freebsd-dev/sys/netpfil/pf/if_pfsync.c
Pawel Biernacki 10b49b2302 Mark more nodes as CTLFLAG_MPSAFE or CTLFLAG_NEEDGIANT (6 of many)
r357614 added CTLFLAG_NEEDGIANT to make it easier to find nodes that are
still not MPSAFE (or already are but aren’t properly marked).
Use it in preparation for a general review of all nodes.

Mark all nodes in pf, pfsync and carp as MPSAFE.

Reviewed by:	kp
Approved by:	kib (mentor, blanket)
Differential Revision:	https://reviews.freebsd.org/D23634
2020-02-21 16:23:00 +00:00

2557 lines
61 KiB
C

/*-
* SPDX-License-Identifier: (BSD-2-Clause-FreeBSD AND ISC)
*
* Copyright (c) 2002 Michael Shalayeff
* Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR OR HIS RELATIVES BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF MIND, USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
/*-
* Copyright (c) 2009 David Gwynne <dlg@openbsd.org>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/*
* $OpenBSD: if_pfsync.c,v 1.110 2009/02/24 05:39:19 dlg Exp $
*
* Revisions picked from OpenBSD after revision 1.110 import:
* 1.119 - don't m_copydata() beyond the len of mbuf in pfsync_input()
* 1.118, 1.124, 1.148, 1.149, 1.151, 1.171 - fixes to bulk updates
* 1.120, 1.175 - use monotonic time_uptime
* 1.122 - reduce number of updates for non-TCP sessions
* 1.125, 1.127 - rewrite merge or stale processing
* 1.128 - cleanups
* 1.146 - bzero() mbuf before sparsely filling it with data
* 1.170 - SIOCSIFMTU checks
* 1.126, 1.142 - deferred packets processing
* 1.173 - correct expire time processing
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_inet.h"
#include "opt_inet6.h"
#include "opt_pf.h"
#include <sys/param.h>
#include <sys/bus.h>
#include <sys/endian.h>
#include <sys/interrupt.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/mbuf.h>
#include <sys/module.h>
#include <sys/mutex.h>
#include <sys/priv.h>
#include <sys/protosw.h>
#include <sys/smp.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/sysctl.h>
#include <sys/syslog.h>
#include <net/bpf.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/if_clone.h>
#include <net/if_types.h>
#include <net/vnet.h>
#include <net/pfvar.h>
#include <net/if_pfsync.h>
#include <netinet/if_ether.h>
#include <netinet/in.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <netinet/ip_carp.h>
#include <netinet/ip_var.h>
#include <netinet/tcp.h>
#include <netinet/tcp_fsm.h>
#include <netinet/tcp_seq.h>
#define PFSYNC_MINPKT ( \
sizeof(struct ip) + \
sizeof(struct pfsync_header) + \
sizeof(struct pfsync_subheader) )
struct pfsync_bucket;
struct pfsync_pkt {
struct ip *ip;
struct in_addr src;
u_int8_t flags;
};
static int pfsync_upd_tcp(struct pf_state *, struct pfsync_state_peer *,
struct pfsync_state_peer *);
static int pfsync_in_clr(struct pfsync_pkt *, struct mbuf *, int, int);
static int pfsync_in_ins(struct pfsync_pkt *, struct mbuf *, int, int);
static int pfsync_in_iack(struct pfsync_pkt *, struct mbuf *, int, int);
static int pfsync_in_upd(struct pfsync_pkt *, struct mbuf *, int, int);
static int pfsync_in_upd_c(struct pfsync_pkt *, struct mbuf *, int, int);
static int pfsync_in_ureq(struct pfsync_pkt *, struct mbuf *, int, int);
static int pfsync_in_del(struct pfsync_pkt *, struct mbuf *, int, int);
static int pfsync_in_del_c(struct pfsync_pkt *, struct mbuf *, int, int);
static int pfsync_in_bus(struct pfsync_pkt *, struct mbuf *, int, int);
static int pfsync_in_tdb(struct pfsync_pkt *, struct mbuf *, int, int);
static int pfsync_in_eof(struct pfsync_pkt *, struct mbuf *, int, int);
static int pfsync_in_error(struct pfsync_pkt *, struct mbuf *, int, int);
static int (*pfsync_acts[])(struct pfsync_pkt *, struct mbuf *, int, int) = {
pfsync_in_clr, /* PFSYNC_ACT_CLR */
pfsync_in_ins, /* PFSYNC_ACT_INS */
pfsync_in_iack, /* PFSYNC_ACT_INS_ACK */
pfsync_in_upd, /* PFSYNC_ACT_UPD */
pfsync_in_upd_c, /* PFSYNC_ACT_UPD_C */
pfsync_in_ureq, /* PFSYNC_ACT_UPD_REQ */
pfsync_in_del, /* PFSYNC_ACT_DEL */
pfsync_in_del_c, /* PFSYNC_ACT_DEL_C */
pfsync_in_error, /* PFSYNC_ACT_INS_F */
pfsync_in_error, /* PFSYNC_ACT_DEL_F */
pfsync_in_bus, /* PFSYNC_ACT_BUS */
pfsync_in_tdb, /* PFSYNC_ACT_TDB */
pfsync_in_eof /* PFSYNC_ACT_EOF */
};
struct pfsync_q {
void (*write)(struct pf_state *, void *);
size_t len;
u_int8_t action;
};
/* we have one of these for every PFSYNC_S_ */
static void pfsync_out_state(struct pf_state *, void *);
static void pfsync_out_iack(struct pf_state *, void *);
static void pfsync_out_upd_c(struct pf_state *, void *);
static void pfsync_out_del(struct pf_state *, void *);
static struct pfsync_q pfsync_qs[] = {
{ pfsync_out_state, sizeof(struct pfsync_state), PFSYNC_ACT_INS },
{ pfsync_out_iack, sizeof(struct pfsync_ins_ack), PFSYNC_ACT_INS_ACK },
{ pfsync_out_state, sizeof(struct pfsync_state), PFSYNC_ACT_UPD },
{ pfsync_out_upd_c, sizeof(struct pfsync_upd_c), PFSYNC_ACT_UPD_C },
{ pfsync_out_del, sizeof(struct pfsync_del_c), PFSYNC_ACT_DEL_C }
};
static void pfsync_q_ins(struct pf_state *, int, bool);
static void pfsync_q_del(struct pf_state *, bool, struct pfsync_bucket *);
static void pfsync_update_state(struct pf_state *);
struct pfsync_upd_req_item {
TAILQ_ENTRY(pfsync_upd_req_item) ur_entry;
struct pfsync_upd_req ur_msg;
};
struct pfsync_deferral {
struct pfsync_softc *pd_sc;
TAILQ_ENTRY(pfsync_deferral) pd_entry;
u_int pd_refs;
struct callout pd_tmo;
struct pf_state *pd_st;
struct mbuf *pd_m;
};
struct pfsync_sofct;
struct pfsync_bucket
{
int b_id;
struct pfsync_softc *b_sc;
struct mtx b_mtx;
struct callout b_tmo;
int b_flags;
#define PFSYNCF_BUCKET_PUSH 0x00000001
size_t b_len;
TAILQ_HEAD(, pf_state) b_qs[PFSYNC_S_COUNT];
TAILQ_HEAD(, pfsync_upd_req_item) b_upd_req_list;
TAILQ_HEAD(, pfsync_deferral) b_deferrals;
u_int b_deferred;
void *b_plus;
size_t b_pluslen;
struct ifaltq b_snd;
};
struct pfsync_softc {
/* Configuration */
struct ifnet *sc_ifp;
struct ifnet *sc_sync_if;
struct ip_moptions sc_imo;
struct in_addr sc_sync_peer;
uint32_t sc_flags;
#define PFSYNCF_OK 0x00000001
#define PFSYNCF_DEFER 0x00000002
uint8_t sc_maxupdates;
struct ip sc_template;
struct mtx sc_mtx;
/* Queued data */
struct pfsync_bucket *sc_buckets;
/* Bulk update info */
struct mtx sc_bulk_mtx;
uint32_t sc_ureq_sent;
int sc_bulk_tries;
uint32_t sc_ureq_received;
int sc_bulk_hashid;
uint64_t sc_bulk_stateid;
uint32_t sc_bulk_creatorid;
struct callout sc_bulk_tmo;
struct callout sc_bulkfail_tmo;
};
#define PFSYNC_LOCK(sc) mtx_lock(&(sc)->sc_mtx)
#define PFSYNC_UNLOCK(sc) mtx_unlock(&(sc)->sc_mtx)
#define PFSYNC_LOCK_ASSERT(sc) mtx_assert(&(sc)->sc_mtx, MA_OWNED)
#define PFSYNC_BUCKET_LOCK(b) mtx_lock(&(b)->b_mtx)
#define PFSYNC_BUCKET_UNLOCK(b) mtx_unlock(&(b)->b_mtx)
#define PFSYNC_BUCKET_LOCK_ASSERT(b) mtx_assert(&(b)->b_mtx, MA_OWNED)
#define PFSYNC_BLOCK(sc) mtx_lock(&(sc)->sc_bulk_mtx)
#define PFSYNC_BUNLOCK(sc) mtx_unlock(&(sc)->sc_bulk_mtx)
#define PFSYNC_BLOCK_ASSERT(sc) mtx_assert(&(sc)->sc_bulk_mtx, MA_OWNED)
static const char pfsyncname[] = "pfsync";
static MALLOC_DEFINE(M_PFSYNC, pfsyncname, "pfsync(4) data");
VNET_DEFINE_STATIC(struct pfsync_softc *, pfsyncif) = NULL;
#define V_pfsyncif VNET(pfsyncif)
VNET_DEFINE_STATIC(void *, pfsync_swi_cookie) = NULL;
#define V_pfsync_swi_cookie VNET(pfsync_swi_cookie)
VNET_DEFINE_STATIC(struct pfsyncstats, pfsyncstats);
#define V_pfsyncstats VNET(pfsyncstats)
VNET_DEFINE_STATIC(int, pfsync_carp_adj) = CARP_MAXSKEW;
#define V_pfsync_carp_adj VNET(pfsync_carp_adj)
static void pfsync_timeout(void *);
static void pfsync_push(struct pfsync_bucket *);
static void pfsync_push_all(struct pfsync_softc *);
static void pfsyncintr(void *);
static int pfsync_multicast_setup(struct pfsync_softc *, struct ifnet *,
struct in_mfilter *imf);
static void pfsync_multicast_cleanup(struct pfsync_softc *);
static void pfsync_pointers_init(void);
static void pfsync_pointers_uninit(void);
static int pfsync_init(void);
static void pfsync_uninit(void);
static unsigned long pfsync_buckets;
SYSCTL_NODE(_net, OID_AUTO, pfsync, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
"PFSYNC");
SYSCTL_STRUCT(_net_pfsync, OID_AUTO, stats, CTLFLAG_VNET | CTLFLAG_RW,
&VNET_NAME(pfsyncstats), pfsyncstats,
"PFSYNC statistics (struct pfsyncstats, net/if_pfsync.h)");
SYSCTL_INT(_net_pfsync, OID_AUTO, carp_demotion_factor, CTLFLAG_RW,
&VNET_NAME(pfsync_carp_adj), 0, "pfsync's CARP demotion factor adjustment");
SYSCTL_ULONG(_net_pfsync, OID_AUTO, pfsync_buckets, CTLFLAG_RDTUN,
&pfsync_buckets, 0, "Number of pfsync hash buckets");
static int pfsync_clone_create(struct if_clone *, int, caddr_t);
static void pfsync_clone_destroy(struct ifnet *);
static int pfsync_alloc_scrub_memory(struct pfsync_state_peer *,
struct pf_state_peer *);
static int pfsyncoutput(struct ifnet *, struct mbuf *,
const struct sockaddr *, struct route *);
static int pfsyncioctl(struct ifnet *, u_long, caddr_t);
static int pfsync_defer(struct pf_state *, struct mbuf *);
static void pfsync_undefer(struct pfsync_deferral *, int);
static void pfsync_undefer_state(struct pf_state *, int);
static void pfsync_defer_tmo(void *);
static void pfsync_request_update(u_int32_t, u_int64_t);
static bool pfsync_update_state_req(struct pf_state *);
static void pfsync_drop(struct pfsync_softc *);
static void pfsync_sendout(int, int);
static void pfsync_send_plus(void *, size_t);
static void pfsync_bulk_start(void);
static void pfsync_bulk_status(u_int8_t);
static void pfsync_bulk_update(void *);
static void pfsync_bulk_fail(void *);
static void pfsync_detach_ifnet(struct ifnet *);
#ifdef IPSEC
static void pfsync_update_net_tdb(struct pfsync_tdb *);
#endif
static struct pfsync_bucket *pfsync_get_bucket(struct pfsync_softc *,
struct pf_state *);
#define PFSYNC_MAX_BULKTRIES 12
VNET_DEFINE(struct if_clone *, pfsync_cloner);
#define V_pfsync_cloner VNET(pfsync_cloner)
static int
pfsync_clone_create(struct if_clone *ifc, int unit, caddr_t param)
{
struct pfsync_softc *sc;
struct ifnet *ifp;
struct pfsync_bucket *b;
int c, q;
if (unit != 0)
return (EINVAL);
if (! pfsync_buckets)
pfsync_buckets = mp_ncpus * 2;
sc = malloc(sizeof(struct pfsync_softc), M_PFSYNC, M_WAITOK | M_ZERO);
sc->sc_flags |= PFSYNCF_OK;
sc->sc_maxupdates = 128;
ifp = sc->sc_ifp = if_alloc(IFT_PFSYNC);
if (ifp == NULL) {
free(sc, M_PFSYNC);
return (ENOSPC);
}
if_initname(ifp, pfsyncname, unit);
ifp->if_softc = sc;
ifp->if_ioctl = pfsyncioctl;
ifp->if_output = pfsyncoutput;
ifp->if_type = IFT_PFSYNC;
ifp->if_hdrlen = sizeof(struct pfsync_header);
ifp->if_mtu = ETHERMTU;
mtx_init(&sc->sc_mtx, pfsyncname, NULL, MTX_DEF);
mtx_init(&sc->sc_bulk_mtx, "pfsync bulk", NULL, MTX_DEF);
callout_init_mtx(&sc->sc_bulk_tmo, &sc->sc_bulk_mtx, 0);
callout_init_mtx(&sc->sc_bulkfail_tmo, &sc->sc_bulk_mtx, 0);
if_attach(ifp);
bpfattach(ifp, DLT_PFSYNC, PFSYNC_HDRLEN);
sc->sc_buckets = mallocarray(pfsync_buckets, sizeof(*sc->sc_buckets),
M_PFSYNC, M_ZERO | M_WAITOK);
for (c = 0; c < pfsync_buckets; c++) {
b = &sc->sc_buckets[c];
mtx_init(&b->b_mtx, "pfsync bucket", NULL, MTX_DEF);
b->b_id = c;
b->b_sc = sc;
b->b_len = PFSYNC_MINPKT;
for (q = 0; q < PFSYNC_S_COUNT; q++)
TAILQ_INIT(&b->b_qs[q]);
TAILQ_INIT(&b->b_upd_req_list);
TAILQ_INIT(&b->b_deferrals);
callout_init(&b->b_tmo, 1);
b->b_snd.ifq_maxlen = ifqmaxlen;
}
V_pfsyncif = sc;
return (0);
}
static void
pfsync_clone_destroy(struct ifnet *ifp)
{
struct pfsync_softc *sc = ifp->if_softc;
struct pfsync_bucket *b;
int c;
for (c = 0; c < pfsync_buckets; c++) {
b = &sc->sc_buckets[c];
/*
* At this stage, everything should have already been
* cleared by pfsync_uninit(), and we have only to
* drain callouts.
*/
while (b->b_deferred > 0) {
struct pfsync_deferral *pd =
TAILQ_FIRST(&b->b_deferrals);
TAILQ_REMOVE(&b->b_deferrals, pd, pd_entry);
b->b_deferred--;
if (callout_stop(&pd->pd_tmo) > 0) {
pf_release_state(pd->pd_st);
m_freem(pd->pd_m);
free(pd, M_PFSYNC);
} else {
pd->pd_refs++;
callout_drain(&pd->pd_tmo);
free(pd, M_PFSYNC);
}
}
callout_drain(&b->b_tmo);
}
callout_drain(&sc->sc_bulkfail_tmo);
callout_drain(&sc->sc_bulk_tmo);
if (!(sc->sc_flags & PFSYNCF_OK) && carp_demote_adj_p)
(*carp_demote_adj_p)(-V_pfsync_carp_adj, "pfsync destroy");
bpfdetach(ifp);
if_detach(ifp);
pfsync_drop(sc);
if_free(ifp);
pfsync_multicast_cleanup(sc);
mtx_destroy(&sc->sc_mtx);
mtx_destroy(&sc->sc_bulk_mtx);
free(sc->sc_buckets, M_PFSYNC);
free(sc, M_PFSYNC);
V_pfsyncif = NULL;
}
static int
pfsync_alloc_scrub_memory(struct pfsync_state_peer *s,
struct pf_state_peer *d)
{
if (s->scrub.scrub_flag && d->scrub == NULL) {
d->scrub = uma_zalloc(V_pf_state_scrub_z, M_NOWAIT | M_ZERO);
if (d->scrub == NULL)
return (ENOMEM);
}
return (0);
}
static int
pfsync_state_import(struct pfsync_state *sp, u_int8_t flags)
{
struct pfsync_softc *sc = V_pfsyncif;
#ifndef __NO_STRICT_ALIGNMENT
struct pfsync_state_key key[2];
#endif
struct pfsync_state_key *kw, *ks;
struct pf_state *st = NULL;
struct pf_state_key *skw = NULL, *sks = NULL;
struct pf_rule *r = NULL;
struct pfi_kif *kif;
int error;
PF_RULES_RASSERT();
if (sp->creatorid == 0) {
if (V_pf_status.debug >= PF_DEBUG_MISC)
printf("%s: invalid creator id: %08x\n", __func__,
ntohl(sp->creatorid));
return (EINVAL);
}
if ((kif = pfi_kif_find(sp->ifname)) == NULL) {
if (V_pf_status.debug >= PF_DEBUG_MISC)
printf("%s: unknown interface: %s\n", __func__,
sp->ifname);
if (flags & PFSYNC_SI_IOCTL)
return (EINVAL);
return (0); /* skip this state */
}
/*
* If the ruleset checksums match or the state is coming from the ioctl,
* it's safe to associate the state with the rule of that number.
*/
if (sp->rule != htonl(-1) && sp->anchor == htonl(-1) &&
(flags & (PFSYNC_SI_IOCTL | PFSYNC_SI_CKSUM)) && ntohl(sp->rule) <
pf_main_ruleset.rules[PF_RULESET_FILTER].active.rcount)
r = pf_main_ruleset.rules[
PF_RULESET_FILTER].active.ptr_array[ntohl(sp->rule)];
else
r = &V_pf_default_rule;
if ((r->max_states &&
counter_u64_fetch(r->states_cur) >= r->max_states))
goto cleanup;
/*
* XXXGL: consider M_WAITOK in ioctl path after.
*/
if ((st = uma_zalloc(V_pf_state_z, M_NOWAIT | M_ZERO)) == NULL)
goto cleanup;
if ((skw = uma_zalloc(V_pf_state_key_z, M_NOWAIT)) == NULL)
goto cleanup;
#ifndef __NO_STRICT_ALIGNMENT
bcopy(&sp->key, key, sizeof(struct pfsync_state_key) * 2);
kw = &key[PF_SK_WIRE];
ks = &key[PF_SK_STACK];
#else
kw = &sp->key[PF_SK_WIRE];
ks = &sp->key[PF_SK_STACK];
#endif
if (PF_ANEQ(&kw->addr[0], &ks->addr[0], sp->af) ||
PF_ANEQ(&kw->addr[1], &ks->addr[1], sp->af) ||
kw->port[0] != ks->port[0] ||
kw->port[1] != ks->port[1]) {
sks = uma_zalloc(V_pf_state_key_z, M_NOWAIT);
if (sks == NULL)
goto cleanup;
} else
sks = skw;
/* allocate memory for scrub info */
if (pfsync_alloc_scrub_memory(&sp->src, &st->src) ||
pfsync_alloc_scrub_memory(&sp->dst, &st->dst))
goto cleanup;
/* Copy to state key(s). */
skw->addr[0] = kw->addr[0];
skw->addr[1] = kw->addr[1];
skw->port[0] = kw->port[0];
skw->port[1] = kw->port[1];
skw->proto = sp->proto;
skw->af = sp->af;
if (sks != skw) {
sks->addr[0] = ks->addr[0];
sks->addr[1] = ks->addr[1];
sks->port[0] = ks->port[0];
sks->port[1] = ks->port[1];
sks->proto = sp->proto;
sks->af = sp->af;
}
/* copy to state */
bcopy(&sp->rt_addr, &st->rt_addr, sizeof(st->rt_addr));
st->creation = time_uptime - ntohl(sp->creation);
st->expire = time_uptime;
if (sp->expire) {
uint32_t timeout;
timeout = r->timeout[sp->timeout];
if (!timeout)
timeout = V_pf_default_rule.timeout[sp->timeout];
/* sp->expire may have been adaptively scaled by export. */
st->expire -= timeout - ntohl(sp->expire);
}
st->direction = sp->direction;
st->log = sp->log;
st->timeout = sp->timeout;
st->state_flags = sp->state_flags;
st->id = sp->id;
st->creatorid = sp->creatorid;
pf_state_peer_ntoh(&sp->src, &st->src);
pf_state_peer_ntoh(&sp->dst, &st->dst);
st->rule.ptr = r;
st->nat_rule.ptr = NULL;
st->anchor.ptr = NULL;
st->rt_kif = NULL;
st->pfsync_time = time_uptime;
st->sync_state = PFSYNC_S_NONE;
if (!(flags & PFSYNC_SI_IOCTL))
st->state_flags |= PFSTATE_NOSYNC;
if ((error = pf_state_insert(kif, skw, sks, st)) != 0)
goto cleanup_state;
/* XXX when we have nat_rule/anchors, use STATE_INC_COUNTERS */
counter_u64_add(r->states_cur, 1);
counter_u64_add(r->states_tot, 1);
if (!(flags & PFSYNC_SI_IOCTL)) {
st->state_flags &= ~PFSTATE_NOSYNC;
if (st->state_flags & PFSTATE_ACK) {
pfsync_q_ins(st, PFSYNC_S_IACK, true);
pfsync_push_all(sc);
}
}
st->state_flags &= ~PFSTATE_ACK;
PF_STATE_UNLOCK(st);
return (0);
cleanup:
error = ENOMEM;
if (skw == sks)
sks = NULL;
if (skw != NULL)
uma_zfree(V_pf_state_key_z, skw);
if (sks != NULL)
uma_zfree(V_pf_state_key_z, sks);
cleanup_state: /* pf_state_insert() frees the state keys. */
if (st) {
if (st->dst.scrub)
uma_zfree(V_pf_state_scrub_z, st->dst.scrub);
if (st->src.scrub)
uma_zfree(V_pf_state_scrub_z, st->src.scrub);
uma_zfree(V_pf_state_z, st);
}
return (error);
}
static int
pfsync_input(struct mbuf **mp, int *offp __unused, int proto __unused)
{
struct pfsync_softc *sc = V_pfsyncif;
struct pfsync_pkt pkt;
struct mbuf *m = *mp;
struct ip *ip = mtod(m, struct ip *);
struct pfsync_header *ph;
struct pfsync_subheader subh;
int offset, len;
int rv;
uint16_t count;
PF_RULES_RLOCK_TRACKER;
*mp = NULL;
V_pfsyncstats.pfsyncs_ipackets++;
/* Verify that we have a sync interface configured. */
if (!sc || !sc->sc_sync_if || !V_pf_status.running ||
(sc->sc_ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
goto done;
/* verify that the packet came in on the right interface */
if (sc->sc_sync_if != m->m_pkthdr.rcvif) {
V_pfsyncstats.pfsyncs_badif++;
goto done;
}
if_inc_counter(sc->sc_ifp, IFCOUNTER_IPACKETS, 1);
if_inc_counter(sc->sc_ifp, IFCOUNTER_IBYTES, m->m_pkthdr.len);
/* verify that the IP TTL is 255. */
if (ip->ip_ttl != PFSYNC_DFLTTL) {
V_pfsyncstats.pfsyncs_badttl++;
goto done;
}
offset = ip->ip_hl << 2;
if (m->m_pkthdr.len < offset + sizeof(*ph)) {
V_pfsyncstats.pfsyncs_hdrops++;
goto done;
}
if (offset + sizeof(*ph) > m->m_len) {
if (m_pullup(m, offset + sizeof(*ph)) == NULL) {
V_pfsyncstats.pfsyncs_hdrops++;
return (IPPROTO_DONE);
}
ip = mtod(m, struct ip *);
}
ph = (struct pfsync_header *)((char *)ip + offset);
/* verify the version */
if (ph->version != PFSYNC_VERSION) {
V_pfsyncstats.pfsyncs_badver++;
goto done;
}
len = ntohs(ph->len) + offset;
if (m->m_pkthdr.len < len) {
V_pfsyncstats.pfsyncs_badlen++;
goto done;
}
/* Cheaper to grab this now than having to mess with mbufs later */
pkt.ip = ip;
pkt.src = ip->ip_src;
pkt.flags = 0;
/*
* Trusting pf_chksum during packet processing, as well as seeking
* in interface name tree, require holding PF_RULES_RLOCK().
*/
PF_RULES_RLOCK();
if (!bcmp(&ph->pfcksum, &V_pf_status.pf_chksum, PF_MD5_DIGEST_LENGTH))
pkt.flags |= PFSYNC_SI_CKSUM;
offset += sizeof(*ph);
while (offset <= len - sizeof(subh)) {
m_copydata(m, offset, sizeof(subh), (caddr_t)&subh);
offset += sizeof(subh);
if (subh.action >= PFSYNC_ACT_MAX) {
V_pfsyncstats.pfsyncs_badact++;
PF_RULES_RUNLOCK();
goto done;
}
count = ntohs(subh.count);
V_pfsyncstats.pfsyncs_iacts[subh.action] += count;
rv = (*pfsync_acts[subh.action])(&pkt, m, offset, count);
if (rv == -1) {
PF_RULES_RUNLOCK();
return (IPPROTO_DONE);
}
offset += rv;
}
PF_RULES_RUNLOCK();
done:
m_freem(m);
return (IPPROTO_DONE);
}
static int
pfsync_in_clr(struct pfsync_pkt *pkt, struct mbuf *m, int offset, int count)
{
struct pfsync_clr *clr;
struct mbuf *mp;
int len = sizeof(*clr) * count;
int i, offp;
u_int32_t creatorid;
mp = m_pulldown(m, offset, len, &offp);
if (mp == NULL) {
V_pfsyncstats.pfsyncs_badlen++;
return (-1);
}
clr = (struct pfsync_clr *)(mp->m_data + offp);
for (i = 0; i < count; i++) {
creatorid = clr[i].creatorid;
if (clr[i].ifname[0] != '\0' &&
pfi_kif_find(clr[i].ifname) == NULL)
continue;
for (int i = 0; i <= pf_hashmask; i++) {
struct pf_idhash *ih = &V_pf_idhash[i];
struct pf_state *s;
relock:
PF_HASHROW_LOCK(ih);
LIST_FOREACH(s, &ih->states, entry) {
if (s->creatorid == creatorid) {
s->state_flags |= PFSTATE_NOSYNC;
pf_unlink_state(s, PF_ENTER_LOCKED);
goto relock;
}
}
PF_HASHROW_UNLOCK(ih);
}
}
return (len);
}
static int
pfsync_in_ins(struct pfsync_pkt *pkt, struct mbuf *m, int offset, int count)
{
struct mbuf *mp;
struct pfsync_state *sa, *sp;
int len = sizeof(*sp) * count;
int i, offp;
mp = m_pulldown(m, offset, len, &offp);
if (mp == NULL) {
V_pfsyncstats.pfsyncs_badlen++;
return (-1);
}
sa = (struct pfsync_state *)(mp->m_data + offp);
for (i = 0; i < count; i++) {
sp = &sa[i];
/* Check for invalid values. */
if (sp->timeout >= PFTM_MAX ||
sp->src.state > PF_TCPS_PROXY_DST ||
sp->dst.state > PF_TCPS_PROXY_DST ||
sp->direction > PF_OUT ||
(sp->af != AF_INET && sp->af != AF_INET6)) {
if (V_pf_status.debug >= PF_DEBUG_MISC)
printf("%s: invalid value\n", __func__);
V_pfsyncstats.pfsyncs_badval++;
continue;
}
if (pfsync_state_import(sp, pkt->flags) == ENOMEM)
/* Drop out, but process the rest of the actions. */
break;
}
return (len);
}
static int
pfsync_in_iack(struct pfsync_pkt *pkt, struct mbuf *m, int offset, int count)
{
struct pfsync_ins_ack *ia, *iaa;
struct pf_state *st;
struct mbuf *mp;
int len = count * sizeof(*ia);
int offp, i;
mp = m_pulldown(m, offset, len, &offp);
if (mp == NULL) {
V_pfsyncstats.pfsyncs_badlen++;
return (-1);
}
iaa = (struct pfsync_ins_ack *)(mp->m_data + offp);
for (i = 0; i < count; i++) {
ia = &iaa[i];
st = pf_find_state_byid(ia->id, ia->creatorid);
if (st == NULL)
continue;
if (st->state_flags & PFSTATE_ACK) {
pfsync_undefer_state(st, 0);
}
PF_STATE_UNLOCK(st);
}
/*
* XXX this is not yet implemented, but we know the size of the
* message so we can skip it.
*/
return (count * sizeof(struct pfsync_ins_ack));
}
static int
pfsync_upd_tcp(struct pf_state *st, struct pfsync_state_peer *src,
struct pfsync_state_peer *dst)
{
int sync = 0;
PF_STATE_LOCK_ASSERT(st);
/*
* The state should never go backwards except
* for syn-proxy states. Neither should the
* sequence window slide backwards.
*/
if ((st->src.state > src->state &&
(st->src.state < PF_TCPS_PROXY_SRC ||
src->state >= PF_TCPS_PROXY_SRC)) ||
(st->src.state == src->state &&
SEQ_GT(st->src.seqlo, ntohl(src->seqlo))))
sync++;
else
pf_state_peer_ntoh(src, &st->src);
if ((st->dst.state > dst->state) ||
(st->dst.state >= TCPS_SYN_SENT &&
SEQ_GT(st->dst.seqlo, ntohl(dst->seqlo))))
sync++;
else
pf_state_peer_ntoh(dst, &st->dst);
return (sync);
}
static int
pfsync_in_upd(struct pfsync_pkt *pkt, struct mbuf *m, int offset, int count)
{
struct pfsync_softc *sc = V_pfsyncif;
struct pfsync_state *sa, *sp;
struct pf_state *st;
int sync;
struct mbuf *mp;
int len = count * sizeof(*sp);
int offp, i;
mp = m_pulldown(m, offset, len, &offp);
if (mp == NULL) {
V_pfsyncstats.pfsyncs_badlen++;
return (-1);
}
sa = (struct pfsync_state *)(mp->m_data + offp);
for (i = 0; i < count; i++) {
sp = &sa[i];
/* check for invalid values */
if (sp->timeout >= PFTM_MAX ||
sp->src.state > PF_TCPS_PROXY_DST ||
sp->dst.state > PF_TCPS_PROXY_DST) {
if (V_pf_status.debug >= PF_DEBUG_MISC) {
printf("pfsync_input: PFSYNC_ACT_UPD: "
"invalid value\n");
}
V_pfsyncstats.pfsyncs_badval++;
continue;
}
st = pf_find_state_byid(sp->id, sp->creatorid);
if (st == NULL) {
/* insert the update */
if (pfsync_state_import(sp, pkt->flags))
V_pfsyncstats.pfsyncs_badstate++;
continue;
}
if (st->state_flags & PFSTATE_ACK) {
pfsync_undefer_state(st, 1);
}
if (st->key[PF_SK_WIRE]->proto == IPPROTO_TCP)
sync = pfsync_upd_tcp(st, &sp->src, &sp->dst);
else {
sync = 0;
/*
* Non-TCP protocol state machine always go
* forwards
*/
if (st->src.state > sp->src.state)
sync++;
else
pf_state_peer_ntoh(&sp->src, &st->src);
if (st->dst.state > sp->dst.state)
sync++;
else
pf_state_peer_ntoh(&sp->dst, &st->dst);
}
if (sync < 2) {
pfsync_alloc_scrub_memory(&sp->dst, &st->dst);
pf_state_peer_ntoh(&sp->dst, &st->dst);
st->expire = time_uptime;
st->timeout = sp->timeout;
}
st->pfsync_time = time_uptime;
if (sync) {
V_pfsyncstats.pfsyncs_stale++;
pfsync_update_state(st);
PF_STATE_UNLOCK(st);
pfsync_push_all(sc);
continue;
}
PF_STATE_UNLOCK(st);
}
return (len);
}
static int
pfsync_in_upd_c(struct pfsync_pkt *pkt, struct mbuf *m, int offset, int count)
{
struct pfsync_softc *sc = V_pfsyncif;
struct pfsync_upd_c *ua, *up;
struct pf_state *st;
int len = count * sizeof(*up);
int sync;
struct mbuf *mp;
int offp, i;
mp = m_pulldown(m, offset, len, &offp);
if (mp == NULL) {
V_pfsyncstats.pfsyncs_badlen++;
return (-1);
}
ua = (struct pfsync_upd_c *)(mp->m_data + offp);
for (i = 0; i < count; i++) {
up = &ua[i];
/* check for invalid values */
if (up->timeout >= PFTM_MAX ||
up->src.state > PF_TCPS_PROXY_DST ||
up->dst.state > PF_TCPS_PROXY_DST) {
if (V_pf_status.debug >= PF_DEBUG_MISC) {
printf("pfsync_input: "
"PFSYNC_ACT_UPD_C: "
"invalid value\n");
}
V_pfsyncstats.pfsyncs_badval++;
continue;
}
st = pf_find_state_byid(up->id, up->creatorid);
if (st == NULL) {
/* We don't have this state. Ask for it. */
PFSYNC_BUCKET_LOCK(&sc->sc_buckets[0]);
pfsync_request_update(up->creatorid, up->id);
PFSYNC_BUCKET_UNLOCK(&sc->sc_buckets[0]);
continue;
}
if (st->state_flags & PFSTATE_ACK) {
pfsync_undefer_state(st, 1);
}
if (st->key[PF_SK_WIRE]->proto == IPPROTO_TCP)
sync = pfsync_upd_tcp(st, &up->src, &up->dst);
else {
sync = 0;
/*
* Non-TCP protocol state machine always go
* forwards
*/
if (st->src.state > up->src.state)
sync++;
else
pf_state_peer_ntoh(&up->src, &st->src);
if (st->dst.state > up->dst.state)
sync++;
else
pf_state_peer_ntoh(&up->dst, &st->dst);
}
if (sync < 2) {
pfsync_alloc_scrub_memory(&up->dst, &st->dst);
pf_state_peer_ntoh(&up->dst, &st->dst);
st->expire = time_uptime;
st->timeout = up->timeout;
}
st->pfsync_time = time_uptime;
if (sync) {
V_pfsyncstats.pfsyncs_stale++;
pfsync_update_state(st);
PF_STATE_UNLOCK(st);
pfsync_push_all(sc);
continue;
}
PF_STATE_UNLOCK(st);
}
return (len);
}
static int
pfsync_in_ureq(struct pfsync_pkt *pkt, struct mbuf *m, int offset, int count)
{
struct pfsync_upd_req *ur, *ura;
struct mbuf *mp;
int len = count * sizeof(*ur);
int i, offp;
struct pf_state *st;
mp = m_pulldown(m, offset, len, &offp);
if (mp == NULL) {
V_pfsyncstats.pfsyncs_badlen++;
return (-1);
}
ura = (struct pfsync_upd_req *)(mp->m_data + offp);
for (i = 0; i < count; i++) {
ur = &ura[i];
if (ur->id == 0 && ur->creatorid == 0)
pfsync_bulk_start();
else {
st = pf_find_state_byid(ur->id, ur->creatorid);
if (st == NULL) {
V_pfsyncstats.pfsyncs_badstate++;
continue;
}
if (st->state_flags & PFSTATE_NOSYNC) {
PF_STATE_UNLOCK(st);
continue;
}
pfsync_update_state_req(st);
PF_STATE_UNLOCK(st);
}
}
return (len);
}
static int
pfsync_in_del(struct pfsync_pkt *pkt, struct mbuf *m, int offset, int count)
{
struct mbuf *mp;
struct pfsync_state *sa, *sp;
struct pf_state *st;
int len = count * sizeof(*sp);
int offp, i;
mp = m_pulldown(m, offset, len, &offp);
if (mp == NULL) {
V_pfsyncstats.pfsyncs_badlen++;
return (-1);
}
sa = (struct pfsync_state *)(mp->m_data + offp);
for (i = 0; i < count; i++) {
sp = &sa[i];
st = pf_find_state_byid(sp->id, sp->creatorid);
if (st == NULL) {
V_pfsyncstats.pfsyncs_badstate++;
continue;
}
st->state_flags |= PFSTATE_NOSYNC;
pf_unlink_state(st, PF_ENTER_LOCKED);
}
return (len);
}
static int
pfsync_in_del_c(struct pfsync_pkt *pkt, struct mbuf *m, int offset, int count)
{
struct mbuf *mp;
struct pfsync_del_c *sa, *sp;
struct pf_state *st;
int len = count * sizeof(*sp);
int offp, i;
mp = m_pulldown(m, offset, len, &offp);
if (mp == NULL) {
V_pfsyncstats.pfsyncs_badlen++;
return (-1);
}
sa = (struct pfsync_del_c *)(mp->m_data + offp);
for (i = 0; i < count; i++) {
sp = &sa[i];
st = pf_find_state_byid(sp->id, sp->creatorid);
if (st == NULL) {
V_pfsyncstats.pfsyncs_badstate++;
continue;
}
st->state_flags |= PFSTATE_NOSYNC;
pf_unlink_state(st, PF_ENTER_LOCKED);
}
return (len);
}
static int
pfsync_in_bus(struct pfsync_pkt *pkt, struct mbuf *m, int offset, int count)
{
struct pfsync_softc *sc = V_pfsyncif;
struct pfsync_bus *bus;
struct mbuf *mp;
int len = count * sizeof(*bus);
int offp;
PFSYNC_BLOCK(sc);
/* If we're not waiting for a bulk update, who cares. */
if (sc->sc_ureq_sent == 0) {
PFSYNC_BUNLOCK(sc);
return (len);
}
mp = m_pulldown(m, offset, len, &offp);
if (mp == NULL) {
PFSYNC_BUNLOCK(sc);
V_pfsyncstats.pfsyncs_badlen++;
return (-1);
}
bus = (struct pfsync_bus *)(mp->m_data + offp);
switch (bus->status) {
case PFSYNC_BUS_START:
callout_reset(&sc->sc_bulkfail_tmo, 4 * hz +
V_pf_limits[PF_LIMIT_STATES].limit /
((sc->sc_ifp->if_mtu - PFSYNC_MINPKT) /
sizeof(struct pfsync_state)),
pfsync_bulk_fail, sc);
if (V_pf_status.debug >= PF_DEBUG_MISC)
printf("pfsync: received bulk update start\n");
break;
case PFSYNC_BUS_END:
if (time_uptime - ntohl(bus->endtime) >=
sc->sc_ureq_sent) {
/* that's it, we're happy */
sc->sc_ureq_sent = 0;
sc->sc_bulk_tries = 0;
callout_stop(&sc->sc_bulkfail_tmo);
if (!(sc->sc_flags & PFSYNCF_OK) && carp_demote_adj_p)
(*carp_demote_adj_p)(-V_pfsync_carp_adj,
"pfsync bulk done");
sc->sc_flags |= PFSYNCF_OK;
if (V_pf_status.debug >= PF_DEBUG_MISC)
printf("pfsync: received valid "
"bulk update end\n");
} else {
if (V_pf_status.debug >= PF_DEBUG_MISC)
printf("pfsync: received invalid "
"bulk update end: bad timestamp\n");
}
break;
}
PFSYNC_BUNLOCK(sc);
return (len);
}
static int
pfsync_in_tdb(struct pfsync_pkt *pkt, struct mbuf *m, int offset, int count)
{
int len = count * sizeof(struct pfsync_tdb);
#if defined(IPSEC)
struct pfsync_tdb *tp;
struct mbuf *mp;
int offp;
int i;
int s;
mp = m_pulldown(m, offset, len, &offp);
if (mp == NULL) {
V_pfsyncstats.pfsyncs_badlen++;
return (-1);
}
tp = (struct pfsync_tdb *)(mp->m_data + offp);
for (i = 0; i < count; i++)
pfsync_update_net_tdb(&tp[i]);
#endif
return (len);
}
#if defined(IPSEC)
/* Update an in-kernel tdb. Silently fail if no tdb is found. */
static void
pfsync_update_net_tdb(struct pfsync_tdb *pt)
{
struct tdb *tdb;
int s;
/* check for invalid values */
if (ntohl(pt->spi) <= SPI_RESERVED_MAX ||
(pt->dst.sa.sa_family != AF_INET &&
pt->dst.sa.sa_family != AF_INET6))
goto bad;
tdb = gettdb(pt->spi, &pt->dst, pt->sproto);
if (tdb) {
pt->rpl = ntohl(pt->rpl);
pt->cur_bytes = (unsigned long long)be64toh(pt->cur_bytes);
/* Neither replay nor byte counter should ever decrease. */
if (pt->rpl < tdb->tdb_rpl ||
pt->cur_bytes < tdb->tdb_cur_bytes) {
goto bad;
}
tdb->tdb_rpl = pt->rpl;
tdb->tdb_cur_bytes = pt->cur_bytes;
}
return;
bad:
if (V_pf_status.debug >= PF_DEBUG_MISC)
printf("pfsync_insert: PFSYNC_ACT_TDB_UPD: "
"invalid value\n");
V_pfsyncstats.pfsyncs_badstate++;
return;
}
#endif
static int
pfsync_in_eof(struct pfsync_pkt *pkt, struct mbuf *m, int offset, int count)
{
/* check if we are at the right place in the packet */
if (offset != m->m_pkthdr.len)
V_pfsyncstats.pfsyncs_badlen++;
/* we're done. free and let the caller return */
m_freem(m);
return (-1);
}
static int
pfsync_in_error(struct pfsync_pkt *pkt, struct mbuf *m, int offset, int count)
{
V_pfsyncstats.pfsyncs_badact++;
m_freem(m);
return (-1);
}
static int
pfsyncoutput(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *dst,
struct route *rt)
{
m_freem(m);
return (0);
}
/* ARGSUSED */
static int
pfsyncioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct pfsync_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *)data;
struct pfsyncreq pfsyncr;
int error;
int c;
switch (cmd) {
case SIOCSIFFLAGS:
PFSYNC_LOCK(sc);
if (ifp->if_flags & IFF_UP) {
ifp->if_drv_flags |= IFF_DRV_RUNNING;
PFSYNC_UNLOCK(sc);
pfsync_pointers_init();
} else {
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
PFSYNC_UNLOCK(sc);
pfsync_pointers_uninit();
}
break;
case SIOCSIFMTU:
if (!sc->sc_sync_if ||
ifr->ifr_mtu <= PFSYNC_MINPKT ||
ifr->ifr_mtu > sc->sc_sync_if->if_mtu)
return (EINVAL);
if (ifr->ifr_mtu < ifp->if_mtu) {
for (c = 0; c < pfsync_buckets; c++) {
PFSYNC_BUCKET_LOCK(&sc->sc_buckets[c]);
if (sc->sc_buckets[c].b_len > PFSYNC_MINPKT)
pfsync_sendout(1, c);
PFSYNC_BUCKET_UNLOCK(&sc->sc_buckets[c]);
}
}
ifp->if_mtu = ifr->ifr_mtu;
break;
case SIOCGETPFSYNC:
bzero(&pfsyncr, sizeof(pfsyncr));
PFSYNC_LOCK(sc);
if (sc->sc_sync_if) {
strlcpy(pfsyncr.pfsyncr_syncdev,
sc->sc_sync_if->if_xname, IFNAMSIZ);
}
pfsyncr.pfsyncr_syncpeer = sc->sc_sync_peer;
pfsyncr.pfsyncr_maxupdates = sc->sc_maxupdates;
pfsyncr.pfsyncr_defer = (PFSYNCF_DEFER ==
(sc->sc_flags & PFSYNCF_DEFER));
PFSYNC_UNLOCK(sc);
return (copyout(&pfsyncr, ifr_data_get_ptr(ifr),
sizeof(pfsyncr)));
case SIOCSETPFSYNC:
{
struct in_mfilter *imf = NULL;
struct ifnet *sifp;
struct ip *ip;
if ((error = priv_check(curthread, PRIV_NETINET_PF)) != 0)
return (error);
if ((error = copyin(ifr_data_get_ptr(ifr), &pfsyncr,
sizeof(pfsyncr))))
return (error);
if (pfsyncr.pfsyncr_maxupdates > 255)
return (EINVAL);
if (pfsyncr.pfsyncr_syncdev[0] == 0)
sifp = NULL;
else if ((sifp = ifunit_ref(pfsyncr.pfsyncr_syncdev)) == NULL)
return (EINVAL);
if (sifp != NULL && (
pfsyncr.pfsyncr_syncpeer.s_addr == 0 ||
pfsyncr.pfsyncr_syncpeer.s_addr ==
htonl(INADDR_PFSYNC_GROUP)))
imf = ip_mfilter_alloc(M_WAITOK, 0, 0);
PFSYNC_LOCK(sc);
if (pfsyncr.pfsyncr_syncpeer.s_addr == 0)
sc->sc_sync_peer.s_addr = htonl(INADDR_PFSYNC_GROUP);
else
sc->sc_sync_peer.s_addr =
pfsyncr.pfsyncr_syncpeer.s_addr;
sc->sc_maxupdates = pfsyncr.pfsyncr_maxupdates;
if (pfsyncr.pfsyncr_defer) {
sc->sc_flags |= PFSYNCF_DEFER;
V_pfsync_defer_ptr = pfsync_defer;
} else {
sc->sc_flags &= ~PFSYNCF_DEFER;
V_pfsync_defer_ptr = NULL;
}
if (sifp == NULL) {
if (sc->sc_sync_if)
if_rele(sc->sc_sync_if);
sc->sc_sync_if = NULL;
pfsync_multicast_cleanup(sc);
PFSYNC_UNLOCK(sc);
break;
}
for (c = 0; c < pfsync_buckets; c++) {
PFSYNC_BUCKET_LOCK(&sc->sc_buckets[c]);
if (sc->sc_buckets[c].b_len > PFSYNC_MINPKT &&
(sifp->if_mtu < sc->sc_ifp->if_mtu ||
(sc->sc_sync_if != NULL &&
sifp->if_mtu < sc->sc_sync_if->if_mtu) ||
sifp->if_mtu < MCLBYTES - sizeof(struct ip)))
pfsync_sendout(1, c);
PFSYNC_BUCKET_UNLOCK(&sc->sc_buckets[c]);
}
pfsync_multicast_cleanup(sc);
if (sc->sc_sync_peer.s_addr == htonl(INADDR_PFSYNC_GROUP)) {
error = pfsync_multicast_setup(sc, sifp, imf);
if (error) {
if_rele(sifp);
ip_mfilter_free(imf);
PFSYNC_UNLOCK(sc);
return (error);
}
}
if (sc->sc_sync_if)
if_rele(sc->sc_sync_if);
sc->sc_sync_if = sifp;
ip = &sc->sc_template;
bzero(ip, sizeof(*ip));
ip->ip_v = IPVERSION;
ip->ip_hl = sizeof(sc->sc_template) >> 2;
ip->ip_tos = IPTOS_LOWDELAY;
/* len and id are set later. */
ip->ip_off = htons(IP_DF);
ip->ip_ttl = PFSYNC_DFLTTL;
ip->ip_p = IPPROTO_PFSYNC;
ip->ip_src.s_addr = INADDR_ANY;
ip->ip_dst.s_addr = sc->sc_sync_peer.s_addr;
/* Request a full state table update. */
if ((sc->sc_flags & PFSYNCF_OK) && carp_demote_adj_p)
(*carp_demote_adj_p)(V_pfsync_carp_adj,
"pfsync bulk start");
sc->sc_flags &= ~PFSYNCF_OK;
if (V_pf_status.debug >= PF_DEBUG_MISC)
printf("pfsync: requesting bulk update\n");
PFSYNC_UNLOCK(sc);
PFSYNC_BUCKET_LOCK(&sc->sc_buckets[0]);
pfsync_request_update(0, 0);
PFSYNC_BUCKET_UNLOCK(&sc->sc_buckets[0]);
PFSYNC_BLOCK(sc);
sc->sc_ureq_sent = time_uptime;
callout_reset(&sc->sc_bulkfail_tmo, 5 * hz, pfsync_bulk_fail,
sc);
PFSYNC_BUNLOCK(sc);
break;
}
default:
return (ENOTTY);
}
return (0);
}
static void
pfsync_out_state(struct pf_state *st, void *buf)
{
struct pfsync_state *sp = buf;
pfsync_state_export(sp, st);
}
static void
pfsync_out_iack(struct pf_state *st, void *buf)
{
struct pfsync_ins_ack *iack = buf;
iack->id = st->id;
iack->creatorid = st->creatorid;
}
static void
pfsync_out_upd_c(struct pf_state *st, void *buf)
{
struct pfsync_upd_c *up = buf;
bzero(up, sizeof(*up));
up->id = st->id;
pf_state_peer_hton(&st->src, &up->src);
pf_state_peer_hton(&st->dst, &up->dst);
up->creatorid = st->creatorid;
up->timeout = st->timeout;
}
static void
pfsync_out_del(struct pf_state *st, void *buf)
{
struct pfsync_del_c *dp = buf;
dp->id = st->id;
dp->creatorid = st->creatorid;
st->state_flags |= PFSTATE_NOSYNC;
}
static void
pfsync_drop(struct pfsync_softc *sc)
{
struct pf_state *st, *next;
struct pfsync_upd_req_item *ur;
struct pfsync_bucket *b;
int c, q;
for (c = 0; c < pfsync_buckets; c++) {
b = &sc->sc_buckets[c];
for (q = 0; q < PFSYNC_S_COUNT; q++) {
if (TAILQ_EMPTY(&b->b_qs[q]))
continue;
TAILQ_FOREACH_SAFE(st, &b->b_qs[q], sync_list, next) {
KASSERT(st->sync_state == q,
("%s: st->sync_state == q",
__func__));
st->sync_state = PFSYNC_S_NONE;
pf_release_state(st);
}
TAILQ_INIT(&b->b_qs[q]);
}
while ((ur = TAILQ_FIRST(&b->b_upd_req_list)) != NULL) {
TAILQ_REMOVE(&b->b_upd_req_list, ur, ur_entry);
free(ur, M_PFSYNC);
}
b->b_len = PFSYNC_MINPKT;
b->b_plus = NULL;
}
}
static void
pfsync_sendout(int schedswi, int c)
{
struct pfsync_softc *sc = V_pfsyncif;
struct ifnet *ifp = sc->sc_ifp;
struct mbuf *m;
struct ip *ip;
struct pfsync_header *ph;
struct pfsync_subheader *subh;
struct pf_state *st, *st_next;
struct pfsync_upd_req_item *ur;
struct pfsync_bucket *b = &sc->sc_buckets[c];
int offset;
int q, count = 0;
KASSERT(sc != NULL, ("%s: null sc", __func__));
KASSERT(b->b_len > PFSYNC_MINPKT,
("%s: sc_len %zu", __func__, b->b_len));
PFSYNC_BUCKET_LOCK_ASSERT(b);
if (ifp->if_bpf == NULL && sc->sc_sync_if == NULL) {
pfsync_drop(sc);
return;
}
m = m_get2(max_linkhdr + b->b_len, M_NOWAIT, MT_DATA, M_PKTHDR);
if (m == NULL) {
if_inc_counter(sc->sc_ifp, IFCOUNTER_OERRORS, 1);
V_pfsyncstats.pfsyncs_onomem++;
return;
}
m->m_data += max_linkhdr;
m->m_len = m->m_pkthdr.len = b->b_len;
/* build the ip header */
ip = (struct ip *)m->m_data;
bcopy(&sc->sc_template, ip, sizeof(*ip));
offset = sizeof(*ip);
ip->ip_len = htons(m->m_pkthdr.len);
ip_fillid(ip);
/* build the pfsync header */
ph = (struct pfsync_header *)(m->m_data + offset);
bzero(ph, sizeof(*ph));
offset += sizeof(*ph);
ph->version = PFSYNC_VERSION;
ph->len = htons(b->b_len - sizeof(*ip));
bcopy(V_pf_status.pf_chksum, ph->pfcksum, PF_MD5_DIGEST_LENGTH);
/* walk the queues */
for (q = 0; q < PFSYNC_S_COUNT; q++) {
if (TAILQ_EMPTY(&b->b_qs[q]))
continue;
subh = (struct pfsync_subheader *)(m->m_data + offset);
offset += sizeof(*subh);
count = 0;
TAILQ_FOREACH_SAFE(st, &b->b_qs[q], sync_list, st_next) {
KASSERT(st->sync_state == q,
("%s: st->sync_state == q",
__func__));
/*
* XXXGL: some of write methods do unlocked reads
* of state data :(
*/
pfsync_qs[q].write(st, m->m_data + offset);
offset += pfsync_qs[q].len;
st->sync_state = PFSYNC_S_NONE;
pf_release_state(st);
count++;
}
TAILQ_INIT(&b->b_qs[q]);
bzero(subh, sizeof(*subh));
subh->action = pfsync_qs[q].action;
subh->count = htons(count);
V_pfsyncstats.pfsyncs_oacts[pfsync_qs[q].action] += count;
}
if (!TAILQ_EMPTY(&b->b_upd_req_list)) {
subh = (struct pfsync_subheader *)(m->m_data + offset);
offset += sizeof(*subh);
count = 0;
while ((ur = TAILQ_FIRST(&b->b_upd_req_list)) != NULL) {
TAILQ_REMOVE(&b->b_upd_req_list, ur, ur_entry);
bcopy(&ur->ur_msg, m->m_data + offset,
sizeof(ur->ur_msg));
offset += sizeof(ur->ur_msg);
free(ur, M_PFSYNC);
count++;
}
bzero(subh, sizeof(*subh));
subh->action = PFSYNC_ACT_UPD_REQ;
subh->count = htons(count);
V_pfsyncstats.pfsyncs_oacts[PFSYNC_ACT_UPD_REQ] += count;
}
/* has someone built a custom region for us to add? */
if (b->b_plus != NULL) {
bcopy(b->b_plus, m->m_data + offset, b->b_pluslen);
offset += b->b_pluslen;
b->b_plus = NULL;
}
subh = (struct pfsync_subheader *)(m->m_data + offset);
offset += sizeof(*subh);
bzero(subh, sizeof(*subh));
subh->action = PFSYNC_ACT_EOF;
subh->count = htons(1);
V_pfsyncstats.pfsyncs_oacts[PFSYNC_ACT_EOF]++;
/* we're done, let's put it on the wire */
if (ifp->if_bpf) {
m->m_data += sizeof(*ip);
m->m_len = m->m_pkthdr.len = b->b_len - sizeof(*ip);
BPF_MTAP(ifp, m);
m->m_data -= sizeof(*ip);
m->m_len = m->m_pkthdr.len = b->b_len;
}
if (sc->sc_sync_if == NULL) {
b->b_len = PFSYNC_MINPKT;
m_freem(m);
return;
}
if_inc_counter(sc->sc_ifp, IFCOUNTER_OPACKETS, 1);
if_inc_counter(sc->sc_ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len);
b->b_len = PFSYNC_MINPKT;
if (!_IF_QFULL(&b->b_snd))
_IF_ENQUEUE(&b->b_snd, m);
else {
m_freem(m);
if_inc_counter(sc->sc_ifp, IFCOUNTER_OQDROPS, 1);
}
if (schedswi)
swi_sched(V_pfsync_swi_cookie, 0);
}
static void
pfsync_insert_state(struct pf_state *st)
{
struct pfsync_softc *sc = V_pfsyncif;
struct pfsync_bucket *b = pfsync_get_bucket(sc, st);
if (st->state_flags & PFSTATE_NOSYNC)
return;
if ((st->rule.ptr->rule_flag & PFRULE_NOSYNC) ||
st->key[PF_SK_WIRE]->proto == IPPROTO_PFSYNC) {
st->state_flags |= PFSTATE_NOSYNC;
return;
}
KASSERT(st->sync_state == PFSYNC_S_NONE,
("%s: st->sync_state %u", __func__, st->sync_state));
PFSYNC_BUCKET_LOCK(b);
if (b->b_len == PFSYNC_MINPKT)
callout_reset(&b->b_tmo, 1 * hz, pfsync_timeout, b);
pfsync_q_ins(st, PFSYNC_S_INS, true);
PFSYNC_BUCKET_UNLOCK(b);
st->sync_updates = 0;
}
static int
pfsync_defer(struct pf_state *st, struct mbuf *m)
{
struct pfsync_softc *sc = V_pfsyncif;
struct pfsync_deferral *pd;
struct pfsync_bucket *b = pfsync_get_bucket(sc, st);
if (m->m_flags & (M_BCAST|M_MCAST))
return (0);
PFSYNC_LOCK(sc);
if (sc == NULL || !(sc->sc_ifp->if_flags & IFF_DRV_RUNNING) ||
!(sc->sc_flags & PFSYNCF_DEFER)) {
PFSYNC_UNLOCK(sc);
return (0);
}
if (b->b_deferred >= 128)
pfsync_undefer(TAILQ_FIRST(&b->b_deferrals), 0);
pd = malloc(sizeof(*pd), M_PFSYNC, M_NOWAIT);
if (pd == NULL)
return (0);
b->b_deferred++;
m->m_flags |= M_SKIP_FIREWALL;
st->state_flags |= PFSTATE_ACK;
pd->pd_sc = sc;
pd->pd_refs = 0;
pd->pd_st = st;
pf_ref_state(st);
pd->pd_m = m;
TAILQ_INSERT_TAIL(&b->b_deferrals, pd, pd_entry);
callout_init_mtx(&pd->pd_tmo, &b->b_mtx, CALLOUT_RETURNUNLOCKED);
callout_reset(&pd->pd_tmo, 10, pfsync_defer_tmo, pd);
pfsync_push(b);
return (1);
}
static void
pfsync_undefer(struct pfsync_deferral *pd, int drop)
{
struct pfsync_softc *sc = pd->pd_sc;
struct mbuf *m = pd->pd_m;
struct pf_state *st = pd->pd_st;
struct pfsync_bucket *b = pfsync_get_bucket(sc, st);
PFSYNC_BUCKET_LOCK_ASSERT(b);
TAILQ_REMOVE(&b->b_deferrals, pd, pd_entry);
b->b_deferred--;
pd->pd_st->state_flags &= ~PFSTATE_ACK; /* XXX: locking! */
free(pd, M_PFSYNC);
pf_release_state(st);
if (drop)
m_freem(m);
else {
_IF_ENQUEUE(&b->b_snd, m);
pfsync_push(b);
}
}
static void
pfsync_defer_tmo(void *arg)
{
struct epoch_tracker et;
struct pfsync_deferral *pd = arg;
struct pfsync_softc *sc = pd->pd_sc;
struct mbuf *m = pd->pd_m;
struct pf_state *st = pd->pd_st;
struct pfsync_bucket *b = pfsync_get_bucket(sc, st);
PFSYNC_BUCKET_LOCK_ASSERT(b);
NET_EPOCH_ENTER(et);
CURVNET_SET(m->m_pkthdr.rcvif->if_vnet);
TAILQ_REMOVE(&b->b_deferrals, pd, pd_entry);
b->b_deferred--;
pd->pd_st->state_flags &= ~PFSTATE_ACK; /* XXX: locking! */
if (pd->pd_refs == 0)
free(pd, M_PFSYNC);
PFSYNC_UNLOCK(sc);
ip_output(m, NULL, NULL, 0, NULL, NULL);
pf_release_state(st);
CURVNET_RESTORE();
NET_EPOCH_EXIT(et);
}
static void
pfsync_undefer_state(struct pf_state *st, int drop)
{
struct pfsync_softc *sc = V_pfsyncif;
struct pfsync_deferral *pd;
struct pfsync_bucket *b = pfsync_get_bucket(sc, st);
PFSYNC_BUCKET_LOCK(b);
TAILQ_FOREACH(pd, &b->b_deferrals, pd_entry) {
if (pd->pd_st == st) {
if (callout_stop(&pd->pd_tmo) > 0)
pfsync_undefer(pd, drop);
PFSYNC_BUCKET_UNLOCK(b);
return;
}
}
PFSYNC_BUCKET_UNLOCK(b);
panic("%s: unable to find deferred state", __func__);
}
static struct pfsync_bucket*
pfsync_get_bucket(struct pfsync_softc *sc, struct pf_state *st)
{
int c = PF_IDHASH(st) % pfsync_buckets;
return &sc->sc_buckets[c];
}
static void
pfsync_update_state(struct pf_state *st)
{
struct pfsync_softc *sc = V_pfsyncif;
bool sync = false, ref = true;
struct pfsync_bucket *b = pfsync_get_bucket(sc, st);
PF_STATE_LOCK_ASSERT(st);
PFSYNC_BUCKET_LOCK(b);
if (st->state_flags & PFSTATE_ACK)
pfsync_undefer_state(st, 0);
if (st->state_flags & PFSTATE_NOSYNC) {
if (st->sync_state != PFSYNC_S_NONE)
pfsync_q_del(st, true, b);
PFSYNC_BUCKET_UNLOCK(b);
return;
}
if (b->b_len == PFSYNC_MINPKT)
callout_reset(&b->b_tmo, 1 * hz, pfsync_timeout, b);
switch (st->sync_state) {
case PFSYNC_S_UPD_C:
case PFSYNC_S_UPD:
case PFSYNC_S_INS:
/* we're already handling it */
if (st->key[PF_SK_WIRE]->proto == IPPROTO_TCP) {
st->sync_updates++;
if (st->sync_updates >= sc->sc_maxupdates)
sync = true;
}
break;
case PFSYNC_S_IACK:
pfsync_q_del(st, false, b);
ref = false;
/* FALLTHROUGH */
case PFSYNC_S_NONE:
pfsync_q_ins(st, PFSYNC_S_UPD_C, ref);
st->sync_updates = 0;
break;
default:
panic("%s: unexpected sync state %d", __func__, st->sync_state);
}
if (sync || (time_uptime - st->pfsync_time) < 2)
pfsync_push(b);
PFSYNC_BUCKET_UNLOCK(b);
}
static void
pfsync_request_update(u_int32_t creatorid, u_int64_t id)
{
struct pfsync_softc *sc = V_pfsyncif;
struct pfsync_bucket *b = &sc->sc_buckets[0];
struct pfsync_upd_req_item *item;
size_t nlen = sizeof(struct pfsync_upd_req);
PFSYNC_BUCKET_LOCK_ASSERT(b);
/*
* This code does a bit to prevent multiple update requests for the
* same state being generated. It searches current subheader queue,
* but it doesn't lookup into queue of already packed datagrams.
*/
TAILQ_FOREACH(item, &b->b_upd_req_list, ur_entry)
if (item->ur_msg.id == id &&
item->ur_msg.creatorid == creatorid)
return;
item = malloc(sizeof(*item), M_PFSYNC, M_NOWAIT);
if (item == NULL)
return; /* XXX stats */
item->ur_msg.id = id;
item->ur_msg.creatorid = creatorid;
if (TAILQ_EMPTY(&b->b_upd_req_list))
nlen += sizeof(struct pfsync_subheader);
if (b->b_len + nlen > sc->sc_ifp->if_mtu) {
pfsync_sendout(1, 0);
nlen = sizeof(struct pfsync_subheader) +
sizeof(struct pfsync_upd_req);
}
TAILQ_INSERT_TAIL(&b->b_upd_req_list, item, ur_entry);
b->b_len += nlen;
}
static bool
pfsync_update_state_req(struct pf_state *st)
{
struct pfsync_softc *sc = V_pfsyncif;
bool ref = true, full = false;
struct pfsync_bucket *b = pfsync_get_bucket(sc, st);
PF_STATE_LOCK_ASSERT(st);
PFSYNC_BUCKET_LOCK(b);
if (st->state_flags & PFSTATE_NOSYNC) {
if (st->sync_state != PFSYNC_S_NONE)
pfsync_q_del(st, true, b);
PFSYNC_BUCKET_UNLOCK(b);
return (full);
}
switch (st->sync_state) {
case PFSYNC_S_UPD_C:
case PFSYNC_S_IACK:
pfsync_q_del(st, false, b);
ref = false;
/* FALLTHROUGH */
case PFSYNC_S_NONE:
pfsync_q_ins(st, PFSYNC_S_UPD, ref);
pfsync_push(b);
break;
case PFSYNC_S_INS:
case PFSYNC_S_UPD:
case PFSYNC_S_DEL:
/* we're already handling it */
break;
default:
panic("%s: unexpected sync state %d", __func__, st->sync_state);
}
if ((sc->sc_ifp->if_mtu - b->b_len) < sizeof(struct pfsync_state))
full = true;
PFSYNC_BUCKET_UNLOCK(b);
return (full);
}
static void
pfsync_delete_state(struct pf_state *st)
{
struct pfsync_softc *sc = V_pfsyncif;
struct pfsync_bucket *b = pfsync_get_bucket(sc, st);
bool ref = true;
PFSYNC_BUCKET_LOCK(b);
if (st->state_flags & PFSTATE_ACK)
pfsync_undefer_state(st, 1);
if (st->state_flags & PFSTATE_NOSYNC) {
if (st->sync_state != PFSYNC_S_NONE)
pfsync_q_del(st, true, b);
PFSYNC_BUCKET_UNLOCK(b);
return;
}
if (b->b_len == PFSYNC_MINPKT)
callout_reset(&b->b_tmo, 1 * hz, pfsync_timeout, b);
switch (st->sync_state) {
case PFSYNC_S_INS:
/* We never got to tell the world so just forget about it. */
pfsync_q_del(st, true, b);
break;
case PFSYNC_S_UPD_C:
case PFSYNC_S_UPD:
case PFSYNC_S_IACK:
pfsync_q_del(st, false, b);
ref = false;
/* FALLTHROUGH */
case PFSYNC_S_NONE:
pfsync_q_ins(st, PFSYNC_S_DEL, ref);
break;
default:
panic("%s: unexpected sync state %d", __func__, st->sync_state);
}
PFSYNC_BUCKET_UNLOCK(b);
}
static void
pfsync_clear_states(u_int32_t creatorid, const char *ifname)
{
struct {
struct pfsync_subheader subh;
struct pfsync_clr clr;
} __packed r;
bzero(&r, sizeof(r));
r.subh.action = PFSYNC_ACT_CLR;
r.subh.count = htons(1);
V_pfsyncstats.pfsyncs_oacts[PFSYNC_ACT_CLR]++;
strlcpy(r.clr.ifname, ifname, sizeof(r.clr.ifname));
r.clr.creatorid = creatorid;
pfsync_send_plus(&r, sizeof(r));
}
static void
pfsync_q_ins(struct pf_state *st, int q, bool ref)
{
struct pfsync_softc *sc = V_pfsyncif;
size_t nlen = pfsync_qs[q].len;
struct pfsync_bucket *b = pfsync_get_bucket(sc, st);
PFSYNC_BUCKET_LOCK_ASSERT(b);
KASSERT(st->sync_state == PFSYNC_S_NONE,
("%s: st->sync_state %u", __func__, st->sync_state));
KASSERT(b->b_len >= PFSYNC_MINPKT, ("pfsync pkt len is too low %zu",
b->b_len));
if (TAILQ_EMPTY(&b->b_qs[q]))
nlen += sizeof(struct pfsync_subheader);
if (b->b_len + nlen > sc->sc_ifp->if_mtu) {
pfsync_sendout(1, b->b_id);
nlen = sizeof(struct pfsync_subheader) + pfsync_qs[q].len;
}
b->b_len += nlen;
TAILQ_INSERT_TAIL(&b->b_qs[q], st, sync_list);
st->sync_state = q;
if (ref)
pf_ref_state(st);
}
static void
pfsync_q_del(struct pf_state *st, bool unref, struct pfsync_bucket *b)
{
int q = st->sync_state;
PFSYNC_BUCKET_LOCK_ASSERT(b);
KASSERT(st->sync_state != PFSYNC_S_NONE,
("%s: st->sync_state != PFSYNC_S_NONE", __func__));
b->b_len -= pfsync_qs[q].len;
TAILQ_REMOVE(&b->b_qs[q], st, sync_list);
st->sync_state = PFSYNC_S_NONE;
if (unref)
pf_release_state(st);
if (TAILQ_EMPTY(&b->b_qs[q]))
b->b_len -= sizeof(struct pfsync_subheader);
}
static void
pfsync_bulk_start(void)
{
struct pfsync_softc *sc = V_pfsyncif;
if (V_pf_status.debug >= PF_DEBUG_MISC)
printf("pfsync: received bulk update request\n");
PFSYNC_BLOCK(sc);
sc->sc_ureq_received = time_uptime;
sc->sc_bulk_hashid = 0;
sc->sc_bulk_stateid = 0;
pfsync_bulk_status(PFSYNC_BUS_START);
callout_reset(&sc->sc_bulk_tmo, 1, pfsync_bulk_update, sc);
PFSYNC_BUNLOCK(sc);
}
static void
pfsync_bulk_update(void *arg)
{
struct pfsync_softc *sc = arg;
struct pf_state *s;
int i, sent = 0;
PFSYNC_BLOCK_ASSERT(sc);
CURVNET_SET(sc->sc_ifp->if_vnet);
/*
* Start with last state from previous invocation.
* It may had gone, in this case start from the
* hash slot.
*/
s = pf_find_state_byid(sc->sc_bulk_stateid, sc->sc_bulk_creatorid);
if (s != NULL)
i = PF_IDHASH(s);
else
i = sc->sc_bulk_hashid;
for (; i <= pf_hashmask; i++) {
struct pf_idhash *ih = &V_pf_idhash[i];
if (s != NULL)
PF_HASHROW_ASSERT(ih);
else {
PF_HASHROW_LOCK(ih);
s = LIST_FIRST(&ih->states);
}
for (; s; s = LIST_NEXT(s, entry)) {
if (s->sync_state == PFSYNC_S_NONE &&
s->timeout < PFTM_MAX &&
s->pfsync_time <= sc->sc_ureq_received) {
if (pfsync_update_state_req(s)) {
/* We've filled a packet. */
sc->sc_bulk_hashid = i;
sc->sc_bulk_stateid = s->id;
sc->sc_bulk_creatorid = s->creatorid;
PF_HASHROW_UNLOCK(ih);
callout_reset(&sc->sc_bulk_tmo, 1,
pfsync_bulk_update, sc);
goto full;
}
sent++;
}
}
PF_HASHROW_UNLOCK(ih);
}
/* We're done. */
pfsync_bulk_status(PFSYNC_BUS_END);
full:
CURVNET_RESTORE();
}
static void
pfsync_bulk_status(u_int8_t status)
{
struct {
struct pfsync_subheader subh;
struct pfsync_bus bus;
} __packed r;
struct pfsync_softc *sc = V_pfsyncif;
bzero(&r, sizeof(r));
r.subh.action = PFSYNC_ACT_BUS;
r.subh.count = htons(1);
V_pfsyncstats.pfsyncs_oacts[PFSYNC_ACT_BUS]++;
r.bus.creatorid = V_pf_status.hostid;
r.bus.endtime = htonl(time_uptime - sc->sc_ureq_received);
r.bus.status = status;
pfsync_send_plus(&r, sizeof(r));
}
static void
pfsync_bulk_fail(void *arg)
{
struct pfsync_softc *sc = arg;
struct pfsync_bucket *b = &sc->sc_buckets[0];
CURVNET_SET(sc->sc_ifp->if_vnet);
PFSYNC_BLOCK_ASSERT(sc);
if (sc->sc_bulk_tries++ < PFSYNC_MAX_BULKTRIES) {
/* Try again */
callout_reset(&sc->sc_bulkfail_tmo, 5 * hz,
pfsync_bulk_fail, V_pfsyncif);
PFSYNC_BUCKET_LOCK(b);
pfsync_request_update(0, 0);
PFSYNC_BUCKET_UNLOCK(b);
} else {
/* Pretend like the transfer was ok. */
sc->sc_ureq_sent = 0;
sc->sc_bulk_tries = 0;
PFSYNC_LOCK(sc);
if (!(sc->sc_flags & PFSYNCF_OK) && carp_demote_adj_p)
(*carp_demote_adj_p)(-V_pfsync_carp_adj,
"pfsync bulk fail");
sc->sc_flags |= PFSYNCF_OK;
PFSYNC_UNLOCK(sc);
if (V_pf_status.debug >= PF_DEBUG_MISC)
printf("pfsync: failed to receive bulk update\n");
}
CURVNET_RESTORE();
}
static void
pfsync_send_plus(void *plus, size_t pluslen)
{
struct pfsync_softc *sc = V_pfsyncif;
struct pfsync_bucket *b = &sc->sc_buckets[0];
PFSYNC_BUCKET_LOCK(b);
if (b->b_len + pluslen > sc->sc_ifp->if_mtu)
pfsync_sendout(1, b->b_id);
b->b_plus = plus;
b->b_len += (b->b_pluslen = pluslen);
pfsync_sendout(1, b->b_id);
PFSYNC_BUCKET_UNLOCK(b);
}
static void
pfsync_timeout(void *arg)
{
struct pfsync_bucket *b = arg;
CURVNET_SET(b->b_sc->sc_ifp->if_vnet);
PFSYNC_BUCKET_LOCK(b);
pfsync_push(b);
PFSYNC_BUCKET_UNLOCK(b);
CURVNET_RESTORE();
}
static void
pfsync_push(struct pfsync_bucket *b)
{
PFSYNC_BUCKET_LOCK_ASSERT(b);
b->b_flags |= PFSYNCF_BUCKET_PUSH;
swi_sched(V_pfsync_swi_cookie, 0);
}
static void
pfsync_push_all(struct pfsync_softc *sc)
{
int c;
struct pfsync_bucket *b;
for (c = 0; c < pfsync_buckets; c++) {
b = &sc->sc_buckets[c];
PFSYNC_BUCKET_LOCK(b);
pfsync_push(b);
PFSYNC_BUCKET_UNLOCK(b);
}
}
static void
pfsyncintr(void *arg)
{
struct epoch_tracker et;
struct pfsync_softc *sc = arg;
struct pfsync_bucket *b;
struct mbuf *m, *n;
int c;
NET_EPOCH_ENTER(et);
CURVNET_SET(sc->sc_ifp->if_vnet);
for (c = 0; c < pfsync_buckets; c++) {
b = &sc->sc_buckets[c];
PFSYNC_BUCKET_LOCK(b);
if ((b->b_flags & PFSYNCF_BUCKET_PUSH) && b->b_len > PFSYNC_MINPKT) {
pfsync_sendout(0, b->b_id);
b->b_flags &= ~PFSYNCF_BUCKET_PUSH;
}
_IF_DEQUEUE_ALL(&b->b_snd, m);
PFSYNC_BUCKET_UNLOCK(b);
for (; m != NULL; m = n) {
n = m->m_nextpkt;
m->m_nextpkt = NULL;
/*
* We distinguish between a deferral packet and our
* own pfsync packet based on M_SKIP_FIREWALL
* flag. This is XXX.
*/
if (m->m_flags & M_SKIP_FIREWALL)
ip_output(m, NULL, NULL, 0, NULL, NULL);
else if (ip_output(m, NULL, NULL, IP_RAWOUTPUT, &sc->sc_imo,
NULL) == 0)
V_pfsyncstats.pfsyncs_opackets++;
else
V_pfsyncstats.pfsyncs_oerrors++;
}
}
CURVNET_RESTORE();
NET_EPOCH_EXIT(et);
}
static int
pfsync_multicast_setup(struct pfsync_softc *sc, struct ifnet *ifp,
struct in_mfilter *imf)
{
struct ip_moptions *imo = &sc->sc_imo;
int error;
if (!(ifp->if_flags & IFF_MULTICAST))
return (EADDRNOTAVAIL);
imo->imo_multicast_vif = -1;
if ((error = in_joingroup(ifp, &sc->sc_sync_peer, NULL,
&imf->imf_inm)) != 0)
return (error);
ip_mfilter_init(&imo->imo_head);
ip_mfilter_insert(&imo->imo_head, imf);
imo->imo_multicast_ifp = ifp;
imo->imo_multicast_ttl = PFSYNC_DFLTTL;
imo->imo_multicast_loop = 0;
return (0);
}
static void
pfsync_multicast_cleanup(struct pfsync_softc *sc)
{
struct ip_moptions *imo = &sc->sc_imo;
struct in_mfilter *imf;
while ((imf = ip_mfilter_first(&imo->imo_head)) != NULL) {
ip_mfilter_remove(&imo->imo_head, imf);
in_leavegroup(imf->imf_inm, NULL);
ip_mfilter_free(imf);
}
imo->imo_multicast_ifp = NULL;
}
void
pfsync_detach_ifnet(struct ifnet *ifp)
{
struct pfsync_softc *sc = V_pfsyncif;
if (sc == NULL)
return;
PFSYNC_LOCK(sc);
if (sc->sc_sync_if == ifp) {
/* We don't need mutlicast cleanup here, because the interface
* is going away. We do need to ensure we don't try to do
* cleanup later.
*/
ip_mfilter_init(&sc->sc_imo.imo_head);
sc->sc_imo.imo_multicast_ifp = NULL;
sc->sc_sync_if = NULL;
}
PFSYNC_UNLOCK(sc);
}
#ifdef INET
extern struct domain inetdomain;
static struct protosw in_pfsync_protosw = {
.pr_type = SOCK_RAW,
.pr_domain = &inetdomain,
.pr_protocol = IPPROTO_PFSYNC,
.pr_flags = PR_ATOMIC|PR_ADDR,
.pr_input = pfsync_input,
.pr_output = rip_output,
.pr_ctloutput = rip_ctloutput,
.pr_usrreqs = &rip_usrreqs
};
#endif
static void
pfsync_pointers_init()
{
PF_RULES_WLOCK();
V_pfsync_state_import_ptr = pfsync_state_import;
V_pfsync_insert_state_ptr = pfsync_insert_state;
V_pfsync_update_state_ptr = pfsync_update_state;
V_pfsync_delete_state_ptr = pfsync_delete_state;
V_pfsync_clear_states_ptr = pfsync_clear_states;
V_pfsync_defer_ptr = pfsync_defer;
PF_RULES_WUNLOCK();
}
static void
pfsync_pointers_uninit()
{
PF_RULES_WLOCK();
V_pfsync_state_import_ptr = NULL;
V_pfsync_insert_state_ptr = NULL;
V_pfsync_update_state_ptr = NULL;
V_pfsync_delete_state_ptr = NULL;
V_pfsync_clear_states_ptr = NULL;
V_pfsync_defer_ptr = NULL;
PF_RULES_WUNLOCK();
}
static void
vnet_pfsync_init(const void *unused __unused)
{
int error;
V_pfsync_cloner = if_clone_simple(pfsyncname,
pfsync_clone_create, pfsync_clone_destroy, 1);
error = swi_add(NULL, pfsyncname, pfsyncintr, V_pfsyncif,
SWI_NET, INTR_MPSAFE, &V_pfsync_swi_cookie);
if (error) {
if_clone_detach(V_pfsync_cloner);
log(LOG_INFO, "swi_add() failed in %s\n", __func__);
}
pfsync_pointers_init();
}
VNET_SYSINIT(vnet_pfsync_init, SI_SUB_PROTO_FIREWALL, SI_ORDER_ANY,
vnet_pfsync_init, NULL);
static void
vnet_pfsync_uninit(const void *unused __unused)
{
pfsync_pointers_uninit();
if_clone_detach(V_pfsync_cloner);
swi_remove(V_pfsync_swi_cookie);
}
VNET_SYSUNINIT(vnet_pfsync_uninit, SI_SUB_PROTO_FIREWALL, SI_ORDER_FOURTH,
vnet_pfsync_uninit, NULL);
static int
pfsync_init()
{
#ifdef INET
int error;
pfsync_detach_ifnet_ptr = pfsync_detach_ifnet;
error = pf_proto_register(PF_INET, &in_pfsync_protosw);
if (error)
return (error);
error = ipproto_register(IPPROTO_PFSYNC);
if (error) {
pf_proto_unregister(PF_INET, IPPROTO_PFSYNC, SOCK_RAW);
return (error);
}
#endif
return (0);
}
static void
pfsync_uninit()
{
pfsync_detach_ifnet_ptr = NULL;
#ifdef INET
ipproto_unregister(IPPROTO_PFSYNC);
pf_proto_unregister(PF_INET, IPPROTO_PFSYNC, SOCK_RAW);
#endif
}
static int
pfsync_modevent(module_t mod, int type, void *data)
{
int error = 0;
switch (type) {
case MOD_LOAD:
error = pfsync_init();
break;
case MOD_UNLOAD:
pfsync_uninit();
break;
default:
error = EINVAL;
break;
}
return (error);
}
static moduledata_t pfsync_mod = {
pfsyncname,
pfsync_modevent,
0
};
#define PFSYNC_MODVER 1
/* Stay on FIREWALL as we depend on pf being initialized and on inetdomain. */
DECLARE_MODULE(pfsync, pfsync_mod, SI_SUB_PROTO_FIREWALL, SI_ORDER_ANY);
MODULE_VERSION(pfsync, PFSYNC_MODVER);
MODULE_DEPEND(pfsync, pf, PF_MODVER, PF_MODVER, PF_MODVER);