUTO, debug, CTLFLAG_RWTUN, &malo_debug,
|
|
0, "control debugging printfs");
|
|
enum {
|
|
MALO_DEBUG_XMIT = 0x00000001, /* basic xmit operation */
|
|
MALO_DEBUG_XMIT_DESC = 0x00000002, /* xmit descriptors */
|
|
MALO_DEBUG_RECV = 0x00000004, /* basic recv operation */
|
|
MALO_DEBUG_RECV_DESC = 0x00000008, /* recv descriptors */
|
|
MALO_DEBUG_RESET = 0x00000010, /* reset processing */
|
|
MALO_DEBUG_INTR = 0x00000040, /* ISR */
|
|
MALO_DEBUG_TX_PROC = 0x00000080, /* tx ISR proc */
|
|
MALO_DEBUG_RX_PROC = 0x00000100, /* rx ISR proc */
|
|
MALO_DEBUG_STATE = 0x00000400, /* 802.11 state transitions */
|
|
MALO_DEBUG_NODE = 0x00000800, /* node management */
|
|
MALO_DEBUG_RECV_ALL = 0x00001000, /* trace all frames (beacons) */
|
|
MALO_DEBUG_FW = 0x00008000, /* firmware */
|
|
MALO_DEBUG_ANY = 0xffffffff
|
|
};
|
|
#define IS_BEACON(wh) \
|
|
((wh->i_fc[0] & (IEEE80211_FC0_TYPE_MASK | \
|
|
IEEE80211_FC0_SUBTYPE_MASK)) == \
|
|
(IEEE80211_FC0_TYPE_MGT|IEEE80211_FC0_SUBTYPE_BEACON))
|
|
#define IFF_DUMPPKTS_RECV(sc, wh) \
|
|
(((sc->malo_debug & MALO_DEBUG_RECV) && \
|
|
((sc->malo_debug & MALO_DEBUG_RECV_ALL) || !IS_BEACON(wh))))
|
|
#define IFF_DUMPPKTS_XMIT(sc) \
|
|
(sc->malo_debug & MALO_DEBUG_XMIT)
|
|
#define DPRINTF(sc, m, fmt, ...) do { \
|
|
if (sc->malo_debug & (m)) \
|
|
printf(fmt, __VA_ARGS__); \
|
|
} while (0)
|
|
#else
|
|
#define DPRINTF(sc, m, fmt, ...) do { \
|
|
(void) sc; \
|
|
} while (0)
|
|
#endif
|
|
|
|
static MALLOC_DEFINE(M_MALODEV, "malodev", "malo driver dma buffers");
|
|
|
|
static struct ieee80211vap *malo_vap_create(struct ieee80211com *,
|
|
const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
|
|
const uint8_t [IEEE80211_ADDR_LEN],
|
|
const uint8_t [IEEE80211_ADDR_LEN]);
|
|
static void malo_vap_delete(struct ieee80211vap *);
|
|
static int malo_dma_setup(struct malo_softc *);
|
|
static int malo_setup_hwdma(struct malo_softc *);
|
|
static void malo_txq_init(struct malo_softc *, struct malo_txq *, int);
|
|
static void malo_tx_cleanupq(struct malo_softc *, struct malo_txq *);
|
|
static void malo_parent(struct ieee80211com *);
|
|
static int malo_transmit(struct ieee80211com *, struct mbuf *);
|
|
static void malo_start(struct malo_softc *);
|
|
static void malo_watchdog(void *);
|
|
static void malo_updateslot(struct ieee80211com *);
|
|
static int malo_newstate(struct ieee80211vap *, enum ieee80211_state, int);
|
|
static void malo_scan_start(struct ieee80211com *);
|
|
static void malo_scan_end(struct ieee80211com *);
|
|
static void malo_set_channel(struct ieee80211com *);
|
|
static int malo_raw_xmit(struct ieee80211_node *, struct mbuf *,
|
|
const struct ieee80211_bpf_params *);
|
|
static void malo_sysctlattach(struct malo_softc *);
|
|
static void malo_announce(struct malo_softc *);
|
|
static void malo_dma_cleanup(struct malo_softc *);
|
|
static void malo_stop(struct malo_softc *);
|
|
static int malo_chan_set(struct malo_softc *, struct ieee80211_channel *);
|
|
static int malo_mode_init(struct malo_softc *);
|
|
static void malo_tx_proc(void *, int);
|
|
static void malo_rx_proc(void *, int);
|
|
static void malo_init(void *);
|
|
|
|
/*
|
|
* Read/Write shorthands for accesses to BAR 0. Note that all BAR 1
|
|
* operations are done in the "hal" except getting H/W MAC address at
|
|
* malo_attach and there should be no reference to them here.
|
|
*/
|
|
static uint32_t
|
|
malo_bar0_read4(struct malo_softc *sc, bus_size_t off)
|
|
{
|
|
return bus_space_read_4(sc->malo_io0t, sc->malo_io0h, off);
|
|
}
|
|
|
|
static void
|
|
malo_bar0_write4(struct malo_softc *sc, bus_size_t off, uint32_t val)
|
|
{
|
|
DPRINTF(sc, MALO_DEBUG_FW, "%s: off 0x%jx val 0x%x\n",
|
|
__func__, (uintmax_t)off, val);
|
|
|
|
bus_space_write_4(sc->malo_io0t, sc->malo_io0h, off, val);
|
|
}
|
|
|
|
int
|
|
malo_attach(uint16_t devid, struct malo_softc *sc)
|
|
{
|
|
struct ieee80211com *ic = &sc->malo_ic;
|
|
struct malo_hal *mh;
|
|
int error;
|
|
uint8_t bands[IEEE80211_MODE_BYTES];
|
|
|
|
MALO_LOCK_INIT(sc);
|
|
callout_init_mtx(&sc->malo_watchdog_timer, &sc->malo_mtx, 0);
|
|
mbufq_init(&sc->malo_snd, ifqmaxlen);
|
|
|
|
mh = malo_hal_attach(sc->malo_dev, devid,
|
|
sc->malo_io1h, sc->malo_io1t, sc->malo_dmat);
|
|
if (mh == NULL) {
|
|
device_printf(sc->malo_dev, "unable to attach HAL\n");
|
|
error = EIO;
|
|
goto bad;
|
|
}
|
|
sc->malo_mh = mh;
|
|
|
|
/*
|
|
* Load firmware so we can get setup. We arbitrarily pick station
|
|
* firmware; we'll re-load firmware as needed so setting up
|
|
* the wrong mode isn't a big deal.
|
|
*/
|
|
error = malo_hal_fwload(mh, "malo8335-h", "malo8335-m");
|
|
if (error != 0) {
|
|
device_printf(sc->malo_dev, "unable to setup firmware\n");
|
|
goto bad1;
|
|
}
|
|
/* XXX gethwspecs() extracts correct informations? not maybe! */
|
|
error = malo_hal_gethwspecs(mh, &sc->malo_hwspecs);
|
|
if (error != 0) {
|
|
device_printf(sc->malo_dev, "unable to fetch h/w specs\n");
|
|
goto bad1;
|
|
}
|
|
|
|
DPRINTF(sc, MALO_DEBUG_FW,
|
|
"malo_hal_gethwspecs: hwversion 0x%x hostif 0x%x"
|
|
"maxnum_wcb 0x%x maxnum_mcaddr 0x%x maxnum_tx_wcb 0x%x"
|
|
"regioncode 0x%x num_antenna 0x%x fw_releasenum 0x%x"
|
|
"wcbbase0 0x%x rxdesc_read 0x%x rxdesc_write 0x%x"
|
|
"ul_fw_awakecookie 0x%x w[4] = %x %x %x %x",
|
|
sc->malo_hwspecs.hwversion,
|
|
sc->malo_hwspecs.hostinterface, sc->malo_hwspecs.maxnum_wcb,
|
|
sc->malo_hwspecs.maxnum_mcaddr, sc->malo_hwspecs.maxnum_tx_wcb,
|
|
sc->malo_hwspecs.regioncode, sc->malo_hwspecs.num_antenna,
|
|
sc->malo_hwspecs.fw_releasenum, sc->malo_hwspecs.wcbbase0,
|
|
sc->malo_hwspecs.rxdesc_read, sc->malo_hwspecs.rxdesc_write,
|
|
sc->malo_hwspecs.ul_fw_awakecookie,
|
|
sc->malo_hwspecs.wcbbase[0], sc->malo_hwspecs.wcbbase[1],
|
|
sc->malo_hwspecs.wcbbase[2], sc->malo_hwspecs.wcbbase[3]);
|
|
|
|
/* NB: firmware looks that it does not export regdomain info API. */
|
|
memset(bands, 0, sizeof(bands));
|
|
setbit(bands, IEEE80211_MODE_11B);
|
|
setbit(bands, IEEE80211_MODE_11G);
|
|
ieee80211_init_channels(ic, NULL, bands);
|
|
|
|
sc->malo_txantenna = 0x2; /* h/w default */
|
|
sc->malo_rxantenna = 0xffff; /* h/w default */
|
|
|
|
/*
|
|
* Allocate tx + rx descriptors and populate the lists.
|
|
* We immediately push the information to the firmware
|
|
* as otherwise it gets upset.
|
|
*/
|
|
error = malo_dma_setup(sc);
|
|
if (error != 0) {
|
|
device_printf(sc->malo_dev,
|
|
"failed to setup descriptors: %d\n", error);
|
|
goto bad1;
|
|
}
|
|
error = malo_setup_hwdma(sc); /* push to firmware */
|
|
if (error != 0) /* NB: malo_setupdma prints msg */
|
|
goto bad2;
|
|
|
|
sc->malo_tq = taskqueue_create_fast("malo_taskq", M_NOWAIT,
|
|
taskqueue_thread_enqueue, &sc->malo_tq);
|
|
taskqueue_start_threads(&sc->malo_tq, 1, PI_NET,
|
|
"%s taskq", device_get_nameunit(sc->malo_dev));
|
|
|
|
TASK_INIT(&sc->malo_rxtask, 0, malo_rx_proc, sc);
|
|
TASK_INIT(&sc->malo_txtask, 0, malo_tx_proc, sc);
|
|
|
|
ic->ic_softc = sc;
|
|
ic->ic_name = device_get_nameunit(sc->malo_dev);
|
|
/* XXX not right but it's not used anywhere important */
|
|
ic->ic_phytype = IEEE80211_T_OFDM;
|
|
ic->ic_opmode = IEEE80211_M_STA;
|
|
ic->ic_caps =
|
|
IEEE80211_C_STA /* station mode supported */
|
|
| IEEE80211_C_BGSCAN /* capable of bg scanning */
|
|
| IEEE80211_C_MONITOR /* monitor mode */
|
|
| IEEE80211_C_SHPREAMBLE /* short preamble supported */
|
|
| IEEE80211_C_SHSLOT /* short slot time supported */
|
|
| IEEE80211_C_TXPMGT /* capable of txpow mgt */
|
|
| IEEE80211_C_WPA /* capable of WPA1+WPA2 */
|
|
;
|
|
IEEE80211_ADDR_COPY(ic->ic_macaddr, sc->malo_hwspecs.macaddr);
|
|
|
|
/*
|
|
* Transmit requires space in the packet for a special format transmit
|
|
* record and optional padding between this record and the payload.
|
|
* Ask the net80211 layer to arrange this when encapsulating
|
|
* packets so we can add it efficiently.
|
|
*/
|
|
ic->ic_headroom = sizeof(struct malo_txrec) -
|
|
sizeof(struct ieee80211_frame);
|
|
|
|
/* call MI attach routine. */
|
|
ieee80211_ifattach(ic);
|
|
/* override default methods */
|
|
ic->ic_vap_create = malo_vap_create;
|
|
ic->ic_vap_delete = malo_vap_delete;
|
|
ic->ic_raw_xmit = malo_raw_xmit;
|
|
ic->ic_updateslot = malo_updateslot;
|
|
ic->ic_scan_start = malo_scan_start;
|
|
ic->ic_scan_end = malo_scan_end;
|
|
ic->ic_set_channel = malo_set_channel;
|
|
ic->ic_parent = malo_parent;
|
|
ic->ic_transmit = malo_transmit;
|
|
|
|
sc->malo_invalid = 0; /* ready to go, enable int handling */
|
|
|
|
ieee80211_radiotap_attach(ic,
|
|
&sc->malo_tx_th.wt_ihdr, sizeof(sc->malo_tx_th),
|
|
MALO_TX_RADIOTAP_PRESENT,
|
|
&sc->malo_rx_th.wr_ihdr, sizeof(sc->malo_rx_th),
|
|
MALO_RX_RADIOTAP_PRESENT);
|
|
|
|
/*
|
|
* Setup dynamic sysctl's.
|
|
*/
|
|
malo_sysctlattach(sc);
|
|
|
|
if (bootverbose)
|
|
ieee80211_announce(ic);
|
|
malo_announce(sc);
|
|
|
|
return 0;
|
|
bad2:
|
|
malo_dma_cleanup(sc);
|
|
bad1:
|
|
malo_hal_detach(mh);
|
|
bad:
|
|
sc->malo_invalid = 1;
|
|
|
|
return error;
|
|
}
|
|
|
|
static struct ieee80211vap *
|
|
malo_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
|
|
enum ieee80211_opmode opmode, int flags,
|
|
const uint8_t bssid[IEEE80211_ADDR_LEN],
|
|
const uint8_t mac[IEEE80211_ADDR_LEN])
|
|
{
|
|
struct malo_softc *sc = ic->ic_softc;
|
|
struct malo_vap *mvp;
|
|
struct ieee80211vap *vap;
|
|
|
|
if (!TAILQ_EMPTY(&ic->ic_vaps)) {
|
|
device_printf(sc->malo_dev, "multiple vaps not supported\n");
|
|
return NULL;
|
|
}
|
|
switch (opmode) {
|
|
case IEEE80211_M_STA:
|
|
if (opmode == IEEE80211_M_STA)
|
|
flags |= IEEE80211_CLONE_NOBEACONS;
|
|
/* fall thru... */
|
|
case IEEE80211_M_MONITOR:
|
|
break;
|
|
default:
|
|
device_printf(sc->malo_dev, "%s mode not supported\n",
|
|
ieee80211_opmode_name[opmode]);
|
|
return NULL; /* unsupported */
|
|
}
|
|
mvp = malloc(sizeof(struct malo_vap), M_80211_VAP, M_WAITOK | M_ZERO);
|
|
vap = &mvp->malo_vap;
|
|
ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid);
|
|
|
|
/* override state transition machine */
|
|
mvp->malo_newstate = vap->iv_newstate;
|
|
vap->iv_newstate = malo_newstate;
|
|
|
|
/* complete setup */
|
|
ieee80211_vap_attach(vap,
|
|
ieee80211_media_change, ieee80211_media_status, mac);
|
|
ic->ic_opmode = opmode;
|
|
return vap;
|
|
}
|
|
|
|
static void
|
|
malo_vap_delete(struct ieee80211vap *vap)
|
|
{
|
|
struct malo_vap *mvp = MALO_VAP(vap);
|
|
|
|
ieee80211_vap_detach(vap);
|
|
free(mvp, M_80211_VAP);
|
|
}
|
|
|
|
int
|
|
malo_intr(void *arg)
|
|
{
|
|
struct malo_softc *sc = arg;
|
|
struct malo_hal *mh = sc->malo_mh;
|
|
uint32_t status;
|
|
|
|
if (sc->malo_invalid) {
|
|
/*
|
|
* The hardware is not ready/present, don't touch anything.
|
|
* Note this can happen early on if the IRQ is shared.
|
|
*/
|
|
DPRINTF(sc, MALO_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
|
|
return (FILTER_STRAY);
|
|
}
|
|
|
|
/*
|
|
* Figure out the reason(s) for the interrupt.
|
|
*/
|
|
malo_hal_getisr(mh, &status); /* NB: clears ISR too */
|
|
if (status == 0) /* must be a shared irq */
|
|
return (FILTER_STRAY);
|
|
|
|
DPRINTF(sc, MALO_DEBUG_INTR, "%s: status 0x%x imask 0x%x\n",
|
|
__func__, status, sc->malo_imask);
|
|
|
|
if (status & MALO_A2HRIC_BIT_RX_RDY)
|
|
taskqueue_enqueue(sc->malo_tq, &sc->malo_rxtask);
|
|
if (status & MALO_A2HRIC_BIT_TX_DONE)
|
|
taskqueue_enqueue(sc->malo_tq, &sc->malo_txtask);
|
|
if (status & MALO_A2HRIC_BIT_OPC_DONE)
|
|
malo_hal_cmddone(mh);
|
|
if (status & MALO_A2HRIC_BIT_MAC_EVENT)
|
|
;
|
|
if (status & MALO_A2HRIC_BIT_RX_PROBLEM)
|
|
;
|
|
if (status & MALO_A2HRIC_BIT_ICV_ERROR) {
|
|
/* TKIP ICV error */
|
|
sc->malo_stats.mst_rx_badtkipicv++;
|
|
}
|
|
#ifdef MALO_DEBUG
|
|
if (((status | sc->malo_imask) ^ sc->malo_imask) != 0)
|
|
DPRINTF(sc, MALO_DEBUG_INTR,
|
|
"%s: can't handle interrupt status 0x%x\n",
|
|
__func__, status);
|
|
#endif
|
|
return (FILTER_HANDLED);
|
|
}
|
|
|
|
static void
|
|
malo_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
|
|
{
|
|
bus_addr_t *paddr = (bus_addr_t*) arg;
|
|
|
|
KASSERT(error == 0, ("error %u on bus_dma callback", error));
|
|
|
|
*paddr = segs->ds_addr;
|
|
}
|
|
|
|
static int
|
|
malo_desc_setup(struct malo_softc *sc, const char *name,
|
|
struct malo_descdma *dd,
|
|
int nbuf, size_t bufsize, int ndesc, size_t descsize)
|
|
{
|
|
int error;
|
|
uint8_t *ds;
|
|
|
|
DPRINTF(sc, MALO_DEBUG_RESET,
|
|
"%s: %s DMA: %u bufs (%ju) %u desc/buf (%ju)\n",
|
|
__func__, name, nbuf, (uintmax_t) bufsize,
|
|
ndesc, (uintmax_t) descsize);
|
|
|
|
dd->dd_name = name;
|
|
dd->dd_desc_len = nbuf * ndesc * descsize;
|
|
|
|
/*
|
|
* Setup DMA descriptor area.
|
|
*/
|
|
error = bus_dma_tag_create(bus_get_dma_tag(sc->malo_dev),/* parent */
|
|
PAGE_SIZE, 0, /* alignment, bounds */
|
|
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
dd->dd_desc_len, /* maxsize */
|
|
1, /* nsegments */
|
|
dd->dd_desc_len, /* maxsegsize */
|
|
BUS_DMA_ALLOCNOW, /* flags */
|
|
NULL, /* lockfunc */
|
|
NULL, /* lockarg */
|
|
&dd->dd_dmat);
|
|
if (error != 0) {
|
|
device_printf(sc->malo_dev, "cannot allocate %s DMA tag\n",
|
|
dd->dd_name);
|
|
return error;
|
|
}
|
|
|
|
/* allocate descriptors */
|
|
error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc,
|
|
BUS_DMA_NOWAIT | BUS_DMA_COHERENT, &dd->dd_dmamap);
|
|
if (error != 0) {
|
|
device_printf(sc->malo_dev,
|
|
"unable to alloc memory for %u %s descriptors, "
|
|
"error %u\n", nbuf * ndesc, dd->dd_name, error);
|
|
goto fail1;
|
|
}
|
|
|
|
error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
|
|
dd->dd_desc, dd->dd_desc_len,
|
|
malo_load_cb, &dd->dd_desc_paddr, BUS_DMA_NOWAIT);
|
|
if (error != 0) {
|
|
device_printf(sc->malo_dev,
|
|
"unable to map %s descriptors, error %u\n",
|
|
dd->dd_name, error);
|
|
goto fail2;
|
|
}
|
|
|
|
ds = dd->dd_desc;
|
|
memset(ds, 0, dd->dd_desc_len);
|
|
DPRINTF(sc, MALO_DEBUG_RESET,
|
|
"%s: %s DMA map: %p (%lu) -> 0x%jx (%lu)\n",
|
|
__func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
|
|
(uintmax_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
|
|
|
|
return 0;
|
|
fail2:
|
|
bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
|
|
fail1:
|
|
bus_dma_tag_destroy(dd->dd_dmat);
|
|
memset(dd, 0, sizeof(*dd));
|
|
return error;
|
|
}
|
|
|
|
#define DS2PHYS(_dd, _ds) \
|
|
((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
|
|
|
|
static int
|
|
malo_rxdma_setup(struct malo_softc *sc)
|
|
{
|
|
int error, bsize, i;
|
|
struct malo_rxbuf *bf;
|
|
struct malo_rxdesc *ds;
|
|
|
|
error = malo_desc_setup(sc, "rx", &sc->malo_rxdma,
|
|
malo_rxbuf, sizeof(struct malo_rxbuf),
|
|
1, sizeof(struct malo_rxdesc));
|
|
if (error != 0)
|
|
return error;
|
|
|
|
/*
|
|
* Allocate rx buffers and set them up.
|
|
*/
|
|
bsize = malo_rxbuf * sizeof(struct malo_rxbuf);
|
|
bf = malloc(bsize, M_MALODEV, M_NOWAIT | M_ZERO);
|
|
if (bf == NULL) {
|
|
device_printf(sc->malo_dev,
|
|
"malloc of %u rx buffers failed\n", bsize);
|
|
return error;
|
|
}
|
|
sc->malo_rxdma.dd_bufptr = bf;
|
|
|
|
STAILQ_INIT(&sc->malo_rxbuf);
|
|
ds = sc->malo_rxdma.dd_desc;
|
|
for (i = 0; i < malo_rxbuf; i++, bf++, ds++) {
|
|
bf->bf_desc = ds;
|
|
bf->bf_daddr = DS2PHYS(&sc->malo_rxdma, ds);
|
|
error = bus_dmamap_create(sc->malo_dmat, BUS_DMA_NOWAIT,
|
|
&bf->bf_dmamap);
|
|
if (error != 0) {
|
|
device_printf(sc->malo_dev,
|
|
"%s: unable to dmamap for rx buffer, error %d\n",
|
|
__func__, error);
|
|
return error;
|
|
}
|
|
/* NB: tail is intentional to preserve descriptor order */
|
|
STAILQ_INSERT_TAIL(&sc->malo_rxbuf, bf, bf_list);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
malo_txdma_setup(struct malo_softc *sc, struct malo_txq *txq)
|
|
{
|
|
int error, bsize, i;
|
|
struct malo_txbuf *bf;
|
|
struct malo_txdesc *ds;
|
|
|
|
error = malo_desc_setup(sc, "tx", &txq->dma,
|
|
malo_txbuf, sizeof(struct malo_txbuf),
|
|
MALO_TXDESC, sizeof(struct malo_txdesc));
|
|
if (error != 0)
|
|
return error;
|
|
|
|
/* allocate and setup tx buffers */
|
|
bsize = malo_txbuf * sizeof(struct malo_txbuf);
|
|
bf = malloc(bsize, M_MALODEV, M_NOWAIT | M_ZERO);
|
|
if (bf == NULL) {
|
|
device_printf(sc->malo_dev, "malloc of %u tx buffers failed\n",
|
|
malo_txbuf);
|
|
return ENOMEM;
|
|
}
|
|
txq->dma.dd_bufptr = bf;
|
|
|
|
STAILQ_INIT(&txq->free);
|
|
txq->nfree = 0;
|
|
ds = txq->dma.dd_desc;
|
|
for (i = 0; i < malo_txbuf; i++, bf++, ds += MALO_TXDESC) {
|
|
bf->bf_desc = ds;
|
|
bf->bf_daddr = DS2PHYS(&txq->dma, ds);
|
|
error = bus_dmamap_create(sc->malo_dmat, BUS_DMA_NOWAIT,
|
|
&bf->bf_dmamap);
|
|
if (error != 0) {
|
|
device_printf(sc->malo_dev,
|
|
"unable to create dmamap for tx "
|
|
"buffer %u, error %u\n", i, error);
|
|
return error;
|
|
}
|
|
STAILQ_INSERT_TAIL(&txq->free, bf, bf_list);
|
|
txq->nfree++;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
malo_desc_cleanup(struct malo_softc *sc, struct malo_descdma *dd)
|
|
{
|
|
bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
|
|
bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
|
|
bus_dma_tag_destroy(dd->dd_dmat);
|
|
|
|
memset(dd, 0, sizeof(*dd));
|
|
}
|
|
|
|
static void
|
|
malo_rxdma_cleanup(struct malo_softc *sc)
|
|
{
|
|
struct malo_rxbuf *bf;
|
|
|
|
STAILQ_FOREACH(bf, &sc->malo_rxbuf, bf_list) {
|
|
if (bf->bf_m != NULL) {
|
|
m_freem(bf->bf_m);
|
|
bf->bf_m = NULL;
|
|
}
|
|
if (bf->bf_dmamap != NULL) {
|
|
bus_dmamap_destroy(sc->malo_dmat, bf->bf_dmamap);
|
|
bf->bf_dmamap = NULL;
|
|
}
|
|
}
|
|
STAILQ_INIT(&sc->malo_rxbuf);
|
|
if (sc->malo_rxdma.dd_bufptr != NULL) {
|
|
free(sc->malo_rxdma.dd_bufptr, M_MALODEV);
|
|
sc->malo_rxdma.dd_bufptr = NULL;
|
|
}
|
|
if (sc->malo_rxdma.dd_desc_len != 0)
|
|
malo_desc_cleanup(sc, &sc->malo_rxdma);
|
|
}
|
|
|
|
static void
|
|
malo_txdma_cleanup(struct malo_softc *sc, struct malo_txq *txq)
|
|
{
|
|
struct malo_txbuf *bf;
|
|
struct ieee80211_node *ni;
|
|
|
|
STAILQ_FOREACH(bf, &txq->free, bf_list) {
|
|
if (bf->bf_m != NULL) {
|
|
m_freem(bf->bf_m);
|
|
bf->bf_m = NULL;
|
|
}
|
|
ni = bf->bf_node;
|
|
bf->bf_node = NULL;
|
|
if (ni != NULL) {
|
|
/*
|
|
* Reclaim node reference.
|
|
*/
|
|
ieee80211_free_node(ni);
|
|
}
|
|
if (bf->bf_dmamap != NULL) {
|
|
bus_dmamap_destroy(sc->malo_dmat, bf->bf_dmamap);
|
|
bf->bf_dmamap = NULL;
|
|
}
|
|
}
|
|
STAILQ_INIT(&txq->free);
|
|
txq->nfree = 0;
|
|
if (txq->dma.dd_bufptr != NULL) {
|
|
free(txq->dma.dd_bufptr, M_MALODEV);
|
|
txq->dma.dd_bufptr = NULL;
|
|
}
|
|
if (txq->dma.dd_desc_len != 0)
|
|
malo_desc_cleanup(sc, &txq->dma);
|
|
}
|
|
|
|
static void
|
|
malo_dma_cleanup(struct malo_softc *sc)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < MALO_NUM_TX_QUEUES; i++)
|
|
malo_txdma_cleanup(sc, &sc->malo_txq[i]);
|
|
|
|
malo_rxdma_cleanup(sc);
|
|
}
|
|
|
|
static int
|
|
malo_dma_setup(struct malo_softc *sc)
|
|
{
|
|
int error, i;
|
|
|
|
/* rxdma initializing. */
|
|
error = malo_rxdma_setup(sc);
|
|
if (error != 0)
|
|
return error;
|
|
|
|
/* NB: we just have 1 tx queue now. */
|
|
for (i = 0; i < MALO_NUM_TX_QUEUES; i++) {
|
|
error = malo_txdma_setup(sc, &sc->malo_txq[i]);
|
|
if (error != 0) {
|
|
malo_dma_cleanup(sc);
|
|
|
|
return error;
|
|
}
|
|
|
|
malo_txq_init(sc, &sc->malo_txq[i], i);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
malo_hal_set_rxtxdma(struct malo_softc *sc)
|
|
{
|
|
int i;
|
|
|
|
malo_bar0_write4(sc, sc->malo_hwspecs.rxdesc_read,
|
|
sc->malo_hwdma.rxdesc_read);
|
|
malo_bar0_write4(sc, sc->malo_hwspecs.rxdesc_write,
|
|
sc->malo_hwdma.rxdesc_read);
|
|
|
|
for (i = 0; i < MALO_NUM_TX_QUEUES; i++) {
|
|
malo_bar0_write4(sc,
|
|
sc->malo_hwspecs.wcbbase[i], sc->malo_hwdma.wcbbase[i]);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Inform firmware of our tx/rx dma setup. The BAR 0 writes below are
|
|
* for compatibility with older firmware. For current firmware we send
|
|
* this information with a cmd block via malo_hal_sethwdma.
|
|
*/
|
|
static int
|
|
malo_setup_hwdma(struct malo_softc *sc)
|
|
{
|
|
int i;
|
|
struct malo_txq *txq;
|
|
|
|
sc->malo_hwdma.rxdesc_read = sc->malo_rxdma.dd_desc_paddr;
|
|
|
|
for (i = 0; i < MALO_NUM_TX_QUEUES; i++) {
|
|
txq = &sc->malo_txq[i];
|
|
sc->malo_hwdma.wcbbase[i] = txq->dma.dd_desc_paddr;
|
|
}
|
|
sc->malo_hwdma.maxnum_txwcb = malo_txbuf;
|
|
sc->malo_hwdma.maxnum_wcb = MALO_NUM_TX_QUEUES;
|
|
|
|
malo_hal_set_rxtxdma(sc);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
malo_txq_init(struct malo_softc *sc, struct malo_txq *txq, int qnum)
|
|
{
|
|
struct malo_txbuf *bf, *bn;
|
|
struct malo_txdesc *ds;
|
|
|
|
MALO_TXQ_LOCK_INIT(sc, txq);
|
|
txq->qnum = qnum;
|
|
txq->txpri = 0; /* XXX */
|
|
|
|
STAILQ_FOREACH(bf, &txq->free, bf_list) {
|
|
bf->bf_txq = txq;
|
|
|
|
ds = bf->bf_desc;
|
|
bn = STAILQ_NEXT(bf, bf_list);
|
|
if (bn == NULL)
|
|
bn = STAILQ_FIRST(&txq->free);
|
|
ds->physnext = htole32(bn->bf_daddr);
|
|
}
|
|
STAILQ_INIT(&txq->active);
|
|
}
|
|
|
|
/*
|
|
* Reclaim resources for a setup queue.
|
|
*/
|
|
static void
|
|
malo_tx_cleanupq(struct malo_softc *sc, struct malo_txq *txq)
|
|
{
|
|
/* XXX hal work? */
|
|
MALO_TXQ_LOCK_DESTROY(txq);
|
|
}
|
|
|
|
/*
|
|
* Allocate a tx buffer for sending a frame.
|
|
*/
|
|
static struct malo_txbuf *
|
|
malo_getbuf(struct malo_softc *sc, struct malo_txq *txq)
|
|
{
|
|
struct malo_txbuf *bf;
|
|
|
|
MALO_TXQ_LOCK(txq);
|
|
bf = STAILQ_FIRST(&txq->free);
|
|
if (bf != NULL) {
|
|
STAILQ_REMOVE_HEAD(&txq->free, bf_list);
|
|
txq->nfree--;
|
|
}
|
|
MALO_TXQ_UNLOCK(txq);
|
|
if (bf == NULL) {
|
|
DPRINTF(sc, MALO_DEBUG_XMIT,
|
|
"%s: out of xmit buffers on q %d\n", __func__, txq->qnum);
|
|
sc->malo_stats.mst_tx_qstop++;
|
|
}
|
|
return bf;
|
|
}
|
|
|
|
static int
|
|
malo_tx_dmasetup(struct malo_softc *sc, struct malo_txbuf *bf, struct mbuf *m0)
|
|
{
|
|
struct mbuf *m;
|
|
int error;
|
|
|
|
/*
|
|
* Load the DMA map so any coalescing is done. This also calculates
|
|
* the number of descriptors we need.
|
|
*/
|
|
error = bus_dmamap_load_mbuf_sg(sc->malo_dmat, bf->bf_dmamap, m0,
|
|
bf->bf_segs, &bf->bf_nseg,
|
|
BUS_DMA_NOWAIT);
|
|
if (error == EFBIG) {
|
|
/* XXX packet requires too many descriptors */
|
|
bf->bf_nseg = MALO_TXDESC + 1;
|
|
} else if (error != 0) {
|
|
sc->malo_stats.mst_tx_busdma++;
|
|
m_freem(m0);
|
|
return error;
|
|
}
|
|
/*
|
|
* Discard null packets and check for packets that require too many
|
|
* TX descriptors. We try to convert the latter to a cluster.
|
|
*/
|
|
if (error == EFBIG) { /* too many desc's, linearize */
|
|
sc->malo_stats.mst_tx_linear++;
|
|
m = m_defrag(m0, M_NOWAIT);
|
|
if (m == NULL) {
|
|
m_freem(m0);
|
|
sc->malo_stats.mst_tx_nombuf++;
|
|
return ENOMEM;
|
|
}
|
|
m0 = m;
|
|
error = bus_dmamap_load_mbuf_sg(sc->malo_dmat, bf->bf_dmamap, m0,
|
|
bf->bf_segs, &bf->bf_nseg,
|
|
BUS_DMA_NOWAIT);
|
|
if (error != 0) {
|
|
sc->malo_stats.mst_tx_busdma++;
|
|
m_freem(m0);
|
|
return error;
|
|
}
|
|
KASSERT(bf->bf_nseg <= MALO_TXDESC,
|
|
("too many segments after defrag; nseg %u", bf->bf_nseg));
|
|
} else if (bf->bf_nseg == 0) { /* null packet, discard */
|
|
sc->malo_stats.mst_tx_nodata++;
|
|
m_freem(m0);
|
|
return EIO;
|
|
}
|
|
DPRINTF(sc, MALO_DEBUG_XMIT, "%s: m %p len %u\n",
|
|
__func__, m0, m0->m_pkthdr.len);
|
|
bus_dmamap_sync(sc->malo_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
|
|
bf->bf_m = m0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef MALO_DEBUG
|
|
static void
|
|
malo_printrxbuf(const struct malo_rxbuf *bf, u_int ix)
|
|
{
|
|
const struct malo_rxdesc *ds = bf->bf_desc;
|
|
uint32_t status = le32toh(ds->status);
|
|
|
|
printf("R[%2u] (DS.V:%p DS.P:0x%jx) NEXT:%08x DATA:%08x RC:%02x%s\n"
|
|
" STAT:%02x LEN:%04x SNR:%02x NF:%02x CHAN:%02x"
|
|
" RATE:%02x QOS:%04x\n", ix, ds, (uintmax_t)bf->bf_daddr,
|
|
le32toh(ds->physnext), le32toh(ds->physbuffdata),
|
|
ds->rxcontrol,
|
|
ds->rxcontrol != MALO_RXD_CTRL_DRIVER_OWN ?
|
|
"" : (status & MALO_RXD_STATUS_OK) ? " *" : " !",
|
|
ds->status, le16toh(ds->pktlen), ds->snr, ds->nf, ds->channel,
|
|
ds->rate, le16toh(ds->qosctrl));
|
|
}
|
|
|
|
static void
|
|
malo_printtxbuf(const struct malo_txbuf *bf, u_int qnum, u_int ix)
|
|
{
|
|
const struct malo_txdesc *ds = bf->bf_desc;
|
|
uint32_t status = le32toh(ds->status);
|
|
|
|
printf("Q%u[%3u]", qnum, ix);
|
|
printf(" (DS.V:%p DS.P:0x%jx)\n", ds, (uintmax_t)bf->bf_daddr);
|
|
printf(" NEXT:%08x DATA:%08x LEN:%04x STAT:%08x%s\n",
|
|
le32toh(ds->physnext),
|
|
le32toh(ds->pktptr), le16toh(ds->pktlen), status,
|
|
status & MALO_TXD_STATUS_USED ?
|
|
"" : (status & 3) != 0 ? " *" : " !");
|
|
printf(" RATE:%02x PRI:%x QOS:%04x SAP:%08x FORMAT:%04x\n",
|
|
ds->datarate, ds->txpriority, le16toh(ds->qosctrl),
|
|
le32toh(ds->sap_pktinfo), le16toh(ds->format));
|
|
#if 0
|
|
{
|
|
const uint8_t *cp = (const uint8_t *) ds;
|
|
int i;
|
|
for (i = 0; i < sizeof(struct malo_txdesc); i++) {
|
|
printf("%02x ", cp[i]);
|
|
if (((i+1) % 16) == 0)
|
|
printf("\n");
|
|
}
|
|
printf("\n");
|
|
}
|
|
#endif
|
|
}
|
|
#endif /* MALO_DEBUG */
|
|
|
|
static __inline void
|
|
malo_updatetxrate(struct ieee80211_node *ni, int rix)
|
|
{
|
|
static const int ieeerates[] =
|
|
{ 2, 4, 11, 22, 44, 12, 18, 24, 36, 48, 96, 108 };
|
|
if (rix < nitems(ieeerates))
|
|
ni->ni_txrate = ieeerates[rix];
|
|
}
|
|
|
|
static int
|
|
malo_fix2rate(int fix_rate)
|
|
{
|
|
static const int rates[] =
|
|
{ 2, 4, 11, 22, 12, 18, 24, 36, 48, 96, 108 };
|
|
return (fix_rate < nitems(rates) ? rates[fix_rate] : 0);
|
|
}
|
|
|
|
/* idiomatic shorthands: MS = mask+shift, SM = shift+mask */
|
|
#define MS(v,x) (((v) & x) >> x##_S)
|
|
#define SM(v,x) (((v) << x##_S) & x)
|
|
|
|
/*
|
|
* Process completed xmit descriptors from the specified queue.
|
|
*/
|
|
static int
|
|
malo_tx_processq(struct malo_softc *sc, struct malo_txq *txq)
|
|
{
|
|
struct malo_txbuf *bf;
|
|
struct malo_txdesc *ds;
|
|
struct ieee80211_node *ni;
|
|
int nreaped;
|
|
uint32_t status;
|
|
|
|
DPRINTF(sc, MALO_DEBUG_TX_PROC, "%s: tx queue %u\n",
|
|
__func__, txq->qnum);
|
|
for (nreaped = 0;; nreaped++) {
|
|
MALO_TXQ_LOCK(txq);
|
|
bf = STAILQ_FIRST(&txq->active);
|
|
if (bf == NULL) {
|
|
MALO_TXQ_UNLOCK(txq);
|
|
break;
|
|
}
|
|
ds = bf->bf_desc;
|
|
MALO_TXDESC_SYNC(txq, ds,
|
|
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
|
|
if (ds->status & htole32(MALO_TXD_STATUS_FW_OWNED)) {
|
|
MALO_TXQ_UNLOCK(txq);
|
|
break;
|
|
}
|
|
STAILQ_REMOVE_HEAD(&txq->active, bf_list);
|
|
MALO_TXQ_UNLOCK(txq);
|
|
|
|
#ifdef MALO_DEBUG
|
|
if (sc->malo_debug & MALO_DEBUG_XMIT_DESC)
|
|
malo_printtxbuf(bf, txq->qnum, nreaped);
|
|
#endif
|
|
ni = bf->bf_node;
|
|
if (ni != NULL) {
|
|
status = le32toh(ds->status);
|
|
if (status & MALO_TXD_STATUS_OK) {
|
|
uint16_t format = le16toh(ds->format);
|
|
uint8_t txant = MS(format, MALO_TXD_ANTENNA);
|
|
|
|
sc->malo_stats.mst_ant_tx[txant]++;
|
|
if (status & MALO_TXD_STATUS_OK_RETRY)
|
|
sc->malo_stats.mst_tx_retries++;
|
|
if (status & MALO_TXD_STATUS_OK_MORE_RETRY)
|
|
sc->malo_stats.mst_tx_mretries++;
|
|
malo_updatetxrate(ni, ds->datarate);
|
|
sc->malo_stats.mst_tx_rate = ds->datarate;
|
|
} else {
|
|
if (status & MALO_TXD_STATUS_FAILED_LINK_ERROR)
|
|
sc->malo_stats.mst_tx_linkerror++;
|
|
if (status & MALO_TXD_STATUS_FAILED_XRETRY)
|
|
sc->malo_stats.mst_tx_xretries++;
|
|
if (status & MALO_TXD_STATUS_FAILED_AGING)
|
|
sc->malo_stats.mst_tx_aging++;
|
|
}
|
|
/* XXX strip fw len in case header inspected */
|
|
m_adj(bf->bf_m, sizeof(uint16_t));
|
|
ieee80211_tx_complete(ni, bf->bf_m,
|
|
(status & MALO_TXD_STATUS_OK) == 0);
|
|
} else
|
|
m_freem(bf->bf_m);
|
|
|
|
ds->status = htole32(MALO_TXD_STATUS_IDLE);
|
|
ds->pktlen = htole32(0);
|
|
|
|
bus_dmamap_sync(sc->malo_dmat, bf->bf_dmamap,
|
|
BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->malo_dmat, bf->bf_dmamap);
|
|
bf->bf_m = NULL;
|
|
bf->bf_node = NULL;
|
|
|
|
MALO_TXQ_LOCK(txq);
|
|
STAILQ_INSERT_TAIL(&txq->free, bf, bf_list);
|
|
txq->nfree++;
|
|
MALO_TXQ_UNLOCK(txq);
|
|
}
|
|
return nreaped;
|
|
}
|
|
|
|
/*
|
|
* Deferred processing of transmit interrupt.
|
|
*/
|
|
static void
|
|
malo_tx_proc(void *arg, int npending)
|
|
{
|
|
struct malo_softc *sc = arg;
|
|
int i, nreaped;
|
|
|
|
/*
|
|
* Process each active queue.
|
|
*/
|
|
nreaped = 0;
|
|
MALO_LOCK(sc);
|
|
for (i = 0; i < MALO_NUM_TX_QUEUES; i++) {
|
|
if (!STAILQ_EMPTY(&sc->malo_txq[i].active))
|
|
nreaped += malo_tx_processq(sc, &sc->malo_txq[i]);
|
|
}
|
|
|
|
if (nreaped != 0) {
|
|
sc->malo_timer = 0;
|
|
malo_start(sc);
|
|
}
|
|
MALO_UNLOCK(sc);
|
|
}
|
|
|
|
static int
|
|
malo_tx_start(struct malo_softc *sc, struct ieee80211_node *ni,
|
|
struct malo_txbuf *bf, struct mbuf *m0)
|
|
{
|
|
#define IS_DATA_FRAME(wh) \
|
|
((wh->i_fc[0] & (IEEE80211_FC0_TYPE_MASK)) == IEEE80211_FC0_TYPE_DATA)
|
|
int error, ismcast, iswep;
|
|
int copyhdrlen, hdrlen, pktlen;
|
|
struct ieee80211_frame *wh;
|
|
struct ieee80211com *ic = &sc->malo_ic;
|
|
struct ieee80211vap *vap = ni->ni_vap;
|
|
struct malo_txdesc *ds;
|
|
struct malo_txrec *tr;
|
|
struct malo_txq *txq;
|
|
uint16_t qos;
|
|
|
|
wh = mtod(m0, struct ieee80211_frame *);
|
|
iswep = wh->i_fc[1] & IEEE80211_FC1_PROTECTED;
|
|
ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
|
|
copyhdrlen = hdrlen = ieee80211_anyhdrsize(wh);
|
|
pktlen = m0->m_pkthdr.len;
|
|
if (IEEE80211_QOS_HAS_SEQ(wh)) {
|
|
if (IEEE80211_IS_DSTODS(wh)) {
|
|
qos = *(uint16_t *)
|
|
(((struct ieee80211_qosframe_addr4 *) wh)->i_qos);
|
|
copyhdrlen -= sizeof(qos);
|
|
} else
|
|
qos = *(uint16_t *)
|
|
(((struct ieee80211_qosframe *) wh)->i_qos);
|
|
} else
|
|
qos = 0;
|
|
|
|
if (iswep) {
|
|
struct ieee80211_key *k;
|
|
|
|
/*
|
|
* Construct the 802.11 header+trailer for an encrypted
|
|
* frame. The only reason this can fail is because of an
|
|
* unknown or unsupported cipher/key type.
|
|
*
|
|
* NB: we do this even though the firmware will ignore
|
|
* what we've done for WEP and TKIP as we need the
|
|
* ExtIV filled in for CCMP and this also adjusts
|
|
* the headers which simplifies our work below.
|
|
*/
|
|
k = ieee80211_crypto_encap(ni, m0);
|
|
if (k == NULL) {
|
|
/*
|
|
* This can happen when the key is yanked after the
|
|
* frame was queued. Just discard the frame; the
|
|
* 802.11 layer counts failures and provides
|
|
* debugging/diagnostics.
|
|
*/
|
|
m_freem(m0);
|
|
return EIO;
|
|
}
|
|
|
|
/*
|
|
* Adjust the packet length for the crypto additions
|
|
* done during encap and any other bits that the f/w
|
|
* will add later on.
|
|
*/
|
|
pktlen = m0->m_pkthdr.len;
|
|
|
|
/* packet header may have moved, reset our local pointer */
|
|
wh = mtod(m0, struct ieee80211_frame *);
|
|
}
|
|
|
|
if (ieee80211_radiotap_active_vap(vap)) {
|
|
sc->malo_tx_th.wt_flags = 0; /* XXX */
|
|
if (iswep)
|
|
sc->malo_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
|
|
sc->malo_tx_th.wt_txpower = ni->ni_txpower;
|
|
sc->malo_tx_th.wt_antenna = sc->malo_txantenna;
|
|
|
|
ieee80211_radiotap_tx(vap, m0);
|
|
}
|
|
|
|
/*
|
|
* Copy up/down the 802.11 header; the firmware requires
|
|
* we present a 2-byte payload length followed by a
|
|
* 4-address header (w/o QoS), followed (optionally) by
|
|
* any WEP/ExtIV header (but only filled in for CCMP).
|
|
* We are assured the mbuf has sufficient headroom to
|
|
* prepend in-place by the setup of ic_headroom in
|
|
* malo_attach.
|
|
*/
|
|
if (hdrlen < sizeof(struct malo_txrec)) {
|
|
const int space = sizeof(struct malo_txrec) - hdrlen;
|
|
if (M_LEADINGSPACE(m0) < space) {
|
|
/* NB: should never happen */
|
|
device_printf(sc->malo_dev,
|
|
"not enough headroom, need %d found %zd, "
|
|
"m_flags 0x%x m_len %d\n",
|
|
space, M_LEADINGSPACE(m0), m0->m_flags, m0->m_len);
|
|
ieee80211_dump_pkt(ic,
|
|
mtod(m0, const uint8_t *), m0->m_len, 0, -1);
|
|
m_freem(m0);
|
|
/* XXX stat */
|
|
return EIO;
|
|
}
|
|
M_PREPEND(m0, space, M_NOWAIT);
|
|
}
|
|
tr = mtod(m0, struct malo_txrec *);
|
|
if (wh != (struct ieee80211_frame *) &tr->wh)
|
|
ovbcopy(wh, &tr->wh, hdrlen);
|
|
/*
|
|
* Note: the "firmware length" is actually the length of the fully
|
|
* formed "802.11 payload". That is, it's everything except for
|
|
* the 802.11 header. In particular this includes all crypto
|
|
* material including the MIC!
|
|
*/
|
|
tr->fwlen = htole16(pktlen - hdrlen);
|
|
|
|
/*
|
|
* Load the DMA map so any coalescing is done. This
|
|
* also calculates the number of descriptors we need.
|
|
*/
|
|
error = malo_tx_dmasetup(sc, bf, m0);
|
|
if (error != 0)
|
|
return error;
|
|
bf->bf_node = ni; /* NB: held reference */
|
|
m0 = bf->bf_m; /* NB: may have changed */
|
|
tr = mtod(m0, struct malo_txrec *);
|
|
wh = (struct ieee80211_frame *)&tr->wh;
|
|
|
|
/*
|
|
* Formulate tx descriptor.
|
|
*/
|
|
ds = bf->bf_desc;
|
|
txq = bf->bf_txq;
|
|
|
|
ds->qosctrl = qos; /* NB: already little-endian */
|
|
ds->pktptr = htole32(bf->bf_segs[0].ds_addr);
|
|
ds->pktlen = htole16(bf->bf_segs[0].ds_len);
|
|
/* NB: pPhysNext setup once, don't touch */
|
|
ds->datarate = IS_DATA_FRAME(wh) ? 1 : 0;
|
|
ds->sap_pktinfo = 0;
|
|
ds->format = 0;
|
|
|
|
/*
|
|
* Select transmit rate.
|
|
*/
|
|
switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
|
|
case IEEE80211_FC0_TYPE_MGT:
|
|
sc->malo_stats.mst_tx_mgmt++;
|
|
/* fall thru... */
|
|
case IEEE80211_FC0_TYPE_CTL:
|
|
ds->txpriority = 1;
|
|
break;
|
|
case IEEE80211_FC0_TYPE_DATA:
|
|
ds->txpriority = txq->qnum;
|
|
break;
|
|
default:
|
|
device_printf(sc->malo_dev, "bogus frame type 0x%x (%s)\n",
|
|
wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
|
|
/* XXX statistic */
|
|
m_freem(m0);
|
|
return EIO;
|
|
}
|
|
|
|
#ifdef MALO_DEBUG
|
|
if (IFF_DUMPPKTS_XMIT(sc))
|
|
ieee80211_dump_pkt(ic,
|
|
mtod(m0, const uint8_t *)+sizeof(uint16_t),
|
|
m0->m_len - sizeof(uint16_t), ds->datarate, -1);
|
|
#endif
|
|
|
|
MALO_TXQ_LOCK(txq);
|
|
if (!IS_DATA_FRAME(wh))
|
|
ds->status |= htole32(1);
|
|
ds->status |= htole32(MALO_TXD_STATUS_FW_OWNED);
|
|
STAILQ_INSERT_TAIL(&txq->active, bf, bf_list);
|
|
MALO_TXDESC_SYNC(txq, ds, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
|
|
sc->malo_timer = 5;
|
|
MALO_TXQ_UNLOCK(txq);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
malo_transmit(struct ieee80211com *ic, struct mbuf *m)
|
|
{
|
|
struct malo_softc *sc = ic->ic_softc;
|
|
int error;
|
|
|
|
MALO_LOCK(sc);
|
|
if (!sc->malo_running) {
|
|
MALO_UNLOCK(sc);
|
|
return (ENXIO);
|
|
}
|
|
error = mbufq_enqueue(&sc->malo_snd, m);
|
|
if (error) {
|
|
MALO_UNLOCK(sc);
|
|
return (error);
|
|
}
|
|
malo_start(sc);
|
|
MALO_UNLOCK(sc);
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
malo_start(struct malo_softc *sc)
|
|
{
|
|
struct ieee80211_node *ni;
|
|
struct malo_txq *txq = &sc->malo_txq[0];
|
|
struct malo_txbuf *bf = NULL;
|
|
struct mbuf *m;
|
|
int nqueued = 0;
|
|
|
|
MALO_LOCK_ASSERT(sc);
|
|
|
|
if (!sc->malo_running || sc->malo_invalid)
|
|
return;
|
|
|
|
while ((m = mbufq_dequeue(&sc->malo_snd)) != NULL) {
|
|
ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
|
|
bf = malo_getbuf(sc, txq);
|
|
if (bf == NULL) {
|
|
mbufq_prepend(&sc->malo_snd, m);
|
|
sc->malo_stats.mst_tx_qstop++;
|
|
break;
|
|
}
|
|
/*
|
|
* Pass the frame to the h/w for transmission.
|
|
*/
|
|
if (malo_tx_start(sc, ni, bf, m)) {
|
|
if_inc_counter(ni->ni_vap->iv_ifp,
|
|
IFCOUNTER_OERRORS, 1);
|
|
if (bf != NULL) {
|
|
bf->bf_m = NULL;
|
|
bf->bf_node = NULL;
|
|
MALO_TXQ_LOCK(txq);
|
|
STAILQ_INSERT_HEAD(&txq->free, bf, bf_list);
|
|
MALO_TXQ_UNLOCK(txq);
|
|
}
|
|
ieee80211_free_node(ni);
|
|
continue;
|
|
}
|
|
nqueued++;
|
|
|
|
if (nqueued >= malo_txcoalesce) {
|
|
/*
|
|
* Poke the firmware to process queued frames;
|
|
* see below about (lack of) locking.
|
|
*/
|
|
nqueued = 0;
|
|
malo_hal_txstart(sc->malo_mh, 0/*XXX*/);
|
|
}
|
|
}
|
|
|
|
if (nqueued) {
|
|
/*
|
|
* NB: We don't need to lock against tx done because
|
|
* this just prods the firmware to check the transmit
|
|
* descriptors. The firmware will also start fetching
|
|
* descriptors by itself if it notices new ones are
|
|
* present when it goes to deliver a tx done interrupt
|
|
* to the host. So if we race with tx done processing
|
|
* it's ok. Delivering the kick here rather than in
|
|
* malo_tx_start is an optimization to avoid poking the
|
|
* firmware for each packet.
|
|
*
|
|
* NB: the queue id isn't used so 0 is ok.
|
|
*/
|
|
malo_hal_txstart(sc->malo_mh, 0/*XXX*/);
|
|
}
|
|
}
|
|
|
|
static void
|
|
malo_watchdog(void *arg)
|
|
{
|
|
struct malo_softc *sc = arg;
|
|
|
|
callout_reset(&sc->malo_watchdog_timer, hz, malo_watchdog, sc);
|
|
if (sc->malo_timer == 0 || --sc->malo_timer > 0)
|
|
return;
|
|
|
|
if (sc->malo_running && !sc->malo_invalid) {
|
|
device_printf(sc->malo_dev, "watchdog timeout\n");
|
|
|
|
/* XXX no way to reset h/w. now */
|
|
|
|
counter_u64_add(sc->malo_ic.ic_oerrors, 1);
|
|
sc->malo_stats.mst_watchdog++;
|
|
}
|
|
}
|
|
|
|
static int
|
|
malo_hal_reset(struct malo_softc *sc)
|
|
{
|
|
static int first = 0;
|
|
struct ieee80211com *ic = &sc->malo_ic;
|
|
struct malo_hal *mh = sc->malo_mh;
|
|
|
|
if (first == 0) {
|
|
/*
|
|
* NB: when the device firstly is initialized, sometimes
|
|
* firmware could override rx/tx dma registers so we re-set
|
|
* these values once.
|
|
*/
|
|
malo_hal_set_rxtxdma(sc);
|
|
first = 1;
|
|
}
|
|
|
|
malo_hal_setantenna(mh, MHA_ANTENNATYPE_RX, sc->malo_rxantenna);
|
|
malo_hal_setantenna(mh, MHA_ANTENNATYPE_TX, sc->malo_txantenna);
|
|
malo_hal_setradio(mh, 1, MHP_AUTO_PREAMBLE);
|
|
malo_chan_set(sc, ic->ic_curchan);
|
|
|
|
/* XXX needs other stuffs? */
|
|
|
|
return 1;
|
|
}
|
|
|
|
static __inline struct mbuf *
|
|
malo_getrxmbuf(struct malo_softc *sc, struct malo_rxbuf *bf)
|
|
{
|
|
struct mbuf *m;
|
|
bus_addr_t paddr;
|
|
int error;
|
|
|
|
/* XXX don't need mbuf, just dma buffer */
|
|
m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
|
|
if (m == NULL) {
|
|
sc->malo_stats.mst_rx_nombuf++; /* XXX */
|
|
return NULL;
|
|
}
|
|
error = bus_dmamap_load(sc->malo_dmat, bf->bf_dmamap,
|
|
mtod(m, caddr_t), MJUMPAGESIZE,
|
|
malo_load_cb, &paddr, BUS_DMA_NOWAIT);
|
|
if (error != 0) {
|
|
device_printf(sc->malo_dev,
|
|
"%s: bus_dmamap_load failed, error %d\n", __func__, error);
|
|
m_freem(m);
|
|
return NULL;
|
|
}
|
|
bf->bf_data = paddr;
|
|
bus_dmamap_sync(sc->malo_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
|
|
|
|
return m;
|
|
}
|
|
|
|
static int
|
|
malo_rxbuf_init(struct malo_softc *sc, struct malo_rxbuf *bf)
|
|
{
|
|
struct malo_rxdesc *ds;
|
|
|
|
ds = bf->bf_desc;
|
|
if (bf->bf_m == NULL) {
|
|
bf->bf_m = malo_getrxmbuf(sc, bf);
|
|
if (bf->bf_m == NULL) {
|
|
/* mark descriptor to be skipped */
|
|
ds->rxcontrol = MALO_RXD_CTRL_OS_OWN;
|
|
/* NB: don't need PREREAD */
|
|
MALO_RXDESC_SYNC(sc, ds, BUS_DMASYNC_PREWRITE);
|
|
return ENOMEM;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Setup descriptor.
|
|
*/
|
|
ds->qosctrl = 0;
|
|
ds->snr = 0;
|
|
ds->status = MALO_RXD_STATUS_IDLE;
|
|
ds->channel = 0;
|
|
ds->pktlen = htole16(MALO_RXSIZE);
|
|
ds->nf = 0;
|
|
ds->physbuffdata = htole32(bf->bf_data);
|
|
/* NB: don't touch pPhysNext, set once */
|
|
ds->rxcontrol = MALO_RXD_CTRL_DRIVER_OWN;
|
|
MALO_RXDESC_SYNC(sc, ds, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Setup the rx data structures. This should only be done once or we may get
|
|
* out of sync with the firmware.
|
|
*/
|
|
static int
|
|
malo_startrecv(struct malo_softc *sc)
|
|
{
|
|
struct malo_rxbuf *bf, *prev;
|
|
struct malo_rxdesc *ds;
|
|
|
|
if (sc->malo_recvsetup == 1) {
|
|
malo_mode_init(sc); /* set filters, etc. */
|
|
return 0;
|
|
}
|
|
|
|
prev = NULL;
|
|
STAILQ_FOREACH(bf, &sc->malo_rxbuf, bf_list) {
|
|
int error = malo_rxbuf_init(sc, bf);
|
|
if (error != 0) {
|
|
DPRINTF(sc, MALO_DEBUG_RECV,
|
|
"%s: malo_rxbuf_init failed %d\n",
|
|
__func__, error);
|
|
return error;
|
|
}
|
|
if (prev != NULL) {
|
|
ds = prev->bf_desc;
|
|
ds->physnext = htole32(bf->bf_daddr);
|
|
}
|
|
prev = bf;
|
|
}
|
|
if (prev != NULL) {
|
|
ds = prev->bf_desc;
|
|
ds->physnext =
|
|
htole32(STAILQ_FIRST(&sc->malo_rxbuf)->bf_daddr);
|
|
}
|
|
|
|
sc->malo_recvsetup = 1;
|
|
|
|
malo_mode_init(sc); /* set filters, etc. */
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
malo_init_locked(struct malo_softc *sc)
|
|
{
|
|
struct malo_hal *mh = sc->malo_mh;
|
|
int error;
|
|
|
|
MALO_LOCK_ASSERT(sc);
|
|
|
|
/*
|
|
* Stop anything previously setup. This is safe whether this is
|
|
* the first time through or not.
|
|
*/
|
|
malo_stop(sc);
|
|
|
|
/*
|
|
* Push state to the firmware.
|
|
*/
|
|
if (!malo_hal_reset(sc)) {
|
|
device_printf(sc->malo_dev,
|
|
"%s: unable to reset hardware\n", __func__);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Setup recv (once); transmit is already good to go.
|
|
*/
|
|
error = malo_startrecv(sc);
|
|
if (error != 0) {
|
|
device_printf(sc->malo_dev,
|
|
"%s: unable to start recv logic, error %d\n",
|
|
__func__, error);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Enable interrupts.
|
|
*/
|
|
sc->malo_imask = MALO_A2HRIC_BIT_RX_RDY
|
|
| MALO_A2HRIC_BIT_TX_DONE
|
|
| MALO_A2HRIC_BIT_OPC_DONE
|
|
| MALO_A2HRIC_BIT_MAC_EVENT
|
|
| MALO_A2HRIC_BIT_RX_PROBLEM
|
|
| MALO_A2HRIC_BIT_ICV_ERROR
|
|
| MALO_A2HRIC_BIT_RADAR_DETECT
|
|
| MALO_A2HRIC_BIT_CHAN_SWITCH;
|
|
|
|
sc->malo_running = 1;
|
|
malo_hal_intrset(mh, sc->malo_imask);
|
|
callout_reset(&sc->malo_watchdog_timer, hz, malo_watchdog, sc);
|
|
}
|
|
|
|
static void
|
|
malo_init(void *arg)
|
|
{
|
|
struct malo_softc *sc = (struct malo_softc *) arg;
|
|
struct ieee80211com *ic = &sc->malo_ic;
|
|
|
|
MALO_LOCK(sc);
|
|
malo_init_locked(sc);
|
|
MALO_UNLOCK(sc);
|
|
|
|
if (sc->malo_running)
|
|
ieee80211_start_all(ic); /* start all vap's */
|
|
}
|
|
|
|
/*
|
|
* Set the multicast filter contents into the hardware.
|
|
*/
|
|
static void
|
|
malo_setmcastfilter(struct malo_softc *sc)
|
|
{
|
|
struct ieee80211com *ic = &sc->malo_ic;
|
|
struct ieee80211vap *vap;
|
|
uint8_t macs[IEEE80211_ADDR_LEN * MALO_HAL_MCAST_MAX];
|
|
uint8_t *mp;
|
|
int nmc;
|
|
|
|
mp = macs;
|
|
nmc = 0;
|
|
|
|
if (ic->ic_opmode == IEEE80211_M_MONITOR || ic->ic_allmulti > 0 ||
|
|
ic->ic_promisc > 0)
|
|
goto all;
|
|
|
|
TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
|
|
struct ifnet *ifp;
|
|
struct ifmultiaddr *ifma;
|
|
|
|
ifp = vap->iv_ifp;
|
|
if_maddr_rlock(ifp);
|
|
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
|
|
if (ifma->ifma_addr->sa_family != AF_LINK)
|
|
continue;
|
|
|
|
if (nmc == MALO_HAL_MCAST_MAX) {
|
|
ifp->if_flags |= IFF_ALLMULTI;
|
|
if_maddr_runlock(ifp);
|
|
goto all;
|
|
}
|
|
IEEE80211_ADDR_COPY(mp,
|
|
LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
|
|
|
|
mp += IEEE80211_ADDR_LEN, nmc++;
|
|
}
|
|
if_maddr_runlock(ifp);
|
|
}
|
|
|
|
malo_hal_setmcast(sc->malo_mh, nmc, macs);
|
|
|
|
all:
|
|
/*
|
|
* XXX we don't know how to set the f/w for supporting
|
|
* IFF_ALLMULTI | IFF_PROMISC cases
|
|
*/
|
|
return;
|
|
}
|
|
|
|
static int
|
|
malo_mode_init(struct malo_softc *sc)
|
|
{
|
|
struct ieee80211com *ic = &sc->malo_ic;
|
|
struct malo_hal *mh = sc->malo_mh;
|
|
|
|
malo_hal_setpromisc(mh, ic->ic_promisc > 0);
|
|
malo_setmcastfilter(sc);
|
|
|
|
return ENXIO;
|
|
}
|
|
|
|
static void
|
|
malo_tx_draintxq(struct malo_softc *sc, struct malo_txq *txq)
|
|
{
|
|
struct ieee80211_node *ni;
|
|
struct malo_txbuf *bf;
|
|
u_int ix;
|
|
|
|
/*
|
|
* NB: this assumes output has been stopped and
|
|
* we do not need to block malo_tx_tasklet
|
|
*/
|
|
for (ix = 0;; ix++) {
|
|
MALO_TXQ_LOCK(txq);
|
|
bf = STAILQ_FIRST(&txq->active);
|
|
if (bf == NULL) {
|
|
MALO_TXQ_UNLOCK(txq);
|
|
break;
|
|
}
|
|
STAILQ_REMOVE_HEAD(&txq->active, bf_list);
|
|
MALO_TXQ_UNLOCK(txq);
|
|
#ifdef MALO_DEBUG
|
|
if (sc->malo_debug & MALO_DEBUG_RESET) {
|
|
struct ieee80211com *ic = &sc->malo_ic;
|
|
const struct malo_txrec *tr =
|
|
mtod(bf->bf_m, const struct malo_txrec *);
|
|
malo_printtxbuf(bf, txq->qnum, ix);
|
|
ieee80211_dump_pkt(ic, (const uint8_t *)&tr->wh,
|
|
bf->bf_m->m_len - sizeof(tr->fwlen), 0, -1);
|
|
}
|
|
#endif /* MALO_DEBUG */
|
|
bus_dmamap_unload(sc->malo_dmat, bf->bf_dmamap);
|
|
ni = bf->bf_node;
|
|
bf->bf_node = NULL;
|
|
if (ni != NULL) {
|
|
/*
|
|
* Reclaim node reference.
|
|
*/
|
|
ieee80211_free_node(ni);
|
|
}
|
|
m_freem(bf->bf_m);
|
|
bf->bf_m = NULL;
|
|
|
|
MALO_TXQ_LOCK(txq);
|
|
STAILQ_INSERT_TAIL(&txq->free, bf, bf_list);
|
|
txq->nfree++;
|
|
MALO_TXQ_UNLOCK(txq);
|
|
}
|
|
}
|
|
|
|
static void
|
|
malo_stop(struct malo_softc *sc)
|
|
{
|
|
struct malo_hal *mh = sc->malo_mh;
|
|
int i;
|
|
|
|
DPRINTF(sc, MALO_DEBUG_ANY, "%s: invalid %u running %u\n",
|
|
__func__, sc->malo_invalid, sc->malo_running);
|
|
|
|
MALO_LOCK_ASSERT(sc);
|
|
|
|
if (!sc->malo_running)
|
|
return;
|
|
|
|
/*
|
|
* Shutdown the hardware and driver:
|
|
* disable interrupts
|
|
* turn off the radio
|
|
* drain and release tx queues
|
|
*
|
|
* Note that some of this work is not possible if the hardware
|
|
* is gone (invalid).
|
|
*/
|
|
sc->malo_running = 0;
|
|
callout_stop(&sc->malo_watchdog_timer);
|
|
sc->malo_timer = 0;
|
|
/* disable interrupt. */
|
|
malo_hal_intrset(mh, 0);
|
|
/* turn off the radio. */
|
|
malo_hal_setradio(mh, 0, MHP_AUTO_PREAMBLE);
|
|
|
|
/* drain and release tx queues. */
|
|
for (i = 0; i < MALO_NUM_TX_QUEUES; i++)
|
|
malo_tx_draintxq(sc, &sc->malo_txq[i]);
|
|
}
|
|
|
|
static void
|
|
malo_parent(struct ieee80211com *ic)
|
|
{
|
|
struct malo_softc *sc = ic->ic_softc;
|
|
int startall = 0;
|
|
|
|
MALO_LOCK(sc);
|
|
if (ic->ic_nrunning > 0) {
|
|
/*
|
|
* Beware of being called during attach/detach
|
|
* to reset promiscuous mode. In that case we
|
|
* will still be marked UP but not RUNNING.
|
|
* However trying to re-init the interface
|
|
* is the wrong thing to do as we've already
|
|
* torn down much of our state. There's
|
|
* probably a better way to deal with this.
|
|
*/
|
|
if (!sc->malo_running && !sc->malo_invalid) {
|
|
malo_init(sc);
|
|
startall = 1;
|
|
}
|
|
/*
|
|
* To avoid rescanning another access point,
|
|
* do not call malo_init() here. Instead,
|
|
* only reflect promisc mode settings.
|
|
*/
|
|
malo_mode_init(sc);
|
|
} else if (sc->malo_running)
|
|
malo_stop(sc);
|
|
MALO_UNLOCK(sc);
|
|
if (startall)
|
|
ieee80211_start_all(ic);
|
|
}
|
|
|
|
/*
|
|
* Callback from the 802.11 layer to update the slot time
|
|
* based on the current setting. We use it to notify the
|
|
* firmware of ERP changes and the f/w takes care of things
|
|
* like slot time and preamble.
|
|
*/
|
|
static void
|
|
malo_updateslot(struct ieee80211com *ic)
|
|
{
|
|
struct malo_softc *sc = ic->ic_softc;
|
|
struct malo_hal *mh = sc->malo_mh;
|
|
int error;
|
|
|
|
/* NB: can be called early; suppress needless cmds */
|
|
if (!sc->malo_running)
|
|
return;
|
|
|
|
DPRINTF(sc, MALO_DEBUG_RESET,
|
|
"%s: chan %u MHz/flags 0x%x %s slot, (ic_flags 0x%x)\n",
|
|
__func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags,
|
|
ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", ic->ic_flags);
|
|
|
|
if (ic->ic_flags & IEEE80211_F_SHSLOT)
|
|
error = malo_hal_set_slot(mh, 1);
|
|
else
|
|
error = malo_hal_set_slot(mh, 0);
|
|
|
|
if (error != 0)
|
|
device_printf(sc->malo_dev, "setting %s slot failed\n",
|
|
ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long");
|
|
}
|
|
|
|
static int
|
|
malo_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
|
|
{
|
|
struct ieee80211com *ic = vap->iv_ic;
|
|
struct malo_softc *sc = ic->ic_softc;
|
|
struct malo_hal *mh = sc->malo_mh;
|
|
int error;
|
|
|
|
DPRINTF(sc, MALO_DEBUG_STATE, "%s: %s -> %s\n", __func__,
|
|
ieee80211_state_name[vap->iv_state],
|
|
ieee80211_state_name[nstate]);
|
|
|
|
/*
|
|
* Invoke the net80211 layer first so iv_bss is setup.
|
|
*/
|
|
error = MALO_VAP(vap)->malo_newstate(vap, nstate, arg);
|
|
if (error != 0)
|
|
return error;
|
|
|
|
if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) {
|
|
struct ieee80211_node *ni = vap->iv_bss;
|
|
enum ieee80211_phymode mode = ieee80211_chan2mode(ni->ni_chan);
|
|
const struct ieee80211_txparam *tp = &vap->iv_txparms[mode];
|
|
|
|
DPRINTF(sc, MALO_DEBUG_STATE,
|
|
"%s: %s(RUN): iv_flags 0x%08x bintvl %d bssid %s "
|
|
"capinfo 0x%04x chan %d associd 0x%x mode %d rate %d\n",
|
|
vap->iv_ifp->if_xname, __func__, vap->iv_flags,
|
|
ni->ni_intval, ether_sprintf(ni->ni_bssid), ni->ni_capinfo,
|
|
ieee80211_chan2ieee(ic, ic->ic_curchan),
|
|
ni->ni_associd, mode, tp->ucastrate);
|
|
|
|
malo_hal_setradio(mh, 1,
|
|
(ic->ic_flags & IEEE80211_F_SHPREAMBLE) ?
|
|
MHP_SHORT_PREAMBLE : MHP_LONG_PREAMBLE);
|
|
malo_hal_setassocid(sc->malo_mh, ni->ni_bssid, ni->ni_associd);
|
|
malo_hal_set_rate(mh, mode,
|
|
tp->ucastrate == IEEE80211_FIXED_RATE_NONE ?
|
|
0 : malo_fix2rate(tp->ucastrate));
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
malo_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
|
|
const struct ieee80211_bpf_params *params)
|
|
{
|
|
struct ieee80211com *ic = ni->ni_ic;
|
|
struct malo_softc *sc = ic->ic_softc;
|
|
struct malo_txbuf *bf;
|
|
struct malo_txq *txq;
|
|
|
|
if (!sc->malo_running || sc->malo_invalid) {
|
|
m_freem(m);
|
|
return ENETDOWN;
|
|
}
|
|
|
|
/*
|
|
* Grab a TX buffer and associated resources. Note that we depend
|
|
* on the classification by the 802.11 layer to get to the right h/w
|
|
* queue. Management frames must ALWAYS go on queue 1 but we
|
|
* cannot just force that here because we may receive non-mgt frames.
|
|
*/
|
|
txq = &sc->malo_txq[0];
|
|
bf = malo_getbuf(sc, txq);
|
|
if (bf == NULL) {
|
|
m_freem(m);
|
|
return ENOBUFS;
|
|
}
|
|
|
|
/*
|
|
* Pass the frame to the h/w for transmission.
|
|
*/
|
|
if (malo_tx_start(sc, ni, bf, m) != 0) {
|
|
bf->bf_m = NULL;
|
|
bf->bf_node = NULL;
|
|
MALO_TXQ_LOCK(txq);
|
|
STAILQ_INSERT_HEAD(&txq->free, bf, bf_list);
|
|
txq->nfree++;
|
|
MALO_TXQ_UNLOCK(txq);
|
|
|
|
return EIO; /* XXX */
|
|
}
|
|
|
|
/*
|
|
* NB: We don't need to lock against tx done because this just
|
|
* prods the firmware to check the transmit descriptors. The firmware
|
|
* will also start fetching descriptors by itself if it notices
|
|
* new ones are present when it goes to deliver a tx done interrupt
|
|
* to the host. So if we race with tx done processing it's ok.
|
|
* Delivering the kick here rather than in malo_tx_start is
|
|
* an optimization to avoid poking the firmware for each packet.
|
|
*
|
|
* NB: the queue id isn't used so 0 is ok.
|
|
*/
|
|
malo_hal_txstart(sc->malo_mh, 0/*XXX*/);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
malo_sysctlattach(struct malo_softc *sc)
|
|
{
|
|
#ifdef MALO_DEBUG
|
|
struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->malo_dev);
|
|
struct sysctl_oid *tree = device_get_sysctl_tree(sc->malo_dev);
|
|
|
|
sc->malo_debug = malo_debug;
|
|
SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
|
|
"debug", CTLFLAG_RW, &sc->malo_debug, 0,
|
|
"control debugging printfs");
|
|
#endif
|
|
}
|
|
|
|
static void
|
|
malo_announce(struct malo_softc *sc)
|
|
{
|
|
|
|
device_printf(sc->malo_dev,
|
|
"versions [hw %d fw %d.%d.%d.%d] (regioncode %d)\n",
|
|
sc->malo_hwspecs.hwversion,
|
|
(sc->malo_hwspecs.fw_releasenum >> 24) & 0xff,
|
|
(sc->malo_hwspecs.fw_releasenum >> 16) & 0xff,
|
|
(sc->malo_hwspecs.fw_releasenum >> 8) & 0xff,
|
|
(sc->malo_hwspecs.fw_releasenum >> 0) & 0xff,
|
|
sc->malo_hwspecs.regioncode);
|
|
|
|
if (bootverbose || malo_rxbuf != MALO_RXBUF)
|
|
device_printf(sc->malo_dev,
|
|
"using %u rx buffers\n", malo_rxbuf);
|
|
if (bootverbose || malo_txbuf != MALO_TXBUF)
|
|
device_printf(sc->malo_dev,
|
|
"using %u tx buffers\n", malo_txbuf);
|
|
}
|
|
|
|
/*
|
|
* Convert net80211 channel to a HAL channel.
|
|
*/
|
|
static void
|
|
malo_mapchan(struct malo_hal_channel *hc, const struct ieee80211_channel *chan)
|
|
{
|
|
hc->channel = chan->ic_ieee;
|
|
|
|
*(uint32_t *)&hc->flags = 0;
|
|
if (IEEE80211_IS_CHAN_2GHZ(chan))
|
|
hc->flags.freqband = MALO_FREQ_BAND_2DOT4GHZ;
|
|
}
|
|
|
|
/*
|
|
* Set/change channels. If the channel is really being changed,
|
|
* it's done by reseting the chip. To accomplish this we must
|
|
* first cleanup any pending DMA, then restart stuff after a la
|
|
* malo_init.
|
|
*/
|
|
static int
|
|
malo_chan_set(struct malo_softc *sc, struct ieee80211_channel *chan)
|
|
{
|
|
struct malo_hal *mh = sc->malo_mh;
|
|
struct malo_hal_channel hchan;
|
|
|
|
DPRINTF(sc, MALO_DEBUG_RESET, "%s: chan %u MHz/flags 0x%x\n",
|
|
__func__, chan->ic_freq, chan->ic_flags);
|
|
|
|
/*
|
|
* Convert to a HAL channel description with the flags constrained
|
|
* to reflect the current operating mode.
|
|
*/
|
|
malo_mapchan(&hchan, chan);
|
|
malo_hal_intrset(mh, 0); /* disable interrupts */
|
|
malo_hal_setchannel(mh, &hchan);
|
|
malo_hal_settxpower(mh, &hchan);
|
|
|
|
/*
|
|
* Update internal state.
|
|
*/
|
|
sc->malo_tx_th.wt_chan_freq = htole16(chan->ic_freq);
|
|
sc->malo_rx_th.wr_chan_freq = htole16(chan->ic_freq);
|
|
if (IEEE80211_IS_CHAN_ANYG(chan)) {
|
|
sc->malo_tx_th.wt_chan_flags = htole16(IEEE80211_CHAN_G);
|
|
sc->malo_rx_th.wr_chan_flags = htole16(IEEE80211_CHAN_G);
|
|
} else {
|
|
sc->malo_tx_th.wt_chan_flags = htole16(IEEE80211_CHAN_B);
|
|
sc->malo_rx_th.wr_chan_flags = htole16(IEEE80211_CHAN_B);
|
|
}
|
|
sc->malo_curchan = hchan;
|
|
malo_hal_intrset(mh, sc->malo_imask);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
malo_scan_start(struct ieee80211com *ic)
|
|
{
|
|
struct malo_softc *sc = ic->ic_softc;
|
|
|
|
DPRINTF(sc, MALO_DEBUG_STATE, "%s\n", __func__);
|
|
}
|
|
|
|
static void
|
|
malo_scan_end(struct ieee80211com *ic)
|
|
{
|
|
struct malo_softc *sc = ic->ic_softc;
|
|
|
|
DPRINTF(sc, MALO_DEBUG_STATE, "%s\n", __func__);
|
|
}
|
|
|
|
static void
|
|
malo_set_channel(struct ieee80211com *ic)
|
|
{
|
|
struct malo_softc *sc = ic->ic_softc;
|
|
|
|
(void) malo_chan_set(sc, ic->ic_curchan);
|
|
}
|
|
|
|
static void
|
|
malo_rx_proc(void *arg, int npending)
|
|
{
|
|
struct malo_softc *sc = arg;
|
|
struct ieee80211com *ic = &sc->malo_ic;
|
|
struct malo_rxbuf *bf;
|
|
struct malo_rxdesc *ds;
|
|
struct mbuf *m, *mnew;
|
|
struct ieee80211_qosframe *wh;
|
|
struct ieee80211_qosframe_addr4 *wh4;
|
|
struct ieee80211_node *ni;
|
|
int off, len, hdrlen, pktlen, rssi, ntodo;
|
|
uint8_t *data, status;
|
|
uint32_t readptr, writeptr;
|
|
|
|
DPRINTF(sc, MALO_DEBUG_RX_PROC,
|
|
"%s: pending %u rdptr(0x%x) 0x%x wrptr(0x%x) 0x%x\n",
|
|
__func__, npending,
|
|
sc->malo_hwspecs.rxdesc_read,
|
|
malo_bar0_read4(sc, sc->malo_hwspecs.rxdesc_read),
|
|
sc->malo_hwspecs.rxdesc_write,
|
|
malo_bar0_read4(sc, sc->malo_hwspecs.rxdesc_write));
|
|
|
|
readptr = malo_bar0_read4(sc, sc->malo_hwspecs.rxdesc_read);
|
|
writeptr = malo_bar0_read4(sc, sc->malo_hwspecs.rxdesc_write);
|
|
if (readptr == writeptr)
|
|
return;
|
|
|
|
bf = sc->malo_rxnext;
|
|
for (ntodo = malo_rxquota; ntodo > 0 && readptr != writeptr; ntodo--) {
|
|
if (bf == NULL) {
|
|
bf = STAILQ_FIRST(&sc->malo_rxbuf);
|
|
break;
|
|
}
|
|
ds = bf->bf_desc;
|
|
if (bf->bf_m == NULL) {
|
|
/*
|
|
* If data allocation failed previously there
|
|
* will be no buffer; try again to re-populate it.
|
|
* Note the firmware will not advance to the next
|
|
* descriptor with a dma buffer so we must mimic
|
|
* this or we'll get out of sync.
|
|
*/
|
|
DPRINTF(sc, MALO_DEBUG_ANY,
|
|
"%s: rx buf w/o dma memory\n", __func__);
|
|
(void)malo_rxbuf_init(sc, bf);
|
|
break;
|
|
}
|
|
MALO_RXDESC_SYNC(sc, ds,
|
|
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
|
|
if (ds->rxcontrol != MALO_RXD_CTRL_DMA_OWN)
|
|
break;
|
|
|
|
readptr = le32toh(ds->physnext);
|
|
|
|
#ifdef MALO_DEBUG
|
|
if (sc->malo_debug & MALO_DEBUG_RECV_DESC)
|
|
malo_printrxbuf(bf, 0);
|
|
#endif
|
|
status = ds->status;
|
|
if (status & MALO_RXD_STATUS_DECRYPT_ERR_MASK) {
|
|
counter_u64_add(ic->ic_ierrors, 1);
|
|
goto rx_next;
|
|
}
|
|
/*
|
|
* Sync the data buffer.
|
|
*/
|
|
len = le16toh(ds->pktlen);
|
|
bus_dmamap_sync(sc->malo_dmat, bf->bf_dmamap,
|
|
BUS_DMASYNC_POSTREAD);
|
|
/*
|
|
* The 802.11 header is provided all or in part at the front;
|
|
* use it to calculate the true size of the header that we'll
|
|
* construct below. We use this to figure out where to copy
|
|
* payload prior to constructing the header.
|
|
*/
|
|
m = bf->bf_m;
|
|
data = mtod(m, uint8_t *);
|
|
hdrlen = ieee80211_anyhdrsize(data + sizeof(uint16_t));
|
|
off = sizeof(uint16_t) + sizeof(struct ieee80211_frame_addr4);
|
|
|
|
/*
|
|
* Calculate RSSI. XXX wrong
|
|
*/
|
|
rssi = 2 * ((int) ds->snr - ds->nf); /* NB: .5 dBm */
|
|
if (rssi > 100)
|
|
rssi = 100;
|
|
|
|
pktlen = hdrlen + (len - off);
|
|
/*
|
|
* NB: we know our frame is at least as large as
|
|
* IEEE80211_MIN_LEN because there is a 4-address frame at
|
|
* the front. Hence there's no need to vet the packet length.
|
|
* If the frame in fact is too small it should be discarded
|
|
* at the net80211 layer.
|
|
*/
|
|
|
|
/* XXX don't need mbuf, just dma buffer */
|
|
mnew = malo_getrxmbuf(sc, bf);
|
|
if (mnew == NULL) {
|
|
counter_u64_add(ic->ic_ierrors, 1);
|
|
goto rx_next;
|
|
}
|
|
/*
|
|
* Attach the dma buffer to the mbuf; malo_rxbuf_init will
|
|
* re-setup the rx descriptor using the replacement dma
|
|
* buffer we just installed above.
|
|
*/
|
|
bf->bf_m = mnew;
|
|
m->m_data += off - hdrlen;
|
|
m->m_pkthdr.len = m->m_len = pktlen;
|
|
|
|
/*
|
|
* Piece 802.11 header together.
|
|
*/
|
|
wh = mtod(m, struct ieee80211_qosframe *);
|
|
/* NB: don't need to do this sometimes but ... */
|
|
/* XXX special case so we can memcpy after m_devget? */
|
|
ovbcopy(data + sizeof(uint16_t), wh, hdrlen);
|
|
if (IEEE80211_QOS_HAS_SEQ(wh)) {
|
|
if (IEEE80211_IS_DSTODS(wh)) {
|
|
wh4 = mtod(m,
|
|
struct ieee80211_qosframe_addr4*);
|
|
*(uint16_t *)wh4->i_qos = ds->qosctrl;
|
|
} else {
|
|
*(uint16_t *)wh->i_qos = ds->qosctrl;
|
|
}
|
|
}
|
|
if (ieee80211_radiotap_active(ic)) {
|
|
sc->malo_rx_th.wr_flags = 0;
|
|
sc->malo_rx_th.wr_rate = ds->rate;
|
|
sc->malo_rx_th.wr_antsignal = rssi;
|
|
sc->malo_rx_th.wr_antnoise = ds->nf;
|
|
}
|
|
#ifdef MALO_DEBUG
|
|
if (IFF_DUMPPKTS_RECV(sc, wh)) {
|
|
ieee80211_dump_pkt(ic, mtod(m, caddr_t),
|
|
len, ds->rate, rssi);
|
|
}
|
|
#endif
|
|
/* dispatch */
|
|
ni = ieee80211_find_rxnode(ic,
|
|
(struct ieee80211_frame_min *)wh);
|
|
if (ni != NULL) {
|
|
(void) ieee80211_input(ni, m, rssi, ds->nf);
|
|
ieee80211_free_node(ni);
|
|
} else
|
|
(void) ieee80211_input_all(ic, m, rssi, ds->nf);
|
|
rx_next:
|
|
/* NB: ignore ENOMEM so we process more descriptors */
|
|
(void) malo_rxbuf_init(sc, bf);
|
|
bf = STAILQ_NEXT(bf, bf_list);
|
|
}
|
|
|
|
malo_bar0_write4(sc, sc->malo_hwspecs.rxdesc_read, readptr);
|
|
sc->malo_rxnext = bf;
|
|
|
|
if (mbufq_first(&sc->malo_snd) != NULL)
|
|
malo_start(sc);
|
|
}
|
|
|
|
/*
|
|
* Reclaim all tx queue resources.
|
|
*/
|
|
static void
|
|
malo_tx_cleanup(struct malo_softc *sc)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < MALO_NUM_TX_QUEUES; i++)
|
|
malo_tx_cleanupq(sc, &sc->malo_txq[i]);
|
|
}
|
|
|
|
int
|
|
malo_detach(struct malo_softc *sc)
|
|
{
|
|
struct ieee80211com *ic = &sc->malo_ic;
|
|
|
|
malo_stop(sc);
|
|
|
|
if (sc->malo_tq != NULL) {
|
|
taskqueue_drain(sc->malo_tq, &sc->malo_rxtask);
|
|
taskqueue_drain(sc->malo_tq, &sc->malo_txtask);
|
|
taskqueue_free(sc->malo_tq);
|
|
sc->malo_tq = NULL;
|
|
}
|
|
|
|
/*
|
|
* NB: the order of these is important:
|
|
* o call the 802.11 layer before detaching the hal to
|
|
* insure callbacks into the driver to delete global
|
|
* key cache entries can be handled
|
|
* o reclaim the tx queue data structures after calling
|
|
* the 802.11 layer as we'll get called back to reclaim
|
|
* node state and potentially want to use them
|
|
* o to cleanup the tx queues the hal is called, so detach
|
|
* it last
|
|
* Other than that, it's straightforward...
|
|
*/
|
|
ieee80211_ifdetach(ic);
|
|
callout_drain(&sc->malo_watchdog_timer);
|
|
malo_dma_cleanup(sc);
|
|
malo_tx_cleanup(sc);
|
|
malo_hal_detach(sc->malo_mh);
|
|
mbufq_drain(&sc->malo_snd);
|
|
MALO_LOCK_DESTROY(sc);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
malo_shutdown(struct malo_softc *sc)
|
|
{
|
|
|
|
malo_stop(sc);
|
|
}
|
|
|
|
void
|
|
malo_suspend(struct malo_softc *sc)
|
|
{
|
|
|
|
malo_stop(sc);
|
|
}
|
|
|
|
void
|
|
malo_resume(struct malo_softc *sc)
|
|
{
|
|
|
|
if (sc->malo_ic.ic_nrunning > 0)
|
|
malo_init(sc);
|
|
}
|